library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/custom_operator/test_custom_classes.py
|
f
|
def f():
val = torch.classes._TorchScriptTesting._Foo(5, 3)
return val.info()
self.assertEqual(*test_equality(f, lambda x: x))
|
import unittest
import torch
from torch import ops
import torch.jit as jit
import glob
import os
from torch.testing._internal.common_utils import TestCase, run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/custom_operator/test_custom_ops.py
|
test_op_with_no_abstract_impl_pystub
|
def test_op_with_no_abstract_impl_pystub(self):
x = torch.randn(3, device="meta")
if utils.requires_set_python_module():
with self.assertRaisesRegex(RuntimeError, "pointwise"):
torch.ops.custom.tan(x)
else:
# Smoketest
torch.ops.custom.tan(x)
|
import os.path
import sys
import tempfile
import unittest
from model import get_custom_op_library_path, Model
import torch
import torch._library.utils as utils
from torch import ops
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
class TestCustomOperators(TestCase):
from functorch import make_fx
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_api_parity/utils.py
|
compute_temp_file_path
|
def compute_temp_file_path(cpp_tmp_folder, variant_name, file_suffix):
return os.path.join(cpp_tmp_folder, '{}_{}.pt'.format(variant_name, file_suffix))
|
def compute_temp_file_path(cpp_tmp_folder, variant_name, file_suffix):
return os.path.join(cpp_tmp_folder, f"{variant_name}_{file_suffix}.pt")
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/autograd/test_logging.py
|
test_logging
|
def test_logging(self, records):
a = torch.rand(10, requires_grad=True)
b = a.mul(2).div(3).sum()
c = b.clone()
torch.autograd.backward((b, c))
self.assertEqual(len(records), 5)
expected = [
"CloneBackward0",
"SumBackward0",
"DivBackward0",
"MulBackward0",
"AccumulateGrad",
]
for i, record in enumerate(records):
self.assertIn(expected[i], record.getMessage())
|
import logging
import torch
from torch.testing._internal.logging_utils import LoggingTestCase, make_logging_test
class TestAutogradLogging(LoggingTestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/backends/xeon/test_launch.py
|
test_multi_threads
|
def test_multi_threads(self):
num = 0
with subprocess.Popen(f"python -m torch.backends.xeon.run_cpu --ninstances 4 --use-default-allocator \
--disable-iomp --disable-numactl --log-path {self._test_dir} --no-python pwd",
shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as p:
for line in p.stdout.readlines():
segs = str(line, "utf-8").strip().split("-")
if segs[-1].strip() == "pwd":
num += 1
assert num == 4, "Failed to launch multiple instances for inference"
|
def test_multi_threads(self):
num = 0
with subprocess.Popen(
f"python -m torch.backends.xeon.run_cpu --ninstances 4 --use-default-allocator \
--disable-iomp --disable-numactl --disable-taskset --log-path {self._test_dir} --no-python pwd",
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
) as p:
for line in p.stdout.readlines():
segs = str(line, "utf-8").strip().split("-")
if segs[-1].strip() == "pwd":
num += 1
assert num == 4, "Failed to launch multiple instances for inference"
|
from torch.testing._internal.common_utils import TestCase, run_tests, IS_LINUX
import shutil
import subprocess
import tempfile
import unittest
@unittest.skipIf(not IS_LINUX, "Only works on linux")
class TestTorchrun(TestCase):
from torch.backends.xeon.run_cpu import _CPUinfo
|
import shutil
import subprocess
import tempfile
import unittest
from torch.testing._internal.common_utils import IS_LINUX, run_tests, TestCase
@unittest.skipIf(not IS_LINUX, "Only works on linux")
class TestTorchrun(TestCase):
from torch.backends.xeon.run_cpu import _CPUinfo
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/benchmark_utils/test_benchmark_utils.py
|
to_entry
|
def to_entry(fn_counts):
return [f"{c} {fn.replace(f'/{user}/', '/test_user/')}" for c, fn in fn_counts]
artifacts = {
"baseline_inclusive": to_entry(stats_no_data.baseline_inclusive_stats),
"baseline_exclusive": to_entry(stats_no_data.baseline_exclusive_stats),
"ones_no_data_inclusive": to_entry(stats_no_data.stmt_inclusive_stats),
"ones_no_data_exclusive": to_entry(stats_no_data.stmt_exclusive_stats),
"ones_with_data_inclusive": to_entry(stats_with_data.stmt_inclusive_stats),
"ones_with_data_exclusive": to_entry(stats_with_data.stmt_exclusive_stats),
}
with open(CALLGRIND_ARTIFACTS, "wt") as f:
json.dump(artifacts, f, indent=4)
|
def to_entry(fn_counts):
return [f"{c} {fn.replace(f'/{user}/', '/test_user/')}" for c, fn in fn_counts]
artifacts = {
"baseline_inclusive": to_entry(stats_no_data.baseline_inclusive_stats),
"baseline_exclusive": to_entry(stats_no_data.baseline_exclusive_stats),
"ones_no_data_inclusive": to_entry(stats_no_data.stmt_inclusive_stats),
"ones_no_data_exclusive": to_entry(stats_no_data.stmt_exclusive_stats),
"ones_with_data_inclusive": to_entry(stats_with_data.stmt_inclusive_stats),
"ones_with_data_exclusive": to_entry(stats_with_data.stmt_exclusive_stats),
}
with open(CALLGRIND_ARTIFACTS, "w") as f:
json.dump(artifacts, f, indent=4)
|
import collections
import json
import os
import re
import textwrap
import timeit
from typing import Any, List, Tuple
import unittest
import torch
import torch.utils.benchmark as benchmark_utils
from torch.testing._internal.common_utils import TestCase, run_tests, IS_SANDCASTLE, IS_WINDOWS, slowTest
import expecttest
import numpy as np
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import wrapper_singleton
|
import collections
import json
import os
import re
import textwrap
import timeit
import unittest
from typing import Any, List, Tuple
import expecttest
import numpy as np
import torch
import torch.utils.benchmark as benchmark_utils
from torch.testing._internal.common_utils import (
IS_SANDCASTLE,
IS_WINDOWS,
run_tests,
slowTest,
TEST_WITH_ASAN,
TestCase,
)
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import (
wrapper_singleton,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_api_parity/utils.py
|
set_cpp_tensors_requires_grad
|
def set_cpp_tensors_requires_grad(cpp_tensor_stmts, python_tensors):
assert len(cpp_tensor_stmts) == len(python_tensors)
return ['{}.requires_grad_(true)'.format(tensor_stmt) if tensor.dtype != torch.long else tensor_stmt
for tensor_stmt, (_, tensor) in zip(cpp_tensor_stmts, python_tensors)]
|
def set_cpp_tensors_requires_grad(cpp_tensor_stmts, python_tensors):
assert len(cpp_tensor_stmts) == len(python_tensors)
return [
f"{tensor_stmt}.requires_grad_(true)"
if tensor.dtype != torch.long
else tensor_stmt
for tensor_stmt, (_, tensor) in zip(cpp_tensor_stmts, python_tensors)
]
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_api_parity/utils.py
|
move_cpp_tensors_to_device
|
def move_cpp_tensors_to_device(cpp_tensor_stmts, device):
return ['{}.to("{}")'.format(tensor_stmt, device) for tensor_stmt in cpp_tensor_stmts]
|
def move_cpp_tensors_to_device(cpp_tensor_stmts, device):
return [f'{tensor_stmt}.to("{device}")' for tensor_stmt in cpp_tensor_stmts]
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_api_parity/utils.py
|
compute_cpp_args_construction_stmts_and_forward_arg_symbols
|
def compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params):
device = test_params.device
cpp_forward_args_symbols = []
def add_cpp_forward_args(args):
args_stmts = []
for arg_name, _ in args:
args_stmts.append('auto {} = arg_dict.at("{}")'.format(arg_name, arg_name))
cpp_forward_args_symbols.append(arg_name)
return args_stmts
cpp_forward_input_args_stmts = set_cpp_tensors_requires_grad(move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict['input']), device), test_params.arg_dict['input'])
cpp_forward_target_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict['target']), device)
cpp_forward_extra_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict['extra_args']), device)
# Build the list of other arguments needed
cpp_other_args_stmts = []
for arg_name, _ in test_params.arg_dict['other']:
cpp_other_args_stmts.append('auto {} = arg_dict.at("{}")'.format(arg_name, arg_name))
cpp_other_args_stmts = move_cpp_tensors_to_device(cpp_other_args_stmts, device)
cpp_args_construction_stmts = cpp_forward_input_args_stmts + cpp_forward_target_args_stmts + \
cpp_forward_extra_args_stmts + cpp_other_args_stmts
return cpp_args_construction_stmts, cpp_forward_args_symbols
|
def compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params):
device = test_params.device
cpp_forward_args_symbols = []
def add_cpp_forward_args(args):
args_stmts = []
for arg_name, _ in args:
args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")')
cpp_forward_args_symbols.append(arg_name)
return args_stmts
cpp_forward_input_args_stmts = set_cpp_tensors_requires_grad(
move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["input"]), device
),
test_params.arg_dict["input"],
)
cpp_forward_target_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["target"]), device
)
cpp_forward_extra_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["extra_args"]), device
)
# Build the list of other arguments needed
cpp_other_args_stmts = []
for arg_name, _ in test_params.arg_dict["other"]:
cpp_other_args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")')
cpp_other_args_stmts = move_cpp_tensors_to_device(cpp_other_args_stmts, device)
cpp_args_construction_stmts = (
cpp_forward_input_args_stmts
+ cpp_forward_target_args_stmts
+ cpp_forward_extra_args_stmts
+ cpp_other_args_stmts
)
return cpp_args_construction_stmts, cpp_forward_args_symbols
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_api_parity/utils.py
|
add_cpp_forward_args
|
def add_cpp_forward_args(args):
args_stmts = []
for arg_name, _ in args:
args_stmts.append('auto {} = arg_dict.at("{}")'.format(arg_name, arg_name))
cpp_forward_args_symbols.append(arg_name)
return args_stmts
cpp_forward_input_args_stmts = set_cpp_tensors_requires_grad(move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict['input']), device), test_params.arg_dict['input'])
cpp_forward_target_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict['target']), device)
cpp_forward_extra_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict['extra_args']), device)
# Build the list of other arguments needed
cpp_other_args_stmts = []
for arg_name, _ in test_params.arg_dict['other']:
cpp_other_args_stmts.append('auto {} = arg_dict.at("{}")'.format(arg_name, arg_name))
cpp_other_args_stmts = move_cpp_tensors_to_device(cpp_other_args_stmts, device)
cpp_args_construction_stmts = cpp_forward_input_args_stmts + cpp_forward_target_args_stmts + \
cpp_forward_extra_args_stmts + cpp_other_args_stmts
return cpp_args_construction_stmts, cpp_forward_args_symbols
|
def add_cpp_forward_args(args):
args_stmts = []
for arg_name, _ in args:
args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")')
cpp_forward_args_symbols.append(arg_name)
return args_stmts
cpp_forward_input_args_stmts = set_cpp_tensors_requires_grad(
move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["input"]), device
),
test_params.arg_dict["input"],
)
cpp_forward_target_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["target"]), device
)
cpp_forward_extra_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["extra_args"]), device
)
# Build the list of other arguments needed
cpp_other_args_stmts = []
for arg_name, _ in test_params.arg_dict["other"]:
cpp_other_args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")')
cpp_other_args_stmts = move_cpp_tensors_to_device(cpp_other_args_stmts, device)
cpp_args_construction_stmts = (
cpp_forward_input_args_stmts
+ cpp_forward_target_args_stmts
+ cpp_forward_extra_args_stmts
+ cpp_other_args_stmts
)
return cpp_args_construction_stmts, cpp_forward_args_symbols
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_api_parity/utils.py
|
serialize_arg_dict_as_script_module
|
def serialize_arg_dict_as_script_module(arg_dict):
arg_dict_flat = {arg_name: arg_value
for arg_name, arg_value in
arg_dict['input'] + arg_dict['target'] + arg_dict['extra_args'] + arg_dict['other']}
arg_dict_module = torch.nn.Module()
for arg_name, arg_value in arg_dict_flat.items():
assert isinstance(arg_value, torch.Tensor)
arg_dict_module.register_buffer(arg_name, arg_value)
return torch.jit.script(arg_dict_module)
# NOTE: any argument symbol used in `cpp_constructor_args` / `cpp_options_args` / `cpp_function_call`
# must have a mapping in `cpp_var_map`.
#
# The mapping can take one of the following formats:
#
# 1. `argument_name` -> Python value
# 2. `argument_name` -> '_get_input()' (which means `argument_name` in C++ will be bound to `test_instance._get_input()`)
#
# For example:
# ```
# def bceloss_weights_no_reduce_test():
# t = torch.randn(15, 10).gt(0).double()
# weights = torch.rand(10)
# return dict(
# fullname='BCELoss_weights_no_reduce',
# constructor=wrap_functional(
# lambda i: F.binary_cross_entropy(i, t.type_as(i),
# weight=weights.type_as(i), reduction='none')),
# cpp_function_call='''F::binary_cross_entropy(
# i, t.to(i.options()),
# F::BinaryCrossEntropyFuncOptions()
# .weight(weights.to(i.options()))
# .reduction(torch::kNone))''',
# input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
# cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights},
# reference_fn=lambda i, p, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights,
# )
# ```
|
def serialize_arg_dict_as_script_module(arg_dict):
arg_dict_flat = dict(
arg_dict["input"]
+ arg_dict["target"]
+ arg_dict["extra_args"]
+ arg_dict["other"]
)
arg_dict_module = torch.nn.Module()
for arg_name, arg_value in arg_dict_flat.items():
assert isinstance(arg_value, torch.Tensor)
arg_dict_module.register_buffer(arg_name, arg_value)
return torch.jit.script(arg_dict_module)
# NOTE: any argument symbol used in `cpp_constructor_args` / `cpp_options_args` / `cpp_function_call`
# must have a mapping in `cpp_var_map`.
#
# The mapping can take one of the following formats:
#
# 1. `argument_name` -> Python value
# 2. `argument_name` -> '_get_input()' (which means `argument_name` in C++ will be bound to `test_instance._get_input()`)
#
# For example:
# ```
# def bceloss_weights_no_reduce_test():
# t = torch.randn(15, 10).gt(0).double()
# weights = torch.rand(10)
# return dict(
# fullname='BCELoss_weights_no_reduce',
# constructor=wrap_functional(
# lambda i: F.binary_cross_entropy(i, t.type_as(i),
# weight=weights.type_as(i), reduction='none')),
# cpp_function_call='''F::binary_cross_entropy(
# i, t.to(i.options()),
# F::BinaryCrossEntropyFuncOptions()
# .weight(weights.to(i.options()))
# .reduction(torch::kNone))''',
# input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
# cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights},
# reference_fn=lambda i, p, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights,
# )
# ```
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_api_parity/utils.py
|
compute_arg_dict
|
def compute_arg_dict(test_params_dict, test_instance):
arg_dict = {
'input': [],
'target': [],
'extra_args': [],
'other': [],
}
def put_args_into_arg_dict(arg_type, arg_type_prefix, args):
for i, arg in enumerate(args):
arg_dict[arg_type].append(CppArg(name=arg_type_prefix + str(i), value=arg))
put_args_into_arg_dict('input', 'i', convert_to_list(test_instance._get_input()))
if is_criterion_test(test_instance):
put_args_into_arg_dict('target', 't', convert_to_list(test_instance._get_target()))
if test_instance.extra_args:
put_args_into_arg_dict('extra_args', 'e', convert_to_list(test_instance.extra_args))
cpp_var_map = test_params_dict.get('cpp_var_map', {})
for arg_name, arg_value in cpp_var_map.items():
if isinstance(arg_value, str):
if arg_value == '_get_input()':
arg_dict['other'].append(CppArg(name=arg_name, value=test_instance._get_input()))
else:
raise RuntimeError("`{}` has unsupported string value: {}".format(arg_name, arg_value))
elif isinstance(arg_value, torch.Tensor):
arg_dict['other'].append(CppArg(name=arg_name, value=arg_value))
else:
raise RuntimeError("`{}` has unsupported value: {}".format(arg_name, arg_value))
return arg_dict
|
def compute_arg_dict(test_params_dict, test_instance):
arg_dict = {
"input": [],
"target": [],
"extra_args": [],
"other": [],
}
def put_args_into_arg_dict(arg_type, arg_type_prefix, args):
for i, arg in enumerate(args):
arg_dict[arg_type].append(CppArg(name=arg_type_prefix + str(i), value=arg))
put_args_into_arg_dict("input", "i", convert_to_list(test_instance._get_input()))
if is_criterion_test(test_instance):
put_args_into_arg_dict(
"target", "t", convert_to_list(test_instance._get_target())
)
if test_instance.extra_args:
put_args_into_arg_dict(
"extra_args", "e", convert_to_list(test_instance.extra_args)
)
cpp_var_map = test_params_dict.get("cpp_var_map", {})
for arg_name, arg_value in cpp_var_map.items():
if isinstance(arg_value, str):
if arg_value == "_get_input()":
arg_dict["other"].append(
CppArg(name=arg_name, value=test_instance._get_input())
)
else:
raise RuntimeError(
f"`{arg_name}` has unsupported string value: {arg_value}"
)
elif isinstance(arg_value, torch.Tensor):
arg_dict["other"].append(CppArg(name=arg_name, value=arg_value))
else:
raise RuntimeError(f"`{arg_name}` has unsupported value: {arg_value}")
return arg_dict
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_api_parity/utils.py
|
put_args_into_arg_dict
|
def put_args_into_arg_dict(arg_type, arg_type_prefix, args):
for i, arg in enumerate(args):
arg_dict[arg_type].append(CppArg(name=arg_type_prefix + str(i), value=arg))
put_args_into_arg_dict('input', 'i', convert_to_list(test_instance._get_input()))
if is_criterion_test(test_instance):
put_args_into_arg_dict('target', 't', convert_to_list(test_instance._get_target()))
if test_instance.extra_args:
put_args_into_arg_dict('extra_args', 'e', convert_to_list(test_instance.extra_args))
cpp_var_map = test_params_dict.get('cpp_var_map', {})
for arg_name, arg_value in cpp_var_map.items():
if isinstance(arg_value, str):
if arg_value == '_get_input()':
arg_dict['other'].append(CppArg(name=arg_name, value=test_instance._get_input()))
else:
raise RuntimeError("`{}` has unsupported string value: {}".format(arg_name, arg_value))
elif isinstance(arg_value, torch.Tensor):
arg_dict['other'].append(CppArg(name=arg_name, value=arg_value))
else:
raise RuntimeError("`{}` has unsupported value: {}".format(arg_name, arg_value))
return arg_dict
|
def put_args_into_arg_dict(arg_type, arg_type_prefix, args):
for i, arg in enumerate(args):
arg_dict[arg_type].append(CppArg(name=arg_type_prefix + str(i), value=arg))
put_args_into_arg_dict("input", "i", convert_to_list(test_instance._get_input()))
if is_criterion_test(test_instance):
put_args_into_arg_dict(
"target", "t", convert_to_list(test_instance._get_target())
)
if test_instance.extra_args:
put_args_into_arg_dict(
"extra_args", "e", convert_to_list(test_instance.extra_args)
)
cpp_var_map = test_params_dict.get("cpp_var_map", {})
for arg_name, arg_value in cpp_var_map.items():
if isinstance(arg_value, str):
if arg_value == "_get_input()":
arg_dict["other"].append(
CppArg(name=arg_name, value=test_instance._get_input())
)
else:
raise RuntimeError(
f"`{arg_name}` has unsupported string value: {arg_value}"
)
elif isinstance(arg_value, torch.Tensor):
arg_dict["other"].append(CppArg(name=arg_name, value=arg_value))
else:
raise RuntimeError(f"`{arg_name}` has unsupported value: {arg_value}")
return arg_dict
|
from collections import namedtuple
import unittest
import os
import warnings
import shutil
import torch
import torch.utils.cpp_extension
import torch.testing._internal.common_nn as common_nn
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
'TorchNNModuleTestParams',
[
# NN module name (e.g. "BCELoss")
'module_name',
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
'module_variant_name',
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
'cpp_constructor_args',
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
TorchNNFunctionalTestParams = namedtuple(
'TorchNNFunctionalTestParams',
[
# NN functional name (e.g. "binary_cross_entropy")
'functional_name',
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
'functional_variant_name',
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
'test_instance',
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
'cpp_function_call',
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
'arg_dict',
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
'has_parity',
# Device (e.g. "cuda")
'device',
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
'cpp_tmp_folder',
]
)
CppArg = namedtuple('CppArg', ['name', 'value'])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/custom_operator/my_custom_ops.py
|
nonzero_abstract
|
def nonzero_abstract(x):
n = x.dim()
ctx = torch.library.get_ctx()
nnz = ctx.create_unbacked_symint()
shape = [nnz, n]
return x.new_empty(shape, dtype=torch.long)
|
from model import get_custom_op_library_path
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/my_custom_ops2.py
|
sin_abstract
|
def sin_abstract(x):
return torch.empty_like(x)
|
from model import get_custom_op_library_path
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/pointwise.py
|
tan_abstract
|
def tan_abstract(x):
return torch.empty_like(x)
|
from model import get_custom_op_library_path
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_custom_classes.py
|
get_custom_class_library_path
|
def get_custom_class_library_path():
library_filename = glob.glob("build/*custom_class*")
assert (len(library_filename) == 1)
library_filename = library_filename[0]
path = os.path.abspath(library_filename)
assert os.path.exists(path), path
return path
|
import unittest
import torch
from torch import ops
import torch.jit as jit
import glob
import os
from torch.testing._internal.common_utils import TestCase, run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/custom_operator/test_custom_classes.py
|
test_equality
|
def test_equality(f, cmp_key):
obj1 = f()
obj2 = jit.script(f)()
return (cmp_key(obj1), cmp_key(obj2))
class TestCustomOperators(TestCase):
def setUp(self):
ops.load_library(get_custom_class_library_path())
def test_no_return_class(self):
def f():
val = torch.classes._TorchScriptTesting._Foo(5, 3)
return val.info()
self.assertEqual(*test_equality(f, lambda x: x))
def test_constructor_with_args(self):
def f():
val = torch.classes._TorchScriptTesting._Foo(5, 3)
return val
self.assertEqual(*test_equality(f, lambda x: x.info()))
def test_function_call_with_args(self):
def f():
val = torch.classes._TorchScriptTesting._Foo(5, 3)
val.increment(1)
return val
self.assertEqual(*test_equality(f, lambda x: x.info()))
def test_function_method_wrong_type(self):
def f():
val = torch.classes._TorchScriptTesting._Foo(5, 3)
val.increment("asdf")
return val
with self.assertRaisesRegex(RuntimeError, "Expected"):
jit.script(f)()
@unittest.skip("We currently don't support passing custom classes to custom methods.")
def test_input_class_type(self):
def f():
val = torch.classes._TorchScriptTesting._Foo(1, 2)
val2 = torch.classes._TorchScriptTesting._Foo(2, 3)
val.combine(val2)
return val
self.assertEqual(*test_equality(f, lambda x: x.info()))
def test_stack_string(self):
def f():
val = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"])
return val.pop()
self.assertEqual(*test_equality(f, lambda x: x))
def test_stack_push_pop(self):
def f():
val = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"])
val2 = torch.classes._TorchScriptTesting._StackString(["111", "222"])
val.push(val2.pop())
return val.pop() + val2.pop()
self.assertEqual(*test_equality(f, lambda x: x))
if __name__ == "__main__":
run_tests()
|
import unittest
import torch
from torch import ops
import torch.jit as jit
import glob
import os
from torch.testing._internal.common_utils import TestCase, run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/custom_operator/test_custom_classes.py
|
setUp
|
def setUp(self):
ops.load_library(get_custom_class_library_path())
|
import unittest
import torch
from torch import ops
import torch.jit as jit
import glob
import os
from torch.testing._internal.common_utils import TestCase, run_tests
class TestCustomOperators(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/benchmark_utils/test_benchmark_utils.py
|
test_cpp_timer
|
def test_cpp_timer(self):
timer = benchmark_utils.Timer(
"""
#ifndef TIMER_GLOBAL_CHECK
static_assert(false);
#endif
torch::Tensor y = x + 1;
""",
setup="torch::Tensor x = torch::empty({1});",
global_setup="#define TIMER_GLOBAL_CHECK",
timer=timeit.default_timer,
language=benchmark_utils.Language.CPP,
)
t = timer.timeit(10)
self.assertIsInstance(t.median, float)
class _MockTimer:
_seed = 0
_timer_noise_level = 0.05
_timer_cost = 100e-9 # 100 ns
_function_noise_level = 0.05
_function_costs = (
("pass", 8e-9),
("cheap_fn()", 4e-6),
("expensive_fn()", 20e-6),
("with torch.no_grad():\n y = x + 1", 10e-6),
)
def __init__(self, stmt, setup, timer, globals):
self._random_state = np.random.RandomState(seed=self._seed)
self._mean_cost = {k: v for k, v in self._function_costs}[stmt]
def sample(self, mean, noise_level):
return max(self._random_state.normal(mean, mean * noise_level), 5e-9)
def timeit(self, number):
return sum([
# First timer invocation
self.sample(self._timer_cost, self._timer_noise_level),
# Stmt body
self.sample(self._mean_cost * number, self._function_noise_level),
# Second timer invocation
self.sample(self._timer_cost, self._timer_noise_level),
])
|
def test_cpp_timer(self):
timer = benchmark_utils.Timer(
"""
#ifndef TIMER_GLOBAL_CHECK
static_assert(false);
#endif
torch::Tensor y = x + 1;
""",
setup="torch::Tensor x = torch::empty({1});",
global_setup="#define TIMER_GLOBAL_CHECK",
timer=timeit.default_timer,
language=benchmark_utils.Language.CPP,
)
t = timer.timeit(10)
self.assertIsInstance(t.median, float)
class _MockTimer:
_seed = 0
_timer_noise_level = 0.05
_timer_cost = 100e-9 # 100 ns
_function_noise_level = 0.05
_function_costs = (
("pass", 8e-9),
("cheap_fn()", 4e-6),
("expensive_fn()", 20e-6),
("with torch.no_grad():\n y = x + 1", 10e-6),
)
def __init__(self, stmt, setup, timer, globals):
self._random_state = np.random.RandomState(seed=self._seed)
self._mean_cost = dict(self._function_costs)[stmt]
def sample(self, mean, noise_level):
return max(self._random_state.normal(mean, mean * noise_level), 5e-9)
def timeit(self, number):
return sum(
[
# First timer invocation
self.sample(self._timer_cost, self._timer_noise_level),
# Stmt body
self.sample(self._mean_cost * number, self._function_noise_level),
# Second timer invocation
self.sample(self._timer_cost, self._timer_noise_level),
]
)
|
import collections
import json
import os
import re
import textwrap
import timeit
from typing import Any, List, Tuple
import unittest
import torch
import torch.utils.benchmark as benchmark_utils
from torch.testing._internal.common_utils import TestCase, run_tests, IS_SANDCASTLE, IS_WINDOWS, slowTest
import expecttest
import numpy as np
class TestBenchmarkUtils(TestCase):
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import wrapper_singleton
|
import collections
import json
import os
import re
import textwrap
import timeit
import unittest
from typing import Any, List, Tuple
import expecttest
import numpy as np
import torch
import torch.utils.benchmark as benchmark_utils
from torch.testing._internal.common_utils import (
IS_SANDCASTLE,
IS_WINDOWS,
run_tests,
slowTest,
TEST_WITH_ASAN,
TestCase,
)
class TestBenchmarkUtils(TestCase):
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import (
wrapper_singleton,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/benchmark_utils/test_benchmark_utils.py
|
__init__
|
def __init__(self, stmt, setup, timer, globals):
self._random_state = np.random.RandomState(seed=self._seed)
self._mean_cost = {k: v for k, v in self._function_costs}[stmt]
|
def __init__(self, stmt, setup, timer, globals):
self._random_state = np.random.RandomState(seed=self._seed)
self._mean_cost = dict(self._function_costs)[stmt]
|
import collections
import json
import os
import re
import textwrap
import timeit
from typing import Any, List, Tuple
import unittest
import torch
import torch.utils.benchmark as benchmark_utils
from torch.testing._internal.common_utils import TestCase, run_tests, IS_SANDCASTLE, IS_WINDOWS, slowTest
import expecttest
import numpy as np
class _MockTimer:
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import wrapper_singleton
|
import collections
import json
import os
import re
import textwrap
import timeit
import unittest
from typing import Any, List, Tuple
import expecttest
import numpy as np
import torch
import torch.utils.benchmark as benchmark_utils
from torch.testing._internal.common_utils import (
IS_SANDCASTLE,
IS_WINDOWS,
run_tests,
slowTest,
TEST_WITH_ASAN,
TestCase,
)
class _MockTimer:
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import (
wrapper_singleton,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_device_daemon.py
|
run_op
|
def run_op(allocator, op_name, args, kwargs):
op, _ = torch._C._jit_get_operation(op_name)
args, kwargs = receive_after_sending(allocator, args, kwargs)
return op(*args, **kwargs)
class _Daemon:
def __init__(self):
super().__init__()
self.is_initialized = False
def _lazy_init(self):
if self.is_initialized:
return
self.req_queue = mp_context.Queue()
self.ans_queue = mp_context.Queue()
self.runner = mp_context.Process(
target=self.run_forever, args=(self.req_queue, self.ans_queue), daemon=True
)
self.runner.start()
self.is_initialized = True
def exec(self, cmd, *args):
self._lazy_init()
log.info("Main process launched: %s(*%s)", cmd, safe_str(args))
validate_send_queue_args(cmd, args)
self.req_queue.put((cmd,) + args)
res = self.ans_queue.get()
log.info("Main process result for %s received: %s", cmd, safe_str(res))
if res == "ERROR":
raise RuntimeError(f"Error in daemon while executing {cmd}, see logs")
else:
return res
@staticmethod
def run_forever(req_queue, ans_queue):
# Initialize our device
global CURR_DEVICE_IDX
empty_res = object()
allocator = Allocator()
# Serve all requests
while True:
cmd, *args = req_queue.get()
log.info("Worker executing: %s", cmd)
res = empty_res
if cmd == "deviceCount":
assert len(args) == 0
res = NUM_DEVICES
elif cmd == "getDevice":
res = CURR_DEVICE_IDX
elif cmd == "uncheckedSetDevice":
assert len(args) == 1
CURR_DEVICE_IDX = int(args[0])
res = None
elif cmd == "exchangeDevice":
assert len(args) == 1
res = CURR_DEVICE_IDX
CURR_DEVICE_IDX = int(args[0])
elif cmd == "malloc":
res = allocator.malloc(*args)
elif cmd == "free":
res = allocator.free(*args)
elif cmd == "run_op":
op_name, args, kwargs = args
run_op(allocator, op_name, args, kwargs)
res = None
elif cmd == "send_data":
assert len(args) == 1
res = OpenRegTensorData.from_meta(allocator, args[0])
elif cmd == "recv_data":
assert len(args) == 2
host_tensor, dev_mem = args
dev_tensor = OpenRegTensorData.from_meta(allocator, dev_mem)
dev_tensor.copy_(host_tensor)
res = None
elif cmd == "get_op_output_shape":
op_name, args, kwargs = args
res = run_op(allocator, op_name, args, kwargs).size()
else:
log.warning("Bad command in worker")
res = "ERROR"
if res == empty_res:
raise RuntimeError("Bad impl didn't return anything")
log.info("Worker answering to: %s", cmd)
ans_queue.put(res)
daemon = _Daemon()
|
import logging
import torch
from ._meta_parser import (
OpenRegTensorData,
receive_after_sending,
safe_str,
validate_send_queue_args,
)
log = logging.getLogger(__name__)
mp_context = torch.multiprocessing.get_context("spawn")
NUM_DEVICES = 7
CURR_DEVICE_IDX = 0
CURR_STREAM = 0
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_device_daemon.py
|
__init__
|
def __init__(self):
self.allocated = {}
|
import logging
import torch
from ._meta_parser import (
OpenRegTensorData,
receive_after_sending,
safe_str,
validate_send_queue_args,
)
log = logging.getLogger(__name__)
mp_context = torch.multiprocessing.get_context("spawn")
NUM_DEVICES = 7
CURR_DEVICE_IDX = 0
CURR_STREAM = 0
class Allocator:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_device_daemon.py
|
_lazy_init
|
def _lazy_init(self):
if self.is_initialized:
return
self.req_queue = mp_context.Queue()
self.ans_queue = mp_context.Queue()
self.runner = mp_context.Process(
target=self.run_forever, args=(self.req_queue, self.ans_queue), daemon=True
)
self.runner.start()
self.is_initialized = True
|
import logging
import torch
from ._meta_parser import (
OpenRegTensorData,
receive_after_sending,
safe_str,
validate_send_queue_args,
)
log = logging.getLogger(__name__)
mp_context = torch.multiprocessing.get_context("spawn")
NUM_DEVICES = 7
CURR_DEVICE_IDX = 0
CURR_STREAM = 0
class _Daemon:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_device_daemon.py
|
run_forever
|
def run_forever(req_queue, ans_queue):
# Initialize our device
global CURR_DEVICE_IDX
empty_res = object()
allocator = Allocator()
# Serve all requests
while True:
cmd, *args = req_queue.get()
log.info("Worker executing: %s", cmd)
res = empty_res
if cmd == "deviceCount":
assert len(args) == 0
res = NUM_DEVICES
elif cmd == "getDevice":
res = CURR_DEVICE_IDX
elif cmd == "uncheckedSetDevice":
assert len(args) == 1
CURR_DEVICE_IDX = int(args[0])
res = None
elif cmd == "exchangeDevice":
assert len(args) == 1
res = CURR_DEVICE_IDX
CURR_DEVICE_IDX = int(args[0])
elif cmd == "malloc":
res = allocator.malloc(*args)
elif cmd == "free":
res = allocator.free(*args)
elif cmd == "run_op":
op_name, args, kwargs = args
run_op(allocator, op_name, args, kwargs)
res = None
elif cmd == "send_data":
assert len(args) == 1
res = OpenRegTensorData.from_meta(allocator, args[0])
elif cmd == "recv_data":
assert len(args) == 2
host_tensor, dev_mem = args
dev_tensor = OpenRegTensorData.from_meta(allocator, dev_mem)
dev_tensor.copy_(host_tensor)
res = None
elif cmd == "get_op_output_shape":
op_name, args, kwargs = args
res = run_op(allocator, op_name, args, kwargs).size()
else:
log.warning("Bad command in worker")
res = "ERROR"
if res == empty_res:
raise RuntimeError("Bad impl didn't return anything")
log.info("Worker answering to: %s", cmd)
ans_queue.put(res)
|
import logging
import torch
from ._meta_parser import (
OpenRegTensorData,
receive_after_sending,
safe_str,
validate_send_queue_args,
)
log = logging.getLogger(__name__)
mp_context = torch.multiprocessing.get_context("spawn")
NUM_DEVICES = 7
CURR_DEVICE_IDX = 0
CURR_STREAM = 0
class _Daemon:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
|
__init__
|
def __init__(self, tensor, checked=True):
if checked and not tensor.device.type == "openreg":
raise RuntimeError(
"Creating OpenRegTensorMeta is only for Tensors on openreg device"
)
self.data_ptr = tensor.untyped_storage().data_ptr()
self.size = tensor.size()
self.stride = tensor.stride()
self.storage_offset = tensor.storage_offset()
self.dtype = tensor.dtype
self.nelem_in_bytes = tensor.nelement() * tensor.element_size()
|
import pprint
import torch
from torch.utils._pytree import tree_map, tree_map_only
class OpenRegTensorMeta:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
|
__repr__
|
def __repr__(self):
return (
f"OpenRegTensorMeta({self.data_ptr=}, {self.size=}, {self.stride=}, "
f"{self.storage_offset=}, {self.dtype=}, {self.nelem_in_bytes=})"
)
|
import pprint
import torch
from torch.utils._pytree import tree_map, tree_map_only
class OpenRegTensorMeta:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
|
from_meta
|
def from_meta(allocator, tensor_meta):
return OpenRegTensorData(allocator.tensor_from_meta(tensor_meta))
|
import pprint
import torch
from torch.utils._pytree import tree_map, tree_map_only
class OpenRegTensorData(torch.Tensor):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
|
convert
|
def convert(obj):
if isinstance(obj, torch.Tensor):
return str(OpenRegTensorMeta(obj, checked=False))
else:
return obj
new_args = tree_map(convert, args)
return pprint.pformat(new_args)
|
import pprint
import torch
from torch.utils._pytree import tree_map, tree_map_only
VALID_QUEUE_TYPES_IN = {torch.Tensor, int, float}
VALID_QUEUE_TYPES_OUT = {OpenRegTensorMeta, int, float, str}
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/open_registration_extension/pytorch_openreg/_meta_parser.py
|
check
|
def check(obj):
if type(obj) not in VALID_QUEUE_TYPES_OUT:
if (
cmd == "recv_data"
and type(obj) is torch.Tensor
and obj.device.type == "cpu"
):
# Only HtoD copy command can send cpu Tensors over
return
raise RuntimeError(
f"Trying to send invalid object through queue: {type(obj)}"
)
tree_map(check, args)
|
import pprint
import torch
from torch.utils._pytree import tree_map, tree_map_only
VALID_QUEUE_TYPES_IN = {torch.Tensor, int, float}
VALID_QUEUE_TYPES_OUT = {OpenRegTensorMeta, int, float, str}
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/bottleneck_test/test_cuda.py
|
__init__
|
def __init__(self):
super().__init__()
self.linear = nn.Linear(20, 20)
|
def __init__(self) -> None:
super().__init__()
self.linear = nn.Linear(20, 20)
|
import torch
import torch.nn as nn
class Model(nn.Module):
|
import torch
import torch.nn as nn
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/custom_operator/test_custom_ops.py
|
test_dynamo_pystub_suggestion
|
def test_dynamo_pystub_suggestion(self):
x = torch.randn(3)
@torch.compile(backend="eager", fullgraph=True)
def f(x):
return torch.ops.custom.asin(x)
with self.assertRaisesRegex(
RuntimeError,
r"unsupported operator: .* you may need to `import nonexistent`",
):
f(x)
|
import os.path
import sys
import tempfile
import unittest
from model import get_custom_op_library_path, Model
import torch
import torch._library.utils as utils
from torch import ops
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
class TestCustomOperators(TestCase):
from functorch import make_fx
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_custom_ops.py
|
f
|
def f(x):
return torch.ops.custom.asin(x)
with self.assertRaisesRegex(
RuntimeError,
r"unsupported operator: .* you may need to `import nonexistent`",
):
f(x)
|
import os.path
import sys
import tempfile
import unittest
from model import get_custom_op_library_path, Model
import torch
import torch._library.utils as utils
from torch import ops
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
from functorch import make_fx
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_custom_ops.py
|
test_abstract_impl_pystub_meta
|
def test_abstract_impl_pystub_meta(self):
x = torch.randn(3, device="meta")
self.assertNotIn("my_custom_ops2", sys.modules.keys())
with self.assertRaisesRegex(NotImplementedError, r"'my_custom_ops2'"):
y = torch.ops.custom.sin.default(x)
torch.ops.import_module("my_custom_ops2")
y = torch.ops.custom.sin.default(x)
|
import os.path
import sys
import tempfile
import unittest
from model import get_custom_op_library_path, Model
import torch
import torch._library.utils as utils
from torch import ops
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
class TestCustomOperators(TestCase):
from functorch import make_fx
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/cpp_extensions/torch_test_cpp_extension/__init__.py
|
_autoload
|
def _autoload():
# Set the environment variable to true in this entrypoint
os.environ["IS_CUSTOM_DEVICE_BACKEND_IMPORTED"] = "1"
|
import os
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/create_dummy_torchscript_model.py
|
__init__
|
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
|
def __init__(self) -> None:
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
|
import sys
import torch
from torch import nn
class NeuralNetwork(nn.Module):
|
import sys
import torch
from torch import nn
class NeuralNetwork(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/custom_backend/backend.py
|
get_custom_backend_library_path
|
def get_custom_backend_library_path():
"""
Get the path to the library containing the custom backend.
Return:
The path to the custom backend object, customized by platform.
"""
if sys.platform.startswith("win32"):
library_filename = "custom_backend.dll"
elif sys.platform.startswith("darwin"):
library_filename = "libcustom_backend.dylib"
else:
library_filename = "libcustom_backend.so"
path = os.path.abspath("build/{}".format(library_filename))
assert os.path.exists(path), path
return path
|
def get_custom_backend_library_path():
"""
Get the path to the library containing the custom backend.
Return:
The path to the custom backend object, customized by platform.
"""
if sys.platform.startswith("win32"):
library_filename = "custom_backend.dll"
elif sys.platform.startswith("darwin"):
library_filename = "libcustom_backend.dylib"
else:
library_filename = "libcustom_backend.so"
path = os.path.abspath(f"build/{library_filename}")
assert os.path.exists(path), path
return path
|
import argparse
import os.path
import sys
import torch
|
import argparse
import os.path
import sys
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/custom_operator/model.py
|
get_custom_op_library_path
|
def get_custom_op_library_path():
if sys.platform.startswith("win32"):
library_filename = "custom_ops.dll"
elif sys.platform.startswith("darwin"):
library_filename = "libcustom_ops.dylib"
else:
library_filename = "libcustom_ops.so"
path = os.path.abspath("build/{}".format(library_filename))
assert os.path.exists(path), path
return path
class Model(torch.jit.ScriptModule):
def __init__(self):
super().__init__()
self.p = torch.nn.Parameter(torch.eye(5))
@torch.jit.script_method
def forward(self, input):
return torch.ops.custom.op_with_defaults(input)[0] + 1
|
def get_custom_op_library_path():
if sys.platform.startswith("win32"):
library_filename = "custom_ops.dll"
elif sys.platform.startswith("darwin"):
library_filename = "libcustom_ops.dylib"
else:
library_filename = "libcustom_ops.so"
path = os.path.abspath(f"build/{library_filename}")
assert os.path.exists(path), path
return path
class Model(torch.jit.ScriptModule):
def __init__(self) -> None:
super().__init__()
self.p = torch.nn.Parameter(torch.eye(5))
@torch.jit.script_method
def forward(self, input):
return torch.ops.custom.op_with_defaults(input)[0] + 1
|
import argparse
import os.path
import sys
import torch
|
import argparse
import os.path
import sys
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
test_nested_fully_shard_backend_inductor
|
def test_nested_fully_shard_backend_inductor(self):
for fullgraph in [True, False]:
with self._reinplace_all_gather_with_optional_checks(
fullgraph
), self._maybe_run_decide_global_ordering_of_comms_with_checks(fullgraph):
_, triton_codes = run_and_get_code(
lambda: self._test_traceable_fsdp(
*self._create_nested_fully_shard_factory_fns(
fullgraph=fullgraph
),
"inductor",
fullgraph=fullgraph,
)
)
if fullgraph:
self.assertTrue(
len(triton_codes) == 2,
"Expected two separate lowerings to Triton code, one from FWD graph and one from Compiled Autograd BWD graph",
)
fwd_code = triton_codes[0]
file_check = FileCheck().check("def call(args):")
for fwd_ag_block_info in [
dict(overlapped_compute_op_str=None, num_resize=0, num_set=2),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=2,
num_set=2,
last_all_gather=True,
),
]:
file_check = self.inductor_code_check_fsdp_all_gather(
file_check, **fwd_ag_block_info
)
file_check.run(fwd_code)
bwd_code = triton_codes[1]
file_check = FileCheck().check("def call(args):")
for bwd_ag_block_info in [
dict(overlapped_compute_op_str=None, num_resize=0, num_set=2),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=0,
num_set=2,
),
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=0,
num_set=2,
last_all_gather=True,
),
]:
file_check = self.inductor_code_check_fsdp_all_gather(
file_check, **bwd_ag_block_info
)
for bwd_rs_block_info in [
dict(overlapped_compute_op_str="extern_kernels.mm("),
dict(
overlapped_compute_op_str=None
), # TODO: improve compute/comm overlap, so that `overlapped_compute_op_str` is not None
dict(overlapped_compute_op_str=None),
]:
file_check = self.inductor_code_check_fsdp_reduce_scatter(
file_check, **bwd_rs_block_info
)
file_check.run(bwd_code)
else:
# TODO: when fullgraph=False and there is graph break in FWD graph,
# there are several recompiles, need to figure out why.
self.assertTrue(
len(triton_codes) > 2,
"Expected at least 3 separate lowerings to Triton code, which means at least 1 graph break in FWD graph",
)
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
class TestFullyShardCompile(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
_create_transformer_factory_fns
|
def _create_transformer_factory_fns(self):
seq_len = 16
vocab_size = 8
def model_init_fn():
torch.manual_seed(self.rank)
fsdp_config = {}
mesh = init_device_mesh("cuda", (self.world_size,))
model_args = ModelArgs(
vocab_size=vocab_size,
n_layers=3,
)
model = Transformer(model_args)
for layer_id, mod in enumerate(model.layers):
fully_shard(mod, mesh=mesh, reshard_after_forward=True, **fsdp_config)
model = fully_shard(
model, mesh=mesh, reshard_after_forward=True, **fsdp_config
)
optim = torch.optim.SGD(model.parameters(), lr=1e-4)
return model, optim
def input_creation_fn():
torch.manual_seed(self.rank)
inp = torch.randint(
0, vocab_size, (2, seq_len), device="cuda", requires_grad=False
)
return inp
return model_init_fn, input_creation_fn
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
class TestFullyShardCompile(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
model_init_fn
|
def model_init_fn():
torch.manual_seed(self.rank)
fsdp_config = {}
model = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim, device="cuda"),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim, device="cuda"),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim, device="cuda"),
)
fully_shard(model, reshard_after_forward=True, **fsdp_config)
optim = torch.optim.SGD(model.parameters(), lr=1e-4)
return model, optim
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
input_creation_fn
|
def input_creation_fn():
torch.manual_seed(self.rank)
inp = torch.randn((2, hidden_dim), device="cuda", requires_grad=False)
return inp
return model_init_fn, input_creation_fn
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
_sdpa_with_graph_break
|
def _sdpa_with_graph_break(orig_fn, fullgraph, *args, **kwargs):
if not fullgraph:
torch._dynamo.graph_break()
return orig_fn(*args, **kwargs)
return mock.patch.object(
F,
"scaled_dot_product_attention",
functools.partial(
_sdpa_with_graph_break,
F.scaled_dot_product_attention,
fullgraph,
),
)
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
test_transformer_backend_inductor
|
def test_transformer_backend_inductor(self):
for fullgraph in [True, False]:
with self._maybe_add_graph_break_to_sdpa(
fullgraph
), self._reinplace_all_gather_with_optional_checks(
fullgraph
), self._maybe_run_decide_global_ordering_of_comms_with_checks(
fullgraph
):
_, triton_codes = run_and_get_code(
lambda: self._test_traceable_fsdp(
*self._create_transformer_factory_fns(),
"inductor",
fullgraph=fullgraph,
)
)
if fullgraph:
self.assertTrue(
len(triton_codes) == 2,
"Expected two separate lowerings to Triton code, one from FWD graph and one from Compiled Autograd BWD graph",
)
fwd_code = triton_codes[0]
file_check = FileCheck().check("def call(args):")
for fwd_ag_block_info in [
dict(overlapped_compute_op_str="triton_", num_resize=0, num_set=4),
dict(
overlapped_compute_op_str="aten.native_dropout.",
num_resize=0,
num_set=12,
),
dict(
overlapped_compute_op_str="aten._scaled_dot_product_efficient_attention.",
num_resize=12,
num_set=12,
),
dict(
overlapped_compute_op_str="aten._scaled_dot_product_efficient_attention.",
num_resize=12,
num_set=12,
last_all_gather=True,
),
]:
file_check = self.inductor_code_check_fsdp_all_gather(
file_check, **fwd_ag_block_info
)
file_check.run(fwd_code)
bwd_code = triton_codes[1]
file_check = FileCheck().check("def call(args):")
for bwd_ag_block_info in [
dict(
overlapped_compute_op_str="extern_kernels.mm(",
num_resize=0,
num_set=12,
),
dict(
overlapped_compute_op_str="aten._scaled_dot_product_efficient_attention_backward.",
num_resize=0,
num_set=12,
),
dict(
overlapped_compute_op_str="aten._scaled_dot_product_efficient_attention_backward.",
num_resize=0,
num_set=12,
last_all_gather=True,
),
]:
file_check = self.inductor_code_check_fsdp_all_gather(
file_check, **bwd_ag_block_info
)
for bwd_rs_block_info in [
dict(overlapped_compute_op_str="extern_kernels.mm("),
dict(
overlapped_compute_op_str=None
), # TODO: improve compute/comm overlap, so that `overlapped_compute_op_str` is not None
dict(overlapped_compute_op_str=None),
dict(overlapped_compute_op_str=None),
]:
file_check = self.inductor_code_check_fsdp_reduce_scatter(
file_check, **bwd_rs_block_info
)
file_check.run(bwd_code)
else:
# TODO: when fullgraph=False and there is graph break in FWD graph,
# there are several recompiles, need to figure out why.
self.assertTrue(
len(triton_codes) > 2,
"Expected at least 3 separate lowerings to Triton code, which means at least 1 graph break in FWD graph",
)
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
class TestFullyShardCompile(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_extensions.py
|
_patch_two_tensor_fsdp_all_gather
|
def _patch_two_tensor_fsdp_all_gather(self):
lock = threading.Lock()
TwoTensor.fsdp_pre_all_gather = two_tensor_fsdp_pre_all_gather
TwoTensor.fsdp_post_all_gather = two_tensor_fsdp_post_all_gather
dist.barrier()
try:
yield
finally:
dist.barrier()
with lock: # only one thread needs to delete
if hasattr(TwoTensor, "fsdp_pre_all_gather"):
delattr(TwoTensor, "fsdp_pre_all_gather")
if hasattr(TwoTensor, "fsdp_post_all_gather"):
delattr(TwoTensor, "fsdp_post_all_gather")
|
import contextlib
import copy
import functools
import threading
import unittest
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.device_mesh import DeviceMesh
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.two_tensor import TwoTensor
class TestFullyShardAllGatherExtensionsCommon:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_extensions.py
|
test_all_gather_extensions_train_parity
|
def test_all_gather_extensions_train_parity(self):
with self._patch_two_tensor_fsdp_all_gather():
self.run_subtests(
{"reshard_after_forward": [True, False]},
self._test_all_gather_extensions_train_parity,
)
|
import contextlib
import copy
import functools
import threading
import unittest
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.device_mesh import DeviceMesh
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.two_tensor import TwoTensor
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_managed_modules_list_of_mlps
|
def test_managed_modules_list_of_mlps(self):
model = nn.Sequential(*[MLP(8) for _ in range(5)])
# Assume calling `fully_shard` on `[model[0], model[1], model[2]]`
managed_modules = _get_managed_modules((model[0], model[1], model[2]))
expected_managed_modules = (
list(model[0].modules())
+ list(model[1].modules())
+ list(model[2].modules())
)
self._check_managed_modules(managed_modules, expected_managed_modules)
# Assume calling `fully_shard` on `[model[1], model[3]]`
managed_modules = _get_managed_modules((model[1], model[3]))
expected_managed_modules = list(model[1].modules()) + list(model[3].modules())
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardManagedModulesAndStates(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_managed_states_list_of_mlps
|
def test_managed_states_list_of_mlps(self):
model = nn.Sequential(*[MLP(8, with_buffer=True) for _ in range(5)])
# Assume calling `fully_shard` on `[model[0], model[1], model[2]]`
managed_modules = _get_managed_modules((model[0], model[1], model[2]))
params, buffers = _get_managed_states(managed_modules)
expected_params = (
list(model[0].parameters())
+ list(model[1].parameters())
+ list(model[2].parameters())
)
expected_buffers = (
list(model[0].buffers())
+ list(model[1].buffers())
+ list(model[2].buffers())
)
self._check_managed_states(params, buffers, expected_params, expected_buffers)
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardManagedModulesAndStates(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_get_param_module_infos_list_of_mlps
|
def test_get_param_module_infos_list_of_mlps(self):
model = nn.Sequential(*[MLP(8) for _ in range(2)])
managed_modules = _get_managed_modules((model[0], model[1]))
params, _ = _get_managed_states(managed_modules)
param_module_infos = _get_param_module_infos(params, model)
self.assertEqual(len(param_module_infos), len(params))
expected_param_module_infos = [
ParamModuleInfo(model[0].in_proj, "weight", [], []),
ParamModuleInfo(model[0].in_proj, "bias", [], []),
ParamModuleInfo(model[0].out_proj, "weight", [], []),
ParamModuleInfo(model[0].out_proj, "bias", [], []),
ParamModuleInfo(model[1].in_proj, "weight", [], []),
ParamModuleInfo(model[1].in_proj, "bias", [], []),
ParamModuleInfo(model[1].out_proj, "weight", [], []),
ParamModuleInfo(model[1].out_proj, "bias", [], []),
]
self.assertEqual(len(param_module_infos), len(expected_param_module_infos))
self.assertEqual(param_module_infos, expected_param_module_infos)
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardParamModuleInfos(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_shard_tensor_parameters
|
def test_shard_tensor_parameters(self):
# Use odd dim sizes to test uneven shards
model = nn.Sequential(*[MLP(3, dim_multiplier=3) for _ in range(3)])
orig_params = [param.detach().clone() for param in model.parameters()]
fully_shard(model)
sharded_params = list(model.parameters())
self._check_1d_sharded_parameters(orig_params, sharded_params)
model = nn.Sequential(*[MLP(3, dim_multiplier=3) for _ in range(3)])
model[0].in_proj = model[1].in_proj
orig_params = [param.detach().clone() for param in model.parameters()]
fully_shard(model)
sharded_params = list(model.parameters())
self._check_1d_sharded_parameters(orig_params, sharded_params)
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardShardedParameterTensor(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_infer_schema_annotation.py
|
test_tensor
|
def test_tensor(self):
def foo_op(x: torch.Tensor) -> torch.Tensor:
return x.clone()
result = torch.library.infer_schema(foo_op, mutates_args=mutates_args)
self.assertEqual(result, "(Tensor x) -> Tensor")
def foo_op_2(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x.clone() + y
result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
self.assertEqual(result, "(Tensor x, Tensor y) -> Tensor")
|
from __future__ import annotations
import typing
from typing import List, Optional, Sequence, Union # noqa: F401
import torch
from torch import Tensor, types
from torch.testing._internal.common_utils import run_tests, TestCase
mutates_args = {}
class TestInferSchemaWithAnnotation(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_infer_schema_annotation.py
|
test_native_types
|
def test_native_types(self):
def foo_op(x: int) -> int:
return x
result = torch.library.infer_schema(foo_op, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt x) -> SymInt")
def foo_op_2(x: bool) -> bool:
return x
result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
self.assertEqual(result, "(bool x) -> bool")
def foo_op_3(x: str) -> int:
return 1
result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
self.assertEqual(result, "(str x) -> SymInt")
def foo_op_4(x: float) -> float:
return x
result = torch.library.infer_schema(foo_op_4, mutates_args=mutates_args)
self.assertEqual(result, "(float x) -> float")
|
from __future__ import annotations
import typing
from typing import List, Optional, Sequence, Union # noqa: F401
import torch
from torch import Tensor, types
from torch.testing._internal.common_utils import run_tests, TestCase
mutates_args = {}
class TestInferSchemaWithAnnotation(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_infer_schema_annotation.py
|
test_torch_types
|
def test_torch_types(self):
def foo_op_1(x: torch.types.Number) -> torch.types.Number:
return x
result = torch.library.infer_schema(foo_op_1, mutates_args=mutates_args)
self.assertEqual(result, "(Scalar x) -> Scalar")
def foo_op_2(x: torch.dtype) -> int:
return 1
result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
self.assertEqual(result, "(ScalarType x) -> SymInt")
def foo_op_3(x: torch.device) -> int:
return 1
result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
self.assertEqual(result, "(Device x) -> SymInt")
|
from __future__ import annotations
import typing
from typing import List, Optional, Sequence, Union # noqa: F401
import torch
from torch import Tensor, types
from torch.testing._internal.common_utils import run_tests, TestCase
mutates_args = {}
class TestInferSchemaWithAnnotation(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_infer_schema_annotation.py
|
test_type_variants
|
def test_type_variants(self):
def foo_op_1(x: typing.Optional[int]) -> int:
return 1
result = torch.library.infer_schema(foo_op_1, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt? x) -> SymInt")
def foo_op_2(x: typing.Sequence[int]) -> int:
return 1
result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[] x) -> SymInt")
def foo_op_3(x: typing.List[int]) -> int:
return 1
result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[] x) -> SymInt")
def foo_op_4(x: typing.Optional[typing.Sequence[int]]) -> int:
return 1
result = torch.library.infer_schema(foo_op_4, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[]? x) -> SymInt")
def foo_op_5(x: typing.Optional[typing.List[int]]) -> int:
return 1
result = torch.library.infer_schema(foo_op_5, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[]? x) -> SymInt")
def foo_op_6(x: typing.Union[int, float, bool]) -> types.Number:
return x
result = torch.library.infer_schema(foo_op_6, mutates_args=mutates_args)
self.assertEqual(result, "(Scalar x) -> Scalar")
def foo_op_7(x: typing.Union[int, bool, float]) -> types.Number:
return x
result = torch.library.infer_schema(foo_op_7, mutates_args=mutates_args)
self.assertEqual(result, "(Scalar x) -> Scalar")
|
from __future__ import annotations
import typing
from typing import List, Optional, Sequence, Union # noqa: F401
import torch
from torch import Tensor, types
from torch.testing._internal.common_utils import run_tests, TestCase
mutates_args = {}
class TestInferSchemaWithAnnotation(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_infer_schema_annotation.py
|
test_no_library_prefix
|
def test_no_library_prefix(self):
def foo_op(x: Tensor) -> Tensor:
return x.clone()
result = torch.library.infer_schema(foo_op, mutates_args=mutates_args)
self.assertEqual(result, "(Tensor x) -> Tensor")
def foo_op_2(x: Tensor) -> torch.Tensor:
return x.clone()
result = torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
self.assertEqual(result, "(Tensor x) -> Tensor")
def foo_op_3(x: torch.Tensor) -> Tensor:
return x.clone()
result = torch.library.infer_schema(foo_op_3, mutates_args=mutates_args)
self.assertEqual(result, "(Tensor x) -> Tensor")
def foo_op_4(x: List[int]) -> types.Number:
return x[0]
result = torch.library.infer_schema(foo_op_4, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[] x) -> Scalar")
def foo_op_5(x: Optional[int]) -> int:
return 1
result = torch.library.infer_schema(foo_op_5, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt? x) -> SymInt")
def foo_op_6(x: Sequence[int]) -> int:
return 1
result = torch.library.infer_schema(foo_op_6, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[] x) -> SymInt")
def foo_op_7(x: List[int]) -> int:
return 1
result = torch.library.infer_schema(foo_op_7, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[] x) -> SymInt")
def foo_op_8(x: Optional[Sequence[int]]) -> int:
return 1
result = torch.library.infer_schema(foo_op_8, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[]? x) -> SymInt")
def foo_op_9(x: Optional[List[int]]) -> int:
return 1
result = torch.library.infer_schema(foo_op_9, mutates_args=mutates_args)
self.assertEqual(result, "(SymInt[]? x) -> SymInt")
def foo_op_10(x: Union[int, float, bool]) -> types.Number:
return x
result = torch.library.infer_schema(foo_op_10, mutates_args=mutates_args)
self.assertEqual(result, "(Scalar x) -> Scalar")
def foo_op_11(x: Union[int, bool, float]) -> types.Number:
return x
result = torch.library.infer_schema(foo_op_11, mutates_args=mutates_args)
self.assertEqual(result, "(Scalar x) -> Scalar")
|
from __future__ import annotations
import typing
from typing import List, Optional, Sequence, Union # noqa: F401
import torch
from torch import Tensor, types
from torch.testing._internal.common_utils import run_tests, TestCase
mutates_args = {}
class TestInferSchemaWithAnnotation(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/custom_operator/test_infer_schema_annotation.py
|
test_unsupported_annotation
|
def test_unsupported_annotation(self):
with self.assertRaisesRegex(
ValueError,
r"Unsupported type annotation D. It is not a type.",
):
def foo_op(x: D) -> Tensor: # noqa: F821
return torch.Tensor(x)
torch.library.infer_schema(foo_op, mutates_args=mutates_args)
with self.assertRaisesRegex(
ValueError,
r"Unsupported type annotation E. It is not a type.",
):
def foo_op_2(x: Tensor) -> E: # noqa: F821
return x
torch.library.infer_schema(foo_op_2, mutates_args=mutates_args)
|
from __future__ import annotations
import typing
from typing import List, Optional, Sequence, Union # noqa: F401
import torch
from torch import Tensor, types
from torch.testing._internal.common_utils import run_tests, TestCase
mutates_args = {}
class TestInferSchemaWithAnnotation(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
test_unused_forward_output
|
def test_unused_forward_output(self):
"""
Tests that gradients propagate when running a backward where some
forward output is not used to compute the loss, motivated by:
https://github.com/pytorch/pytorch/pull/83195
"""
self.run_subtests(
{"reshard_after_forward": [True, False, 2]},
self._test_unused_forward_output,
)
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class TestFullyShardAutograd(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_meta_device_2d_init
|
def test_meta_device_2d_init(self):
assert self.world_size >= 4, f"{self.world_size}"
dp_size = 2
global_mesh = init_device_mesh(
"cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
# Test both even sharding (8) and uneven sharding (3)
for mlp_dim in (8, 3):
with torch.device("meta"):
model = MLP(mlp_dim, with_buffer=True)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
parallelize_module(
model,
tp_mesh,
{"in_proj": ColwiseParallel(), "out_proj": RowwiseParallel()},
)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
fully_shard(model.in_proj, mesh=dp_mesh)
fully_shard(model.out_proj, mesh=dp_mesh)
fully_shard(model, mesh=dp_mesh)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
self._test_to_empty_and_reset_parameters(model, global_mesh, mlp_dim)
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardMetaDeviceInit(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_rank0_broadcast_meta_device_init
|
def test_rank0_broadcast_meta_device_init(self):
model_args = ModelArgs(dropout_p=0.0)
# Assume we have a CPU full state dict on rank 0
if self.rank == 0:
torch.manual_seed(42)
ref_model = Transformer(model_args)
full_sd = ref_model.state_dict()
for param in full_sd.values():
self.assertEqual(param.device, torch.device("cpu"))
# Initialize the sharded model on meta device
fsdp_mesh = init_device_mesh("cuda", (self.world_size,))
with torch.device("meta"):
model = Transformer(model_args)
for module in model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module, mesh=fsdp_mesh)
fully_shard(model, mesh=fsdp_mesh)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
# Construct a sharded state dict from the rank 0 full state dict by
# broadcasting and sharding
meta_sharded_sd = model.state_dict()
sharded_sd = {}
if self.rank == 0:
self.assertEqual(len(meta_sharded_sd), len(full_sd))
self.assertEqual(list(meta_sharded_sd.keys()), list(full_sd.keys()))
for (param_name, full_param), sharded_meta_param in zip(
full_sd.items(), meta_sharded_sd.values()
):
full_param = full_param.detach().cuda()
mesh = sharded_meta_param.device_mesh
dist.broadcast(full_param, src=0, group=mesh.get_group(0))
sharded_tensor = distribute_tensor(
full_param, mesh, sharded_meta_param.placements
)
sharded_sd[param_name] = nn.Parameter(sharded_tensor)
else:
for param_name, sharded_meta_param in meta_sharded_sd.items():
full_tensor = torch.empty(
sharded_meta_param.size(),
device="cuda",
dtype=sharded_meta_param.dtype,
)
mesh = sharded_meta_param.device_mesh
dist.broadcast(full_tensor, src=0, group=mesh.get_group(0))
sharded_tensor = distribute_tensor(
full_tensor, mesh, sharded_meta_param.placements
)
sharded_sd[param_name] = nn.Parameter(sharded_tensor)
model.load_state_dict(sharded_sd, assign=True)
for param in model.parameters():
self.assertIsInstance(param, DTensor)
self.assertEqual(param.device.type, "cuda")
# Construct the reference model on nonzero ranks by broadcasting the
# unsharded model from rank 0 and sharding on all ranks
if self.rank != 0:
ref_model = Transformer(model_args)
for param in ref_model.parameters():
torch.distributed.broadcast(param.detach(), src=0)
for module in ref_model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module, mesh=fsdp_mesh)
fully_shard(ref_model, mesh=fsdp_mesh)
for (param_name, param), (ref_param_name, ref_param) in zip(
model.named_parameters(), ref_model.named_parameters()
):
self.assertEqual(param_name, ref_param_name)
self.assertEqual(param, ref_param)
# Check one forward/backward for parity
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
loss = model(inp).sum()
loss.backward()
ref_loss = ref_model(inp).sum()
ref_loss.backward()
self.assertEqual(loss, ref_loss)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
self.assertEqual(param.grad, ref_param.grad)
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardMetaDeviceInit(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_2d_process_group_init
|
def test_2d_process_group_init(self):
shard_mesh_dim_size = 2
assert (
self.world_size % shard_mesh_dim_size == 0
), f"Expects {self.world_size} to be divisible by {shard_mesh_dim_size}"
replicate_mesh_dim_size = self.world_size // shard_mesh_dim_size
mesh_dim_names = ("replicate", "shard")
ref_mesh = init_device_mesh(
"cuda",
(replicate_mesh_dim_size, shard_mesh_dim_size),
mesh_dim_names=mesh_dim_names,
)
# Use the global PG as the parent group (in practice, this could be a
# subgroup of the global PG)
dp_group = dist.distributed_c10d._get_default_group()
dp_shard_group = _init_intra_node_process_group(shard_mesh_dim_size)
dp_replicate_group = _init_inter_node_process_group(
dp_group, replicate_mesh_dim_size
)
mesh_tensor = torch.tensor(
dist.get_process_group_ranks(dp_group), dtype=torch.int
).view(replicate_mesh_dim_size, shard_mesh_dim_size)
# Check the `from_group()` API for correctness
mesh = DeviceMesh.from_group(
[dp_replicate_group, dp_shard_group],
"cuda",
mesh_dim_names=mesh_dim_names,
mesh=mesh_tensor,
)
self.assertEqual(mesh.mesh, ref_mesh.mesh)
self.assertEqual(mesh._coordinate_on_dim, ref_mesh._coordinate_on_dim)
for (tag, ranks, group_name), (ref_tag, ref_ranks, ref_group_name) in zip(
mesh._dim_group_infos, ref_mesh._dim_group_infos
):
# Since we manually constructed new subgroups, the test and ref
# groups are not the same
self.assertEqual(ranks, ref_ranks)
for mesh_dim_name in mesh_dim_names:
child_mesh = mesh[mesh_dim_name]
ref_child_mesh = ref_mesh[mesh_dim_name]
self.assertEqual(child_mesh, ref_child_mesh)
child_ranks = dist.distributed_c10d.get_process_group_ranks(
child_mesh.get_group()
)
ref_child_ranks = dist.distributed_c10d.get_process_group_ranks(
ref_child_mesh.get_group()
)
self.assertEqual(child_ranks, ref_child_ranks)
# Check HSDP forward/backward parity
torch.manual_seed(42)
mlp_dim = 8
ref_model = MLP(mlp_dim)
for param in ref_model.parameters():
dist.broadcast(param.detach(), src=0)
model = copy.deepcopy(ref_model)
# Parallelize the test model with the ref mesh
for module in (ref_model.in_proj, ref_model.out_proj, ref_model):
fully_shard(module, mesh=ref_mesh)
# Parallelize the test model with the new mesh from the PG
for module in (model.in_proj, model.out_proj, model):
fully_shard(module, mesh=mesh)
inp = torch.randn((4, mlp_dim), device="cuda")
ref_loss = ref_model(inp).sum()
ref_loss.backward()
loss = model(inp).sum()
loss.backward()
self.assertEqual(loss, ref_loss)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
self.assertEqual(param, ref_param)
self.assertEqual(param.grad, ref_param.grad)
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardProcessGroupInit(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_init.py
|
test_hsdp_broadcast_across_replicas
|
def test_hsdp_broadcast_across_replicas(self):
shard_size, replicate_size = 2, 2
mesh = init_device_mesh(
"cuda", (replicate_size, shard_size), mesh_dim_names=("replicate", "shard")
)
model_args = ModelArgs()
model = Transformer(model_args)
# Add a buffer to show that this flow works for buffers too
model.buf = torch.nn.Buffer(torch.randn((model_args.dim,)))
for module in model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module, mesh=mesh)
fully_shard(model, mesh=mesh)
# Only preserve the model states on the replicate mesh's rank 0
if mesh.get_local_rank("replicate") > 0:
for tensor in itertools.chain(model.parameters(), model.buffers()):
tensor.detach().fill_(1337)
# Check that replicas are different
for tensor in itertools.chain(model.parameters(), model.buffers()):
local_tensor = tensor.to_local() if isinstance(tensor, DTensor) else tensor
local_tensor_list = [
torch.empty_like(local_tensor) for _ in range(mesh["replicate"].size())
]
dist.all_gather(
local_tensor_list, local_tensor, group=mesh.get_group("replicate")
)
for other_local_tensor in local_tensor_list[1:]:
self.assertEqual(other_local_tensor.shape, local_tensor_list[0].shape)
self.assertNotEqual(other_local_tensor, local_tensor_list[0])
# Broadcast from replicate mesh's rank 0
replicate_group = mesh.get_group("replicate")
for tensor in itertools.chain(model.parameters(), model.buffers()):
# E.g. for mesh [[0, 1, 2, 3], [4, 5, 6, 7]] sharding on dim-1 and
# replicating on dim-0, broadcast with sources 0, 1, 2, 3
src_rank = dist.get_process_group_ranks(replicate_group)[0]
torch.distributed.broadcast(
tensor.to_local() if isinstance(tensor, DTensor) else tensor,
src=src_rank,
group=replicate_group,
)
# Check that replicas are the same
for tensor in itertools.chain(model.parameters(), model.buffers()):
local_tensor = tensor.to_local() if isinstance(tensor, DTensor) else tensor
local_tensor_list = [
torch.empty_like(local_tensor) for _ in range(mesh["replicate"].size())
]
dist.all_gather(
local_tensor_list, local_tensor, group=mesh.get_group("replicate")
)
for other_local_tensor in local_tensor_list[1:]:
self.assertEqual(other_local_tensor, local_tensor_list[0])
# Check that we can run an iteration without erroring
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
model(inp).sum().backward()
|
import copy
import itertools
import unittest
from typing import List
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardHSDPBroadcast(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_memory.py
|
test_fully_shard_training_memory
|
def test_fully_shard_training_memory(self):
self.run_subtests(
{
"reshard_after_forward": [True, False],
"use_cpu_offload": [True, False],
"run_optim_in_backward": [True, False],
},
self._test_fully_shard_training_memory,
)
|
import functools
import torch
from torch.distributed._composable.fsdp import (
CPUOffloadPolicy,
fully_shard,
OffloadPolicy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardMemory(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_mixed_precision.py
|
test_compute_dtype
|
def test_compute_dtype(self):
self.run_subtests(
{
"param_dtype": [torch.bfloat16, torch.float16],
"reshard_after_forward": [False, True, 2],
},
self._test_compute_dtype,
)
|
import copy
import functools
from typing import Dict, List, Optional, Union
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed._composable.fsdp._fsdp_collectives import (
_get_gradient_divide_factors,
)
from torch.testing._internal.common_distributed import (
requires_nccl_version,
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
patch_reduce_scatter,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
class TestFullyShardMixedPrecisionTraining(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_mixed_precision.py
|
assert_fn
|
def assert_fn(output: torch.Tensor):
self.assertEqual(output.dtype, param_dtype)
reduce_scatter = functools.partial(
reduce_scatter_with_assert, self, orig_reduce_scatter, assert_fn
)
predivide_factor, postdivide_factor = _get_gradient_divide_factors(
self.process_group, all_reduce_group=None, reduce_dtype=param_dtype
)
torch.manual_seed(42 + self.rank + 1)
inp = torch.randn((4, 16), device="cuda", dtype=param_dtype)
for iter_idx in range(10):
optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
fsdp_loss = model(inp).sum()
with patch_reduce_scatter(reduce_scatter):
fsdp_loss.backward()
optim.step()
ref_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
ref_loss = ref_model_bf16(inp.to(param_dtype)).sum()
ref_loss.backward()
for param in ref_model_bf16.parameters():
# Use reduce-scatter -> all-gather as all-reduce because for
# world size >=4, NCCL all-reduce shows numeric differences
# compared with NCCL reduce-scatter
if predivide_factor is not None and predivide_factor > 1:
param.grad.div_(predivide_factor)
elif predivide_factor is None:
param.grad.div_(self.world_size)
output = torch.zeros_like(torch.chunk(param.grad, self.world_size)[0])
dist.reduce_scatter_tensor(output, param.grad)
dist.all_gather_into_tensor(param.grad, output)
if postdivide_factor is not None and postdivide_factor > 1:
param.grad.div_(postdivide_factor)
for param_fp32, param_bf16 in zip(
ref_model.parameters(), ref_model_bf16.parameters()
):
param_fp32.grad = param_bf16.grad.to(param_fp32.dtype)
param_bf16.grad = None
ref_optim.step() # fp32 optimizer step
for param_fp32, param_bf16 in zip(
ref_model.parameters(), ref_model_bf16.parameters()
):
param_bf16.detach().copy_(param_fp32)
self.assertEqual(fsdp_loss, ref_loss)
check_sharded_parity(self, ref_model, model)
|
import copy
import functools
from typing import Dict, List, Optional, Union
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed._composable.fsdp._fsdp_collectives import (
_get_gradient_divide_factors,
)
from torch.testing._internal.common_distributed import (
requires_nccl_version,
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
patch_reduce_scatter,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
test_post_acc_grad_hook_runs
|
def test_post_acc_grad_hook_runs(self):
param_name_to_hook_count = collections.defaultdict(int)
def hook(param_name: str, param: torch.Tensor) -> None:
nonlocal param_name_to_hook_count
param_name_to_hook_count[param_name] += 1
model = MLP(8)
for module in (model.in_proj, model.out_proj, model):
fully_shard(module)
for param_name, param in model.named_parameters():
param_hook = functools.partial(hook, param_name)
param.register_post_accumulate_grad_hook(param_hook)
inp = torch.randn((2, 8), device="cuda")
model(inp).sum().backward()
param_names = {param_name for param_name, _ in model.named_parameters()}
self.assertEqual(param_names, set(param_name_to_hook_count.keys()))
for param_name, count in param_name_to_hook_count.items():
self.assertEqual(count, 1)
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class TestFullyShardPostAccGradHookMultiThread(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
test_post_acc_grad_hook_optim_parity
|
def test_post_acc_grad_hook_optim_parity(self):
"""
Tests parity of running the optimizer via the post-accumulate-grad
hook vs. normally.
"""
torch.manual_seed(42)
model_args = ModelArgs(dropout_p=0.0)
model = Transformer(model_args)
ref_model = copy.deepcopy(model).cuda()
for module in itertools.chain(ref_model.layers, [ref_model]):
fully_shard(module)
optim_kwargs = {"lr": 1e-2, "foreach": False}
ref_optim = torch.optim.AdamW(ref_model.parameters(), **optim_kwargs)
lr_scheduler_kwargs = {"step_size": 5}
ref_lr_scheduler = torch.optim.lr_scheduler.StepLR(
ref_optim, **lr_scheduler_kwargs
)
for module in itertools.chain(model.layers, [model]):
fully_shard(module)
param_to_optim = {}
param_to_lr_scheduler = {}
for param in model.parameters():
param_to_optim[param] = torch.optim.AdamW([param], **optim_kwargs)
param_to_lr_scheduler[param] = torch.optim.lr_scheduler.StepLR(
param_to_optim[param], **lr_scheduler_kwargs
)
def optim_hook(param: nn.Parameter) -> None:
param_to_optim[param].step()
param_to_optim[param].zero_grad()
param_to_lr_scheduler[param].step()
for param in model.parameters():
param.register_post_accumulate_grad_hook(optim_hook)
torch.manual_seed(42 + self.rank)
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
for _ in range(10):
ref_loss = ref_model(inp).sum()
ref_loss.backward()
ref_optim.step()
ref_optim.zero_grad()
ref_lr_scheduler.step()
loss = model(inp).sum()
loss.backward()
self.assertTrue(torch.equal(ref_loss, loss))
for ref_param, param in zip(ref_model.parameters(), model.parameters()):
self.assertTrue(torch.equal(ref_param, param))
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class TestFullyShardPostAccGradHookMultiProcess(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_clip_grad_norm_.py
|
test_clip_grad_norm_1d
|
def test_clip_grad_norm_1d(self):
for norm_type in (2, 1, float("inf")):
torch.manual_seed(42)
model_args = ModelArgs(dropout_p=0.0)
model = Transformer(model_args)
ref_model = replicate(copy.deepcopy(model).cuda())
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
for module in model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module)
fully_shard(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
inp = torch.randint(0, model.model_args.vocab_size, (3, 16), device="cuda")
self._test_clip_grad_norm(
1, norm_type, ref_model, ref_optim, model, optim, inp
)
|
import copy
import functools
from typing import Optional, Union
import torch
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLPStack
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestClipGradNormWorldSize2(_TestClipGradNormBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_clip_grad_norm_.py
|
test_clip_grad_norm_2d
|
def test_clip_grad_norm_2d(self):
for norm_type in (2, 1, 3, float("inf")):
dp_size = 2
global_mesh = init_device_mesh(
"cuda",
(dp_size, self.world_size // dp_size),
mesh_dim_names=("dp", "tp"),
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
torch.manual_seed(42)
# Test using an MLP stack, not a transformer, since the transformer
# has some more significant numeric differences from the TP
model = MLPStack(16, with_seq_parallel=True)
ref_model = replicate(
copy.deepcopy(model).cuda(), process_group=dp_mesh.get_group()
)
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
model.parallelize(
tp_mesh,
dp_mesh,
use_activation_checkpointing=False,
reshard_after_forward=True,
)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
inp = torch.randn(2, 16, device="cuda")
self._test_clip_grad_norm(
0.5, norm_type, ref_model, ref_optim, model, optim, inp, dp_mesh
)
|
import copy
import functools
from typing import Optional, Union
import torch
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLPStack
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestClipGradNormWorldSize4(_TestClipGradNormBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_comm.py
|
test_all_gather_fp32
|
def test_all_gather_fp32(self):
param_sizes = self._get_param_sizes()
default_stream = torch.cuda.current_stream()
stream1, stream2 = torch.cuda.Stream(), torch.cuda.Stream()
for async_op, streams, reshard_after_forward in itertools.product(
(False, True),
((default_stream, default_stream), (stream1, stream2)),
(True, 8),
):
all_gather_copy_in_stream, all_gather_stream = streams
# Save test time by only testing reshard after forward as an int
# for non-async and non-default streams (like in pre-backward)
if type(reshard_after_forward) is int and (
async_op or all_gather_stream is default_stream
):
continue
self._test_all_gather(
param_sizes,
reshard_after_forward=reshard_after_forward,
async_op=async_op,
all_gather_copy_in_stream=all_gather_copy_in_stream,
all_gather_stream=all_gather_stream,
)
|
import copy
import functools
import itertools
import unittest
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import (
FSDPModule,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.distributed._composable.fsdp._fsdp_collectives import (
_div_if_needed,
_get_gradient_divide_factors,
foreach_all_gather,
foreach_all_gather_copy_out,
foreach_reduce,
)
from torch.distributed._composable.fsdp._fsdp_common import FSDPMeshInfo, TrainingState
from torch.distributed._composable.fsdp._fsdp_init import (
_get_post_forward_mesh_info,
_init_default_fully_shard_mesh,
)
from torch.distributed._composable.fsdp._fsdp_param import ShardedState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import DTensor
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
patch_post_backward,
patch_reshard,
patch_unshard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
c10d_ops = torch.ops.c10d
EventType = Tuple[str, str, TrainingState]
class TestFullyShardCollectiveOps(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_comm.py
|
all_gather
|
def all_gather(fsdp_param_group: FSDPParamGroup, group: dist.ProcessGroup):
all_gather_result = foreach_all_gather(
fsdp_param_group.fsdp_params,
group,
async_op=async_op,
all_gather_copy_in_stream=all_gather_copy_in_stream,
all_gather_stream=all_gather_stream,
device=self.device,
)
foreach_all_gather_copy_out(all_gather_result, fsdp_params, group)
# Transition to unsharded state to register unsharded parameters
for fsdp_param in fsdp_param_group.fsdp_params:
fsdp_param.init_unsharded_param()
fsdp_param_group._to_unsharded()
|
import copy
import functools
import itertools
import unittest
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import (
FSDPModule,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.distributed._composable.fsdp._fsdp_collectives import (
_div_if_needed,
_get_gradient_divide_factors,
foreach_all_gather,
foreach_all_gather_copy_out,
foreach_reduce,
)
from torch.distributed._composable.fsdp._fsdp_common import FSDPMeshInfo, TrainingState
from torch.distributed._composable.fsdp._fsdp_init import (
_get_post_forward_mesh_info,
_init_default_fully_shard_mesh,
)
from torch.distributed._composable.fsdp._fsdp_param import ShardedState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import DTensor
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
patch_post_backward,
patch_reshard,
patch_unshard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
c10d_ops = torch.ops.c10d
EventType = Tuple[str, str, TrainingState]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_comm.py
|
test_reduce_scatter_fp16
|
def test_reduce_scatter_fp16(self):
param_sizes = self._get_param_sizes()
default_stream = torch.cuda.current_stream()
stream = torch.cuda.Stream()
for reduce_scatter_stream in (default_stream, stream):
self._test_reduce_scatter(
param_sizes,
reduce_scatter_stream=reduce_scatter_stream,
reduce_scatter_dtype=torch.float16,
)
|
import copy
import functools
import itertools
import unittest
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import (
FSDPModule,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.distributed._composable.fsdp._fsdp_collectives import (
_div_if_needed,
_get_gradient_divide_factors,
foreach_all_gather,
foreach_all_gather_copy_out,
foreach_reduce,
)
from torch.distributed._composable.fsdp._fsdp_common import FSDPMeshInfo, TrainingState
from torch.distributed._composable.fsdp._fsdp_init import (
_get_post_forward_mesh_info,
_init_default_fully_shard_mesh,
)
from torch.distributed._composable.fsdp._fsdp_param import ShardedState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import DTensor
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
patch_post_backward,
patch_reshard,
patch_unshard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
c10d_ops = torch.ops.c10d
EventType = Tuple[str, str, TrainingState]
class TestFullyShardCollectiveOps(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_comm.py
|
test_fully_shard_communication_count
|
def test_fully_shard_communication_count(self):
"""
Tests that FSDP issues the expected number of all-gathers and
reduce-scatters during forward and backward.
"""
self.run_subtests(
{"reshard_after_forward": [True, False, 2]},
self._test_communication_count,
)
|
import copy
import functools
import itertools
import unittest
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import (
FSDPModule,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.distributed._composable.fsdp._fsdp_collectives import (
_div_if_needed,
_get_gradient_divide_factors,
foreach_all_gather,
foreach_all_gather_copy_out,
foreach_reduce,
)
from torch.distributed._composable.fsdp._fsdp_common import FSDPMeshInfo, TrainingState
from torch.distributed._composable.fsdp._fsdp_init import (
_get_post_forward_mesh_info,
_init_default_fully_shard_mesh,
)
from torch.distributed._composable.fsdp._fsdp_param import ShardedState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import DTensor
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
patch_post_backward,
patch_reshard,
patch_unshard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
c10d_ops = torch.ops.c10d
EventType = Tuple[str, str, TrainingState]
class TestFullyShardCommunication(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
inductor_code_check_no_compute_op
|
def inductor_code_check_no_compute_op(self, file_check):
return (
file_check.check_not(" = aten.")
.check_not(" = extern_kernels.")
.check_not(" = triton_")
.check_not(" = torch.ops.")
.check_not(" = inductor_ops.")
.check_not(" aten.")
.check_not(" extern_kernels.")
.check_not(" triton_")
.check_not(" torch.ops.")
.check_not(" inductor_ops.")
)
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
class TestFullyShardCompile(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
_fn
|
def _fn(gm):
# fullgraph=True because graph-break in Compiled Autograd BWD graph is not supported by Traceable FSDP2 yet
# (main difficulty comes from queue_callback not working well when BWD has graph break).
return torch.compile(
gm, backend=compiled_autograd_backend, fullgraph=True
)
return _fn
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
run_iters
|
def run_iters(model, optim, n_iter=10, compiled_autograd_backend=None):
torch.manual_seed(42)
losses = []
for i in range(n_iter):
inp = input_creation_fn()
if compiled_autograd_backend is not None:
maybe_compiled_autograd_ctx = compiled_autograd.enable(
compiler_fn(compiled_autograd_backend)
)
else:
maybe_compiled_autograd_ctx = contextlib.nullcontext()
with maybe_compiled_autograd_ctx:
out = model(inp)
loss = out.sum()
losses.append(loss.item())
loss.backward()
optim.step()
optim.zero_grad(set_to_none=True)
return losses
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
test_compiled
|
def test_compiled():
model, optim = model_init_fn()
# FSDP2 does lazy init using 1st run, so run it once to init using eager mode
run_iters(model, optim, n_iter=1)
model_compiled = torch.compile(model, backend=backend, fullgraph=fullgraph)
res = run_iters(model_compiled, optim, compiled_autograd_backend=backend)
return res
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
test_eager
|
def test_eager():
model, optim = model_init_fn()
# FSDP2 does lazy init using 1st run, so run it once to init using eager mode
run_iters(model, optim, n_iter=1)
res = run_iters(model, optim)
return res
losses_compiled = test_compiled()
losses_eager = test_eager()
if not self.fake_pg:
for loss_compiled, loss_eager in zip(losses_compiled, losses_eager):
self.assertTrue(
torch.allclose(
torch.tensor(loss_compiled),
torch.tensor(loss_eager),
rtol=1e-5,
atol=1e-8,
),
f"{loss_compiled} vs {loss_eager}",
)
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
model_init_fn
|
def model_init_fn():
torch.manual_seed(self.rank)
fsdp_config = {}
model = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim, device="cuda"),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim, device="cuda"),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim, device="cuda"),
)
fully_shard(model, reshard_after_forward=True, **fsdp_config)
optim = torch.optim.SGD(model.parameters(), lr=1e-4)
return model, optim
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
input_creation_fn
|
def input_creation_fn():
torch.manual_seed(self.rank)
inp = torch.randn((2, hidden_dim), device="cuda", requires_grad=False)
return inp
return model_init_fn, input_creation_fn
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
test_unused_forward_module
|
def test_unused_forward_module(self):
"""
Tests that gradients propagate when running a backward where some
forward module is not used to compute the loss, motivated by:
https://github.com/pytorch/pytorch/pull/80245
"""
self.run_subtests(
{"reshard_after_forward": [True, False, 2]},
self._test_unused_forward_module,
)
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class TestFullyShardAutograd(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
test_nontensor_activations
|
def test_nontensor_activations(self):
"""
Tests that gradients propagate when running forward with nontensor
data structures wrapping the activations. This is mainly to test the
hook registration.
"""
self.run_subtests(
{"container_type": [list, collections.namedtuple, tuple, dict]},
self._test_nontensor_activations,
)
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class TestFullyShardAutograd(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
_test_nontensor_activations
|
def _test_nontensor_activations(self, container_type: Type):
class Module(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.lin1 = nn.Linear(dim, dim)
self.lin2 = nn.Linear(dim, dim)
self.relu = nn.ReLU()
def forward(self, inp: Any):
# Assume that the "0th" element of `inp` is a tensor, run some
# forward computation on it, and pack it back into the same
# data structure type as `inp`
if isinstance(inp, list):
return [self._forward(inp[0])]
elif _is_namedtuple(inp):
return type(inp)(*([self._forward(inp[0])] + list(inp[1:])))
elif isinstance(inp, tuple):
return (self._forward(inp[0]),)
elif isinstance(inp, dict):
return {"x": self._forward(inp["x"])}
else:
raise NotImplementedError(
f"Unsupported input type {type(inp)}: {inp}"
)
def _forward(self, x: torch.Tensor) -> torch.Tensor:
return self.relu(self.lin2(self.relu(self.lin1(x))))
class ToContainerType(nn.Module):
def __init__(self, container_type: Type):
super().__init__()
self.container_type = container_type
def forward(self, x: torch.Tensor):
if self.container_type is list:
return [x]
elif self.container_type is collections.namedtuple:
nt = collections.namedtuple("NT", "x y")
return nt(x, torch.ones_like(x))
elif self.container_type is tuple:
return (x,)
elif self.container_type is dict:
return {"x": x}
else:
raise NotImplementedError(
f"Unsupported container type: {self.container_type}"
)
class FromContainerType(nn.Module):
def __init__(self, container_type: Type):
super().__init__()
self.container_type = container_type
def forward(self, x: torch.Tensor):
if self.container_type in (list, collections.namedtuple, tuple):
return x[0]
elif self.container_type is dict:
return x["x"]
else:
raise NotImplementedError(
f"Unsupported container type: {self.container_type}"
)
torch.manual_seed(42)
local_batch_size, dim = (2, 24)
global_batch_size = self.world_size * local_batch_size
model = nn.Sequential(
ToContainerType(container_type),
Module(dim),
Module(dim),
Module(dim),
FromContainerType(container_type),
)
ref_model = copy.deepcopy(model).cuda()
for module in model:
fully_shard(module)
fully_shard(model)
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.manual_seed(1) # same on all ranks
for iter_idx in range(10):
global_inp = torch.rand((global_batch_size, dim), device="cuda")
local_inp = global_inp[
self.rank * local_batch_size : (self.rank + 1) * local_batch_size
].detach()
losses: List[torch.Tensor] = []
for _model, inp in ((ref_model, global_inp), (model, local_inp)):
losses.append(_model(inp).sum())
losses[-1].backward()
self._reduce_1d_partial_grads(ref_model)
dist.all_reduce(losses[1]) # partial -> replicated
self.assertEqual(losses[0], losses[1])
check_sharded_parity(self, ref_model, model)
for _optim in (optim, ref_optim):
_optim.step()
_optim.zero_grad(set_to_none=(iter_idx % 2))
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class TestFullyShardAutograd(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
__init__
|
def __init__(self, dim: int):
super().__init__()
self.lin1 = nn.Linear(dim, dim)
self.lin2 = nn.Linear(dim, dim)
self.relu = nn.ReLU()
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class Module(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
forward
|
def forward(self, inp: Any):
# Assume that the "0th" element of `inp` is a tensor, run some
# forward computation on it, and pack it back into the same
# data structure type as `inp`
if isinstance(inp, list):
return [self._forward(inp[0])]
elif _is_namedtuple(inp):
return type(inp)(*([self._forward(inp[0])] + list(inp[1:])))
elif isinstance(inp, tuple):
return (self._forward(inp[0]),)
elif isinstance(inp, dict):
return {"x": self._forward(inp["x"])}
else:
raise NotImplementedError(
f"Unsupported input type {type(inp)}: {inp}"
)
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class Module(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
__init__
|
def __init__(self, dim: int):
super().__init__()
self.lin1 = nn.Linear(dim, dim)
self.lin2 = nn.Linear(dim, dim)
self.relu = nn.ReLU()
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class Module(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
forward
|
def forward(self, inp: Any):
# Assume that the "0th" element of `inp` is a tensor, run some
# forward computation on it, and pack it back into the same
# data structure type as `inp`
if isinstance(inp, list):
return [self._forward(inp[0])]
elif _is_namedtuple(inp):
return type(inp)(*([self._forward(inp[0])] + list(inp[1:])))
elif isinstance(inp, tuple):
return (self._forward(inp[0]),)
elif isinstance(inp, dict):
return {"x": self._forward(inp["x"])}
else:
raise NotImplementedError(
f"Unsupported input type {type(inp)}: {inp}"
)
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class Module(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
__init__
|
def __init__(self, dim: int):
super().__init__()
self.lin1 = nn.Linear(dim, dim)
self.lin2 = nn.Linear(dim, dim)
self.relu = nn.ReLU()
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class Module(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_autograd.py
|
forward
|
def forward(self, inp: Any):
# Assume that the "0th" element of `inp` is a tensor, run some
# forward computation on it, and pack it back into the same
# data structure type as `inp`
if isinstance(inp, list):
return [self._forward(inp[0])]
elif _is_namedtuple(inp):
return type(inp)(*([self._forward(inp[0])] + list(inp[1:])))
elif isinstance(inp, tuple):
return (self._forward(inp[0]),)
elif isinstance(inp, dict):
return {"x": self._forward(inp["x"])}
else:
raise NotImplementedError(
f"Unsupported input type {type(inp)}: {inp}"
)
|
import collections
import copy
import functools
import itertools
import unittest
from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
DoubleLinear,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
class Module(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_extensions.py
|
_test_all_gather_extensions_train_parity
|
def _test_all_gather_extensions_train_parity(self, reshard_after_forward: bool):
torch.manual_seed(42)
model = self._init_two_tensor_mlp()
ref_model = copy.deepcopy(model).cuda()
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2, foreach=True)
fully_shard_fn = functools.partial(
fully_shard, reshard_after_forward=reshard_after_forward
)
for mlp in model:
fully_shard_fn(mlp)
fully_shard_fn(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
check_sharded_parity(self, ref_model, model)
torch.manual_seed(42 + self.rank + 1)
inp = torch.randn((2, 8), device="cuda")
for iter_idx in range(10):
losses: List[torch.Tensor] = []
for _model in (ref_model, model):
losses.append(_model(inp).sum())
losses[-1].backward()
if _model is ref_model:
for param_name, param in _model.named_parameters():
dist.all_reduce(param.grad)
param.grad.detach().div_(self.world_size)
self.assertEqual(losses[0], losses[1])
check_sharded_parity(self, ref_model, model)
for _optim in (ref_optim, optim):
_optim.step()
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
check_sharded_parity(self, ref_model, model)
|
import contextlib
import copy
import functools
import threading
import unittest
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.device_mesh import DeviceMesh
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.two_tensor import TwoTensor
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_extensions.py
|
test_all_gather_extensions_end_to_end
|
def test_all_gather_extensions_end_to_end(self):
with self._patch_two_tensor_fsdp_all_gather():
self.run_subtests(
{"reshard_after_forward": [True, False]},
self._test_all_gather_extensions_end_to_end,
)
|
import contextlib
import copy
import functools
import threading
import unittest
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.device_mesh import DeviceMesh
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.two_tensor import TwoTensor
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_extensions.py
|
test_all_gather_extensions_monkey_patch
|
def test_all_gather_extensions_monkey_patch(self):
# Define a pre/post-all-gather pair that quantizes to bf16 for the
# all-gather and de-quantizes back to the parameter dtype
def fsdp_pre_all_gather(self) -> Tuple[Tuple[torch.Tensor, ...], Any]:
return (self.to(torch.bfloat16),), None
def fsdp_post_all_gather(
self,
all_gather_outputs: Tuple[torch.Tensor, ...],
metadata: Any,
param_dtype: torch.dtype,
*,
out: Optional[torch.Tensor] = None,
) -> Union[Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], None]:
(tensor,) = all_gather_outputs
assert metadata is None, f"{metadata}"
assert tensor.dtype == torch.bfloat16, f"{tensor.dtype}"
if out is not None:
out.copy_(tensor)
return
return tensor.to(param_dtype), (tensor,)
with torch.device("meta"):
model = self._init_two_tensor_mlp()
for mlp in model:
fully_shard(mlp)
fully_shard(model)
model.to_empty(device=self.device)
for param in model.parameters():
nn.init.trunc_normal_(param)
# Monkey patch the pre/post-all-gather functions *after* `to_empty()`
# since the local tensor objects change from materialization
self.assertGreater(sum("weight" in n for n, _ in model.named_parameters()), 0)
for param_name, param in model.named_parameters():
if "weight" in param_name:
local_param = param.to_local()
# Monkey patch on the `torch.Tensor` to show that the extension
# can work even without a subclass
local_param.fsdp_pre_all_gather = fsdp_pre_all_gather
local_param.fsdp_post_all_gather = fsdp_post_all_gather
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
# Run a few iterations to check for errors
torch.manual_seed(42 + self.rank + 1)
inp = torch.randn((2, 8), device="cuda")
for _ in range(3):
model(inp).sum().backward()
optim.step()
optim.zero_grad()
|
import contextlib
import copy
import functools
import threading
import unittest
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.device_mesh import DeviceMesh
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.two_tensor import TwoTensor
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_frozen.py
|
test_train_mixed_requires_grad_per_group
|
def test_train_mixed_requires_grad_per_group(self):
"""
Tests training parity with DDP when mixing frozen and non-frozen
parameters in the same FSDP communication group. This checks that
the reduce-scatters reduce the expected numel and that they are called
via the custom autograd function backward (i.e. that they are not
delayed until the end of backward).
"""
self.run_subtests(
{
"reshard_after_forward": [False, True, 2],
"use_activation_checkpointing": [False, True],
"freeze_after_init": [False, True],
},
self._test_train_mixed_requires_grad_per_group,
)
|
import copy
import functools
import itertools
from typing import List, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
RegisterPostBackwardFunction,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
MLP,
patch_reduce_scatter,
patch_register_post_backward_hook_backward,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
class TestFullyShardFrozen(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_frozen.py
|
assert_fn
|
def assert_fn(output: torch.Tensor):
self.assertEqual(output.numel(), expected_numel)
reduce_scatter = functools.partial(
reduce_scatter_with_assert, self, orig_reduce_scatter, assert_fn
)
orig_backward = RegisterPostBackwardFunction.backward
backward_count = 0
|
import copy
import functools
import itertools
from typing import List, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
RegisterPostBackwardFunction,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
MLP,
patch_reduce_scatter,
patch_register_post_backward_hook_backward,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_frozen.py
|
backward_with_count
|
def backward_with_count(*args, **kwargs):
nonlocal backward_count
backward_count += 1
return orig_backward(*args, **kwargs)
torch.manual_seed(42 + self.rank + 1)
device = torch.device("cuda")
with patch_reduce_scatter(
reduce_scatter
), patch_register_post_backward_hook_backward(backward_with_count):
for iter_idx in range(10):
inp = torch.randn((8, lin_dim), device=device)
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
check_sharded_parity(self, ref_model, model)
self.assertEqual(losses[0], losses[1])
# Check that the post-backward hooks ran through the autograd
# backward, not the final callback (except possibly that of the
# first MLP, which does not have an input that requires grad)
self.assertTrue(backward_count >= num_mlps - 1)
|
import copy
import functools
import itertools
from typing import List, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
RegisterPostBackwardFunction,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
MLP,
patch_reduce_scatter,
patch_register_post_backward_hook_backward,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_frozen.py
|
test_train_mixed_requires_grad_across_groups
|
def test_train_mixed_requires_grad_across_groups(self):
"""
Tests training parity with DDP when mixing frozen and non-frozen
parameters across different FSDP communication groups, including
possibly unfreezing parameters.
"""
self.run_subtests(
{
"reshard_after_forward": [False, True, 2],
"unfreeze_params": [False, True],
},
self._test_train_mixed_requires_grad_across_groups,
)
|
import copy
import functools
import itertools
from typing import List, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
RegisterPostBackwardFunction,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
MLP,
patch_reduce_scatter,
patch_register_post_backward_hook_backward,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
class TestFullyShardFrozen(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_frozen.py
|
_set_requires_grad
|
def _set_requires_grad(seq: nn.Module, requires_grad: bool):
for i in range(num_linears):
# Interleave frozen -> non-frozen -> ... linears
if i % 2 == 0:
for param in seq[i % 2].parameters():
param.requires_grad_(requires_grad)
|
import copy
import functools
import itertools
from typing import List, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
RegisterPostBackwardFunction,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
MLP,
patch_reduce_scatter,
patch_register_post_backward_hook_backward,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_frozen.py
|
backward_with_count
|
def backward_with_count(*args, **kwargs):
nonlocal backward_count
backward_count += 1
return orig_backward(*args, **kwargs)
torch.manual_seed(42 + self.rank + 1)
device = torch.device("cuda")
with patch_reduce_scatter(
reduce_scatter
), patch_register_post_backward_hook_backward(backward_with_count):
for iter_idx in range(10):
inp = torch.randn((8, lin_dim), device=device)
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
check_sharded_parity(self, ref_model, model)
self.assertEqual(losses[0], losses[1])
# Check that the post-backward hooks ran through the autograd
# backward, not the final callback (except possibly that of the
# first MLP, which does not have an input that requires grad)
self.assertTrue(backward_count >= num_mlps - 1)
|
import copy
import functools
import itertools
from typing import List, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
RegisterPostBackwardFunction,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
MLP,
patch_reduce_scatter,
patch_register_post_backward_hook_backward,
reduce_scatter_with_assert,
)
from torch.testing._internal.common_utils import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
test_simple_mlp_fullgraph_backend_inductor
|
def test_simple_mlp_fullgraph_backend_inductor(self):
self._test_traceable_fsdp(
*self._create_simple_mlp_factory_fns(), "inductor", fullgraph=True
)
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
class TestFullyShardCompile(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
__init__
|
def __init__(self, hidden_dim):
super().__init__()
self.param1 = nn.Parameter(
torch.zeros(
hidden_dim, hidden_dim, dtype=torch.float, device="cuda"
)
)
self.param2 = nn.Parameter(
torch.zeros(hidden_dim, dtype=torch.float, device="cuda")
)
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
class TestSubmodule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_composable/fsdp/test_fully_shard_compile.py
|
forward
|
def forward(self, x):
if not fullgraph:
torch._dynamo.graph_break()
ret = torch.matmul(x, self.param1)
ret = ret * self.param2
ret = torch.relu(ret)
return ret
|
import contextlib
import copy
import functools
import unittest
from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo import compiled_autograd
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import at_least_x_gpu, skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
from torch.utils._triton import has_triton
class TestSubmodule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.