Dataset Viewer
Auto-converted to Parquet
library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/ao/sparsity/test_activation_sparsifier.py
__init__
def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 32, kernel_size=3) self.identity1 = nn.Identity() self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.linear1 = nn.Linear(4608, 128) self.identity2 = nn.Identity() self.linear2 = nn.Linear(128, 10)
def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 32, kernel_size=3) self.identity1 = nn.Identity() self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.linear1 = nn.Linear(4608, 128) self.identity2 = nn.Identity() self.linear2 = nn.Linear(128, 10)
import copy from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo import logging import torch from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ActivationSparsifier import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning.sparsifier.utils import module_to_fqn from typing import List class Model(nn.Module):
import copy import logging from typing import List import torch import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ( ActivationSparsifier, ) from torch.ao.pruning.sparsifier.utils import module_to_fqn from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase class Model(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_activation_sparsifier.py
_check_step
def _check_step(self, activation_sparsifier, data_agg_actual): """Checks if .step() works as expected. Specifically, checks if the mask is computed correctly. Args: activation_sparsifier (sparsifier object) activation sparsifier object that is being tested. data_agg_actual (torch tensor) aggregated torch tensor """ model = activation_sparsifier.model layer_name = module_to_fqn(model, model.conv1) assert layer_name is not None reduce_fn = activation_sparsifier.data_groups[layer_name]['reduce_fn'] data_reduce_actual = reduce_fn(data_agg_actual) mask_fn = activation_sparsifier.data_groups[layer_name]['mask_fn'] sparse_config = activation_sparsifier.data_groups[layer_name]['sparse_config'] mask_actual = mask_fn(data_reduce_actual, **sparse_config) mask_model = activation_sparsifier.get_mask(layer_name) assert torch.all(mask_model == mask_actual) for _, config in activation_sparsifier.data_groups.items(): assert 'data' not in config
def _check_step(self, activation_sparsifier, data_agg_actual): """Checks if .step() works as expected. Specifically, checks if the mask is computed correctly. Args: activation_sparsifier (sparsifier object) activation sparsifier object that is being tested. data_agg_actual (torch tensor) aggregated torch tensor """ model = activation_sparsifier.model layer_name = module_to_fqn(model, model.conv1) assert layer_name is not None reduce_fn = activation_sparsifier.data_groups[layer_name]["reduce_fn"] data_reduce_actual = reduce_fn(data_agg_actual) mask_fn = activation_sparsifier.data_groups[layer_name]["mask_fn"] sparse_config = activation_sparsifier.data_groups[layer_name]["sparse_config"] mask_actual = mask_fn(data_reduce_actual, **sparse_config) mask_model = activation_sparsifier.get_mask(layer_name) assert torch.all(mask_model == mask_actual) for config in activation_sparsifier.data_groups.values(): assert "data" not in config
import copy from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo import logging import torch from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ActivationSparsifier import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning.sparsifier.utils import module_to_fqn from typing import List class TestActivationSparsifier(TestCase):
import copy import logging from typing import List import torch import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ( ActivationSparsifier, ) from torch.ao.pruning.sparsifier.utils import module_to_fqn from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase class TestActivationSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
__init__
def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(37, 39) ) self.linear = nn.Linear(39, 33) self.head = nn.Linear(33, 13)
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class Model(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/ao/sparsity/test_sparsifier.py
forward
def forward(self, x): x = self.seq(x) x = torch.relu(x) x = self.linear(x) x = torch.relu(x) x = self.head(x) return x
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class Model(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/ao/sparsity/test_sparsifier.py
__init__
def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(37, 39) ) self.linear = nn.Linear(39, 33) self.head = nn.Linear(33, 13)
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class Model(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/ao/sparsity/test_sparsifier.py
test_constructor
def test_constructor(self): # Cannot instantiate the abstract base self.assertRaises(TypeError, BaseSparsifier) # Can instantiate the model with no configs model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, config=None) assert len(sparsifier.groups) == 3 sparsifier.step() # Can instantiate the model with configs sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert len(sparsifier.groups) == 1 assert sparsifier.groups[0]['tensor_fqn'] == 'linear.weight' assert 'test' in sparsifier.groups[0] assert sparsifier.groups[0]['test'] == 3
def test_constructor(self): # Cannot instantiate the abstract base self.assertRaises(TypeError, BaseSparsifier) # Can instantiate the model with no configs model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, config=None) assert len(sparsifier.groups) == 5 sparsifier.step() # Can instantiate the model with configs sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) assert len(sparsifier.groups) == 1 assert sparsifier.groups[0]["tensor_fqn"] == "linear1.weight" assert "test" in sparsifier.groups[0] assert sparsifier.groups[0]["test"] == 3
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_step_2_of_4
def test_step_2_of_4(self): model = Model() sparsifier = WeightNormSparsifier(sparsity_level=1.0, sparse_block_shape=(1, 4), zeros_per_block=2) sparsifier.prepare(model, config=[{'tensor_fqn': 'linear.weight'}]) sparsifier.step() # make sure the sparsity level is approximately 50% mask = model.linear.parametrizations['weight'][0].mask.to(torch.float) # mean works on float only self.assertAlmostEqual(mask.mean().item(), 0.5, places=2) # Make sure each block has exactly 50% zeros module = sparsifier.groups[0]['module'] mask = module.parametrizations['weight'][0].mask for row in mask: for idx in range(0, len(row), 4): block = row[idx:idx + 4] block, _ = block.sort() assert (block[:2] == 0).all() assert (block[2:] != 0).all()
def test_step_2_of_4(self): model = SimpleLinear() sparsifier = WeightNormSparsifier( sparsity_level=1.0, sparse_block_shape=(1, 4), zeros_per_block=2 ) sparsifier.prepare(model, config=[{"tensor_fqn": "linear1.weight"}]) sparsifier.step() # make sure the sparsity level is approximately 50% mask = model.linear1.parametrizations["weight"][0].mask.to( torch.float ) # mean works on float only self.assertAlmostEqual(mask.mean().item(), 0.5, places=2) # Make sure each block has exactly 50% zeros module = sparsifier.groups[0]["module"] mask = module.parametrizations["weight"][0].mask for row in mask: for idx in range(0, len(row), 4): block = row[idx : idx + 4] block, _ = block.sort() assert (block[:2] == 0).all() assert (block[2:] != 0).all()
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestWeightNormSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestWeightNormSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_prepare
def test_prepare(self): model = Model() sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) for g in sparsifier.groups: module = g['module'] # Check mask exists assert hasattr(module.parametrizations['weight'][0], 'mask') # Check parametrization exists and is correct assert is_parametrized(module, 'weight') assert type(module.parametrizations.weight[0]) == FakeSparsity
def test_prepare(self): model = SimpleLinear() sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) for g in sparsifier.groups: module = g["module"] # Check mask exists assert hasattr(module.parametrizations["weight"][0], "mask") # Check parametrization exists and is correct assert is_parametrized(module, "weight") assert type(module.parametrizations.weight[0]) == FakeSparsity
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestWeightNormSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestWeightNormSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_mask_squash
def test_mask_squash(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert hasattr(model.linear.parametrizations.weight[0], 'mask') assert is_parametrized(model.linear, 'weight') assert not is_parametrized(model.seq[0], 'weight') sparsifier.squash_mask() assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight')
def test_mask_squash(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) assert hasattr(model.linear1.parametrizations.weight[0], "mask") assert is_parametrized(model.linear1, "weight") assert not is_parametrized(model.seq[0], "weight") sparsifier.squash_mask() assert not is_parametrized(model.seq[0], "weight") assert not is_parametrized(model.linear1, "weight")
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_constructor
def test_constructor(self): # Cannot instantiate the abstract base self.assertRaises(TypeError, BaseSparsifier) # Can instantiate the model with no configs model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, config=None) assert len(sparsifier.groups) == 3 sparsifier.step() # Can instantiate the model with configs sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert len(sparsifier.groups) == 1 assert sparsifier.groups[0]['tensor_fqn'] == 'linear.weight' assert 'test' in sparsifier.groups[0] assert sparsifier.groups[0]['test'] == 3
def test_constructor(self): # Cannot instantiate the abstract base self.assertRaises(TypeError, BaseSparsifier) # Can instantiate the model with no configs model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, config=None) assert len(sparsifier.groups) == 5 sparsifier.step() # Can instantiate the model with configs sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) assert len(sparsifier.groups) == 1 assert sparsifier.groups[0]["tensor_fqn"] == "linear1.weight" assert "test" in sparsifier.groups[0] assert sparsifier.groups[0]["test"] == 3
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_step
def test_step(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.enable_mask_update = True sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) sparsifier.step() assert torch.all(model.linear.parametrizations.weight[0].mask[0] == 0)
def test_step(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.enable_mask_update = True sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) sparsifier.step() assert torch.all(model.linear1.parametrizations.weight[0].mask[0] == 0)
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_prepare
def test_prepare(self): model = Model() sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) for g in sparsifier.groups: module = g['module'] # Check mask exists assert hasattr(module.parametrizations['weight'][0], 'mask') # Check parametrization exists and is correct assert is_parametrized(module, 'weight') assert type(module.parametrizations.weight[0]) == FakeSparsity
def test_prepare(self): model = SimpleLinear() sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) for g in sparsifier.groups: module = g["module"] # Check mask exists assert hasattr(module.parametrizations["weight"][0], "mask") # Check parametrization exists and is correct assert is_parametrized(module, "weight") assert type(module.parametrizations.weight[0]) == FakeSparsity
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestWeightNormSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestWeightNormSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_mask_squash
def test_mask_squash(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert hasattr(model.linear.parametrizations.weight[0], 'mask') assert is_parametrized(model.linear, 'weight') assert not is_parametrized(model.seq[0], 'weight') sparsifier.squash_mask() assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight')
def test_mask_squash(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) assert hasattr(model.linear1.parametrizations.weight[0], "mask") assert is_parametrized(model.linear1, "weight") assert not is_parametrized(model.seq[0], "weight") sparsifier.squash_mask() assert not is_parametrized(model.seq[0], "weight") assert not is_parametrized(model.linear1, "weight")
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_activation_sparsifier.py
test_activation_sparsifier
def test_activation_sparsifier(self): """Simulates the workflow of the activation sparsifier, starting from object creation till squash_mask(). The idea is to check that everything works as expected while in the workflow. """ # defining aggregate, reduce and mask functions def agg_fn(x, y): return x + y def reduce_fn(x): return torch.mean(x, dim=0) def _vanilla_norm_sparsifier(data, sparsity_level): r"""Similar to data norm spasifier but block_shape = (1,1). Simply, flatten the data, sort it and mask out the values less than threshold """ data_norm = torch.abs(data).flatten() _, sorted_idx = torch.sort(data_norm) threshold_idx = round(sparsity_level * len(sorted_idx)) sorted_idx = sorted_idx[:threshold_idx] mask = torch.ones_like(data_norm) mask.scatter_(dim=0, index=sorted_idx, value=0) mask = mask.reshape(data.shape) return mask # Creating default function and sparse configs # default sparse_config sparse_config = { 'sparsity_level': 0.5 } defaults = { 'aggregate_fn': agg_fn, 'reduce_fn': reduce_fn } # simulate the workflow # STEP 1: make data and activation sparsifier object model = Model() # create model activation_sparsifier = ActivationSparsifier(model, **defaults, **sparse_config) # Test Constructor self._check_constructor(activation_sparsifier, model, defaults, sparse_config) # STEP 2: Register some layers register_layer1_args = { 'layer': model.conv1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer1 = {'sparsity_level': 0.3} register_layer2_args = { 'layer': model.linear1, 'features': [0, 10, 234], 'feature_dim': 1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer2 = {'sparsity_level': 0.1} register_layer3_args = { 'layer': model.identity1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer3 = {'sparsity_level': 0.3} register_layer4_args = { 'layer': model.identity2, 'features': [0, 10, 20], 'feature_dim': 1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer4 = {'sparsity_level': 0.1} layer_args_list = [(register_layer1_args, sparse_config_layer1), (register_layer2_args, sparse_config_layer2)] layer_args_list += [(register_layer3_args, sparse_config_layer3), (register_layer4_args, sparse_config_layer4)] # Registering.. for layer_args in layer_args_list: layer_arg, sparse_config_layer = layer_args activation_sparsifier.register_layer(**layer_arg, **sparse_config_layer) # check if things are registered correctly self._check_register_layer(activation_sparsifier, defaults, sparse_config, layer_args_list) # check state_dict after registering and before model forward self._check_state_dict(activation_sparsifier) # check if forward pre hooks actually work # some dummy data data_list = [] num_data_points = 5 for _ in range(0, num_data_points): rand_data = torch.randn(16, 1, 28, 28) activation_sparsifier.model(rand_data) data_list.append(rand_data) data_agg_actual = self._check_pre_forward_hook(activation_sparsifier, data_list) # check state_dict() before step() self._check_state_dict(activation_sparsifier) # STEP 3: sparsifier step activation_sparsifier.step() # check state_dict() after step() and before squash_mask() self._check_state_dict(activation_sparsifier) # self.check_step() self._check_step(activation_sparsifier, data_agg_actual) # STEP 4: squash mask activation_sparsifier.squash_mask() self._check_squash_mask(activation_sparsifier, data_list[0]) # check state_dict() after squash_mask() self._check_state_dict(activation_sparsifier)
def test_activation_sparsifier(self): """Simulates the workflow of the activation sparsifier, starting from object creation till squash_mask(). The idea is to check that everything works as expected while in the workflow. """ # defining aggregate, reduce and mask functions def agg_fn(x, y): return x + y def reduce_fn(x): return torch.mean(x, dim=0) def _vanilla_norm_sparsifier(data, sparsity_level): r"""Similar to data norm sparsifier but block_shape = (1,1). Simply, flatten the data, sort it and mask out the values less than threshold """ data_norm = torch.abs(data).flatten() _, sorted_idx = torch.sort(data_norm) threshold_idx = round(sparsity_level * len(sorted_idx)) sorted_idx = sorted_idx[:threshold_idx] mask = torch.ones_like(data_norm) mask.scatter_(dim=0, index=sorted_idx, value=0) mask = mask.reshape(data.shape) return mask # Creating default function and sparse configs # default sparse_config sparse_config = {"sparsity_level": 0.5} defaults = {"aggregate_fn": agg_fn, "reduce_fn": reduce_fn} # simulate the workflow # STEP 1: make data and activation sparsifier object model = Model() # create model activation_sparsifier = ActivationSparsifier(model, **defaults, **sparse_config) # Test Constructor self._check_constructor(activation_sparsifier, model, defaults, sparse_config) # STEP 2: Register some layers register_layer1_args = { "layer": model.conv1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer1 = {"sparsity_level": 0.3} register_layer2_args = { "layer": model.linear1, "features": [0, 10, 234], "feature_dim": 1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer2 = {"sparsity_level": 0.1} register_layer3_args = { "layer": model.identity1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer3 = {"sparsity_level": 0.3} register_layer4_args = { "layer": model.identity2, "features": [0, 10, 20], "feature_dim": 1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer4 = {"sparsity_level": 0.1} layer_args_list = [ (register_layer1_args, sparse_config_layer1), (register_layer2_args, sparse_config_layer2), ] layer_args_list += [ (register_layer3_args, sparse_config_layer3), (register_layer4_args, sparse_config_layer4), ] # Registering.. for layer_args in layer_args_list: layer_arg, sparse_config_layer = layer_args activation_sparsifier.register_layer(**layer_arg, **sparse_config_layer) # check if things are registered correctly self._check_register_layer( activation_sparsifier, defaults, sparse_config, layer_args_list ) # check state_dict after registering and before model forward self._check_state_dict(activation_sparsifier) # check if forward pre hooks actually work # some dummy data data_list = [] num_data_points = 5 for _ in range(0, num_data_points): rand_data = torch.randn(16, 1, 28, 28) activation_sparsifier.model(rand_data) data_list.append(rand_data) data_agg_actual = self._check_pre_forward_hook(activation_sparsifier, data_list) # check state_dict() before step() self._check_state_dict(activation_sparsifier) # STEP 3: sparsifier step activation_sparsifier.step() # check state_dict() after step() and before squash_mask() self._check_state_dict(activation_sparsifier) # self.check_step() self._check_step(activation_sparsifier, data_agg_actual) # STEP 4: squash mask activation_sparsifier.squash_mask() self._check_squash_mask(activation_sparsifier, data_list[0]) # check state_dict() after squash_mask() self._check_state_dict(activation_sparsifier)
import copy from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo import logging import torch from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ActivationSparsifier import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning.sparsifier.utils import module_to_fqn from typing import List class TestActivationSparsifier(TestCase):
import copy import logging from typing import List import torch import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ( ActivationSparsifier, ) from torch.ao.pruning.sparsifier.utils import module_to_fqn from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase class TestActivationSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_activation_sparsifier.py
_vanilla_norm_sparsifier
def _vanilla_norm_sparsifier(data, sparsity_level): r"""Similar to data norm spasifier but block_shape = (1,1). Simply, flatten the data, sort it and mask out the values less than threshold """ data_norm = torch.abs(data).flatten() _, sorted_idx = torch.sort(data_norm) threshold_idx = round(sparsity_level * len(sorted_idx)) sorted_idx = sorted_idx[:threshold_idx] mask = torch.ones_like(data_norm) mask.scatter_(dim=0, index=sorted_idx, value=0) mask = mask.reshape(data.shape) return mask # Creating default function and sparse configs # default sparse_config sparse_config = { 'sparsity_level': 0.5 } defaults = { 'aggregate_fn': agg_fn, 'reduce_fn': reduce_fn } # simulate the workflow # STEP 1: make data and activation sparsifier object model = Model() # create model activation_sparsifier = ActivationSparsifier(model, **defaults, **sparse_config) # Test Constructor self._check_constructor(activation_sparsifier, model, defaults, sparse_config) # STEP 2: Register some layers register_layer1_args = { 'layer': model.conv1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer1 = {'sparsity_level': 0.3} register_layer2_args = { 'layer': model.linear1, 'features': [0, 10, 234], 'feature_dim': 1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer2 = {'sparsity_level': 0.1} register_layer3_args = { 'layer': model.identity1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer3 = {'sparsity_level': 0.3} register_layer4_args = { 'layer': model.identity2, 'features': [0, 10, 20], 'feature_dim': 1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer4 = {'sparsity_level': 0.1} layer_args_list = [(register_layer1_args, sparse_config_layer1), (register_layer2_args, sparse_config_layer2)] layer_args_list += [(register_layer3_args, sparse_config_layer3), (register_layer4_args, sparse_config_layer4)] # Registering.. for layer_args in layer_args_list: layer_arg, sparse_config_layer = layer_args activation_sparsifier.register_layer(**layer_arg, **sparse_config_layer) # check if things are registered correctly self._check_register_layer(activation_sparsifier, defaults, sparse_config, layer_args_list) # check state_dict after registering and before model forward self._check_state_dict(activation_sparsifier) # check if forward pre hooks actually work # some dummy data data_list = [] num_data_points = 5 for _ in range(0, num_data_points): rand_data = torch.randn(16, 1, 28, 28) activation_sparsifier.model(rand_data) data_list.append(rand_data) data_agg_actual = self._check_pre_forward_hook(activation_sparsifier, data_list) # check state_dict() before step() self._check_state_dict(activation_sparsifier) # STEP 3: sparsifier step activation_sparsifier.step() # check state_dict() after step() and before squash_mask() self._check_state_dict(activation_sparsifier) # self.check_step() self._check_step(activation_sparsifier, data_agg_actual) # STEP 4: squash mask activation_sparsifier.squash_mask() self._check_squash_mask(activation_sparsifier, data_list[0]) # check state_dict() after squash_mask() self._check_state_dict(activation_sparsifier)
def _vanilla_norm_sparsifier(data, sparsity_level): r"""Similar to data norm sparsifier but block_shape = (1,1). Simply, flatten the data, sort it and mask out the values less than threshold """ data_norm = torch.abs(data).flatten() _, sorted_idx = torch.sort(data_norm) threshold_idx = round(sparsity_level * len(sorted_idx)) sorted_idx = sorted_idx[:threshold_idx] mask = torch.ones_like(data_norm) mask.scatter_(dim=0, index=sorted_idx, value=0) mask = mask.reshape(data.shape) return mask # Creating default function and sparse configs # default sparse_config sparse_config = {"sparsity_level": 0.5} defaults = {"aggregate_fn": agg_fn, "reduce_fn": reduce_fn} # simulate the workflow # STEP 1: make data and activation sparsifier object model = Model() # create model activation_sparsifier = ActivationSparsifier(model, **defaults, **sparse_config) # Test Constructor self._check_constructor(activation_sparsifier, model, defaults, sparse_config) # STEP 2: Register some layers register_layer1_args = { "layer": model.conv1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer1 = {"sparsity_level": 0.3} register_layer2_args = { "layer": model.linear1, "features": [0, 10, 234], "feature_dim": 1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer2 = {"sparsity_level": 0.1} register_layer3_args = { "layer": model.identity1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer3 = {"sparsity_level": 0.3} register_layer4_args = { "layer": model.identity2, "features": [0, 10, 20], "feature_dim": 1, "mask_fn": _vanilla_norm_sparsifier, } sparse_config_layer4 = {"sparsity_level": 0.1} layer_args_list = [ (register_layer1_args, sparse_config_layer1), (register_layer2_args, sparse_config_layer2), ] layer_args_list += [ (register_layer3_args, sparse_config_layer3), (register_layer4_args, sparse_config_layer4), ] # Registering.. for layer_args in layer_args_list: layer_arg, sparse_config_layer = layer_args activation_sparsifier.register_layer(**layer_arg, **sparse_config_layer) # check if things are registered correctly self._check_register_layer( activation_sparsifier, defaults, sparse_config, layer_args_list ) # check state_dict after registering and before model forward self._check_state_dict(activation_sparsifier) # check if forward pre hooks actually work # some dummy data data_list = [] num_data_points = 5 for _ in range(0, num_data_points): rand_data = torch.randn(16, 1, 28, 28) activation_sparsifier.model(rand_data) data_list.append(rand_data) data_agg_actual = self._check_pre_forward_hook(activation_sparsifier, data_list) # check state_dict() before step() self._check_state_dict(activation_sparsifier) # STEP 3: sparsifier step activation_sparsifier.step() # check state_dict() after step() and before squash_mask() self._check_state_dict(activation_sparsifier) # self.check_step() self._check_step(activation_sparsifier, data_agg_actual) # STEP 4: squash mask activation_sparsifier.squash_mask() self._check_squash_mask(activation_sparsifier, data_list[0]) # check state_dict() after squash_mask() self._check_state_dict(activation_sparsifier)
import copy from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo import logging import torch from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ActivationSparsifier import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning.sparsifier.utils import module_to_fqn from typing import List
import copy import logging from typing import List import torch import torch.nn as nn import torch.nn.functional as F from torch.ao.pruning._experimental.activation_sparsifier.activation_sparsifier import ( ActivationSparsifier, ) from torch.ao.pruning.sparsifier.utils import module_to_fqn from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_structured_sparsifier.py
test_saliency_pruner_update_mask
def test_saliency_pruner_update_mask(self): """Test that we prune out the row with the lowest saliency (first row)""" model = SimpleLinear() with torch.no_grad(): model.linear1.weight = nn.Parameter( torch.Tensor([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]) ) pruning_config = [{"tensor_fqn": "linear1.weight", "sparsity_level": 0.5}] pruner = SaliencyPruner({}) pruner.prepare(model, pruning_config) pruner.enable_mask_update = True pruner.step() pruned_model = pruner.prune() expected = torch.Tensor([[2, 2, 2, 2], [3, 3, 3, 3]]) pruned = pruned_model.linear1.weight assert expected.shape == pruned.shape assert torch.isclose(expected, pruned, rtol=1e-05, atol=1e-07).all()
def test_saliency_pruner_update_mask(self): """Test that we prune out the row with the lowest saliency (first row)""" model = SimpleLinear() with torch.no_grad(): model.linear1.weight = nn.Parameter( torch.Tensor([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]) ) pruning_config = [{"tensor_fqn": "linear1.weight", "sparsity_level": 0.5}] pruner = SaliencyPruner({}) pruner.prepare(model, pruning_config) pruner.enable_mask_update = True pruner.step() pruned_model = pruner.prune() expected = torch.Tensor([[3, 3, 3, 3], [4, 4, 4, 4]]) pruned = pruned_model.linear1.weight assert expected.shape == pruned.shape assert torch.isclose(expected, pruned, rtol=1e-05, atol=1e-07).all()
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( SaliencyPruner, LSTMSaliencyPruner, BaseStructuredSparsifier, FakeStructuredSparsity, ) from torch.nn.utils import parametrize from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo from torch.testing._internal.common_pruning import ( SimpleLinear, LinearBias, LinearActivation, LinearActivationFunctional, SimpleConv2d, Conv2dBias, Conv2dActivation, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LSTMLinearModel, LSTMLayerNormLinearModel, rows_are_subset, ) DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestSaliencyPruner(TestCase):
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestSaliencyPruner(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_structured_sparsifier.py
_check_pruner_valid_before_step
def _check_pruner_valid_before_step(self, model, pruner, device): for config in pruner.groups: modules = [] if type(config["module"]) is tuple: for module in config["module"]: modules.append(module) else: module = config["module"] modules.append(module) for module in modules: assert module.weight.device.type == device.type assert module.parametrizations.weight[0].mask.dtype == torch.bool
def _check_pruner_valid_before_step(self, model, pruner, device): for config in pruner.groups: modules = [] if type(config["module"]) is tuple: modules.extend(config["module"]) else: module = config["module"] modules.append(module) for module in modules: assert module.weight.device.type == device.type assert module.parametrizations.weight[0].mask.dtype == torch.bool
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( SaliencyPruner, LSTMSaliencyPruner, BaseStructuredSparsifier, FakeStructuredSparsity, ) from torch.nn.utils import parametrize from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo from torch.testing._internal.common_pruning import ( SimpleLinear, LinearBias, LinearActivation, LinearActivationFunctional, SimpleConv2d, Conv2dBias, Conv2dActivation, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LSTMLinearModel, LSTMLayerNormLinearModel, rows_are_subset, ) DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestBaseStructuredSparsifier(TestCase):
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestBaseStructuredSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_structured_sparsifier.py
_check_pruner_valid_after_step
def _check_pruner_valid_after_step(self, model, pruner, mask, device): for config in pruner.groups: modules = [] if type(config["module"]) is tuple: for module in config["module"]: modules.append(module) else: module = config["module"] modules.append(module) for module in modules: assert module.weight.device.type == device.type total = module.parametrizations.weight[0].mask.numel() assert ( module.parametrizations.weight[0].mask.count_nonzero() == total - mask )
def _check_pruner_valid_after_step(self, model, pruner, mask, device): for config in pruner.groups: modules = [] if type(config["module"]) is tuple: modules.extend(config["module"]) else: module = config["module"] modules.append(module) for module in modules: assert module.weight.device.type == device.type total = module.parametrizations.weight[0].mask.numel() assert ( module.parametrizations.weight[0].mask.count_nonzero() == total - mask )
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( SaliencyPruner, LSTMSaliencyPruner, BaseStructuredSparsifier, FakeStructuredSparsity, ) from torch.nn.utils import parametrize from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo from torch.testing._internal.common_pruning import ( SimpleLinear, LinearBias, LinearActivation, LinearActivationFunctional, SimpleConv2d, Conv2dBias, Conv2dActivation, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LSTMLinearModel, LSTMLayerNormLinearModel, rows_are_subset, ) DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestBaseStructuredSparsifier(TestCase):
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestBaseStructuredSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_structured_sparsifier.py
_test_constructor_on_device
def _test_constructor_on_device(self, model, device): self.assertRaisesRegex( TypeError, "BaseStructuredSparsifier.* update_mask", BaseStructuredSparsifier, ) model1 = copy.deepcopy(model).to(device) pruner = SimplePruner(None) pruner.prepare(model1, None) pruner.enable_mask_update = True for g in pruner.groups: module = g["module"] assert module.weight.device.type == device.type assert len(pruner.groups) == 5 pruner.step() # Can instantiate the model with configs model2 = copy.deepcopy(model).to(device) pruner = SimplePruner({"test": 3}) pruner.prepare(model2, [{"tensor_fqn": "seq.0.weight"}]) assert len(pruner.groups) == 1 assert pruner.groups[0]["module_fqn"] == "seq.0" assert "test" in pruner.groups[0] assert pruner.groups[0]["test"] == 3
def _test_constructor_on_device(self, model, device): self.assertRaisesRegex( TypeError, "BaseStructuredSparsifier.*update_mask", BaseStructuredSparsifier, ) model1 = copy.deepcopy(model).to(device) pruner = SimplePruner(None) pruner.prepare(model1, None) pruner.enable_mask_update = True for g in pruner.groups: module = g["module"] assert module.weight.device.type == device.type assert len(pruner.groups) == 5 pruner.step() # Can instantiate the model with configs model2 = copy.deepcopy(model).to(device) pruner = SimplePruner({"test": 3}) pruner.prepare(model2, [{"tensor_fqn": "seq.0.weight"}]) assert len(pruner.groups) == 1 assert pruner.groups[0]["module_fqn"] == "seq.0" assert "test" in pruner.groups[0] assert pruner.groups[0]["test"] == 3
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( SaliencyPruner, LSTMSaliencyPruner, BaseStructuredSparsifier, FakeStructuredSparsity, ) from torch.nn.utils import parametrize from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo from torch.testing._internal.common_pruning import ( SimpleLinear, LinearBias, LinearActivation, LinearActivationFunctional, SimpleConv2d, Conv2dBias, Conv2dActivation, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LSTMLinearModel, LSTMLayerNormLinearModel, rows_are_subset, ) DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestBaseStructuredSparsifier(TestCase):
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestBaseStructuredSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_data_sparsifier.py
_get_bounds_on_actual_sparsity
def _get_bounds_on_actual_sparsity(config, tensor_shape): r"""This function gets the bounds on actual sparsity. Note:: Although we specify the sparsity_level parameter, this does not mean that the actual sparsity obtained after sparsification is the same as sparsity_level. The actual sparsity depends largely on the shape and the data itself. """ sparsity_level = config['sparsity_level'] zeros_per_block = config['zeros_per_block'] sparse_block_shape = config['sparse_block_shape'] height, width = tensor_shape[-2], tensor_shape[-1] block_height, block_width = sparse_block_shape number_blocks = math.ceil(height / block_height) * math.ceil(width / block_width) values_per_block = block_height * block_width if zeros_per_block == 0: return (1.0, 1.0) else: # min value assumes zeros_per_block is 1 min_values_sparsified = round(number_blocks * sparsity_level) # max value assumes actual zeros_per_block max_values_sparsified = min_values_sparsified * min(values_per_block, zeros_per_block) lower_bound = min_values_sparsified / (height * width) upper_bound = min(1.0, max_values_sparsified / (height * width)) lower_bound, upper_bound = round(lower_bound, 3), round(upper_bound, 3) return lower_bound, upper_bound
def _get_bounds_on_actual_sparsity(config, tensor_shape): r"""This function gets the bounds on actual sparsity. Note:: Although we specify the sparsity_level parameter, this does not mean that the actual sparsity obtained after sparsification is the same as sparsity_level. The actual sparsity depends largely on the shape and the data itself. """ sparsity_level = config["sparsity_level"] zeros_per_block = config["zeros_per_block"] sparse_block_shape = config["sparse_block_shape"] height, width = tensor_shape[-2], tensor_shape[-1] block_height, block_width = sparse_block_shape number_blocks = math.ceil(height / block_height) * math.ceil( width / block_width ) values_per_block = block_height * block_width if zeros_per_block == 0: return (1.0, 1.0) else: # min value assumes zeros_per_block is 1 min_values_sparsified = round(number_blocks * sparsity_level) # max value assumes actual zeros_per_block max_values_sparsified = min_values_sparsified * min( values_per_block, zeros_per_block ) lower_bound = min_values_sparsified / (height * width) upper_bound = min(1.0, max_values_sparsified / (height * width)) lower_bound, upper_bound = round(lower_bound, 3), round(upper_bound, 3) return lower_bound, upper_bound
import logging import torch from torch.nn.utils.parametrize import is_parametrized import unittest from torch.testing._internal.common_utils import TestCase, TEST_WITH_ASAN from typing import Tuple from torch import nn import itertools import math import copy from torch.ao.pruning._experimental.data_sparsifier import BaseDataSparsifier, DataNormSparsifier from torch.ao.pruning._experimental.data_sparsifier.quantization_utils import post_training_sparse_quantize class _NormDataSparsifierTestCase(_BaseDataSparsiferTestCase):
import copy import itertools import logging import math from typing import Tuple import torch from torch import nn from torch.ao.pruning._experimental.data_sparsifier import ( BaseDataSparsifier, DataNormSparsifier, ) from torch.ao.pruning._experimental.data_sparsifier.quantization_utils import ( post_training_sparse_quantize, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class _NormDataSparsifierTestCase(_BaseDataSparsiferTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_prepare_config
def test_prepare_config(self): model = Model() sparsifier = ImplementedSparsifier(test=3) # Make sure there are no parametrizations before `prepare` assert not hasattr(model.seq[0], 'parametrizations') assert not hasattr(model.linear, 'parametrizations') assert not hasattr(model.head, 'parametrizations') sparsifier.prepare(model, config=[ {'tensor_fqn': 'seq.0.weight', 'test': 42}, # No 'linear' to make sure it will be skipped in the sparsification {'tensor_fqn': 'head.weight'} ]) assert len(sparsifier.groups) == 2 # Check if default argument is not assigned if explicit assert sparsifier.groups[0]['tensor_fqn'] == 'seq.0.weight' assert sparsifier.groups[0]['test'] == 42 # Check if FQN and module are pointing to the same location assert sparsifier.groups[1]['tensor_fqn'] == 'head.weight' assert sparsifier.groups[1]['module'] == model.head # Check if parameterizations are attached assert hasattr(model.seq[0], 'parametrizations') assert not hasattr(model.linear, 'parametrizations') assert hasattr(model.head, 'parametrizations')
def test_prepare_config(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) # Make sure there are no parametrizations before `prepare` assert not hasattr(model.seq[0], "parametrizations") assert not hasattr(model.linear1, "parametrizations") assert not hasattr(model.linear2, "parametrizations") sparsifier.prepare( model, config=[ {"tensor_fqn": "seq.0.weight", "test": 42}, # No 'linear1' to make sure it will be skipped in the sparsification {"tensor_fqn": "linear2.weight"}, ], ) assert len(sparsifier.groups) == 2 # Check if default argument is not assigned if explicit assert sparsifier.groups[0]["tensor_fqn"] == "seq.0.weight" assert sparsifier.groups[0]["test"] == 42 # Check if FQN and module are pointing to the same location assert sparsifier.groups[1]["tensor_fqn"] == "linear2.weight" assert sparsifier.groups[1]["module"] == model.linear2 # Check if parameterizations are attached assert hasattr(model.seq[0], "parametrizations") assert not hasattr(model.linear1, "parametrizations") assert hasattr(model.linear2, "parametrizations")
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_step
def test_step(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.enable_mask_update = True sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) sparsifier.step() assert torch.all(model.linear.parametrizations.weight[0].mask[0] == 0)
def test_step(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.enable_mask_update = True sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) sparsifier.step() assert torch.all(model.linear1.parametrizations.weight[0].mask[0] == 0)
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_state_dict
def test_state_dict(self): step_count = 3 model0 = Model() sparsifier0 = ImplementedSparsifier(test=3) sparsifier0.prepare(model0, [{'tensor_fqn': 'linear.weight'}]) mask = model0.linear.parametrizations['weight'][0].mask mask.data = torch.arange(mask.shape[0] * mask.shape[1]).reshape(mask.shape) for step in range(step_count): sparsifier0.step() state_dict = sparsifier0.state_dict() # Check the expected keys in the state_dict assert 'state' in state_dict assert 'step_count' in state_dict['state']['linear.weight'] assert state_dict['state']['linear.weight']['step_count'] == 3 assert 'groups' in state_dict assert 'test' in state_dict['groups'][0] assert 'tensor_fqn' in state_dict['groups'][0] assert state_dict['groups'][0]['tensor_fqn'] == 'linear.weight' # Check loading static_dict creates an equivalent model model1 = Model() sparsifier1 = ImplementedSparsifier() sparsifier1.prepare(model1, None) assert sparsifier0.state != sparsifier1.state # Make sure the masks are different in the beginning for mg in sparsifier0.groups: if mg['tensor_fqn'] == 'linear.weight': mask0 = mg['module'].parametrizations.weight[0].mask for mg in sparsifier1.groups: if mg['tensor_fqn'] == 'linear.weight': mask1 = mg['module'].parametrizations.weight[0].mask self.assertNotEqual(mask0, mask1) sparsifier1.load_state_dict(state_dict) # Make sure the states are loaded, and are correct assert sparsifier0.state == sparsifier1.state # Make sure the masks (and all dicts) are the same after loading assert len(sparsifier0.groups) == len(sparsifier1.groups) for idx in range(len(sparsifier0.groups)): mg0 = sparsifier0.groups[idx] mg1 = sparsifier1.groups[idx] for key in mg0.keys(): assert key in mg1 if key == 'module': # We cannot compare modules as they are different param0 = mg0[key].parametrizations.weight[0] param1 = mg1[key].parametrizations.weight[0] assert hasattr(param0, 'mask') assert hasattr(param1, 'mask') self.assertEqual(param0.__dict__, param1.__dict__) else: assert mg0[key] == mg1[key]
def test_state_dict(self): step_count = 3 model0 = SimpleLinear() sparsifier0 = ImplementedSparsifier(test=3) sparsifier0.prepare(model0, [{"tensor_fqn": "linear1.weight"}]) mask = model0.linear1.parametrizations["weight"][0].mask mask.data = torch.arange(mask.shape[0] * mask.shape[1]).reshape(mask.shape) for step in range(step_count): sparsifier0.step() state_dict = sparsifier0.state_dict() # Check the expected keys in the state_dict assert "state" in state_dict assert "step_count" in state_dict["state"]["linear1.weight"] assert state_dict["state"]["linear1.weight"]["step_count"] == 3 assert "groups" in state_dict assert "test" in state_dict["groups"][0] assert "tensor_fqn" in state_dict["groups"][0] assert state_dict["groups"][0]["tensor_fqn"] == "linear1.weight" # Check loading static_dict creates an equivalent model model1 = SimpleLinear() sparsifier1 = ImplementedSparsifier() sparsifier1.prepare(model1, None) assert sparsifier0.state != sparsifier1.state # Make sure the masks are different in the beginning for mg in sparsifier0.groups: if mg["tensor_fqn"] == "linear1.weight": mask0 = mg["module"].parametrizations.weight[0].mask for mg in sparsifier1.groups: if mg["tensor_fqn"] == "linear1.weight": mask1 = mg["module"].parametrizations.weight[0].mask self.assertNotEqual(mask0, mask1) sparsifier1.load_state_dict(state_dict) # Make sure the states are loaded, and are correct assert sparsifier0.state == sparsifier1.state # Make sure the masks (and all dicts) are the same after loading assert len(sparsifier0.groups) == len(sparsifier1.groups) for idx in range(len(sparsifier0.groups)): mg0 = sparsifier0.groups[idx] mg1 = sparsifier1.groups[idx] for key in mg0.keys(): assert key in mg1 if key == "module": # We cannot compare modules as they are different param0 = mg0[key].parametrizations.weight[0] param1 = mg1[key].parametrizations.weight[0] assert hasattr(param0, "mask") assert hasattr(param1, "mask") self.assertEqual(param0.__dict__, param1.__dict__) else: assert mg0[key] == mg1[key]
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_convert
def test_convert(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) new_model = sparsifier.convert( model, mapping={nn.Linear: MockSparseLinear}, inplace=False ) assert isinstance(new_model.linear1, MockSparseLinear) assert isinstance(new_model.seq[0], nn.Linear) assert isinstance(new_model.linear2, nn.Linear)
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/ao/sparsity/test_sparsifier.py
test_mask_squash
def test_mask_squash(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert hasattr(model.linear.parametrizations.weight[0], 'mask') assert is_parametrized(model.linear, 'weight') assert not is_parametrized(model.seq[0], 'weight') sparsifier.squash_mask() assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight')
def test_mask_squash(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) assert hasattr(model.linear1.parametrizations.weight[0], "mask") assert is_parametrized(model.linear1, "weight") assert not is_parametrized(model.seq[0], "weight") sparsifier.squash_mask() assert not is_parametrized(model.seq[0], "weight") assert not is_parametrized(model.linear1, "weight")
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_mask_squash_with_params1
def test_mask_squash_with_params1(self): model = Model() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}]) sparsifier.squash_mask( params_to_keep_per_layer={ 'linear': ('foo', 'bar'), 'seq.0': ('baz',) }) assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight') assert hasattr(model.seq[0], 'sparse_params') assert hasattr(model.linear, 'sparse_params') assert model.seq[0].sparse_params.get('foo', None) is None assert model.seq[0].sparse_params.get('bar', None) is None assert model.seq[0].sparse_params.get('baz', None) == 1 assert model.linear.sparse_params.get('foo', None) == 3 assert model.linear.sparse_params.get('bar', None) == 2 assert model.linear.sparse_params.get('baz', None) is None
def test_mask_squash_with_params1(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare( model, [{"tensor_fqn": "linear1.weight"}, {"tensor_fqn": "seq.0.weight"}] ) sparsifier.squash_mask( params_to_keep_per_layer={"linear1": ("foo", "bar"), "seq.0": ("baz",)} ) assert not is_parametrized(model.seq[0], "weight") assert not is_parametrized(model.linear1, "weight") assert hasattr(model.seq[0], "sparse_params") assert hasattr(model.linear1, "sparse_params") assert model.seq[0].sparse_params.get("foo", None) is None assert model.seq[0].sparse_params.get("bar", None) is None assert model.seq[0].sparse_params.get("baz", None) == 1 assert model.linear1.sparse_params.get("foo", None) == 3 assert model.linear1.sparse_params.get("bar", None) == 2 assert model.linear1.sparse_params.get("baz", None) is None
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_mask_squash_with_params2
def test_mask_squash_with_params2(self): model = Model() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}]) sparsifier.squash_mask(params_to_keep=('foo', 'bar')) assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight') assert hasattr(model.seq[0], 'sparse_params') assert hasattr(model.linear, 'sparse_params') assert model.seq[0].sparse_params.get('foo', None) == 3 assert model.seq[0].sparse_params.get('bar', None) == 2 assert model.seq[0].sparse_params.get('baz', None) is None assert model.linear.sparse_params.get('foo', None) == 3 assert model.linear.sparse_params.get('bar', None) == 2 assert model.linear.sparse_params.get('baz', None) is None
def test_mask_squash_with_params2(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare( model, [{"tensor_fqn": "linear1.weight"}, {"tensor_fqn": "seq.0.weight"}] ) sparsifier.squash_mask(params_to_keep=("foo", "bar")) assert not is_parametrized(model.seq[0], "weight") assert not is_parametrized(model.linear1, "weight") assert hasattr(model.seq[0], "sparse_params") assert hasattr(model.linear1, "sparse_params") assert model.seq[0].sparse_params.get("foo", None) == 3 assert model.seq[0].sparse_params.get("bar", None) == 2 assert model.seq[0].sparse_params.get("baz", None) is None assert model.linear1.sparse_params.get("foo", None) == 3 assert model.linear1.sparse_params.get("bar", None) == 2 assert model.linear1.sparse_params.get("baz", None) is None
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_mask_squash_with_params3
def test_mask_squash_with_params3(self): model = Model() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}]) sparsifier.squash_mask( params_to_keep=('foo', 'bar'), params_to_keep_per_layer={'seq.0': ('baz',)}) assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight') assert hasattr(model.seq[0], 'sparse_params') assert hasattr(model.linear, 'sparse_params') assert model.seq[0].sparse_params.get('foo', None) == 3 assert model.seq[0].sparse_params.get('bar', None) == 2 assert model.seq[0].sparse_params.get('baz', None) == 1 assert model.linear.sparse_params.get('foo', None) == 3 assert model.linear.sparse_params.get('bar', None) == 2 assert model.linear.sparse_params.get('baz', None) is None
def test_mask_squash_with_params3(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare( model, [{"tensor_fqn": "linear1.weight"}, {"tensor_fqn": "seq.0.weight"}] ) sparsifier.squash_mask( params_to_keep=("foo", "bar"), params_to_keep_per_layer={"seq.0": ("baz",)} ) assert not is_parametrized(model.seq[0], "weight") assert not is_parametrized(model.linear1, "weight") assert hasattr(model.seq[0], "sparse_params") assert hasattr(model.linear1, "sparse_params") assert model.seq[0].sparse_params.get("foo", None) == 3 assert model.seq[0].sparse_params.get("bar", None) == 2 assert model.seq[0].sparse_params.get("baz", None) == 1 assert model.linear1.sparse_params.get("foo", None) == 3 assert model.linear1.sparse_params.get("bar", None) == 2 assert model.linear1.sparse_params.get("baz", None) is None
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_constructor
def test_constructor(self): # Cannot instantiate the abstract base self.assertRaises(TypeError, BaseSparsifier) # Can instantiate the model with no configs model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, config=None) assert len(sparsifier.groups) == 3 sparsifier.step() # Can instantiate the model with configs sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert len(sparsifier.groups) == 1 assert sparsifier.groups[0]['tensor_fqn'] == 'linear.weight' assert 'test' in sparsifier.groups[0] assert sparsifier.groups[0]['test'] == 3
def test_constructor(self): # Cannot instantiate the abstract base self.assertRaises(TypeError, BaseSparsifier) # Can instantiate the model with no configs model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, config=None) assert len(sparsifier.groups) == 5 sparsifier.step() # Can instantiate the model with configs sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) assert len(sparsifier.groups) == 1 assert sparsifier.groups[0]["tensor_fqn"] == "linear1.weight" assert "test" in sparsifier.groups[0] assert sparsifier.groups[0]["test"] == 3
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_sparsifier.py
test_step
def test_step(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.enable_mask_update = True sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) sparsifier.step() assert torch.all(model.linear.parametrizations.weight[0].mask[0] == 0)
def test_step(self): model = SimpleLinear() sparsifier = ImplementedSparsifier(test=3) sparsifier.enable_mask_update = True sparsifier.prepare(model, [{"tensor_fqn": "linear1.weight"}]) sparsifier.step() assert torch.all(model.linear1.parametrizations.weight[0].mask[0] == 0)
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
import itertools import logging import re import torch from torch import nn from torch.ao.pruning import ( BaseSparsifier, FakeSparsity, NearlyDiagonalSparsifier, WeightNormSparsifier, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_pruning import ( ImplementedSparsifier, MockSparseLinear, SimpleLinear, ) from torch.testing._internal.common_utils import TestCase class TestBaseSparsifier(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_structured_sparsifier.py
forward
def forward(self, x): x = self.conv2d1(x) x = self.conv2d2(x) return x
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class SimpleConvFPGM(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/ao/sparsity/test_structured_sparsifier.py
test_compute_distance
def test_compute_distance(self, device="cpu"): """Test the distance computation function""" model = TestFPGMPruner.SimpleConvFPGM().to(device) pruner = FPGMPruner(0.3) dist_conv1 = pruner._compute_distance(model.conv2d1.weight) # compute the distance matrix using torch.cdist flattened_filters = torch.Tensor( [ [ 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, ], [ 2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000, ], [ 0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 0.1000, ], ] ) """ Expected distance matrix should have the following values: [0.0000, 3.0000, 8.7000], [3.0000, 0.0000, 5.7000], [8.7000, 5.7000, 0.0000], the distance should therefore be: [11.7000, 8.7000, 14.4000] """ expected_dist_matrix_conv1 = torch.cdist( flattened_filters, flattened_filters, p=2 ) expected_dist_conv1 = torch.sum(torch.abs(expected_dist_matrix_conv1), 1) assert torch.isclose( dist_conv1, expected_dist_conv1, rtol=1e-05, atol=1e-07 ).all()
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestFPGMPruner(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/ao/sparsity/test_structured_sparsifier.py
_test_update_mask_on_single_layer
def _test_update_mask_on_single_layer(self, expected_conv1, device): """Test that pruning is conducted based on the pair-wise distance measurement instead of absolute norm value""" # test pruning with one layer of conv2d model = TestFPGMPruner.SimpleConvFPGM().to(device) x = torch.ones((1, 1, 32, 32), device=device) pruner = FPGMPruner(0.3) config = [{"tensor_fqn": "conv2d1.weight"}] pruner.prepare(model, config) pruner.enable_mask_update = True pruner.step() assert ( pruner.groups[0]["module"].parametrizations.weight[0].mask[-1].item() is not False ), "do not prune the least-norm filter" # fusion step pruned_model = pruner.prune() pruned_y = pruned_model(x) # assert shapes expected_conv1 = expected_conv1.to(device) assert pruned_y.shape == (1, 4, 32, 32) assert pruned_model.conv2d1.weight.shape == expected_conv1.shape assert pruned_model.conv2d2.weight.shape == ( 4, 2, 3, 3, ), "conv2d2 should have input channel pruned" # assert value assert torch.isclose( pruned_model.conv2d1.weight, expected_conv1, rtol=1e-05, atol=1e-07 ).all()
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestFPGMPruner(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/ao/sparsity/test_structured_sparsifier.py
test_update_mask
def test_update_mask(self): weights = torch.tensor([3.0, 0.1]) expected_conv1 = torch.ones((2, 1, 3, 3)) * weights[:, None, None, None] weights = torch.tensor([7.0, 0.4]) expected_conv2 = torch.ones((2, 2, 3, 3)) * weights[:, None, None, None] for device in DEVICES: self._test_update_mask_on_single_layer(expected_conv1, device) self._test_update_mask_on_multiple_layer( expected_conv1, expected_conv2, device )
import copy import logging import random import torch from torch import nn from torch.ao.pruning._experimental.pruner import ( BaseStructuredSparsifier, FakeStructuredSparsity, FPGMPruner, LSTMSaliencyPruner, SaliencyPruner, ) from torch.nn.utils import parametrize from torch.testing._internal.common_pruning import ( Conv2dActivation, Conv2dBias, Conv2dPadBias, Conv2dPool, Conv2dPoolFlatten, Conv2dPoolFlattenFunctional, LinearActivation, LinearActivationFunctional, LinearBias, LSTMLayerNormLinearModel, LSTMLinearModel, rows_are_subset, SimpleConv2d, SimpleLinear, ) from torch.testing._internal.common_utils import skipIfTorchDynamo, TestCase DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), } class TestFPGMPruner(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/autograd/test_complex.py
test_view_func_for_complex_views
def test_view_func_for_complex_views(self): # case 1: both parent and child have view_func x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True) y = x.detach().requires_grad_(True) x0 = x.clone() x1 = torch.view_as_complex(x0) x2 = torch.view_as_real(x1) x2.mul_(2) x2.sum().backward() y0 = y.clone() y0.mul_(2) y0.sum().backward() self.assertEqual(x.grad, y.grad) # case 2: parent has view_func but child does not x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a): b = a.clone() b1 = torch.view_as_complex(b) b2 = b1.reshape(b1.numel()) return b2 x0 = fn(x) x0.mul_(2) x0.sum().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().backward() self.assertEqual(x.grad, y.grad) # case 3: parent does not have a view_func but child does x = torch.randn(10, dtype=torch.cdouble, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a, dim0_size=5): b = a.clone() b1 = b.reshape(dim0_size, 2) b2 = torch.view_as_real(b1) return b2 x0 = fn(x) x0.mul_(2) x0.sum().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().backward() self.assertEqual(x.grad, y.grad)
def test_view_func_for_complex_views(self): # case 1: both parent and child have view_func x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True) y = x.detach().requires_grad_(True) x0 = x.clone() x1 = torch.view_as_complex(x0) x2 = torch.view_as_real(x1) x2.mul_(2) x2.sum().abs().backward() y0 = y.clone() y0.mul_(2) y0.sum().abs().backward() self.assertEqual(x.grad, y.grad) # case 2: parent has view_func but child does not x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a): b = a.clone() b1 = torch.view_as_complex(b) b2 = b1.reshape(b1.numel()) return b2 x0 = fn(x) x0.mul_(2) x0.sum().abs().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().abs().backward() self.assertEqual(x.grad, y.grad) # case 3: parent does not have a view_func but child does x = torch.randn(10, dtype=torch.cdouble, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a, dim0_size=5): b = a.clone() b1 = b.reshape(dim0_size, 2) b2 = torch.view_as_real(b1) return b2 x0 = fn(x) x0.mul_(2) x0.sum().abs().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().abs().backward() self.assertEqual(x.grad, y.grad)
import torch from torch.testing._internal.common_utils import TestCase, run_tests, gradcheck class TestAutogradComplex(TestCase):
import torch from torch.testing._internal.common_utils import gradcheck, run_tests, TestCase class TestAutogradComplex(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/autograd/test_complex.py
fn
def fn(a): b = a.clone() b1 = torch.view_as_complex(b) b2 = b1.reshape(b1.numel()) return b2 x0 = fn(x) x0.mul_(2) x0.sum().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().backward() self.assertEqual(x.grad, y.grad) # case 3: parent does not have a view_func but child does x = torch.randn(10, dtype=torch.cdouble, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a, dim0_size=5): b = a.clone() b1 = b.reshape(dim0_size, 2) b2 = torch.view_as_real(b1) return b2 x0 = fn(x) x0.mul_(2) x0.sum().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().backward() self.assertEqual(x.grad, y.grad)
def fn(a): b = a.clone() b1 = torch.view_as_complex(b) b2 = b1.reshape(b1.numel()) return b2 x0 = fn(x) x0.mul_(2) x0.sum().abs().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().abs().backward() self.assertEqual(x.grad, y.grad) # case 3: parent does not have a view_func but child does x = torch.randn(10, dtype=torch.cdouble, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a, dim0_size=5): b = a.clone() b1 = b.reshape(dim0_size, 2) b2 = torch.view_as_real(b1) return b2 x0 = fn(x) x0.mul_(2) x0.sum().abs().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().abs().backward() self.assertEqual(x.grad, y.grad)
import torch from torch.testing._internal.common_utils import TestCase, run_tests, gradcheck
import torch from torch.testing._internal.common_utils import gradcheck, run_tests, TestCase
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/autograd/test_complex.py
fn
def fn(a): b = a.clone() b1 = torch.view_as_complex(b) b2 = b1.reshape(b1.numel()) return b2 x0 = fn(x) x0.mul_(2) x0.sum().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().backward() self.assertEqual(x.grad, y.grad) # case 3: parent does not have a view_func but child does x = torch.randn(10, dtype=torch.cdouble, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a, dim0_size=5): b = a.clone() b1 = b.reshape(dim0_size, 2) b2 = torch.view_as_real(b1) return b2 x0 = fn(x) x0.mul_(2) x0.sum().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().backward() self.assertEqual(x.grad, y.grad)
def fn(a): b = a.clone() b1 = torch.view_as_complex(b) b2 = b1.reshape(b1.numel()) return b2 x0 = fn(x) x0.mul_(2) x0.sum().abs().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().abs().backward() self.assertEqual(x.grad, y.grad) # case 3: parent does not have a view_func but child does x = torch.randn(10, dtype=torch.cdouble, requires_grad=True) y = x.detach().requires_grad_(True) def fn(a, dim0_size=5): b = a.clone() b1 = b.reshape(dim0_size, 2) b2 = torch.view_as_real(b1) return b2 x0 = fn(x) x0.mul_(2) x0.sum().abs().backward() y0 = fn(y) y1 = y0.mul(2) y1.sum().abs().backward() self.assertEqual(x.grad, y.grad)
import torch from torch.testing._internal.common_utils import TestCase, run_tests, gradcheck
import torch from torch.testing._internal.common_utils import gradcheck, run_tests, TestCase
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/ao/sparsity/test_data_sparsifier.py
test_ptq_quantize_first
def test_ptq_quantize_first(self): """The expectation is post_training_sparse_quantize function 1. Takes in a model 2. Quantize the embeddings 3. Sparsifies the embeddings This unit test checks that 1. Embeddings and EmbeddingBags are sparsified to the right sparsity levels 2. Embeddings and EmbeddingBags are quantized 3. Linear modules are not quanitzed """ model = Model() sparse_config = {'sparsity_level': 0.8, 'sparse_block_shape': (1, 1)} post_training_sparse_quantize(model, DataNormSparsifier, sparsify_first=False, **sparse_config) assert type(model.emb1) == torch.ao.nn.quantized.modules.embedding_ops.Embedding assert type(model.embbag1) == torch.ao.nn.quantized.modules.embedding_ops.EmbeddingBag assert type(model.emb_seq[0] == torch.ao.nn.quantized.modules.embedding_ops.Embedding) assert type(model.emb_seq[1] == torch.ao.nn.quantized.modules.embedding_ops.EmbeddingBag) assert type(model.linear1) == nn.Linear # not quantized assert type(model.linear2) == nn.Linear # not quantized dequant_emb1 = torch.dequantize(model.emb1.weight()) dequant_embbag1 = torch.dequantize(model.embbag1.weight()) dequant_emb_seq_0 = torch.dequantize(model.emb_seq[0].weight()) dequant_emb_seq_1 = torch.dequantize(model.emb_seq[1].weight()) # higher threshold as quantization occurs before sparsity threshold = 1 # zero points seem to have higher magnitude with sparsity occuring after sl_emb1 = (torch.abs(dequant_emb1) < threshold).float().mean() sl_embbag1 = (torch.abs(dequant_embbag1) < threshold).float().mean() sl_emb_seq_0 = (torch.abs(dequant_emb_seq_0) < threshold).float().mean() sl_emb_seq_1 = (torch.abs(dequant_emb_seq_1) < threshold).float().mean() assert abs(sl_emb1 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_embbag1 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_emb_seq_0 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_emb_seq_1 - 0.80) <= 0.05 # +- 5% leeway
def test_ptq_quantize_first(self): """The expectation is post_training_sparse_quantize function 1. Takes in a model 2. Quantize the embeddings 3. Sparsifies the embeddings This unit test checks that 1. Embeddings and EmbeddingBags are sparsified to the right sparsity levels 2. Embeddings and EmbeddingBags are quantized 3. Linear modules are not quantized """ model = Model() sparse_config = {"sparsity_level": 0.8, "sparse_block_shape": (1, 1)} post_training_sparse_quantize( model, DataNormSparsifier, sparsify_first=False, **sparse_config ) assert type(model.emb1) == torch.ao.nn.quantized.modules.embedding_ops.Embedding assert ( type(model.embbag1) == torch.ao.nn.quantized.modules.embedding_ops.EmbeddingBag ) assert type( model.emb_seq[0] == torch.ao.nn.quantized.modules.embedding_ops.Embedding ) assert type( model.emb_seq[1] == torch.ao.nn.quantized.modules.embedding_ops.EmbeddingBag ) assert type(model.linear1) == nn.Linear # not quantized assert type(model.linear2) == nn.Linear # not quantized dequant_emb1 = torch.dequantize(model.emb1.weight()) dequant_embbag1 = torch.dequantize(model.embbag1.weight()) dequant_emb_seq_0 = torch.dequantize(model.emb_seq[0].weight()) dequant_emb_seq_1 = torch.dequantize(model.emb_seq[1].weight()) # higher threshold as quantization occurs before sparsity threshold = ( 1 # zero points seem to have higher magnitude with sparsity occuring after ) sl_emb1 = (torch.abs(dequant_emb1) < threshold).float().mean() sl_embbag1 = (torch.abs(dequant_embbag1) < threshold).float().mean() sl_emb_seq_0 = (torch.abs(dequant_emb_seq_0) < threshold).float().mean() sl_emb_seq_1 = (torch.abs(dequant_emb_seq_1) < threshold).float().mean() assert abs(sl_emb1 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_embbag1 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_emb_seq_0 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_emb_seq_1 - 0.80) <= 0.05 # +- 5% leeway
import logging import torch from torch.nn.utils.parametrize import is_parametrized import unittest from torch.testing._internal.common_utils import TestCase, TEST_WITH_ASAN from typing import Tuple from torch import nn import itertools import math import copy from torch.ao.pruning._experimental.data_sparsifier import BaseDataSparsifier, DataNormSparsifier from torch.ao.pruning._experimental.data_sparsifier.quantization_utils import post_training_sparse_quantize class TestQuantizationUtils(TestCase):
import copy import itertools import logging import math from typing import Tuple import torch from torch import nn from torch.ao.pruning._experimental.data_sparsifier import ( BaseDataSparsifier, DataNormSparsifier, ) from torch.ao.pruning._experimental.data_sparsifier.quantization_utils import ( post_training_sparse_quantize, ) from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase class TestQuantizationUtils(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/aoti_inference/test.py
forward
def forward(self, x): w_transpose = torch.transpose(self.w_pre, 0, 1) w_relu = torch.nn.functional.relu(w_transpose) w = w_relu + self.w_add return torch.matmul(x, w)
import torch from torch._export import aot_compile from torch.export import Dim class Net(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/test.py
forward
def forward(self, x): w_transpose = torch.transpose(self.w_pre, 0, 1) w_relu = torch.nn.functional.relu(w_transpose) w = w_relu + self.w_add return torch.matmul(x, w)
import torch from torch._export import aot_compile from torch.export import Dim class Net(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/test.py
generate_basic_tests
def generate_basic_tests(): for device in ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]: for use_runtime_constant_folding in [True, False]: if device == "cpu" and use_runtime_constant_folding: # We do not test runtime const folding for cpu mode. continue model = Net(device).to(device=device) x = torch.randn((4, 4), device=device) with torch.no_grad(): ref_output = model(x) torch._dynamo.reset() with torch.no_grad(): dim0_x = Dim("dim0_x", min=1, max=1024) dynamic_shapes = {"x": {0: dim0_x}} model_so_path = aot_compile( model, (x,), dynamic_shapes=dynamic_shapes, options={ "aot_inductor.use_runtime_constant_folding": use_runtime_constant_folding }, ) suffix = f"{device}" if use_runtime_constant_folding: suffix += "_use_runtime_constant_folding" data.update( { f"model_so_path_{suffix}": model_so_path, f"inputs_{suffix}": [x], f"outputs_{suffix}": [ref_output], f"w_pre_{suffix}": model.w_pre, f"w_add_{suffix}": model.w_add, } ) # AOTI model which will create additional tensors during autograd.
import torch from torch._export import aot_compile from torch.export import Dim data = {} data_with_tensor_constants = {}
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/test.py
generate_test_with_additional_tensors
def generate_test_with_additional_tensors(): if not torch.cuda.is_available(): return model = NetWithTensorConstants() x = torch.randn((30, 1), device="cuda") y = torch.randn((30, 1), device="cuda") with torch.no_grad(): ref_output = model(x, y) torch._dynamo.reset() with torch.no_grad(): model_so_path = aot_compile(model, (x, y)) data_with_tensor_constants.update( { "model_so_path": model_so_path, "inputs": [x, y], "outputs": [ref_output], "w": model.w, } ) generate_basic_tests() generate_test_with_additional_tensors() # Use this to communicate tensors to the cpp code class Serializer(torch.nn.Module): def __init__(self, data): super().__init__() for key in data: setattr(self, key, data[key]) torch.jit.script(Serializer(data)).save("data.pt") torch.jit.script(Serializer(data_with_tensor_constants)).save( "data_with_tensor_constants.pt" )
import torch from torch._export import aot_compile from torch.export import Dim data = {} data_with_tensor_constants = {}
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/test.py
__init__
def __init__(self, device): super().__init__() self.w_pre = torch.randn(4, 4, device=device) self.w_add = torch.randn(4, 4, device=device)
import torch from torch._export import aot_compile from torch.export import Dim class Net(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/api/init_baseline.py
emit
def emit(initializer_parameter_map): # Don't write generated with an @ in front, else this file is recognized as generated. print("// @{} from {}".format('generated', __file__)) print(HEADER) for initializer_name, weights in initializer_parameter_map.items(): print(PARAMETERS.format(initializer_name)) print(" return {") for sample in weights: print(" {") for parameter in sample: parameter_values = "{{{}}}".format(", ".join(map(str, parameter))) print(" torch::tensor({}),".format(parameter_values)) print(" },") print(" };") print("}\n") print(FOOTER)
def emit(initializer_parameter_map): # Don't write generated with an @ in front, else this file is recognized as generated. print("// @{} from {}".format("generated", __file__)) print(HEADER) for initializer_name, weights in initializer_parameter_map.items(): print(PARAMETERS.format(initializer_name)) print(" return {") for sample in weights: print(" {") for parameter in sample: parameter_values = "{{{}}}".format(", ".join(map(str, parameter))) print(f" torch::tensor({parameter_values}),") print(" },") print(" };") print("}\n") print(FOOTER)
import sys import torch HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" INITIALIZERS = { "Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w), "Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w), "Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w), "Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w) }
import sys import torch HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" INITIALIZERS = { "Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w), "Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w), "Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w), "Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w), }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/api/init_baseline.py
main
def main(): initializer_parameter_map = {} for initializer in INITIALIZERS.keys(): sys.stderr.write('Evaluating {} ...\n'.format(initializer)) initializer_parameter_map[initializer] = run(initializer) emit(initializer_parameter_map) if __name__ == "__main__": main()
def main(): initializer_parameter_map = {} for initializer in INITIALIZERS.keys(): sys.stderr.write(f"Evaluating {initializer} ...\n") initializer_parameter_map[initializer] = run(initializer) emit(initializer_parameter_map) if __name__ == "__main__": main()
import sys import torch HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" INITIALIZERS = { "Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w), "Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w), "Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w), "Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w) }
import sys import torch HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" INITIALIZERS = { "Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w), "Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w), "Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w), "Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w), }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/jit/tests_setup.py
shutdown
def shutdown(self): raise NotImplementedError()
def shutdown(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp_api_parity/functional_impl_check.py
test_forward
def test_forward(unit_test_class, test_params): functional_variant_name = test_params.functional_variant_name cpp_tmp_folder = test_params.cpp_tmp_folder # Remove the temporary folder if it exists already try_remove_folder(cpp_tmp_folder) os.mkdir(cpp_tmp_folder) # Run forward on Python functional python_output = run_forward(unit_test_class, test_params) # Save Python arguments to be used from C++ function arg_dict_file_path = compute_temp_file_path(cpp_tmp_folder, functional_variant_name, 'arg_dict') serialize_arg_dict_as_script_module(test_params.arg_dict).save(arg_dict_file_path) cpp_test_name = '{}_test_forward'.format(test_params.functional_variant_name) cpp_test_fn = getattr(unit_test_class.functional_impl_check_cpp_module, cpp_test_name) def run_cpp_test_fn_and_check_output(): forward_output_file_path = compute_temp_file_path(cpp_tmp_folder, functional_variant_name, 'forward_output') cpp_test_fn(arg_dict_file_path, forward_output_file_path) cpp_output = torch.load(forward_output_file_path) # Check that forward outputs are equal unit_test_class.assertEqual( python_output, cpp_output, msg=generate_error_msg("forward output", cpp_output, python_output)) run_cpp_test_fn_and_check_output() # Remove temporary folder that stores C++ outputs try_remove_folder(cpp_tmp_folder)
def test_forward(unit_test_class, test_params): functional_variant_name = test_params.functional_variant_name cpp_tmp_folder = test_params.cpp_tmp_folder # Remove the temporary folder if it exists already try_remove_folder(cpp_tmp_folder) os.mkdir(cpp_tmp_folder) # Run forward on Python functional python_output = run_forward(unit_test_class, test_params) # Save Python arguments to be used from C++ function arg_dict_file_path = compute_temp_file_path( cpp_tmp_folder, functional_variant_name, "arg_dict" ) serialize_arg_dict_as_script_module(test_params.arg_dict).save(arg_dict_file_path) cpp_test_name = f"{test_params.functional_variant_name}_test_forward" cpp_test_fn = getattr( unit_test_class.functional_impl_check_cpp_module, cpp_test_name ) def run_cpp_test_fn_and_check_output(): forward_output_file_path = compute_temp_file_path( cpp_tmp_folder, functional_variant_name, "forward_output" ) cpp_test_fn(arg_dict_file_path, forward_output_file_path) cpp_output = torch.load(forward_output_file_path) # Check that forward outputs are equal unit_test_class.assertEqual( python_output, cpp_output, msg=generate_error_msg("forward output", cpp_output, python_output), ) run_cpp_test_fn_and_check_output() # Remove temporary folder that stores C++ outputs try_remove_folder(cpp_tmp_folder)
import tempfile from string import Template import re import pprint import os import torch from cpp_api_parity.utils import TorchNNFunctionalTestParams, TORCH_NN_COMMON_TEST_HARNESS, \ compile_cpp_code_inline, set_python_tensors_requires_grad, move_python_tensors_to_device, \ add_test, compute_cpp_args_construction_stmts_and_forward_arg_symbols, serialize_arg_dict_as_script_module, \ compute_arg_dict, decorate_test_fn, compute_temp_file_path, generate_error_msg, is_torch_nn_functional_test, \ try_remove_folder from cpp_api_parity.sample_functional import SAMPLE_FUNCTIONAL_CPP_SOURCE TORCH_NN_FUNCTIONAL_TEST_FORWARD = Template(""" void ${functional_variant_name}_test_forward( const std::string& arg_dict_file_path, const std::string& forward_output_file_path) { pybind11::gil_scoped_release no_gil; namespace F = torch::nn::functional; // Declare arguments auto arg_dict = load_dict_from_file(arg_dict_file_path); ${cpp_args_construction_stmts}; // Some functionals (such as `F::rrelu`) create random tensors in their call path. // To make sure the random tensors created are the same in Python/C++, we need // to set the RNG seed manually. torch::manual_seed(0); // Run function with arguments auto cpp_output = ${cpp_function_call}; // Save the output into a file to be compared in Python later write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path); } """)
import os import pprint import re import tempfile from string import Template import torch from cpp_api_parity.sample_functional import SAMPLE_FUNCTIONAL_CPP_SOURCE from cpp_api_parity.utils import ( add_test, compile_cpp_code_inline, compute_arg_dict, compute_cpp_args_construction_stmts_and_forward_arg_symbols, compute_temp_file_path, decorate_test_fn, generate_error_msg, is_torch_nn_functional_test, move_python_tensors_to_device, serialize_arg_dict_as_script_module, set_python_tensors_requires_grad, TORCH_NN_COMMON_TEST_HARNESS, TorchNNFunctionalTestParams, try_remove_folder, ) TORCH_NN_FUNCTIONAL_TEST_FORWARD = Template( """ void ${functional_variant_name}_test_forward( const std::string& arg_dict_file_path, const std::string& forward_output_file_path) { pybind11::gil_scoped_release no_gil; namespace F = torch::nn::functional; // Declare arguments auto arg_dict = load_dict_from_file(arg_dict_file_path); ${cpp_args_construction_stmts}; // Some functionals (such as `F::rrelu`) create random tensors in their call path. // To make sure the random tensors created are the same in Python/C++, we need // to set the RNG seed manually. torch::manual_seed(0); // Run function with arguments auto cpp_output = ${cpp_function_call}; // Save the output into a file to be compared in Python later write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path); } """ )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp_api_parity/functional_impl_check.py
camel_case_to_snake_case
def camel_case_to_snake_case(camel_case_str): return re.sub(r'(?<!^)(?=[A-Z])', '_', camel_case_str).lower() if 'cpp_options_args' in test_params_dict: # Expected format for `cpp_options_args`: `F::FunctionalFuncOptions(...)` # Example output: `binary_cross_entropy` return camel_case_to_snake_case( test_params_dict['cpp_options_args'].split('(')[0].replace('F::', '').replace('FuncOptions', '')) elif 'cpp_function_call' in test_params_dict: # Expected format for `cpp_function_call`: `F::functional_name(...)` # Example output: `binary_cross_entropy` return test_params_dict['cpp_function_call'].split('(')[0].replace('F::', '') else: raise RuntimeError( "`cpp_options_args` or `cpp_function_call` entry must be present in test params dict:\n{}".format( pprint.pformat(test_params_dict)))
def camel_case_to_snake_case(camel_case_str): return re.sub(r"(?<!^)(?=[A-Z])", "_", camel_case_str).lower() if "cpp_options_args" in test_params_dict: # Expected format for `cpp_options_args`: `F::FunctionalFuncOptions(...)` # Example output: `binary_cross_entropy` return camel_case_to_snake_case( test_params_dict["cpp_options_args"] .split("(")[0] .replace("F::", "") .replace("FuncOptions", "") ) elif "cpp_function_call" in test_params_dict: # Expected format for `cpp_function_call`: `F::functional_name(...)` # Example output: `binary_cross_entropy` return test_params_dict["cpp_function_call"].split("(")[0].replace("F::", "") else: raise RuntimeError( f"`cpp_options_args` or `cpp_function_call` entry must be present in test params dict:\n{pprint.pformat(test_params_dict)}" # noqa: B950 )
import tempfile from string import Template import re import pprint import os import torch from cpp_api_parity.utils import TorchNNFunctionalTestParams, TORCH_NN_COMMON_TEST_HARNESS, \ compile_cpp_code_inline, set_python_tensors_requires_grad, move_python_tensors_to_device, \ add_test, compute_cpp_args_construction_stmts_and_forward_arg_symbols, serialize_arg_dict_as_script_module, \ compute_arg_dict, decorate_test_fn, compute_temp_file_path, generate_error_msg, is_torch_nn_functional_test, \ try_remove_folder from cpp_api_parity.sample_functional import SAMPLE_FUNCTIONAL_CPP_SOURCE TORCH_NN_FUNCTIONAL_TEST_FORWARD = Template(""" void ${functional_variant_name}_test_forward( const std::string& arg_dict_file_path, const std::string& forward_output_file_path) { pybind11::gil_scoped_release no_gil; namespace F = torch::nn::functional; // Declare arguments auto arg_dict = load_dict_from_file(arg_dict_file_path); ${cpp_args_construction_stmts}; // Some functionals (such as `F::rrelu`) create random tensors in their call path. // To make sure the random tensors created are the same in Python/C++, we need // to set the RNG seed manually. torch::manual_seed(0); // Run function with arguments auto cpp_output = ${cpp_function_call}; // Save the output into a file to be compared in Python later write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path); } """)
import os import pprint import re import tempfile from string import Template import torch from cpp_api_parity.sample_functional import SAMPLE_FUNCTIONAL_CPP_SOURCE from cpp_api_parity.utils import ( add_test, compile_cpp_code_inline, compute_arg_dict, compute_cpp_args_construction_stmts_and_forward_arg_symbols, compute_temp_file_path, decorate_test_fn, generate_error_msg, is_torch_nn_functional_test, move_python_tensors_to_device, serialize_arg_dict_as_script_module, set_python_tensors_requires_grad, TORCH_NN_COMMON_TEST_HARNESS, TorchNNFunctionalTestParams, try_remove_folder, ) TORCH_NN_FUNCTIONAL_TEST_FORWARD = Template( """ void ${functional_variant_name}_test_forward( const std::string& arg_dict_file_path, const std::string& forward_output_file_path) { pybind11::gil_scoped_release no_gil; namespace F = torch::nn::functional; // Declare arguments auto arg_dict = load_dict_from_file(arg_dict_file_path); ${cpp_args_construction_stmts}; // Some functionals (such as `F::rrelu`) create random tensors in their call path. // To make sure the random tensors created are the same in Python/C++, we need // to set the RNG seed manually. torch::manual_seed(0); // Run function with arguments auto cpp_output = ${cpp_function_call}; // Save the output into a file to be compared in Python later write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path); } """ )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp_api_parity/functional_impl_check.py
compute_cpp_function_call
def compute_cpp_function_call(test_params_dict, arg_dict, functional_name): if 'cpp_function_call' in test_params_dict: return test_params_dict['cpp_function_call'] elif 'cpp_options_args' in test_params_dict: cpp_forward_args_symbols = [arg_name for arg_name, _ in arg_dict['input'] + arg_dict['target'] + arg_dict['extra_args']] return 'F::{}({}, {})'.format( functional_name, ", ".join(cpp_forward_args_symbols), test_params_dict['cpp_options_args']) else: raise RuntimeError( "`cpp_options_args` or `cpp_function_call` entry must be present in test params dict:\n{}".format( pprint.pformat(test_params_dict)))
def compute_cpp_function_call(test_params_dict, arg_dict, functional_name): if "cpp_function_call" in test_params_dict: return test_params_dict["cpp_function_call"] elif "cpp_options_args" in test_params_dict: cpp_forward_args_symbols = [ arg_name for arg_name, _ in arg_dict["input"] + arg_dict["target"] + arg_dict["extra_args"] ] return "F::{}({}, {})".format( functional_name, ", ".join(cpp_forward_args_symbols), test_params_dict["cpp_options_args"], ) else: raise RuntimeError( f"`cpp_options_args` or `cpp_function_call` entry must be present in test params dict:\n{pprint.pformat(test_params_dict)}" # noqa: B950 )
import tempfile from string import Template import re import pprint import os import torch from cpp_api_parity.utils import TorchNNFunctionalTestParams, TORCH_NN_COMMON_TEST_HARNESS, \ compile_cpp_code_inline, set_python_tensors_requires_grad, move_python_tensors_to_device, \ add_test, compute_cpp_args_construction_stmts_and_forward_arg_symbols, serialize_arg_dict_as_script_module, \ compute_arg_dict, decorate_test_fn, compute_temp_file_path, generate_error_msg, is_torch_nn_functional_test, \ try_remove_folder from cpp_api_parity.sample_functional import SAMPLE_FUNCTIONAL_CPP_SOURCE TORCH_NN_FUNCTIONAL_TEST_FORWARD = Template(""" void ${functional_variant_name}_test_forward( const std::string& arg_dict_file_path, const std::string& forward_output_file_path) { pybind11::gil_scoped_release no_gil; namespace F = torch::nn::functional; // Declare arguments auto arg_dict = load_dict_from_file(arg_dict_file_path); ${cpp_args_construction_stmts}; // Some functionals (such as `F::rrelu`) create random tensors in their call path. // To make sure the random tensors created are the same in Python/C++, we need // to set the RNG seed manually. torch::manual_seed(0); // Run function with arguments auto cpp_output = ${cpp_function_call}; // Save the output into a file to be compared in Python later write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path); } """)
import os import pprint import re import tempfile from string import Template import torch from cpp_api_parity.sample_functional import SAMPLE_FUNCTIONAL_CPP_SOURCE from cpp_api_parity.utils import ( add_test, compile_cpp_code_inline, compute_arg_dict, compute_cpp_args_construction_stmts_and_forward_arg_symbols, compute_temp_file_path, decorate_test_fn, generate_error_msg, is_torch_nn_functional_test, move_python_tensors_to_device, serialize_arg_dict_as_script_module, set_python_tensors_requires_grad, TORCH_NN_COMMON_TEST_HARNESS, TorchNNFunctionalTestParams, try_remove_folder, ) TORCH_NN_FUNCTIONAL_TEST_FORWARD = Template( """ void ${functional_variant_name}_test_forward( const std::string& arg_dict_file_path, const std::string& forward_output_file_path) { pybind11::gil_scoped_release no_gil; namespace F = torch::nn::functional; // Declare arguments auto arg_dict = load_dict_from_file(arg_dict_file_path); ${cpp_args_construction_stmts}; // Some functionals (such as `F::rrelu`) create random tensors in their call path. // To make sure the random tensors created are the same in Python/C++, we need // to set the RNG seed manually. torch::manual_seed(0); // Run function with arguments auto cpp_output = ${cpp_function_call}; // Save the output into a file to be compared in Python later write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path); } """ )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/api/optim_baseline.py
emit
def emit(optimizer_parameter_map): # Don't write generated with an @ in front, else this file is recognized as generated. print("// @{} from {}".format('generated', __file__)) print(HEADER) for optimizer_name, parameters in optimizer_parameter_map.items(): print(PARAMETERS.format(optimizer_name)) print(" return {") for sample in parameters: print(" {") for parameter in sample: parameter_values = "{{{}}}".format(", ".join(map(str, parameter))) print(" torch::tensor({}),".format(parameter_values)) print(" },") print(" };") print("}\n") print(FOOTER)
def emit(optimizer_parameter_map): # Don't write generated with an @ in front, else this file is recognized as generated. print("// @{} from {}".format("generated", __file__)) print(HEADER) for optimizer_name, parameters in optimizer_parameter_map.items(): print(PARAMETERS.format(optimizer_name)) print(" return {") for sample in parameters: print(" {") for parameter in sample: parameter_values = "{{{}}}".format(", ".join(map(str, parameter))) print(f" torch::tensor({parameter_values}),") print(" },") print(" };") print("}\n") print(FOOTER)
import argparse import math import sys import torch import torch.optim HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" OPTIMIZERS = { "LBFGS" : lambda p: torch.optim.LBFGS(p, 1.0), "LBFGS_with_line_search" : lambda p: torch.optim.LBFGS(p, 1.0, line_search_fn="strong_wolfe"), "Adam": lambda p: torch.optim.Adam(p, 1.0), "Adam_with_weight_decay": lambda p: torch.optim.Adam(p, 1.0, weight_decay=1e-2), "Adam_with_weight_decay_and_amsgrad": lambda p: torch.optim.Adam(p, 1.0, weight_decay=1e-6, amsgrad=True), "AdamW": lambda p: torch.optim.AdamW(p, 1.0), "AdamW_without_weight_decay": lambda p: torch.optim.AdamW(p, 1.0, weight_decay=0), "AdamW_with_amsgrad": lambda p: torch.optim.AdamW(p, 1.0, amsgrad=True), "Adagrad": lambda p: torch.optim.Adagrad(p, 1.0), "Adagrad_with_weight_decay": lambda p: torch.optim.Adagrad(p, 1.0, weight_decay=1e-2), "Adagrad_with_weight_decay_and_lr_decay": lambda p: torch.optim.Adagrad(p, 1.0, weight_decay=1e-6, lr_decay=1e-3), "RMSprop": lambda p: torch.optim.RMSprop(p, 0.1), "RMSprop_with_weight_decay": lambda p: torch.optim.RMSprop(p, 0.1, weight_decay=1e-2), "RMSprop_with_weight_decay_and_centered": lambda p: torch.optim.RMSprop(p, 0.1, weight_decay=1e-6, centered=True), "RMSprop_with_weight_decay_and_centered_and_momentum": lambda p: torch.optim.RMSprop(p, 0.1, weight_decay=1e-6, centered=True, momentum=0.9), "SGD": lambda p: torch.optim.SGD(p, 0.1), "SGD_with_weight_decay": lambda p: torch.optim.SGD(p, 0.1, weight_decay=1e-2), "SGD_with_weight_decay_and_momentum": lambda p: torch.optim.SGD(p, 0.1, momentum=0.9, weight_decay=1e-2), "SGD_with_weight_decay_and_nesterov_momentum": lambda p: torch.optim.SGD(p, 0.1, momentum=0.9, weight_decay=1e-6, nesterov=True), }
import argparse import math import sys import torch import torch.optim HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" OPTIMIZERS = { "LBFGS": lambda p: torch.optim.LBFGS(p, 1.0), "LBFGS_with_line_search": lambda p: torch.optim.LBFGS( p, 1.0, line_search_fn="strong_wolfe" ), "Adam": lambda p: torch.optim.Adam(p, 1.0), "Adam_with_weight_decay": lambda p: torch.optim.Adam(p, 1.0, weight_decay=1e-2), "Adam_with_weight_decay_and_amsgrad": lambda p: torch.optim.Adam( p, 1.0, weight_decay=1e-6, amsgrad=True ), "AdamW": lambda p: torch.optim.AdamW(p, 1.0), "AdamW_without_weight_decay": lambda p: torch.optim.AdamW(p, 1.0, weight_decay=0), "AdamW_with_amsgrad": lambda p: torch.optim.AdamW(p, 1.0, amsgrad=True), "Adagrad": lambda p: torch.optim.Adagrad(p, 1.0), "Adagrad_with_weight_decay": lambda p: torch.optim.Adagrad( p, 1.0, weight_decay=1e-2 ), "Adagrad_with_weight_decay_and_lr_decay": lambda p: torch.optim.Adagrad( p, 1.0, weight_decay=1e-6, lr_decay=1e-3 ), "RMSprop": lambda p: torch.optim.RMSprop(p, 0.1), "RMSprop_with_weight_decay": lambda p: torch.optim.RMSprop( p, 0.1, weight_decay=1e-2 ), "RMSprop_with_weight_decay_and_centered": lambda p: torch.optim.RMSprop( p, 0.1, weight_decay=1e-6, centered=True ), "RMSprop_with_weight_decay_and_centered_and_momentum": lambda p: torch.optim.RMSprop( p, 0.1, weight_decay=1e-6, centered=True, momentum=0.9 ), "SGD": lambda p: torch.optim.SGD(p, 0.1), "SGD_with_weight_decay": lambda p: torch.optim.SGD(p, 0.1, weight_decay=1e-2), "SGD_with_weight_decay_and_momentum": lambda p: torch.optim.SGD( p, 0.1, momentum=0.9, weight_decay=1e-2 ), "SGD_with_weight_decay_and_nesterov_momentum": lambda p: torch.optim.SGD( p, 0.1, momentum=0.9, weight_decay=1e-6, nesterov=True ), }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/api/optim_baseline.py
main
def main(): parser = argparse.ArgumentParser( "Produce optimization output baseline from PyTorch" ) parser.add_argument("-i", "--iterations", default=1001, type=int) parser.add_argument("-s", "--sample-every", default=100, type=int) options = parser.parse_args() optimizer_parameter_map = {} for optimizer in OPTIMIZERS.keys(): sys.stderr.write('Evaluating {} ...\n'.format(optimizer)) optimizer_parameter_map[optimizer] = run( optimizer, options.iterations, options.sample_every ) emit(optimizer_parameter_map) if __name__ == "__main__": main()
def main(): parser = argparse.ArgumentParser( "Produce optimization output baseline from PyTorch" ) parser.add_argument("-i", "--iterations", default=1001, type=int) parser.add_argument("-s", "--sample-every", default=100, type=int) options = parser.parse_args() optimizer_parameter_map = {} for optimizer in OPTIMIZERS.keys(): sys.stderr.write(f"Evaluating {optimizer} ...\n") optimizer_parameter_map[optimizer] = run( optimizer, options.iterations, options.sample_every ) emit(optimizer_parameter_map) if __name__ == "__main__": main()
import argparse import math import sys import torch import torch.optim HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" OPTIMIZERS = { "LBFGS" : lambda p: torch.optim.LBFGS(p, 1.0), "LBFGS_with_line_search" : lambda p: torch.optim.LBFGS(p, 1.0, line_search_fn="strong_wolfe"), "Adam": lambda p: torch.optim.Adam(p, 1.0), "Adam_with_weight_decay": lambda p: torch.optim.Adam(p, 1.0, weight_decay=1e-2), "Adam_with_weight_decay_and_amsgrad": lambda p: torch.optim.Adam(p, 1.0, weight_decay=1e-6, amsgrad=True), "AdamW": lambda p: torch.optim.AdamW(p, 1.0), "AdamW_without_weight_decay": lambda p: torch.optim.AdamW(p, 1.0, weight_decay=0), "AdamW_with_amsgrad": lambda p: torch.optim.AdamW(p, 1.0, amsgrad=True), "Adagrad": lambda p: torch.optim.Adagrad(p, 1.0), "Adagrad_with_weight_decay": lambda p: torch.optim.Adagrad(p, 1.0, weight_decay=1e-2), "Adagrad_with_weight_decay_and_lr_decay": lambda p: torch.optim.Adagrad(p, 1.0, weight_decay=1e-6, lr_decay=1e-3), "RMSprop": lambda p: torch.optim.RMSprop(p, 0.1), "RMSprop_with_weight_decay": lambda p: torch.optim.RMSprop(p, 0.1, weight_decay=1e-2), "RMSprop_with_weight_decay_and_centered": lambda p: torch.optim.RMSprop(p, 0.1, weight_decay=1e-6, centered=True), "RMSprop_with_weight_decay_and_centered_and_momentum": lambda p: torch.optim.RMSprop(p, 0.1, weight_decay=1e-6, centered=True, momentum=0.9), "SGD": lambda p: torch.optim.SGD(p, 0.1), "SGD_with_weight_decay": lambda p: torch.optim.SGD(p, 0.1, weight_decay=1e-2), "SGD_with_weight_decay_and_momentum": lambda p: torch.optim.SGD(p, 0.1, momentum=0.9, weight_decay=1e-2), "SGD_with_weight_decay_and_nesterov_momentum": lambda p: torch.optim.SGD(p, 0.1, momentum=0.9, weight_decay=1e-6, nesterov=True), }
import argparse import math import sys import torch import torch.optim HEADER = """ #include <torch/types.h> #include <vector> namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{" OPTIMIZERS = { "LBFGS": lambda p: torch.optim.LBFGS(p, 1.0), "LBFGS_with_line_search": lambda p: torch.optim.LBFGS( p, 1.0, line_search_fn="strong_wolfe" ), "Adam": lambda p: torch.optim.Adam(p, 1.0), "Adam_with_weight_decay": lambda p: torch.optim.Adam(p, 1.0, weight_decay=1e-2), "Adam_with_weight_decay_and_amsgrad": lambda p: torch.optim.Adam( p, 1.0, weight_decay=1e-6, amsgrad=True ), "AdamW": lambda p: torch.optim.AdamW(p, 1.0), "AdamW_without_weight_decay": lambda p: torch.optim.AdamW(p, 1.0, weight_decay=0), "AdamW_with_amsgrad": lambda p: torch.optim.AdamW(p, 1.0, amsgrad=True), "Adagrad": lambda p: torch.optim.Adagrad(p, 1.0), "Adagrad_with_weight_decay": lambda p: torch.optim.Adagrad( p, 1.0, weight_decay=1e-2 ), "Adagrad_with_weight_decay_and_lr_decay": lambda p: torch.optim.Adagrad( p, 1.0, weight_decay=1e-6, lr_decay=1e-3 ), "RMSprop": lambda p: torch.optim.RMSprop(p, 0.1), "RMSprop_with_weight_decay": lambda p: torch.optim.RMSprop( p, 0.1, weight_decay=1e-2 ), "RMSprop_with_weight_decay_and_centered": lambda p: torch.optim.RMSprop( p, 0.1, weight_decay=1e-6, centered=True ), "RMSprop_with_weight_decay_and_centered_and_momentum": lambda p: torch.optim.RMSprop( p, 0.1, weight_decay=1e-6, centered=True, momentum=0.9 ), "SGD": lambda p: torch.optim.SGD(p, 0.1), "SGD_with_weight_decay": lambda p: torch.optim.SGD(p, 0.1, weight_decay=1e-2), "SGD_with_weight_decay_and_momentum": lambda p: torch.optim.SGD( p, 0.1, momentum=0.9, weight_decay=1e-2 ), "SGD_with_weight_decay_and_nesterov_momentum": lambda p: torch.optim.SGD( p, 0.1, momentum=0.9, weight_decay=1e-6, nesterov=True ), }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
convert
def convert(obj): if isinstance(obj, torch.Tensor): return str(OpenRegTensorMeta(obj, checked=False)) else: return obj new_args = tree_map(convert, args) return pprint.pformat(new_args)
import pprint import torch from torch.utils._pytree import tree_map, tree_map_only VALID_QUEUE_TYPES_IN = {torch.Tensor, int, float} VALID_QUEUE_TYPES_OUT = {OpenRegTensorMeta, int, float, str}
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
convert
def convert(obj): if isinstance(obj, torch.Tensor): return str(OpenRegTensorMeta(obj, checked=False)) else: return obj new_args = tree_map(convert, args) return pprint.pformat(new_args)
import pprint import torch from torch.utils._pytree import tree_map, tree_map_only VALID_QUEUE_TYPES_IN = {torch.Tensor, int, float} VALID_QUEUE_TYPES_OUT = {OpenRegTensorMeta, int, float, str}
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
safe_to
def safe_to(t): if device == "meta": return t.to(device=device) else: return torch.empty_like(t, device=device) return tree_map_only(torch.Tensor, safe_to, (args, kwargs))
import pprint import torch from torch.utils._pytree import tree_map, tree_map_only VALID_QUEUE_TYPES_IN = {torch.Tensor, int, float} VALID_QUEUE_TYPES_OUT = {OpenRegTensorMeta, int, float, str}
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/setup.py
run
def run(self): # Run default behavior first distutils.command.clean.clean.run(self) # Remove pytorch_openreg extension for path in (ROOT_DIR / "pytorch_openreg").glob("**/*.so"): path.unlink() # Remove build directory build_dirs = [ ROOT_DIR / "build", ] for path in build_dirs: if path.exists(): shutil.rmtree(str(path), ignore_errors=True)
import distutils.command.clean import shutil from pathlib import Path from setuptools import find_packages, setup from torch.utils.cpp_extension import BuildExtension, CppExtension PACKAGE_NAME = "pytorch_openreg" version = 1.0 ROOT_DIR = Path(__file__).absolute().parent CSRS_DIR = ROOT_DIR / "pytorch_openreg/csrc" class clean(distutils.command.clean.clean):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/test/test_openreg.py
test_autograd_init
def test_autograd_init(self): # Make sure autograd is initialized torch.ones(2, requires_grad=True, device="openreg").sum().backward() pid = os.getpid() task_path = f"/proc/{pid}/task" all_threads = psutil.Process(pid).threads() all_thread_names = set() for t in all_threads: with open(f"{task_path}/{t.id}/comm") as file: thread_name = file.read().strip() all_thread_names.add(thread_name) for i in range(pytorch_openreg._device_daemon.NUM_DEVICES): self.assertIn(f"pt_autograd_{i}", all_thread_names)
import os import unittest import psutil import pytorch_openreg import torch from torch.testing._internal.common_utils import run_tests, TestCase class TestOpenReg(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/test/test_openreg.py
test_factory
def test_factory(self): a = torch.empty(50, device="openreg") self.assertEqual(a.device.type, "openreg") a.fill_(3.5) self.assertTrue(a.eq(3.5).all())
import os import unittest import psutil import pytorch_openreg import torch from torch.testing._internal.common_utils import run_tests, TestCase class TestOpenReg(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/test/test_openreg.py
test_printing
def test_printing(self): a = torch.ones(20, device="openreg") # Does not crash! str(a)
import os import unittest import psutil import pytorch_openreg import torch from torch.testing._internal.common_utils import run_tests, TestCase class TestOpenReg(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/test/test_openreg.py
test_cross_device_copy
def test_cross_device_copy(self): a = torch.rand(10) b = a.to(device="openreg").add(2).to(device="cpu") self.assertEqual(b, a + 2)
import os import unittest import psutil import pytorch_openreg import torch from torch.testing._internal.common_utils import run_tests, TestCase class TestOpenReg(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp_extensions/open_registration_extension/test/test_openreg.py
test_data_dependent_output
def test_data_dependent_output(self): cpu_a = torch.randn(10) a = cpu_a.to(device="openreg") mask = a.gt(0) out = torch.masked_select(a, mask) self.assertEqual(out, cpu_a.masked_select(cpu_a.gt(0)))
import os import unittest import psutil import pytorch_openreg import torch from torch.testing._internal.common_utils import run_tests, TestCase class TestOpenReg(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/conftest.py
pytest_sessionfinish
def pytest_sessionfinish(self, session, exitstatus): if exitstatus == 0 and not self.run_single: self.cache.set(self.directory, self.initial_val)
import copy import functools import json import os import re import sys import xml.etree.ElementTree as ET from collections import defaultdict from types import MethodType from typing import Any, List, Optional, TYPE_CHECKING, Union import pytest from _pytest.config import Config, filename_arg from _pytest.config.argparsing import Parser from _pytest.junitxml import _NodeReporter, bin_xml_escape, LogXML from _pytest.python import Module from _pytest.reports import TestReport from _pytest.stash import StashKey from _pytest.terminal import _get_raw_skip_reason from pytest_shard_custom import pytest_addoptions as shard_addoptions, PytestShardPlugin from _pytest._code.code import ReprFileLocation xml_key = StashKey["LogXMLReruns"]() STEPCURRENT_CACHE_DIR = "cache/stepcurrent" class StepcurrentPlugin:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/compile_model.py
__init__
def __init__(self, data): super().__init__() for key in data: setattr(self, key, data[key])
import torch from torch.export import Dim AOTI_CUSTOM_OP_LIB = "libaoti_custom_class.so" class TensorSerializer(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/compile_model.py
forward
def forward(self, x): a = self.fc(x) b = self.relu(a) return b
import torch from torch.export import Dim AOTI_CUSTOM_OP_LIB = "libaoti_custom_class.so" class SimpleModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/compile_model.py
__init__
def __init__(self, data): super().__init__() for key in data: setattr(self, key, data[key])
import torch from torch.export import Dim AOTI_CUSTOM_OP_LIB = "libaoti_custom_class.so" class TensorSerializer(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/compile_model.py
forward
def forward(self, x): a = self.fc(x) b = self.relu(a) return b
import torch from torch.export import Dim AOTI_CUSTOM_OP_LIB = "libaoti_custom_class.so" class SimpleModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/compile_model.py
make_script_module
def make_script_module(lib_path, device, *inputs): m = MyAOTIModule(lib_path, device) # sanity check m(*inputs) return torch.jit.trace(m, inputs)
import torch from torch.export import Dim AOTI_CUSTOM_OP_LIB = "libaoti_custom_class.so"
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/compile_model.py
compile_model
def compile_model(device, data): module = SimpleModule().to(device) x = torch.randn((4, 4), device=device) inputs = (x,) # make batch dimension batch_dim = Dim("batch", min=1, max=1024) dynamic_shapes = { "x": {0: batch_dim}, } with torch.no_grad(): # aot-compile the module into a .so pointed by lib_path lib_path = torch._export.aot_compile( module, inputs, dynamic_shapes=dynamic_shapes ) script_module = make_script_module(lib_path, device, *inputs) aoti_script_model = f"script_model_{device}.pt" script_module.save(aoti_script_model) # save sample inputs and ref output with torch.no_grad(): ref_output = module(*inputs) data.update( { f"inputs_{device}": list(inputs), f"outputs_{device}": [ref_output], } )
import torch from torch.export import Dim AOTI_CUSTOM_OP_LIB = "libaoti_custom_class.so"
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/compile_model.py
main
def main(): data = {} for device in ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]: compile_model(device, data) torch.jit.script(TensorSerializer(data)).save("script_data.pt") if __name__ == "__main__": main()
import torch from torch.export import Dim AOTI_CUSTOM_OP_LIB = "libaoti_custom_class.so"
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/aoti_inference/test.py
__init__
def __init__(self, device): super().__init__() self.w_pre = torch.randn(4, 4, device=device) self.w_add = torch.randn(4, 4, device=device)
import torch from torch._export import aot_compile from torch.export import Dim class Net(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/cpp/jit/tests_setup.py
shutdown
def shutdown(self): raise NotImplementedError()
def shutdown(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/jit/tests_setup.py
shutdown
def shutdown(self): raise NotImplementedError()
def shutdown(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/jit/tests_setup.py
setup
def setup(self): raise NotImplementedError()
def setup(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/jit/tests_setup.py
setup
def setup(self): raise NotImplementedError()
def setup(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/jit/tests_setup.py
setup
def setup(self): raise NotImplementedError()
def setup(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/jit/tests_setup.py
setup
def setup(self): raise NotImplementedError()
def setup(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp/jit/tests_setup.py
setup
def setup(self): raise NotImplementedError()
def setup(self): raise NotImplementedError
import sys import os import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA() ]
import os import sys import torch tests = [ EvalModeForLoadedModule(), SerializationInterop(), TorchSaveError(), TorchSaveJitStream_CUDA(), ]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/cpp_api_parity/utils.py
generate_error_msg
def generate_error_msg(name, cpp_value, python_value): return ( "Parity test failed: {} in C++ has value: {}, " "which does not match the corresponding value in Python: {}.\n{}").format( name, cpp_value, python_value, MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE)
def generate_error_msg(name, cpp_value, python_value): return ( f"Parity test failed: {name} in C++ has value: {cpp_value}, " f"which does not match the corresponding value in Python: {python_value}.\n{MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE}" )
from collections import namedtuple import unittest import os import warnings import shutil import torch import torch.utils.cpp_extension import torch.testing._internal.common_nn as common_nn from torch.testing._internal.common_cuda import TEST_CUDA TorchNNModuleTestParams = namedtuple( 'TorchNNModuleTestParams', [ # NN module name (e.g. "BCELoss") 'module_name', # Unique identifier for this module config (e.g. "BCELoss_weights_cuda") 'module_variant_name', # An instance of an NN test class (e.g. `CriterionTest`) which stores # necessary information (e.g. input / target / extra_args) for running the Python test 'test_instance', # Constructor arguments passed to the C++ module constructor, which must be # strictly equivalent to the Python module constructor arguments # (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`, # which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss` # constructor in Python) 'cpp_constructor_args', # All arguments used in NN module's forward pass. # Please see `compute_arg_dict` function for details on how we construct this dict. # (e.g. # ``` # arg_dict = { # 'input': [python_input_tensor], # 'target': [python_target_tensor], # 'extra_args': [], # 'other': [], # } # ``` # ) 'arg_dict', # Whether we expect this NN module test to pass the Python/C++ parity test # (e.g. `True`) 'has_parity', # Device (e.g. "cuda") 'device', # Temporary folder to store C++ outputs (to be compared with Python outputs later) 'cpp_tmp_folder', ] ) TorchNNFunctionalTestParams = namedtuple( 'TorchNNFunctionalTestParams', [ # NN functional name (e.g. "binary_cross_entropy") 'functional_name', # Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda") 'functional_variant_name', # An instance of an NN test class (e.g. `NewModuleTest`) which stores # necessary information (e.g. input / target / extra_args) for running the Python test 'test_instance', # The C++ function call that is strictly equivalent to the Python function call # (e.g. "F::binary_cross_entropy( # i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))", # which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python) 'cpp_function_call', # All arguments used in NN functional's function call. # Please see `compute_arg_dict` function for details on how we construct this dict. # (e.g. # ``` # arg_dict = { # 'input': [python_input_tensor], # 'target': [python_target_tensor], # 'extra_args': [], # 'other': [], # } # ``` # ) 'arg_dict', # Whether we expect this NN functional test to pass the Python/C++ parity test # (e.g. `True`) 'has_parity', # Device (e.g. "cuda") 'device', # Temporary folder to store C++ outputs (to be compared with Python outputs later) 'cpp_tmp_folder', ] ) CppArg = namedtuple('CppArg', ['name', 'value']) TORCH_NN_COMMON_TEST_HARNESS = """ #include <torch/script.h> void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) { auto bytes = torch::jit::pickle_save(ivalue); std::ofstream fout(file_path, std::ios::out | std::ios::binary); fout.write(bytes.data(), bytes.size()); fout.close(); } c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) { c10::Dict<std::string, torch::Tensor> arg_dict; auto arg_dict_module = torch::jit::load(file_path); for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) { arg_dict.insert(p.name, p.value); } return arg_dict; } // Generates rand tensor with non-equal values. This ensures that duplicate // values won't be causing test failure for modules like MaxPooling. // size should be small, otherwise randperm fails / long overflows. torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) { int64_t total = 1; for (int64_t elem : size) { total *= elem; } return torch::randperm(total).view(size).to(torch::kDouble); } """ MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE = ''' What should I do when C++ API parity test is failing? - If you are changing the implementation of an existing `torch.nn` module / `torch.nn.functional` function: Answer: Ideally you should also change the C++ API implementation for that module / function (you can start by searching for the module / function name in `torch/csrc/api/` folder). - If you are adding a new test for an existing `torch.nn` module / `torch.nn.functional` function: Answer: Ideally you should fix the C++ API implementation for that module / function to exactly match the Python API implementation (you can start by searching for the module / function name in `torch/csrc/api/` folder). - If you are adding a test for a *new* `torch.nn` module / `torch.nn.functional` function: Answer: Ideally you should add the corresponding C++ API implementation for that module / function, and it should exactly match the Python API implementation. (We have done a large effort on this which is tracked at https://github.com/pytorch/pytorch/issues/25883.) However, if any of the above is proven to be too complicated, you can just add `test_cpp_api_parity=False` to any failing test in `torch/testing/_internal/common_nn.py`, and the C++ API parity test will be skipped accordingly. Note that you should also file an issue when you do this. For more details on how to add a C++ API parity test, please see: NOTE [How to check NN module / functional API parity between Python and C++ frontends] '''
import os import shutil import unittest import warnings from collections import namedtuple import torch import torch.testing._internal.common_nn as common_nn import torch.utils.cpp_extension from torch.testing._internal.common_cuda import TEST_CUDA TorchNNModuleTestParams = namedtuple( "TorchNNModuleTestParams", [ # NN module name (e.g. "BCELoss") "module_name", # Unique identifier for this module config (e.g. "BCELoss_weights_cuda") "module_variant_name", # An instance of an NN test class (e.g. `CriterionTest`) which stores # necessary information (e.g. input / target / extra_args) for running the Python test "test_instance", # Constructor arguments passed to the C++ module constructor, which must be # strictly equivalent to the Python module constructor arguments # (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`, # which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss` # constructor in Python) "cpp_constructor_args", # All arguments used in NN module's forward pass. # Please see `compute_arg_dict` function for details on how we construct this dict. # (e.g. # ``` # arg_dict = { # 'input': [python_input_tensor], # 'target': [python_target_tensor], # 'extra_args': [], # 'other': [], # } # ``` # ) "arg_dict", # Whether we expect this NN module test to pass the Python/C++ parity test # (e.g. `True`) "has_parity", # Device (e.g. "cuda") "device", # Temporary folder to store C++ outputs (to be compared with Python outputs later) "cpp_tmp_folder", ], ) TorchNNFunctionalTestParams = namedtuple( "TorchNNFunctionalTestParams", [ # NN functional name (e.g. "binary_cross_entropy") "functional_name", # Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda") "functional_variant_name", # An instance of an NN test class (e.g. `NewModuleTest`) which stores # necessary information (e.g. input / target / extra_args) for running the Python test "test_instance", # The C++ function call that is strictly equivalent to the Python function call # (e.g. "F::binary_cross_entropy( # i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))", # which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python) "cpp_function_call", # All arguments used in NN functional's function call. # Please see `compute_arg_dict` function for details on how we construct this dict. # (e.g. # ``` # arg_dict = { # 'input': [python_input_tensor], # 'target': [python_target_tensor], # 'extra_args': [], # 'other': [], # } # ``` # ) "arg_dict", # Whether we expect this NN functional test to pass the Python/C++ parity test # (e.g. `True`) "has_parity", # Device (e.g. "cuda") "device", # Temporary folder to store C++ outputs (to be compared with Python outputs later) "cpp_tmp_folder", ], ) CppArg = namedtuple("CppArg", ["name", "value"]) TORCH_NN_COMMON_TEST_HARNESS = """ #include <torch/script.h> void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) { auto bytes = torch::jit::pickle_save(ivalue); std::ofstream fout(file_path, std::ios::out | std::ios::binary); fout.write(bytes.data(), bytes.size()); fout.close(); } c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) { c10::Dict<std::string, torch::Tensor> arg_dict; auto arg_dict_module = torch::jit::load(file_path); for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) { arg_dict.insert(p.name, p.value); } return arg_dict; } // Generates rand tensor with non-equal values. This ensures that duplicate // values won't be causing test failure for modules like MaxPooling. // size should be small, otherwise randperm fails / long overflows. torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) { int64_t total = 1; for (int64_t elem : size) { total *= elem; } return torch::randperm(total).view(size).to(torch::kDouble); } """ MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE = """ What should I do when C++ API parity test is failing? - If you are changing the implementation of an existing `torch.nn` module / `torch.nn.functional` function: Answer: Ideally you should also change the C++ API implementation for that module / function (you can start by searching for the module / function name in `torch/csrc/api/` folder). - If you are adding a new test for an existing `torch.nn` module / `torch.nn.functional` function: Answer: Ideally you should fix the C++ API implementation for that module / function to exactly match the Python API implementation (you can start by searching for the module / function name in `torch/csrc/api/` folder). - If you are adding a test for a *new* `torch.nn` module / `torch.nn.functional` function: Answer: Ideally you should add the corresponding C++ API implementation for that module / function, and it should exactly match the Python API implementation. (We have done a large effort on this which is tracked at https://github.com/pytorch/pytorch/issues/25883.) However, if any of the above is proven to be too complicated, you can just add `test_cpp_api_parity=False` to any failing test in `torch/testing/_internal/common_nn.py`, and the C++ API parity test will be skipped accordingly. Note that you should also file an issue when you do this. For more details on how to add a C++ API parity test, please see: NOTE [How to check NN module / functional API parity between Python and C++ frontends] """
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
8