library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_arccos
|
def test_arccos(self):
assert_allclose(np.arccos(0.5), arccos(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_arccosh
|
def test_arccosh(self):
assert_allclose(np.arccosh(1.5), arccosh(1.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_arcsin
|
def test_arcsin(self):
assert_allclose(np.arcsin(0.5), arcsin(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_arcsinh
|
def test_arcsinh(self):
assert_allclose(np.arcsinh(0.5), arcsinh(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_arctan
|
def test_arctan(self):
assert_allclose(np.arctan(0.5), arctan(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_arctanh
|
def test_arctanh(self):
assert_allclose(np.arctanh(0.5), arctanh(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_cbrt
|
def test_cbrt(self):
assert_allclose(np.cbrt(0.5), cbrt(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_ceil
|
def test_ceil(self):
assert_allclose(np.ceil(0.5), ceil(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_conjugate
|
def test_conjugate(self):
assert_allclose(
np.conjugate(0.5), conjugate(0.5), atol=1e-14, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_tanh
|
def test_tanh(self):
assert_allclose(np.tanh(0.5), tanh(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_unary_ufuncs.py
|
test_trunc
|
def test_trunc(self):
assert_allclose(np.trunc(0.5), trunc(0.5), atol=1e-14, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestUnaryUfuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
func
|
def func(*inputs):
if use_bias:
lx, lweight, lbias = inputs
else:
lx, lweight = inputs
lbias = None
out = F.conv2d(lx, lweight, lbias, stride, padding, dilation, groups)
return out
if use_bias:
inputs = x, weight, bias
else:
inputs = x, weight
dummy_out = func(*inputs)
grad_y = torch.randn_like(
dummy_out, device=device, dtype=dtype, requires_grad=True
)
if dtype == torch.float:
(g,) = torch.autograd.grad(dummy_out.sum(), x, create_graph=True)
return g.requires_grad
return gradgradcheck(func, inputs, (grad_y,))
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
run_test
|
def run_test(benchmark):
conv = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1).to(device, dtype)
for size in sizes:
x = torch.randn(size, device=device, dtype=dtype)
out = conv(x.detach().clone().requires_grad_())
out.backward(torch.ones_like(out))
run_test(benchmark=False)
run_test(benchmark=True)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_double_backward
|
def test_conv_double_backward(self, device, dtype):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
batch_size = 1
for kern, inp_size, dilations in [(3, 5, [1, 2]), (4, 9, [1])]:
for stride, padding, chan_in, chan_out, dilation in product(
[1], [2], [2], [3], dilations
):
no_weight = stride == 2
result = self.run_conv_double_back_test(
kern,
stride,
padding,
chan_in,
chan_out,
batch_size,
inp_size,
dilation,
no_weight,
use_xpu=True,
dtype=dtype,
)
self.assertTrue(result, "Conv double backward test failed")
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
_test
|
def _test(t, weight, mode):
t_a = t.view(-1).cpu().numpy()
w_a = weight.view(-1).cpu().numpy()
expected = scipy.signal.convolve(t_a, w_a, mode=mode)
kwargs = {"padding": mode}
if mode == "same":
p = weight.shape[2] // 2
t = torch.nn.functional.pad(t, (p, p))
kwargs.pop("padding")
weight_flipped = torch.flip(weight, (2,))
actual = torch.nn.functional.conv1d(t, weight_flipped, **kwargs).squeeze(0)
if mode == "same":
actual = actual[:feat_dim]
self.assertEqual(actual, expected, atol=2e-5, rtol=2e-5)
with set_default_dtype(torch.float):
_test(t, weight_even, mode)
_test(t, weight_odd, mode)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
_test
|
def _test(t, weight, mode):
t_a = t.view(-1).cpu().numpy()
w_a = weight.view(-1).cpu().numpy()
expected = scipy.signal.convolve(t_a, w_a, mode=mode)
kwargs = {"padding": mode}
if mode == "same":
p = weight.shape[2] // 2
t = torch.nn.functional.pad(t, (p, p))
kwargs.pop("padding")
weight_flipped = torch.flip(weight, (2,))
actual = torch.nn.functional.conv1d(t, weight_flipped, **kwargs).squeeze(0)
if mode == "same":
actual = actual[:feat_dim]
self.assertEqual(actual, expected, atol=2e-5, rtol=2e-5)
with set_default_dtype(torch.float):
_test(t, weight_even, mode)
_test(t, weight_odd, mode)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
_test
|
def _test(t, weight, mode):
t_a = t.view(-1).cpu().numpy()
w_a = weight.view(-1).cpu().numpy()
expected = scipy.signal.convolve(t_a, w_a, mode=mode)
kwargs = {"padding": mode}
if mode == "same":
p = weight.shape[2] // 2
t = torch.nn.functional.pad(t, (p, p))
kwargs.pop("padding")
weight_flipped = torch.flip(weight, (2,))
actual = torch.nn.functional.conv1d(t, weight_flipped, **kwargs).squeeze(0)
if mode == "same":
actual = actual[:feat_dim]
self.assertEqual(actual, expected, atol=2e-5, rtol=2e-5)
with set_default_dtype(torch.float):
_test(t, weight_even, mode)
_test(t, weight_odd, mode)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_double_backward_no_bias
|
def test_conv_double_backward_no_bias(self):
kern, stride = 3, 2
chan_in, chan_out = 2, 4
batch_size, inp_size = 2, 5
padding, dilation = 1, 1
no_weight, use_bias = False, True
result = self.run_conv_double_back_test(
kern,
stride,
padding,
chan_in,
chan_out,
batch_size,
inp_size,
dilation,
no_weight,
use_bias=use_bias,
)
self.assertTrue(result, "Conv double backward test failed")
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_double_backward_groups
|
def test_conv_double_backward_groups(self):
kern, stride, padding = 3, 1, 2
chan_in, chan_out = 2, 4
batch_size, inp_size, dilation = 2, 6, 1
no_weight = False
groups = 2
result = self.run_conv_double_back_test(
kern,
stride,
padding,
chan_in * groups,
chan_out * groups,
batch_size,
inp_size,
dilation,
no_weight,
groups=groups,
)
self.assertTrue(result, "Conv double backward test failed")
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_Conv2d_size_1_kernel
|
def test_Conv2d_size_1_kernel(self, device):
x_cpu = torch.randn(2, 3, 5, 5)
conv_cpu = torch.nn.Conv2d(3, 3, kernel_size=1)
y_cpu = conv_cpu(x_cpu)
y = torch.rand_like(y_cpu)
y_cpu.backward(y)
with cudnn.flags(enabled=False):
conv_cuda = torch.nn.Conv2d(3, 3, kernel_size=1).to(device)
conv_cuda.bias.data.copy_(conv_cpu.bias.data)
conv_cuda.weight.data.copy_(conv_cpu.weight.data)
y_cuda = conv_cuda(x_cpu.to(device))
y_cuda.backward(y.to(device))
self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False)
self.assertEqual(
conv_cpu.bias.grad.data,
conv_cuda.bias.grad.data,
atol=1e-5,
rtol=0,
exact_device=False,
)
self.assertEqual(
conv_cpu.weight.grad.data,
conv_cuda.weight.grad.data,
atol=1e-5,
rtol=0,
exact_device=False,
)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_ConvTranspose2d_size_1_kernel
|
def test_ConvTranspose2d_size_1_kernel(self, device):
x_cpu = torch.randn(2, 3, 5, 5)
conv_cpu = torch.nn.ConvTranspose2d(3, 3, kernel_size=1)
y_cpu = conv_cpu(x_cpu)
y = torch.rand_like(y_cpu)
y_cpu.backward(y)
conv_cuda = torch.nn.ConvTranspose2d(3, 3, kernel_size=1).to(device)
conv_cuda.bias.data.copy_(conv_cpu.bias.data)
conv_cuda.weight.data.copy_(conv_cpu.weight.data)
y_cuda = conv_cuda(x_cpu.to(device))
y_cuda.backward(y.to(device))
self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False)
self.assertEqual(
conv_cpu.bias.grad.data,
conv_cuda.bias.grad.data,
atol=1e-5,
rtol=0,
exact_device=False,
)
self.assertEqual(
conv_cpu.weight.grad.data,
conv_cuda.weight.grad.data,
atol=1e-5,
rtol=0,
exact_device=False,
)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
conv2d_depthwise
|
def conv2d_depthwise(x, weight):
return torch.nn.functional.conv2d(
x, weight, bias=None, stride=(1, 10), groups=2
)
torch.autograd.gradcheck(conv2d_depthwise, (x, weight))
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
helper
|
def helper(n, c, h, w, out_channels, kernel_size, groups):
input = torch.randint(-3, 3, (n, c, h, w), dtype=dtype, device=device).to(
memory_format=torch.channels_last
)
input.requires_grad_()
conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups).to(
device=device, dtype=dtype, memory_format=torch.channels_last
)
for p in conv.parameters():
p.data = torch.randint_like(p, -3, 3)
ref_input = input.detach().clone().contiguous().double().requires_grad_()
ref_conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups)
ref_conv.load_state_dict(conv.state_dict())
ref_conv = ref_conv.to(
device=device, dtype=torch.double, memory_format=torch.contiguous_format
)
out = conv(input)
ref_out = ref_conv(ref_input)
grad = torch.randint_like(out, -3, 3)
ref_grad = grad.detach().clone().double().contiguous()
out.backward(grad)
ref_out.backward(ref_grad)
self.assertTrue(out.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(input.grad.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(
conv.weight.grad.is_contiguous(memory_format=torch.channels_last)
)
self.assertTrue(ref_out.is_contiguous())
self.assertTrue(ref_input.grad.is_contiguous())
self.assertTrue(ref_conv.weight.grad.is_contiguous())
self.assertEqual(out, ref_out, exact_dtype=False)
self.assertEqual(conv.weight.grad, ref_conv.weight.grad, exact_dtype=False)
self.assertEqual(conv.bias.grad, ref_conv.bias.grad, exact_dtype=False)
self.assertEqual(input.grad, ref_input.grad, exact_dtype=False)
helper(2, 8, 4, 4, out_channels=4, kernel_size=3, groups=1)
helper(2, 8, 4, 4, out_channels=8, kernel_size=3, groups=8)
helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=1)
helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=16)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
helper
|
def helper(n, c, h, w, out_channels, kernel_size, groups):
input = torch.randint(-3, 3, (n, c, h, w), dtype=dtype, device=device).to(
memory_format=torch.channels_last
)
input.requires_grad_()
conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups).to(
device=device, dtype=dtype, memory_format=torch.channels_last
)
for p in conv.parameters():
p.data = torch.randint_like(p, -3, 3)
ref_input = input.detach().clone().contiguous().double().requires_grad_()
ref_conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups)
ref_conv.load_state_dict(conv.state_dict())
ref_conv = ref_conv.to(
device=device, dtype=torch.double, memory_format=torch.contiguous_format
)
out = conv(input)
ref_out = ref_conv(ref_input)
grad = torch.randint_like(out, -3, 3)
ref_grad = grad.detach().clone().double().contiguous()
out.backward(grad)
ref_out.backward(ref_grad)
self.assertTrue(out.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(input.grad.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(
conv.weight.grad.is_contiguous(memory_format=torch.channels_last)
)
self.assertTrue(ref_out.is_contiguous())
self.assertTrue(ref_input.grad.is_contiguous())
self.assertTrue(ref_conv.weight.grad.is_contiguous())
self.assertEqual(out, ref_out, exact_dtype=False)
self.assertEqual(conv.weight.grad, ref_conv.weight.grad, exact_dtype=False)
self.assertEqual(conv.bias.grad, ref_conv.bias.grad, exact_dtype=False)
self.assertEqual(input.grad, ref_input.grad, exact_dtype=False)
helper(2, 8, 4, 4, out_channels=4, kernel_size=3, groups=1)
helper(2, 8, 4, 4, out_channels=8, kernel_size=3, groups=8)
helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=1)
helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=16)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_large_bmm_backward
|
def test_large_bmm_backward(self, device):
A = torch.randn([1024, 2, 1024], device=device).mT.contiguous().mT
B = torch.randn([1, 1024, 65536], device=device, requires_grad=True)
G = torch.randn([1024, 2, 65536], device=device)
# Should not create an intermediary tensor of size [1024, 1024, 65536] (256GB of memory) and OOM
(A @ B).backward(G)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_large_bmm_mm_backward
|
def test_large_bmm_mm_backward(self, device):
A = torch.randn([1024, 2, 1024], device=device).mT.contiguous().mT
B = torch.randn([1024, 65536], device=device, requires_grad=True)
G = torch.randn([1024, 2, 65536], device=device)
# Should not create an intermediary tensor of size [1024, 1024, 65536] (256GB of memory) and OOM
(A @ B).backward(G)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
assertEqual
|
def assertEqual(answer, expected):
if x.dtype.is_floating_point or x.dtype.is_complex:
k = max(x.shape[-1], 1) # Scale the atol with the size of the matrix
self.assertEqual(
answer,
expected,
msg=f"{x.shape} x {y.shape} = {answer.shape}",
atol=k * 5e-5,
rtol=1e-4,
)
else:
self.assertEqual(
answer, expected, msg=f"{x.shape} x {y.shape} = {answer.shape}"
)
# test x @ y
expected = np.matmul(x.cpu(), y.cpu())
ans = torch.matmul(x, y)
self.assertTrue(ans.is_contiguous())
assertEqual(ans, expected)
# test out
out = torch.empty_like(ans)
ans = torch.matmul(x, y, out=out)
self.assertIs(ans, out)
self.assertTrue(ans.is_contiguous())
assertEqual(ans, expected)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_matmul_out_kernel_errors_with_autograd
|
def test_matmul_out_kernel_errors_with_autograd(self, device, dtype):
a = torch.empty(
(256, 512), device=device, dtype=dtype, requires_grad=True
).unsqueeze(0)
b = torch.empty(
(4, 128, 512), device=device, dtype=dtype, requires_grad=True
).transpose(-1, -2)
c = torch.empty((256, 4, 128), device=device, dtype=dtype).movedim(1, 0)
torch.matmul(a.detach(), b.detach(), out=c)
with self.assertRaisesRegex(
RuntimeError,
"functions with out=... arguments don't support automatic differentiation",
):
torch.matmul(a, b, out=c)
with torch.no_grad():
torch.matmul(a, b, out=c)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv2d_no_grad
|
def test_conv2d_no_grad(self, device, dtype):
for batch in [1, 2, 3]:
for groups in [1, 2, 4]:
input = torch.rand(batch, groups, 8, 8, dtype=dtype, device=device)
m = nn.Conv2d(
groups,
8,
kernel_size=(3, 3),
groups=groups,
dtype=dtype,
device=device,
)
with torch.no_grad():
output_ng = m(input)
output = m(input)
self.assertEqual(output, output_ng, rtol=1e-2, atol=1e-5)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_channels_last_ouput_stride
|
def test_channels_last_ouput_stride(self, device, dtype):
input = torch.randn(
(2, 3, 16, 16), device=device, dtype=dtype, requires_grad=True
)
weight = torch.randn(
(512, 3, 3, 3), device=device, dtype=dtype, requires_grad=True
)
input = input.to(memory_format=torch.channels_last)
weight = weight.to(memory_format=torch.channels_last)
out = torch.conv2d(input, weight, None, (2, 2), (0, 0), (1, 1), 1)
if dtype is torch.float64:
# Like most conv backend, xpu does not support float64 for chanel last conv.
# input NHWC, output NCHW
assert_size_stride(out, (2, 512, 7, 7), (25088, 49, 7, 1))
else:
# input NHWC, output NHWC
assert_size_stride(out, (2, 512, 7, 7), (25088, 1, 3584, 512))
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
maybe_transpose
|
def maybe_transpose(cond, m):
if not cond:
return m
return m.t().clone(memory_format=torch.contiguous_format).t()
M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
self._test_addmm_addmv(
func, M, m1, m2, transpose_out=t4, activation=activation
)
if t1:
# use vector V instead of matrix M for epilogue fusion in CUDA (doesn't depend on t1)
self._test_addmm_addmv(
func,
V,
m1,
m2,
beta=1,
transpose_out=t4,
activation=activation,
)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
_test_mm
|
def _test_mm(n, m, p, dtype, genf):
# helper function
def matrixmultiply(mat1, mat2):
n = mat1.size(0)
m = mat1.size(1)
p = mat2.size(1)
dtype_ = torch.float if dtype == torch.half else dtype
if dtype == torch.half:
mat1 = mat1.float()
mat2 = mat2.float()
res = torch.zeros(n, p, dtype=dtype_, device=device)
for i, j in iter_indices(res):
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
return res.half() if dtype == torch.half else res
# contiguous case
mat1 = genf(n, m)
mat2 = genf(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 1
mat1 = genf(n, m)
mat2 = genf(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 2
mat1 = genf(m, n).t()
mat2 = genf(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 3
mat1 = genf(m, n).t()
mat2 = genf(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# test with zero stride
mat1 = genf(n, m)
mat2 = genf(m, 1).expand(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# explicitly exercise the _out variant in torch.mm().
# contiguous case
mat1 = genf(n, m)
mat2 = genf(m, p)
res = genf(n, p)
torch.mm(mat1, mat2, out=res)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# explicitly exercise the _out variant in torch.mm().
# non contiguous case 3
mat1 = genf(m, n).t()
mat2 = genf(p, m).t()
res = genf(n, p)
torch.mm(mat1, mat2, out=res)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
matrixmultiply
|
def matrixmultiply(mat1, mat2):
n = mat1.size(0)
m = mat1.size(1)
p = mat2.size(1)
dtype_ = torch.float if dtype == torch.half else dtype
if dtype == torch.half:
mat1 = mat1.float()
mat2 = mat2.float()
res = torch.zeros(n, p, dtype=dtype_, device=device)
for i, j in iter_indices(res):
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
return res.half() if dtype == torch.half else res
# contiguous case
mat1 = genf(n, m)
mat2 = genf(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 1
mat1 = genf(n, m)
mat2 = genf(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 2
mat1 = genf(m, n).t()
mat2 = genf(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 3
mat1 = genf(m, n).t()
mat2 = genf(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# test with zero stride
mat1 = genf(n, m)
mat2 = genf(m, 1).expand(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# explicitly exercise the _out variant in torch.mm().
# contiguous case
mat1 = genf(n, m)
mat2 = genf(m, p)
res = genf(n, p)
torch.mm(mat1, mat2, out=res)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# explicitly exercise the _out variant in torch.mm().
# non contiguous case 3
mat1 = genf(m, n).t()
mat2 = genf(p, m).t()
res = genf(n, p)
torch.mm(mat1, mat2, out=res)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
genf_int
|
def genf_int(x, y):
return torch.randint(0, 100, (x, y), dtype=dtype, device=device)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_empty_channel
|
def test_conv_empty_channel(self, device, dtype):
in_channels = 0
mod = torch.nn.Conv1d(in_channels, 8, 2, stride=2, dtype=dtype).to(device)
inp = torch.randn(2, 0, 15, device=device, dtype=dtype)
_test_module_empty_input(self, mod, inp, check_size=False)
with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"):
inp = torch.randn(2, 1, 0, device=device, dtype=dtype)
mod(inp)
mod = torch.nn.Conv2d(in_channels, 33, 3, stride=2, dtype=dtype).to(device)
inp = torch.randn(2, 0, 50, 100, device=device, dtype=dtype)
_test_module_empty_input(self, mod, inp, check_size=False)
with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"):
inp = torch.randn(2, 1, 40, 0, device=device, dtype=dtype)
mod(inp)
mod = torch.nn.Conv3d(in_channels, 33, 3, stride=2, dtype=dtype).to(device)
inp = torch.randn(2, 0, 50, 20, 40, device=device, dtype=dtype)
_test_module_empty_input(self, mod, inp, check_size=False)
with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"):
inp = torch.randn(2, 1, 50, 0, 40, device=device, dtype=dtype)
mod(inp)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_group_conv_empty
|
def test_group_conv_empty(self, device):
mod = torch.nn.Conv2d(4, 4, stride=2, kernel_size=3, padding=1, groups=4).to(
device
)
inp = torch.randn(0, 4, 4, 4, device=device)
_test_module_empty_input(self, mod, inp, check_size=False)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_group_convTranspose_empty
|
def test_group_convTranspose_empty(self, device):
mod = torch.nn.ConvTranspose2d(
4, 4, stride=2, kernel_size=3, padding=1, groups=4
).to(device)
inp = torch.randn(0, 4, 4, 4, device=device)
_test_module_empty_input(self, mod, inp, check_size=False)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_convTranspose_empty
|
def test_convTranspose_empty(self, device):
mod = torch.nn.ConvTranspose2d(4, 4, stride=2, kernel_size=3, padding=1).to(
device
)
inp = torch.randn(0, 4, 4, 4, device=device)
_test_module_empty_input(self, mod, inp, check_size=False)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_large_nosplit
|
def test_conv_large_nosplit(self, device):
dtype = torch.half
conv1 = nn.Conv2d(2, 2, 8, 8).to(device).to(dtype)
input_large = torch.randn(1, 2, 1024, 1024 * 1024, dtype=dtype, device=device)
conv1(input_large)
conv2 = torch.nn.Conv2d(1, 1024, 1, 1).to(device).to(dtype)
input_large = torch.randn(1, 1, 2048, 1024, dtype=dtype, device=device)
conv2(input_large)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_noncontig_weights
|
def test_conv_noncontig_weights(self, device):
for dim in (1, 2, 3):
for grouped in (False, True):
nc = 3
groups = 3 if grouped else 1
w = torch.randn([3] * dim, device=device)
w = w.expand([nc, int(nc / groups)] + list(w.shape))
w = w.detach().requires_grad_()
x = torch.randn(
[1, nc] + ([5] * dim), device=device, requires_grad=True
)
y = getattr(F, f"conv{dim}d")(x, w, groups=groups)
y.sum().backward()
y = getattr(F, f"conv_transpose{dim}d")(x, w, groups=groups)
y.sum().backward()
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_noncontig_weights_and_bias
|
def test_conv_noncontig_weights_and_bias(self, device):
for bias in [True, False]:
conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=bias).to(
device, torch.float
)
input_nc = torch.randn(
(1, 3, 224, 224, 2), device=device, dtype=torch.float
)[:, :, :, :, 1]
input_c = input_nc.contiguous()
weight_nc = torch.randn((64, 3, 7, 7, 2), device=device, dtype=torch.float)[
:, :, :, :, 1
]
conv1.weight = nn.Parameter(weight_nc)
weight_c = conv1.weight.contiguous()
if bias:
bias_nc = torch.randn((64, 2), device=device, dtype=torch.float)[:, 1]
conv1.bias = nn.Parameter(bias_nc)
bias_c = conv1.bias.contiguous()
out1 = conv1(input_nc)
conv1.weight = nn.Parameter(weight_c)
if bias:
conv1.bias = nn.Parameter(bias_c)
out2 = conv1(input_c)
self.assertEqual(out1, out2)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_transposed_large
|
def test_conv_transposed_large(self, device):
dtype = torch.half if self.device_type == "cuda" else torch.float
conv = nn.ConvTranspose2d(1, 1, 1, 1, bias=False).to(device).to(dtype)
input_large = torch.randn(4096, 1, 512, 1024, dtype=dtype, device=device)
ret = conv(input_large)
maxdiff0 = (
(ret.narrow(0, 0, 1024) - conv(input_large.narrow(0, 0, 1024)))
.abs_()
.max()
.item()
)
maxdiff1 = (
(ret.narrow(0, 1024, 1024) - conv(input_large.narrow(0, 1024, 1024)))
.abs_()
.max()
.item()
)
maxdiff2 = (
(ret.narrow(0, 2048, 1024) - conv(input_large.narrow(0, 2048, 1024)))
.abs_()
.max()
.item()
)
maxdiff3 = (
(ret.narrow(0, 3072, 1024) - conv(input_large.narrow(0, 3072, 1024)))
.abs_()
.max()
.item()
)
self.assertEqual(maxdiff0, 0)
self.assertEqual(maxdiff1, 0)
self.assertEqual(maxdiff2, 0)
self.assertEqual(maxdiff3, 0)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_conv.py
|
test_conv_large
|
def test_conv_large(self, device):
dtype = torch.half if self.device_type == "cuda" else torch.float
conv = nn.Conv2d(2, 2, 8, 8, bias=False).to(device).to(dtype)
input_large = torch.randn(4097, 2, 512, 512, dtype=dtype, device=device)
ret = conv(input_large)
self.assertEqual(ret[:2048], conv(input_large[:2048]))
self.assertEqual(ret[2048:4096], conv(input_large[2048:4096]))
self.assertEqual(ret[4096:], conv(input_large[4096:]))
conv.zero_grad()
ret.view(4097, -1).max(dim=1).values.sum().backward()
del ret
grad1 = conv.weight.grad.detach().clone()
conv.zero_grad()
conv(input_large[:2048]).view(2048, -1).max(dim=1).values.sum().backward()
conv(input_large[2048:4096]).view(2048, -1).max(dim=1).values.sum().backward()
conv(input_large[4096:]).view(1, -1).max(dim=1).values.sum().backward()
grad2 = conv.weight.grad.detach().clone()
scale = 1 / grad2.abs().mean()
grad1 = grad1 * scale
grad2 = grad2 * scale
self.assertEqual(grad1, grad2, atol=5e-2, rtol=5e-3)
|
import itertools
import math
import unittest
from itertools import product
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from torch._C._dynamo.guards import assert_size_stride
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_is_not_fp32
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyXPU,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_nn import _test_module_empty_input, NNTestCase
from torch.testing._internal.common_utils import (
dtype2prec_DONTUSE,
gradcheck,
gradgradcheck,
parametrize as parametrize_test,
run_tests,
set_default_dtype,
TEST_SCIPY,
TEST_WITH_ROCM,
)
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
import scipy.ndimage
import scipy.signal
class TestConvolutionNNDeviceType(NNTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
genf_bfloat
|
def genf_bfloat(x, y):
return torch.randn(x, y, dtype=torch.float32, device=device).to(dtype) * 0.1
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
genf_float
|
def genf_float(x, y):
return torch.randn(x, y, dtype=dtype, device=device)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
genf_Half
|
def genf_Half(x, y):
return torch.randn(x, y, dtype=dtype, device=device)
for n, m, p in [(20, 10, 15), (15, 20, 10), (25, 18, 10)]:
if (dtype == torch.int32) or (dtype == torch.int64):
genf = genf_int
elif dtype == torch.bfloat16:
genf = genf_bfloat
elif dtype == torch.half:
genf = genf_Half
else:
genf = genf_float
_test_mm(n, m, p, dtype, genf)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_bmm
|
def test_bmm(self, device, dtype):
batch_sizes = [1, 10]
M, N, O = 23, 15, 12
numpy_dtype = dtype if dtype != torch.bfloat16 else torch.float32
def invert_perm(p):
d = {x: i for i, x in enumerate(p)}
return (d[0], d[1], d[2])
def generate_inputs(num_batches):
# transposed tensors
for perm1, perm2 in itertools.product(
itertools.permutations((0, 1, 2)), repeat=2
):
b1 = make_tensor(
(num_batches, M, N), dtype=dtype, device=device, low=-0.1, high=0.1
)
b2 = make_tensor(
(num_batches, N, O), dtype=dtype, device=device, low=-0.1, high=0.1
)
b1 = b1.permute(perm1).contiguous().permute(invert_perm(perm1))
b2 = b2.permute(perm2).contiguous().permute(invert_perm(perm2))
yield b1, b2
# broadcasting tensors
for b1, b2, b3, b4, b5, b6 in itertools.product((True, False), repeat=6):
shape1 = (num_batches if b1 else 1, M if b2 else 1, N if b3 else 1)
shape2 = (num_batches if b4 else 1, N if b5 else 1, O if b6 else 1)
b1 = make_tensor(
shape1, dtype=dtype, device=device, low=-0.1, high=0.1
).expand(num_batches, M, N)
b2 = make_tensor(
shape2, dtype=dtype, device=device, low=-0.1, high=0.1
).expand(num_batches, N, O)
yield b1, b2
# zero-sized tensors
for z1, z2, z3, z4 in itertools.product((True, False), repeat=4):
shape1 = (num_batches if z1 else 0, M if z2 else 0, N if z3 else 0)
shape2 = (num_batches if z1 else 0, N if z3 else 0, O if z4 else 0)
b1 = torch.randn(shape1, dtype=dtype, device=device)
b2 = torch.randn(shape2, dtype=dtype, device=device)
yield b1, b2
for num_batches in batch_sizes:
for (b1, b2), perm3 in itertools.product(
generate_inputs(num_batches), itertools.permutations((0, 1, 2))
):
res1 = torch.bmm(b1, b2)
res2 = (
torch.full(
(num_batches, M, O), math.nan, dtype=dtype, device=device
)
.permute(perm3)
.contiguous()
.permute(invert_perm(perm3))
)
torch.bmm(b1, b2, out=res2)
expect = torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy() @ b2.to(numpy_dtype).cpu().numpy()
).to(device=device, dtype=dtype)
self.assertEqual(expect, res1)
self.assertEqual(expect, res2)
if self.device_type == "cuda":
# check that mixed arguments are rejected
self.assertRaises(RuntimeError, lambda: torch.bmm(b1, b2.cpu()))
self.assertRaises(RuntimeError, lambda: torch.bmm(b1.cpu(), b2))
self.assertRaises(
RuntimeError, lambda: torch.bmm(b1, b2, out=res2.cpu())
)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
invert_perm
|
def invert_perm(p):
d = {x: i for i, x in enumerate(p)}
return (d[0], d[1], d[2])
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
generate_inputs
|
def generate_inputs(num_batches):
# transposed tensors
for perm1, perm2 in itertools.product(
itertools.permutations((0, 1, 2)), repeat=2
):
b1 = make_tensor(
(num_batches, M, N), dtype=dtype, device=device, low=-0.1, high=0.1
)
b2 = make_tensor(
(num_batches, N, O), dtype=dtype, device=device, low=-0.1, high=0.1
)
b1 = b1.permute(perm1).contiguous().permute(invert_perm(perm1))
b2 = b2.permute(perm2).contiguous().permute(invert_perm(perm2))
yield b1, b2
# broadcasting tensors
for b1, b2, b3, b4, b5, b6 in itertools.product((True, False), repeat=6):
shape1 = (num_batches if b1 else 1, M if b2 else 1, N if b3 else 1)
shape2 = (num_batches if b4 else 1, N if b5 else 1, O if b6 else 1)
b1 = make_tensor(
shape1, dtype=dtype, device=device, low=-0.1, high=0.1
).expand(num_batches, M, N)
b2 = make_tensor(
shape2, dtype=dtype, device=device, low=-0.1, high=0.1
).expand(num_batches, N, O)
yield b1, b2
# zero-sized tensors
for z1, z2, z3, z4 in itertools.product((True, False), repeat=4):
shape1 = (num_batches if z1 else 0, M if z2 else 0, N if z3 else 0)
shape2 = (num_batches if z1 else 0, N if z3 else 0, O if z4 else 0)
b1 = torch.randn(shape1, dtype=dtype, device=device)
b2 = torch.randn(shape2, dtype=dtype, device=device)
yield b1, b2
for num_batches in batch_sizes:
for (b1, b2), perm3 in itertools.product(
generate_inputs(num_batches), itertools.permutations((0, 1, 2))
):
res1 = torch.bmm(b1, b2)
res2 = (
torch.full(
(num_batches, M, O), math.nan, dtype=dtype, device=device
)
.permute(perm3)
.contiguous()
.permute(invert_perm(perm3))
)
torch.bmm(b1, b2, out=res2)
expect = torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy() @ b2.to(numpy_dtype).cpu().numpy()
).to(device=device, dtype=dtype)
self.assertEqual(expect, res1)
self.assertEqual(expect, res2)
if self.device_type == "cuda":
# check that mixed arguments are rejected
self.assertRaises(RuntimeError, lambda: torch.bmm(b1, b2.cpu()))
self.assertRaises(RuntimeError, lambda: torch.bmm(b1.cpu(), b2))
self.assertRaises(
RuntimeError, lambda: torch.bmm(b1, b2, out=res2.cpu())
)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
invert_perm
|
def invert_perm(p):
d = {x: i for i, x in enumerate(p)}
return (d[0], d[1], d[2])
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
generate_tensor
|
def generate_tensor():
numpy_dtype = dtype if dtype != torch.bfloat16 else torch.float32
# transposed tensors
for perm1, perm2 in itertools.product(
itertools.permutations((0, 1, 2)), repeat=2
):
for perm3 in itertools.permutations((0, 1)):
b1 = (
make_tensor(
(num_batches, M, N),
dtype=dtype,
device=device,
low=-1,
high=1,
)
* 0.1
)
b2 = (
make_tensor(
(num_batches, N, O),
dtype=dtype,
device=device,
low=-1,
high=1,
)
* 0.1
)
b1 = b1.permute(perm1).contiguous().permute(invert_perm(perm1))
b2 = b2.permute(perm2).contiguous().permute(invert_perm(perm2))
ref = (
torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy()
@ b2.to(numpy_dtype).cpu().numpy()
)
.to(device=device, dtype=dtype)
.sum(0)
)
out_tensor = (
torch.zeros_like(ref).permute(perm3).contiguous().permute(perm3)
)
yield b1, b2, ref, out_tensor
# broadcasting tensors
for s1, s2, s3, s4, s5, s6 in itertools.product((True, False), repeat=6):
shape1 = (num_batches if s1 else 1, M if s2 else 1, N if s3 else 1)
shape2 = (num_batches if s4 else 1, N if s5 else 1, O if s6 else 1)
b1 = (
make_tensor(
shape1, dtype=dtype, device=device, low=-1, high=1
).expand(num_batches, M, N)
* 0.1
)
b2 = (
make_tensor(
shape2, dtype=dtype, device=device, low=-1, high=1
).expand(num_batches, N, O)
* 0.1
)
ref = (
torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy()
@ b2.to(numpy_dtype).cpu().numpy()
)
.to(device=device, dtype=dtype)
.sum(0)
)
out_tensor = torch.zeros_like(ref)
yield b1, b2, ref, out_tensor
# zero-sized tensors
for z1, z2, z3, z4 in itertools.product((True, False), repeat=4):
shape1 = (num_batches if z1 else 0, M if z2 else 0, N if z3 else 0)
shape2 = (num_batches if z1 else 0, N if z3 else 0, O if z4 else 0)
b1 = (
make_tensor(shape1, dtype=dtype, device=device, low=-1, high=1)
* 0.1
)
b2 = (
make_tensor(shape2, dtype=dtype, device=device, low=-1, high=1)
* 0.1
)
ref = (
torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy()
@ b2.to(numpy_dtype).cpu().numpy()
)
.to(device=device, dtype=dtype)
.sum(0)
)
out_tensor = torch.zeros_like(ref)
yield b1, b2, ref, out_tensor
for b1, b2, ref, out_tensor in generate_tensor():
self._test_addbmm_baddbmm("addbmm", b1, b2, ref, out_tensor)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
_test
|
def _test(row_major, incx, incy, lda_tail):
if row_major:
a_storage = torch.full(
(o, s + lda_tail), float("nan"), device=device, dtype=dtype
)
else:
a_storage = torch.full(
(s, o + lda_tail), float("nan"), device=device, dtype=dtype
).permute(1, 0)
a = a_storage[:o, :s].copy_(a_data)
x_storage = torch.full((s, incx), float("nan"), device=device, dtype=dtype)
x = x_storage[:, 0].copy_(x_data)
y_storage = torch.full((o, incy), float("nan"), device=device, dtype=dtype)
y = y_storage[:, 0].copy_(y_data)
self._test_addmm_addmv(torch.addmv, y, a, x)
for row_major, incx, incy, lda_tail in itertools.product(
(False, True), (1, 2), (1, 2), (0, 1)
):
_test(row_major, incx, incy, lda_tail)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_corner_cases_of_cublasltmatmul
|
def test_corner_cases_of_cublasltmatmul(self, device, dtype):
# common case
M = torch.randn(128, device=device).to(dtype)
m1 = torch.randn(2048, 2400, device=device).to(dtype)
m2 = torch.randn(128, 2400, device=device).to(dtype)
torch.nn.functional.linear(m1, m2, M)
# Ntrans_B has ld >> rows
m1 = torch.rand([128, 2400]).to(dtype).to(device).t()
m2 = torch.rand([2048, 25272]).to(dtype).to(device).t()[21940:24340]
M = torch.rand([128]).to(dtype).to(device)
torch.addmm(M, m2.t(), m1)
# trans_A has ld >> rows
m1 = torch.rand([128, 25272]).to(dtype).to(device)[:, 21940:24340].t()
m2 = torch.randn(2048, 2400, device=device).to(dtype)
M = torch.rand([128]).to(dtype).to(device)
torch.addmm(M, m2, m1)
# large tensor dim > 65535
M = torch.randn(16, device=device).to(dtype)
m1 = torch.randn(32, 131071, device=device).to(dtype)
m2 = torch.randn(16, 131071, device=device).to(dtype)
torch.nn.functional.linear(m1, m2, M)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_baddbmm
|
def test_baddbmm(self, device, dtype):
num_batches = 10
M, N, O = 12, 8, 50
def invert_perm(p):
d = {x: i for i, x in enumerate(p)}
return (d[0], d[1], d[2])
def generate_tensor():
numpy_dtype = (
dtype if dtype not in [torch.bfloat16, torch.half] else torch.float32
)
# transposed tensors
for perm1, perm2, perm3 in itertools.product(
itertools.permutations((0, 1, 2)), repeat=3
):
b1 = make_tensor(
(num_batches, M, N), dtype=dtype, device=device, low=-1, high=1
)
b2 = make_tensor(
(num_batches, N, O), dtype=dtype, device=device, low=-1, high=1
)
b1 = b1.permute(perm1).contiguous().permute(invert_perm(perm1))
b2 = b2.permute(perm2).contiguous().permute(invert_perm(perm2))
ref = torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy() @ b2.to(numpy_dtype).cpu().numpy()
).to(device=device, dtype=dtype)
out_tensor = torch.zeros_like(ref)
out_tensor = (
out_tensor.permute(perm3).contiguous().permute(invert_perm(perm3))
)
yield b1, b2, ref, out_tensor
# broadcasting tensors
for s1, s2, s3, s4, s5, s6 in itertools.product((True, False), repeat=6):
shape1 = (num_batches if s1 else 1, M if s2 else 1, N if s3 else 1)
shape2 = (num_batches if s4 else 1, N if s5 else 1, O if s6 else 1)
b1 = make_tensor(
shape1, dtype=dtype, device=device, low=-1, high=1
).expand(num_batches, M, N)
b2 = make_tensor(
shape2, dtype=dtype, device=device, low=-1, high=1
).expand(num_batches, N, O)
ref = torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy() @ b2.to(numpy_dtype).cpu().numpy()
).to(device=device, dtype=dtype)
out_tensor = torch.zeros_like(ref)
yield b1, b2, ref, out_tensor
# zero-sized tensors
for z1, z2, z3, z4 in itertools.product((True, False), repeat=4):
shape1 = (num_batches if z1 else 0, M if z2 else 0, N if z3 else 0)
shape2 = (num_batches if z1 else 0, N if z3 else 0, O if z4 else 0)
b1 = make_tensor(shape1, dtype=dtype, device=device, low=-2, high=2)
b2 = make_tensor(shape2, dtype=dtype, device=device, low=-2, high=2)
ref = torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy() @ b2.to(numpy_dtype).cpu().numpy()
).to(device=device, dtype=dtype)
out_tensor = torch.zeros_like(ref)
yield b1, b2, ref, out_tensor
for b1, b2, ref, out_tensor in generate_tensor():
self._test_addbmm_baddbmm("baddbmm", b1, b2, ref, out_tensor)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
invert_perm
|
def invert_perm(p):
d = {x: i for i, x in enumerate(p)}
return (d[0], d[1], d[2])
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
generate_tensor
|
def generate_tensor():
numpy_dtype = dtype if dtype != torch.bfloat16 else torch.float32
# transposed tensors
for perm1, perm2 in itertools.product(
itertools.permutations((0, 1, 2)), repeat=2
):
for perm3 in itertools.permutations((0, 1)):
b1 = (
make_tensor(
(num_batches, M, N),
dtype=dtype,
device=device,
low=-1,
high=1,
)
* 0.1
)
b2 = (
make_tensor(
(num_batches, N, O),
dtype=dtype,
device=device,
low=-1,
high=1,
)
* 0.1
)
b1 = b1.permute(perm1).contiguous().permute(invert_perm(perm1))
b2 = b2.permute(perm2).contiguous().permute(invert_perm(perm2))
ref = (
torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy()
@ b2.to(numpy_dtype).cpu().numpy()
)
.to(device=device, dtype=dtype)
.sum(0)
)
out_tensor = (
torch.zeros_like(ref).permute(perm3).contiguous().permute(perm3)
)
yield b1, b2, ref, out_tensor
# broadcasting tensors
for s1, s2, s3, s4, s5, s6 in itertools.product((True, False), repeat=6):
shape1 = (num_batches if s1 else 1, M if s2 else 1, N if s3 else 1)
shape2 = (num_batches if s4 else 1, N if s5 else 1, O if s6 else 1)
b1 = (
make_tensor(
shape1, dtype=dtype, device=device, low=-1, high=1
).expand(num_batches, M, N)
* 0.1
)
b2 = (
make_tensor(
shape2, dtype=dtype, device=device, low=-1, high=1
).expand(num_batches, N, O)
* 0.1
)
ref = (
torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy()
@ b2.to(numpy_dtype).cpu().numpy()
)
.to(device=device, dtype=dtype)
.sum(0)
)
out_tensor = torch.zeros_like(ref)
yield b1, b2, ref, out_tensor
# zero-sized tensors
for z1, z2, z3, z4 in itertools.product((True, False), repeat=4):
shape1 = (num_batches if z1 else 0, M if z2 else 0, N if z3 else 0)
shape2 = (num_batches if z1 else 0, N if z3 else 0, O if z4 else 0)
b1 = (
make_tensor(shape1, dtype=dtype, device=device, low=-1, high=1)
* 0.1
)
b2 = (
make_tensor(shape2, dtype=dtype, device=device, low=-1, high=1)
* 0.1
)
ref = (
torch.from_numpy(
b1.to(numpy_dtype).cpu().numpy()
@ b2.to(numpy_dtype).cpu().numpy()
)
.to(device=device, dtype=dtype)
.sum(0)
)
out_tensor = torch.zeros_like(ref)
yield b1, b2, ref, out_tensor
for b1, b2, ref, out_tensor in generate_tensor():
self._test_addbmm_baddbmm("addbmm", b1, b2, ref, out_tensor)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_1_sized_with_0_strided
|
def test_1_sized_with_0_strided(self, device, dtype):
a = make_tensor((8, 1, 64), dtype=dtype, device=device)
a_strided = torch.as_strided(a, size=[8, 1, 64], stride=[64, 0, 1])
b = make_tensor((8, 64, 512), dtype=dtype, device=device)
b_strided = torch.as_strided(b, size=[8, 64, 512], stride=[64, 1, 512])
res = torch.bmm(a_strided, b_strided)
expect = torch.from_numpy(a_strided.cpu().numpy() @ b_strided.cpu().numpy()).to(
device=device, dtype=dtype
)
self.assertEqual(expect, res)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
_select_broadcastable_dims
|
def _select_broadcastable_dims(self, dims_full=None):
# select full dimensionality
if dims_full is None:
dims_full = []
ndims = random.randint(1, 4)
dims_full = [random.randint(1, 8) for _ in range(ndims)]
else:
ndims = len(dims_full)
# select actual dimensions for ops:
# larger: full ndims, individual sizes may be reduced
# smaller: possibly reduced ndims, sizes may be reduced
smaller_ndims = random.randint(1, ndims)
dims_small = []
dims_large = []
for i in range(ndims - 1, -1, -1):
j = random.randint(1, 3)
if j == 1: # no reduced singleton dimension
ds = dims_full[i]
dl = dims_full[i]
elif j == 2: # larger may have reduced singleton dimension
ds = dims_full[i]
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
elif j == 3: # smaller may have reduced singleton dimension
ds = 1
dl = dims_full[i]
dims_large = [dl] + dims_large
if len(dims_small) < smaller_ndims:
dims_small = [ds] + dims_small
return (dims_small, dims_large, dims_full)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
dims_full_for_fn
|
def dims_full_for_fn():
if fn == "baddbmm":
return (
[batch_dim, n_dim, p_dim],
[batch_dim, n_dim, m_dim],
[batch_dim, m_dim, p_dim],
)
elif fn == "addbmm":
return (
[n_dim, p_dim],
[batch_dim, n_dim, m_dim],
[batch_dim, m_dim, p_dim],
)
elif fn == "addmm":
return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
elif fn == "addmv":
return ([n_dim], [n_dim, m_dim], [m_dim])
elif fn == "addr":
return ([n_dim, m_dim], [n_dim], [m_dim])
else:
raise AssertionError("unknown function")
(t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
(t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)
t0_small = torch.randn(*t0_dims_small, device=device).float()
t1 = torch.randn(*t1_dims, device=device).float()
t2 = torch.randn(*t2_dims, device=device).float()
t0_full = t0_small.expand(*t0_dims_full).to(device)
fntorch = getattr(torch, fn)
r0 = fntorch(t0_small, t1, t2)
r1 = fntorch(t0_full, t1, t2)
self.assertEqual(r0, r1)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_strided_mm_bmm
|
def test_strided_mm_bmm(self, device, dtype):
# Tests strided view case with stride smaller than corresponding dimension size
x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=dtype, device=device)
new_shape = [2, 2, 2]
new_stride = [3, 1, 1]
sx = torch.as_strided(x, size=new_shape, stride=new_stride)
torch_fn = lambda x: torch.bmm(x, x) # noqa: E731
np_fn = lambda x: np.matmul(x, x) # noqa: E731
self.compare_with_numpy(torch_fn, np_fn, sx)
torch_fn = lambda x: torch.mm(x, x) # noqa: E731
self.compare_with_numpy(torch_fn, np_fn, sx[0])
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/xpu/test_gemm.py
|
test_mm_empty_inputs_mixed_dtype_errors
|
def test_mm_empty_inputs_mixed_dtype_errors(self, device):
a = torch.randint(0, 10, [1, 10], dtype=torch.int16, device=device)
b = torch.randn(10, 20, dtype=torch.float32, device=device)
with self.assertRaisesRegex(
RuntimeError, "expected .* and .* to have the same dtype, but got:"
):
torch.mm(a, b)
|
import itertools
import math
import random
from functools import partial
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
precisionOverride,
)
from torch.testing._internal.common_utils import iter_indices, run_tests, TestCase
class TestBasicGEMM(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.