library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_symmetric_rank
|
def test_symmetric_rank(self):
assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
# rank deficient matrix
I = np.eye(4)
I[-1, -1] = 0.0
assert_equal(3, matrix_rank(I, hermitian=True))
# manually supplied tolerance
I[-1, -1] = 1e-8
assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class TestMatrixRank(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_reduced_rank
|
def test_reduced_rank(self):
# Test matrices with reduced rank
# rng = np.random.RandomState(20120714)
np.random.seed(20120714)
for i in range(100):
# Make a rank deficient matrix
X = np.random.normal(size=(40, 10))
X[:, 0] = X[:, 1] + X[:, 2]
# Assert that matrix_rank detected deficiency
assert_equal(matrix_rank(X), 9)
X[:, 3] = X[:, 4] + X[:, 5]
assert_equal(matrix_rank(X), 8)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class TestMatrixRank(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_mode_raw
|
def test_mode_raw(self):
# The factorization is not unique and varies between libraries,
# so it is not possible to check against known values. Functional
# testing is a possibility, but awaits the exposure of more
# of the functions in lapack_lite. Consequently, this test is
# very limited in scope. Note that the results are in FORTRAN
# order, hence the h arrays are transposed.
a = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
# Test double
h, tau = linalg.qr(a, mode="raw")
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (2, 3))
assert_(tau.shape == (2,))
h, tau = linalg.qr(a.T, mode="raw")
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (3, 2))
assert_(tau.shape == (2,))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestQR(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_exceptions_not_invertible
|
def test_exceptions_not_invertible(self, dt):
if dt in self.dtnoinv:
return
mat = self.noninv.astype(dt)
assert_raises(LinAlgError, matrix_power, mat, -1)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@skip # FIXME: otherwise fails in setUp calling np.block
@instantiate_parametrized_tests
class TestMatrixPower(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
do
|
def do(self, a, b, tags):
x = linalg.solve(a, b)
assert_almost_equal(b, dot_generalized(a, x))
assert_(consistent_subclass(x, b))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_invalid
|
def test_invalid(self):
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, UPLO="lrong")
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, "lower")
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, "upper")
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestEigvalsh(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_UPLO
|
def test_UPLO(self):
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w = np.linalg.eigvalsh(Klo)
assert_allclose(w, tgt, rtol=rtol)
# Check 'L'
w = np.linalg.eigvalsh(Klo, UPLO="L")
assert_allclose(w, tgt, rtol=rtol)
# Check 'l'
w = np.linalg.eigvalsh(Klo, UPLO="l")
assert_allclose(w, tgt, rtol=rtol)
# Check 'U'
w = np.linalg.eigvalsh(Kup, UPLO="U")
assert_allclose(w, tgt, rtol=rtol)
# Check 'u'
w = np.linalg.eigvalsh(Kup, UPLO="u")
assert_allclose(w, tgt, rtol=rtol)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestEigvalsh(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
do
|
def do(self, a, b, tags):
x = linalg.solve(a, b)
assert_almost_equal(b, dot_generalized(a, x))
assert_(consistent_subclass(x, b))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_invalid
|
def test_invalid(self):
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, UPLO="lrong")
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, "lower")
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, "upper")
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestEigvalsh(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_UPLO
|
def test_UPLO(self):
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w = np.linalg.eigvalsh(Klo)
assert_allclose(w, tgt, rtol=rtol)
# Check 'L'
w = np.linalg.eigvalsh(Klo, UPLO="L")
assert_allclose(w, tgt, rtol=rtol)
# Check 'l'
w = np.linalg.eigvalsh(Klo, UPLO="l")
assert_allclose(w, tgt, rtol=rtol)
# Check 'U'
w = np.linalg.eigvalsh(Kup, UPLO="U")
assert_allclose(w, tgt, rtol=rtol)
# Check 'u'
w = np.linalg.eigvalsh(Kup, UPLO="u")
assert_allclose(w, tgt, rtol=rtol)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestEigvalsh(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_empty_a_b
|
def test_empty_a_b(self, m, n, n_rhs):
a = np.arange(m * n).reshape(m, n)
b = np.ones((m, n_rhs))
x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
if m == 0:
assert_((x == 0).all())
assert_equal(x.shape, (n, n_rhs))
assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
if m > n and n_rhs > 0:
# residuals are exactly the squared norms of b's columns
r = b - np.dot(a, x)
assert_almost_equal(residuals, (r * r).sum(axis=-2))
assert_equal(rank, min(m, n))
assert_equal(s.shape, (min(m, n),))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestLstsq(LstsqCases, TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_incompatible_dims
|
def test_incompatible_dims(self):
# use modified version of docstring example
x = np.array([0, 1, 2, 3])
y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
A = np.vstack([x, np.ones(len(x))]).T
# with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
with assert_raises((RuntimeError, LinAlgError)):
linalg.lstsq(A, y, rcond=None)
# @xfail #(reason="no block()")
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestLstsq(LstsqCases, TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
tz
|
def tz(M):
mz = matrix_power(M, 0)
assert_equal(mz, identity_like_generalized(M))
assert_equal(mz.dtype, M.dtype)
for mat in self.rshft_all:
tz(mat.astype(dt))
if dt != object:
tz(self.stacked.astype(dt))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
tz
|
def tz(M):
mz = matrix_power(M, 0)
assert_equal(mz, identity_like_generalized(M))
assert_equal(mz.dtype, M.dtype)
for mat in self.rshft_all:
tz(mat.astype(dt))
if dt != object:
tz(self.stacked.astype(dt))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
tz
|
def tz(M):
mz = matrix_power(M, 0)
assert_equal(mz, identity_like_generalized(M))
assert_equal(mz.dtype, M.dtype)
for mat in self.rshft_all:
tz(mat.astype(dt))
if dt != object:
tz(self.stacked.astype(dt))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
tz
|
def tz(M):
mz = matrix_power(M, 0)
assert_equal(mz, identity_like_generalized(M))
assert_equal(mz.dtype, M.dtype)
for mat in self.rshft_all:
tz(mat.astype(dt))
if dt != object:
tz(self.stacked.astype(dt))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
check_dtype
|
def check_dtype(x, res):
if issubclass(x.dtype.type, np.inexact):
assert_equal(res.dtype, x.real.dtype)
else:
# For integer input, don't have to test float precision of output.
assert_(issubclass(res.dtype.type, np.floating))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNormBase:
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_empty
|
def test_empty(self):
assert_equal(norm([]), 0.0)
assert_equal(norm(array([], dtype=self.dt)), 0.0)
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNormGeneral(_TestNormBase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_vector_return_type
|
def test_vector_return_type(self):
a = np.array([1, 0, 1])
exact_types = "Bbhil" # np.typecodes["AllInteger"]
inexact_types = "efdFD" # np.typecodes["AllFloat"]
all_types = exact_types + inexact_types
for each_type in all_types:
at = a.astype(each_type)
if each_type == np.dtype("float16"):
# FIXME: move looping to parametrize, add decorators=[xfail]
# pytest.xfail("float16**float64 => float64 (?)")
raise SkipTest("float16**float64 => float64 (?)")
an = norm(at, -np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 0.0)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
self.check_dtype(at, an)
assert_almost_equal(an, 0.0)
an = norm(at, 0)
self.check_dtype(at, an)
assert_almost_equal(an, 2)
an = norm(at, 1)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, 2)
self.check_dtype(at, an)
assert_almost_equal(an, an.dtype.type(2.0) ** an.dtype.type(1.0 / 2.0))
an = norm(at, 4)
self.check_dtype(at, an)
assert_almost_equal(an, an.dtype.type(2.0) ** an.dtype.type(1.0 / 4.0))
an = norm(at, np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 1.0)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNormGeneral(_TestNormBase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_vector
|
def test_vector(self):
a = [1, 2, 3, 4]
b = [-1, -2, -3, -4]
c = [-1, 2, -3, 4]
def _test(v):
np.testing.assert_almost_equal(norm(v), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, inf), 4.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -inf), 1.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 1), 10.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 2), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(
norm(v, -2), ((205.0 / 144) ** -0.5), decimal=self.dec
)
np.testing.assert_almost_equal(norm(v, 0), 4, decimal=self.dec)
for v in (
a,
b,
c,
):
_test(v)
for v in (
array(a, dtype=self.dt),
array(b, dtype=self.dt),
array(c, dtype=self.dt),
):
_test(v)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNormGeneral(_TestNormBase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
_test
|
def _test(v):
np.testing.assert_almost_equal(norm(v), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, inf), 4.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -inf), 1.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 1), 10.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 2), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(
norm(v, -2), ((205.0 / 144) ** -0.5), decimal=self.dec
)
np.testing.assert_almost_equal(norm(v, 0), 4, decimal=self.dec)
for v in (
a,
b,
c,
):
_test(v)
for v in (
array(a, dtype=self.dt),
array(b, dtype=self.dt),
array(c, dtype=self.dt),
):
_test(v)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_axis
|
def test_axis(self):
# Vector norms.
# Compare the use of `axis` with computing the norm of each row
# or column separately.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
# Matrix norms.
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
nd = B.ndim
for order in [None, -2, 2, -1, 1, np.inf, -np.inf, "fro"]:
for axis in itertools.combinations(range(-nd, nd), 2):
row_axis, col_axis = axis
if row_axis < 0:
row_axis += nd
if col_axis < 0:
col_axis += nd
if row_axis == col_axis:
assert_raises(
(RuntimeError, ValueError), norm, B, ord=order, axis=axis
)
else:
n = norm(B, ord=order, axis=axis)
# The logic using k_index only works for nd = 3.
# This has to be changed if nd is increased.
k_index = nd - (row_axis + col_axis)
if row_axis < col_axis:
expected = [
norm(B[:].take(k, axis=k_index), ord=order)
for k in range(B.shape[k_index])
]
else:
expected = [
norm(B[:].take(k, axis=k_index).T, ord=order)
for k in range(B.shape[k_index])
]
assert_almost_equal(n, expected)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNormGeneral(_TestNormBase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_keepdims
|
def test_keepdims(self):
A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
allclose_err = "order {0}, axis = {1}"
shape_err = "Shape mismatch found {0}, expected {1}, order={2}, axis={3}"
# check the order=None, axis=None case
expected = norm(A, ord=None, axis=None)
found = norm(A, ord=None, axis=None, keepdims=True)
assert_allclose(
np.squeeze(found), expected, err_msg=allclose_err.format(None, None)
)
expected_shape = (1, 1, 1)
assert_(
found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, None, None),
)
# Vector norms.
for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
for k in range(A.ndim):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(
np.squeeze(found), expected, err_msg=allclose_err.format(order, k)
)
expected_shape = list(A.shape)
expected_shape[k] = 1
expected_shape = tuple(expected_shape)
assert_(
found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k),
)
# Matrix norms.
for order in [None, -2, 2, -1, 1, np.inf, -np.inf, "fro", "nuc"]:
for k in itertools.permutations(range(A.ndim), 2):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(
np.squeeze(found), expected, err_msg=allclose_err.format(order, k)
)
expected_shape = list(A.shape)
expected_shape[k[0]] = 1
expected_shape[k[1]] = 1
expected_shape = tuple(expected_shape)
assert_(
found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k),
)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNormGeneral(_TestNormBase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_matrix_empty
|
def test_matrix_empty(self):
assert_equal(norm(np.array([[]], dtype=self.dt)), 0.0)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNorm2D(_TestNormBase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_matrix_return_type
|
def test_matrix_return_type(self):
a = np.array([[1, 0, 1], [0, 1, 1]])
exact_types = "Bbhil" # np.typecodes["AllInteger"]
# float32, complex64, float64, complex128 types are the only types
# allowed by `linalg`, which performs the matrix operations used
# within `norm`.
inexact_types = "fdFD"
all_types = exact_types + inexact_types
for each_type in all_types:
at = a.astype(each_type)
an = norm(at, -np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
self.check_dtype(at, an)
assert_almost_equal(an, 1.0)
an = norm(at, 1)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, 2)
self.check_dtype(at, an)
assert_almost_equal(an, 3.0 ** (1.0 / 2.0))
an = norm(at, -2)
self.check_dtype(at, an)
assert_almost_equal(an, 1.0)
an = norm(at, np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, "fro")
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, "nuc")
self.check_dtype(at, an)
# Lower bar needed to support low precision floats.
# They end up being off by 1 in the 7th place.
np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class _TestNorm2D(_TestNormBase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_basic_function_with_two_arguments
|
def test_basic_function_with_two_arguments(self):
# separate code path with two arguments
A = np.random.random((6, 2))
B = np.random.random((2, 6))
assert_almost_equal(multi_dot([A, B]), A.dot(B))
assert_almost_equal(multi_dot([A, B]), np.dot(A, B))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_basic_function_with_dynamic_programming_optimization
|
def test_basic_function_with_dynamic_programming_optimization(self):
# multi_dot with four or more arguments uses the dynamic programming
# optimization and therefore deserve a separate
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 1))
assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_vector_as_first_argument
|
def test_vector_as_first_argument(self):
# The first argument can be 1-D
A1d = np.random.random(2) # 1-D
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 2))
# the result should be 1-D
assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_vector_as_last_argument
|
def test_vector_as_last_argument(self):
# The last argument can be 1-D
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D1d = np.random.random(2) # 1-D
# the result should be 1-D
assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_vector_as_first_and_last_argument
|
def test_vector_as_first_and_last_argument(self):
# The first and last arguments can be 1-D
A1d = np.random.random(2) # 1-D
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D1d = np.random.random(2) # 1-D
# the result should be a scalar
assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_three_arguments_and_out
|
def test_three_arguments_and_out(self):
# multi_dot with three arguments uses a fast hand coded algorithm to
# determine the optimal order. Therefore test it separately.
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
out = np.zeros((6, 2))
ret = multi_dot([A, B, C], out=out)
assert out is ret
assert_almost_equal(out, A.dot(B).dot(C))
assert_almost_equal(out, np.dot(A, np.dot(B, C)))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_two_arguments_and_out
|
def test_two_arguments_and_out(self):
# separate code path with two arguments
A = np.random.random((6, 2))
B = np.random.random((2, 6))
out = np.zeros((6, 6))
ret = multi_dot([A, B], out=out)
assert out is ret
assert_almost_equal(out, A.dot(B))
assert_almost_equal(out, np.dot(A, B))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_dynamic_programming_optimization_and_out
|
def test_dynamic_programming_optimization_and_out(self):
# multi_dot with four or more arguments uses the dynamic programming
# optimization and therefore deserve a separate test
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 1))
out = np.zeros((6, 1))
ret = multi_dot([A, B, C, D], out=out)
assert out is ret
assert_almost_equal(out, A.dot(B).dot(C).dot(D))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_dynamic_programming_logic
|
def test_dynamic_programming_logic(self):
# Test for the dynamic programming part
# This test is directly taken from Cormen page 376.
arrays = [
np.random.random((30, 35)),
np.random.random((35, 15)),
np.random.random((15, 5)),
np.random.random((5, 10)),
np.random.random((10, 20)),
np.random.random((20, 25)),
]
m_expected = np.array(
[
[0.0, 15750.0, 7875.0, 9375.0, 11875.0, 15125.0],
[0.0, 0.0, 2625.0, 4375.0, 7125.0, 10500.0],
[0.0, 0.0, 0.0, 750.0, 2500.0, 5375.0],
[0.0, 0.0, 0.0, 0.0, 1000.0, 3500.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 5000.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
]
)
s_expected = np.array(
[
[0, 1, 1, 3, 3, 3],
[0, 0, 2, 3, 3, 3],
[0, 0, 0, 3, 3, 3],
[0, 0, 0, 0, 4, 5],
[0, 0, 0, 0, 0, 5],
[0, 0, 0, 0, 0, 0],
],
dtype=int,
)
s_expected -= 1 # Cormen uses 1-based index, python does not.
s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
# Only the upper triangular part (without the diagonal) is interesting.
assert_almost_equal(np.triu(s[:-1, 1:]), np.triu(s_expected[:-1, 1:]))
assert_almost_equal(np.triu(m), np.triu(m_expected))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_too_few_input_arrays
|
def test_too_few_input_arrays(self):
assert_raises((RuntimeError, ValueError), multi_dot, [])
assert_raises((RuntimeError, ValueError), multi_dot, [np.random.random((3, 3))])
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_empty_herm_cases
|
def test_empty_herm_cases(self):
self.check_cases(require={"hermitian", "size-0"}, exclude={"generalized"})
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class HermitianTestCase(LinalgTestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_generalized_empty_sq_cases
|
def test_generalized_empty_sq_cases(self):
self.check_cases(require={"generalized", "square", "size-0"})
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class LinalgGeneralizedSquareTestCase(LinalgTestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_generalized_empty_nonsq_cases
|
def test_generalized_empty_nonsq_cases(self):
self.check_cases(require={"generalized", "nonsquare", "size-0"})
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_generalized_empty_herm_cases
|
def test_generalized_empty_herm_cases(self):
self.check_cases(
require={"generalized", "hermitian", "size-0"}, exclude={"none"}
)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class HermitianGeneralizedTestCase(LinalgTestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
dot_generalized
|
def dot_generalized(a, b):
a = asarray(a)
if a.ndim >= 3:
if a.ndim == b.ndim:
# matrix x matrix
new_shape = a.shape[:-1] + b.shape[-1:]
elif a.ndim == b.ndim + 1:
# matrix x vector
new_shape = a.shape[:-1]
else:
raise ValueError("Not implemented...")
r = np.empty(new_shape, dtype=np.common_type(a, b))
for c in itertools.product(*map(range, a.shape[:-2])):
r[c] = dot(a[c], b[c])
return r
else:
return dot(a, b)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
identity_like_generalized
|
def identity_like_generalized(a):
a = asarray(a)
if a.ndim >= 3:
r = np.empty(a.shape, dtype=a.dtype)
r[...] = identity(a.shape[-2])
return r
else:
return identity(a.shape[0])
class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
# kept apart from TestSolve for use for testing with matrices.
def do(self, a, b, tags):
x = linalg.solve(a, b)
assert_almost_equal(b, dot_generalized(a, x))
assert_(consistent_subclass(x, b))
@instantiate_parametrized_tests
class TestSolve(SolveCases, TestCase):
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.solve(x, x).dtype, dtype)
@skip(reason="subclass")
def test_0_size(self):
class ArraySubclass(np.ndarray):
pass
# Test system of 0x0 matrices
a = np.arange(8).reshape(2, 2, 2)
b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
expected = linalg.solve(a, b)[:, 0:0, :]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# Test errors for non-square and only b's dimension being 0
assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
# Test broadcasting error
b = np.arange(6).reshape(1, 3, 2) # broadcasting error
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
# Test zero "single equations" with 0x0 matrices.
b = np.arange(2).reshape(1, 2).view(ArraySubclass)
expected = linalg.solve(a, b)[:, 0:0]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
b = np.arange(3).reshape(1, 3)
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
@skip(reason="subclass")
def test_0_size_k(self):
# test zero multiple equation (K=0) case.
class ArraySubclass(np.ndarray):
pass
a = np.arange(4).reshape(1, 2, 2)
b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
expected = linalg.solve(a, b)[:, :, 0:0]
result = linalg.solve(a, b[:, :, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# test both zero.
expected = linalg.solve(a, b)[:, 0:0, 0:0]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
a_inv = linalg.inv(a)
assert_almost_equal(dot_generalized(a, a_inv), identity_like_generalized(a))
assert_(consistent_subclass(a_inv, a))
@instantiate_parametrized_tests
class TestInv(InvCases, TestCase):
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.inv(x).dtype, dtype)
@skip(reason="subclass")
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res.shape)
assert_(isinstance(res, ArraySubclass))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.complex64)
assert_equal(a.shape, res.shape)
assert_(isinstance(res, ArraySubclass))
class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
ev = linalg.eigvals(a)
evalues, evectors = linalg.eig(a)
assert_almost_equal(ev, evalues)
@instantiate_parametrized_tests
class TestEigvals(EigvalsCases, TestCase):
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
@skip(reason="subclass")
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.float64)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.complex64)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
evalues, evectors = linalg.eig(a)
assert_allclose(
dot_generalized(a, evectors),
np.asarray(evectors) * np.asarray(evalues)[..., None, :],
rtol=get_rtol(evalues.dtype),
)
assert_(consistent_subclass(evectors, a))
@instantiate_parametrized_tests
class TestEig(EigCases, TestCase):
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, dtype)
assert_equal(v.dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, get_complex_dtype(dtype))
assert_equal(v.dtype, get_complex_dtype(dtype))
@skip(reason="subclass")
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res, res_v = linalg.eig(a)
assert_(res_v.dtype.type is np.float64)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res_v.shape)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res, res_v = linalg.eig(a)
assert_(res_v.dtype.type is np.complex64)
assert_(res.dtype.type is np.complex64)
assert_equal(a.shape, res_v.shape)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
@instantiate_parametrized_tests
class SVDBaseTests:
hermitian = False
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
u, s, vh = linalg.svd(x)
assert_equal(u.dtype, dtype)
assert_equal(s.dtype, get_real_dtype(dtype))
assert_equal(vh.dtype, dtype)
s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
assert_equal(s.dtype, get_real_dtype(dtype))
class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
u, s, vt = linalg.svd(a, False)
assert_allclose(
a,
dot_generalized(
np.asarray(u) * np.asarray(s)[..., None, :], np.asarray(vt)
),
rtol=get_rtol(u.dtype),
)
assert_(consistent_subclass(u, a))
assert_(consistent_subclass(vt, a))
class TestSVD(SVDCases, SVDBaseTests, TestCase):
def test_empty_identity(self):
"""Empty input should put an identity matrix in u or vh"""
x = np.empty((4, 0))
u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
assert_equal(u.shape, (4, 4))
assert_equal(vh.shape, (0, 0))
assert_equal(u, np.eye(4))
x = np.empty((0, 4))
u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
assert_equal(u.shape, (0, 0))
assert_equal(vh.shape, (4, 4))
assert_equal(vh, np.eye(4))
class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
def do(self, a, b, tags):
u, s, vt = linalg.svd(a, False, hermitian=True)
assert_allclose(
a,
dot_generalized(
np.asarray(u) * np.asarray(s)[..., None, :], np.asarray(vt)
),
rtol=get_rtol(u.dtype),
)
def hermitian(mat):
axes = list(range(mat.ndim))
axes[-1], axes[-2] = axes[-2], axes[-1]
return np.conj(np.transpose(mat, axes=axes))
assert_almost_equal(
np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape)
)
assert_almost_equal(
np.matmul(vt, hermitian(vt)),
np.broadcast_to(np.eye(vt.shape[-1]), vt.shape),
)
assert_equal(np.sort(s), np.flip(s, -1))
assert_(consistent_subclass(u, a))
assert_(consistent_subclass(vt, a))
class TestSVDHermitian(SVDHermitianCases, SVDBaseTests, TestCase):
hermitian = True
class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
# cond(x, p) for p in (None, 2, -2)
def do(self, a, b, tags):
c = asarray(a) # a might be a matrix
if "size-0" in tags:
assert_raises(LinAlgError, linalg.cond, c)
return
# +-2 norms
s = linalg.svd(c, compute_uv=False)
assert_almost_equal(
linalg.cond(a), s[..., 0] / s[..., -1], single_decimal=5, double_decimal=11
)
assert_almost_equal(
linalg.cond(a, 2),
s[..., 0] / s[..., -1],
single_decimal=5,
double_decimal=11,
)
assert_almost_equal(
linalg.cond(a, -2),
s[..., -1] / s[..., 0],
single_decimal=5,
double_decimal=11,
)
# Other norms
cinv = np.linalg.inv(c)
assert_almost_equal(
linalg.cond(a, 1),
abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
single_decimal=5,
double_decimal=11,
)
assert_almost_equal(
linalg.cond(a, -1),
abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
single_decimal=5,
double_decimal=11,
)
assert_almost_equal(
linalg.cond(a, np.inf),
abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
single_decimal=5,
double_decimal=11,
)
assert_almost_equal(
linalg.cond(a, -np.inf),
abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
single_decimal=5,
double_decimal=11,
)
assert_almost_equal(
linalg.cond(a, "fro"),
np.sqrt((abs(c) ** 2).sum(-1).sum(-1) * (abs(cinv) ** 2).sum(-1).sum(-1)),
single_decimal=5,
double_decimal=11,
)
class TestCond(CondCases, TestCase):
def test_basic_nonsvd(self):
# Smoketest the non-svd norms
A = array([[1.0, 0, 1], [0, -2.0, 0], [0, 0, 3.0]])
assert_almost_equal(linalg.cond(A, inf), 4)
assert_almost_equal(linalg.cond(A, -inf), 2 / 3)
assert_almost_equal(linalg.cond(A, 1), 4)
assert_almost_equal(linalg.cond(A, -1), 0.5)
assert_almost_equal(linalg.cond(A, "fro"), np.sqrt(265 / 12))
def test_singular(self):
# Singular matrices have infinite condition number for
# positive norms, and negative norms shouldn't raise
# exceptions
As = [np.zeros((2, 2)), np.ones((2, 2))]
p_pos = [None, 1, 2, "fro"]
p_neg = [-1, -2]
for A, p in itertools.product(As, p_pos):
# Inversion may not hit exact infinity, so just check the
# number is large
assert_(linalg.cond(A, p) > 1e15)
for A, p in itertools.product(As, p_neg):
linalg.cond(A, p)
@skip(reason="NP_VER: fails on CI") # (
# True, run=False, reason="Platform/LAPACK-dependent failure, see gh-18914"
# )
def test_nan(self):
# nans should be passed through, not converted to infs
ps = [None, 1, -1, 2, -2, "fro"]
p_pos = [None, 1, 2, "fro"]
A = np.ones((2, 2))
A[0, 1] = np.nan
for p in ps:
c = linalg.cond(A, p)
assert_(isinstance(c, np.float64))
assert_(np.isnan(c))
A = np.ones((3, 2, 2))
A[1, 0, 1] = np.nan
for p in ps:
c = linalg.cond(A, p)
assert_(np.isnan(c[1]))
if p in p_pos:
assert_(c[0] > 1e15)
assert_(c[2] > 1e15)
else:
assert_(not np.isnan(c[0]))
assert_(not np.isnan(c[2]))
def test_stacked_singular(self):
# Check behavior when only some of the stacked matrices are
# singular
np.random.seed(1234)
A = np.random.rand(2, 2, 2, 2)
A[0, 0] = 0
A[1, 1] = 0
for p in (None, 1, 2, "fro", -1, -2):
c = linalg.cond(A, p)
assert_equal(c[0, 0], np.inf)
assert_equal(c[1, 1], np.inf)
assert_(np.isfinite(c[0, 1]))
assert_(np.isfinite(c[1, 0]))
class PinvCases(
LinalgSquareTestCase,
LinalgNonsquareTestCase,
LinalgGeneralizedSquareTestCase,
LinalgGeneralizedNonsquareTestCase,
):
def do(self, a, b, tags):
a_ginv = linalg.pinv(a)
# `a @ a_ginv == I` does not hold if a is singular
dot = dot_generalized
assert_almost_equal(
dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11
)
assert_(consistent_subclass(a_ginv, a))
class TestPinv(PinvCases, TestCase):
pass
class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
def do(self, a, b, tags):
a_ginv = linalg.pinv(a, hermitian=True)
# `a @ a_ginv == I` does not hold if a is singular
dot = dot_generalized
assert_almost_equal(
dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11
)
assert_(consistent_subclass(a_ginv, a))
class TestPinvHermitian(PinvHermitianCases, TestCase):
pass
class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
d = linalg.det(a)
(s, ld) = linalg.slogdet(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, np.prod(ev, axis=-1))
assert_almost_equal(s * np.exp(ld), np.prod(ev, axis=-1), single_decimal=5)
s = np.atleast_1d(s)
ld = np.atleast_1d(ld)
m = s != 0
assert_almost_equal(np.abs(s[m]), 1)
assert_equal(ld[~m], -inf)
@instantiate_parametrized_tests
class TestDet(DetCases, TestCase):
def test_zero(self):
# NB: comment out tests of type(det) == double : we return zero-dim arrays
assert_equal(linalg.det([[0.0]]), 0.0)
# assert_equal(type(linalg.det([[0.0]])), double)
assert_equal(linalg.det([[0.0j]]), 0.0)
# assert_equal(type(linalg.det([[0.0j]])), cdouble)
assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
# assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
# assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
# assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
# assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(np.linalg.det(x).dtype, dtype)
ph, s = np.linalg.slogdet(x)
assert_equal(s.dtype, get_real_dtype(dtype))
assert_equal(ph.dtype, dtype)
def test_0_size(self):
a = np.zeros((0, 0), dtype=np.complex64)
res = linalg.det(a)
assert_equal(res, 1.0)
assert_(res.dtype.type is np.complex64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.complex64)
assert_(res[1].dtype.type is np.float32)
a = np.zeros((0, 0), dtype=np.float64)
res = linalg.det(a)
assert_equal(res, 1.0)
assert_(res.dtype.type is np.float64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.float64)
assert_(res[1].dtype.type is np.float64)
class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase):
def do(self, a, b, tags):
arr = np.asarray(a)
m, n = arr.shape
u, s, vt = linalg.svd(a, False)
x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
if m == 0:
assert_((x == 0).all())
if m <= n:
assert_almost_equal(b, dot(a, x), single_decimal=5)
assert_equal(rank, m)
else:
assert_equal(rank, n)
# assert_almost_equal(sv, sv.__array_wrap__(s))
if rank == n and m > n:
expect_resids = (np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
expect_resids = np.asarray(expect_resids)
if np.asarray(b).ndim == 1:
expect_resids = expect_resids.reshape(
1,
)
assert_equal(residuals.shape, expect_resids.shape)
else:
expect_resids = np.array([]) # .view(type(x))
assert_almost_equal(residuals, expect_resids, single_decimal=5)
assert_(np.issubdtype(residuals.dtype, np.floating))
assert_(consistent_subclass(x, b))
assert_(consistent_subclass(residuals, b))
@instantiate_parametrized_tests
class TestLstsq(LstsqCases, TestCase):
@xpassIfTorchDynamo # (reason="Lstsq: we use the future default =None")
def test_future_rcond(self):
a = np.array(
[
[0.0, 1.0, 0.0, 1.0, 2.0, 0.0],
[0.0, 2.0, 0.0, 0.0, 1.0, 0.0],
[1.0, 0.0, 1.0, 0.0, 0.0, 4.0],
[0.0, 0.0, 0.0, 2.0, 3.0, 0.0],
]
).T
b = np.array([1, 0, 0, 0, 0, 0])
with suppress_warnings() as sup:
w = sup.record(FutureWarning, "`rcond` parameter will change")
x, residuals, rank, s = linalg.lstsq(a, b)
assert_(rank == 4)
x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
assert_(rank == 4)
x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
assert_(rank == 3)
# Warning should be raised exactly once (first command)
assert_(len(w) == 1)
@parametrize(
"m, n, n_rhs",
[
(4, 2, 2),
(0, 4, 1),
(0, 4, 2),
(4, 0, 1),
(4, 0, 2),
# (4, 2, 0), # Intel MKL ERROR: Parameter 4 was incorrect on entry to DLALSD.
(0, 0, 0),
],
)
def test_empty_a_b(self, m, n, n_rhs):
a = np.arange(m * n).reshape(m, n)
b = np.ones((m, n_rhs))
x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
if m == 0:
assert_((x == 0).all())
assert_equal(x.shape, (n, n_rhs))
assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
if m > n and n_rhs > 0:
# residuals are exactly the squared norms of b's columns
r = b - np.dot(a, x)
assert_almost_equal(residuals, (r * r).sum(axis=-2))
assert_equal(rank, min(m, n))
assert_equal(s.shape, (min(m, n),))
def test_incompatible_dims(self):
# use modified version of docstring example
x = np.array([0, 1, 2, 3])
y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
A = np.vstack([x, np.ones(len(x))]).T
# with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
with assert_raises((RuntimeError, LinAlgError)):
linalg.lstsq(A, y, rcond=None)
# @xfail #(reason="no block()")
@skip # FIXME: otherwise fails in setUp calling np.block
@instantiate_parametrized_tests
class TestMatrixPower(TestCase):
def setUp(self):
self.rshft_0 = np.eye(4)
self.rshft_1 = self.rshft_0[[3, 0, 1, 2]]
self.rshft_2 = self.rshft_0[[2, 3, 0, 1]]
self.rshft_3 = self.rshft_0[[1, 2, 3, 0]]
self.rshft_all = [self.rshft_0, self.rshft_1, self.rshft_2, self.rshft_3]
self.noninv = array([[1, 0], [0, 0]])
self.stacked = np.block([[[self.rshft_0]]] * 2)
# FIXME the 'e' dtype might work in future
self.dtnoinv = [object, np.dtype("e"), np.dtype("g"), np.dtype("G")]
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_large_power(self, dt):
rshft = self.rshft_1.astype(dt)
assert_equal(matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0)
assert_equal(matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1)
assert_equal(matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2)
assert_equal(matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3)
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_power_is_zero(self, dt):
def tz(M):
mz = matrix_power(M, 0)
assert_equal(mz, identity_like_generalized(M))
assert_equal(mz.dtype, M.dtype)
for mat in self.rshft_all:
tz(mat.astype(dt))
if dt != object:
tz(self.stacked.astype(dt))
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_power_is_one(self, dt):
def tz(mat):
mz = matrix_power(mat, 1)
assert_equal(mz, mat)
assert_equal(mz.dtype, mat.dtype)
for mat in self.rshft_all:
tz(mat.astype(dt))
if dt != object:
tz(self.stacked.astype(dt))
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_power_is_two(self, dt):
def tz(mat):
mz = matrix_power(mat, 2)
mmul = matmul if mat.dtype != object else dot
assert_equal(mz, mmul(mat, mat))
assert_equal(mz.dtype, mat.dtype)
for mat in self.rshft_all:
tz(mat.astype(dt))
if dt != object:
tz(self.stacked.astype(dt))
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_power_is_minus_one(self, dt):
def tz(mat):
invmat = matrix_power(mat, -1)
mmul = matmul if mat.dtype != object else dot
assert_almost_equal(mmul(invmat, mat), identity_like_generalized(mat))
for mat in self.rshft_all:
if dt not in self.dtnoinv:
tz(mat.astype(dt))
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_exceptions_bad_power(self, dt):
mat = self.rshft_0.astype(dt)
assert_raises(TypeError, matrix_power, mat, 1.5)
assert_raises(TypeError, matrix_power, mat, [1])
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_exceptions_non_square(self, dt):
assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1)
@skipif(IS_WASM, reason="fp errors don't work in wasm")
@parametrize("dt", [np.dtype(c) for c in "?bBhilefdFD"])
def test_exceptions_not_invertible(self, dt):
if dt in self.dtnoinv:
return
mat = self.noninv.astype(dt)
assert_raises(LinAlgError, matrix_power, mat, -1)
class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase):
def do(self, a, b, tags):
pytest.xfail(reason="sort complex")
# note that eigenvalue arrays returned by eig must be sorted since
# their order isn't guaranteed.
ev = linalg.eigvalsh(a, "L")
evalues, evectors = linalg.eig(a)
evalues.sort(axis=-1)
assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
ev2 = linalg.eigvalsh(a, "U")
assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
@instantiate_parametrized_tests
class TestEigvalsh(TestCase):
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w = np.linalg.eigvalsh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
def test_invalid(self):
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, UPLO="lrong")
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, "lower")
assert_raises((RuntimeError, ValueError), np.linalg.eigvalsh, x, "upper")
def test_UPLO(self):
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w = np.linalg.eigvalsh(Klo)
assert_allclose(w, tgt, rtol=rtol)
# Check 'L'
w = np.linalg.eigvalsh(Klo, UPLO="L")
assert_allclose(w, tgt, rtol=rtol)
# Check 'l'
w = np.linalg.eigvalsh(Klo, UPLO="l")
assert_allclose(w, tgt, rtol=rtol)
# Check 'U'
w = np.linalg.eigvalsh(Kup, UPLO="U")
assert_allclose(w, tgt, rtol=rtol)
# Check 'u'
w = np.linalg.eigvalsh(Kup, UPLO="u")
assert_allclose(w, tgt, rtol=rtol)
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
# class ArraySubclass(np.ndarray):
# pass
a = np.zeros((0, 1, 1), dtype=np.int_) # .view(ArraySubclass)
res = linalg.eigvalsh(a)
assert_(res.dtype.type is np.float64)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64) # .view(ArraySubclass)
res = linalg.eigvalsh(a)
assert_(res.dtype.type is np.float32)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase):
def do(self, a, b, tags):
pytest.xfail(reason="sort complex")
# note that eigenvalue arrays returned by eig must be sorted since
# their order isn't guaranteed.
ev, evc = linalg.eigh(a)
evalues, evectors = linalg.eig(a)
evalues.sort(axis=-1)
assert_almost_equal(ev, evalues)
assert_allclose(
dot_generalized(a, evc),
np.asarray(ev)[..., None, :] * np.asarray(evc),
rtol=get_rtol(ev.dtype),
)
ev2, evc2 = linalg.eigh(a, "U")
assert_almost_equal(ev2, evalues)
assert_allclose(
dot_generalized(a, evc2),
np.asarray(ev2)[..., None, :] * np.asarray(evc2),
rtol=get_rtol(ev.dtype),
err_msg=repr(a),
)
@instantiate_parametrized_tests
class TestEigh(TestCase):
@parametrize("dtype", [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w, v = np.linalg.eigh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
assert_equal(v.dtype, dtype)
def test_invalid(self):
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
assert_raises((RuntimeError, ValueError), np.linalg.eigh, x, UPLO="lrong")
assert_raises((RuntimeError, ValueError), np.linalg.eigh, x, "lower")
assert_raises((RuntimeError, ValueError), np.linalg.eigh, x, "upper")
def test_UPLO(self):
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w, v = np.linalg.eigh(Klo)
assert_allclose(w, tgt, rtol=rtol)
# Check 'L'
w, v = np.linalg.eigh(Klo, UPLO="L")
assert_allclose(w, tgt, rtol=rtol)
# Check 'l'
w, v = np.linalg.eigh(Klo, UPLO="l")
assert_allclose(w, tgt, rtol=rtol)
# Check 'U'
w, v = np.linalg.eigh(Kup, UPLO="U")
assert_allclose(w, tgt, rtol=rtol)
# Check 'u'
w, v = np.linalg.eigh(Kup, UPLO="u")
assert_allclose(w, tgt, rtol=rtol)
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
# class ArraySubclass(np.ndarray):
# pass
a = np.zeros((0, 1, 1), dtype=np.int_) # .view(ArraySubclass)
res, res_v = linalg.eigh(a)
assert_(res_v.dtype.type is np.float64)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res_v.shape)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64) # .view(ArraySubclass)
res, res_v = linalg.eigh(a)
assert_(res_v.dtype.type is np.complex64)
assert_(res.dtype.type is np.float32)
assert_equal(a.shape, res_v.shape)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
class _TestNormBase:
dt = None
dec = None
@staticmethod
def check_dtype(x, res):
if issubclass(x.dtype.type, np.inexact):
assert_equal(res.dtype, x.real.dtype)
else:
# For integer input, don't have to test float precision of output.
assert_(issubclass(res.dtype.type, np.floating))
class _TestNormGeneral(_TestNormBase):
def test_empty(self):
assert_equal(norm([]), 0.0)
assert_equal(norm(array([], dtype=self.dt)), 0.0)
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
def test_vector_return_type(self):
a = np.array([1, 0, 1])
exact_types = "Bbhil" # np.typecodes["AllInteger"]
inexact_types = "efdFD" # np.typecodes["AllFloat"]
all_types = exact_types + inexact_types
for each_type in all_types:
at = a.astype(each_type)
if each_type == np.dtype("float16"):
# FIXME: move looping to parametrize, add decorators=[xfail]
# pytest.xfail("float16**float64 => float64 (?)")
raise SkipTest("float16**float64 => float64 (?)")
an = norm(at, -np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 0.0)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
self.check_dtype(at, an)
assert_almost_equal(an, 0.0)
an = norm(at, 0)
self.check_dtype(at, an)
assert_almost_equal(an, 2)
an = norm(at, 1)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, 2)
self.check_dtype(at, an)
assert_almost_equal(an, an.dtype.type(2.0) ** an.dtype.type(1.0 / 2.0))
an = norm(at, 4)
self.check_dtype(at, an)
assert_almost_equal(an, an.dtype.type(2.0) ** an.dtype.type(1.0 / 4.0))
an = norm(at, np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 1.0)
def test_vector(self):
a = [1, 2, 3, 4]
b = [-1, -2, -3, -4]
c = [-1, 2, -3, 4]
def _test(v):
np.testing.assert_almost_equal(norm(v), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, inf), 4.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -inf), 1.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 1), 10.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25, decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 2), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(
norm(v, -2), ((205.0 / 144) ** -0.5), decimal=self.dec
)
np.testing.assert_almost_equal(norm(v, 0), 4, decimal=self.dec)
for v in (
a,
b,
c,
):
_test(v)
for v in (
array(a, dtype=self.dt),
array(b, dtype=self.dt),
array(c, dtype=self.dt),
):
_test(v)
def test_axis(self):
# Vector norms.
# Compare the use of `axis` with computing the norm of each row
# or column separately.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
# Matrix norms.
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
nd = B.ndim
for order in [None, -2, 2, -1, 1, np.inf, -np.inf, "fro"]:
for axis in itertools.combinations(range(-nd, nd), 2):
row_axis, col_axis = axis
if row_axis < 0:
row_axis += nd
if col_axis < 0:
col_axis += nd
if row_axis == col_axis:
assert_raises(
(RuntimeError, ValueError), norm, B, ord=order, axis=axis
)
else:
n = norm(B, ord=order, axis=axis)
# The logic using k_index only works for nd = 3.
# This has to be changed if nd is increased.
k_index = nd - (row_axis + col_axis)
if row_axis < col_axis:
expected = [
norm(B[:].take(k, axis=k_index), ord=order)
for k in range(B.shape[k_index])
]
else:
expected = [
norm(B[:].take(k, axis=k_index).T, ord=order)
for k in range(B.shape[k_index])
]
assert_almost_equal(n, expected)
def test_keepdims(self):
A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
allclose_err = "order {0}, axis = {1}"
shape_err = "Shape mismatch found {0}, expected {1}, order={2}, axis={3}"
# check the order=None, axis=None case
expected = norm(A, ord=None, axis=None)
found = norm(A, ord=None, axis=None, keepdims=True)
assert_allclose(
np.squeeze(found), expected, err_msg=allclose_err.format(None, None)
)
expected_shape = (1, 1, 1)
assert_(
found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, None, None),
)
# Vector norms.
for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
for k in range(A.ndim):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(
np.squeeze(found), expected, err_msg=allclose_err.format(order, k)
)
expected_shape = list(A.shape)
expected_shape[k] = 1
expected_shape = tuple(expected_shape)
assert_(
found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k),
)
# Matrix norms.
for order in [None, -2, 2, -1, 1, np.inf, -np.inf, "fro", "nuc"]:
for k in itertools.permutations(range(A.ndim), 2):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(
np.squeeze(found), expected, err_msg=allclose_err.format(order, k)
)
expected_shape = list(A.shape)
expected_shape[k[0]] = 1
expected_shape[k[1]] = 1
expected_shape = tuple(expected_shape)
assert_(
found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k),
)
class _TestNorm2D(_TestNormBase):
# Define the part for 2d arrays separately, so we can subclass this
# and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg.
def test_matrix_empty(self):
assert_equal(norm(np.array([[]], dtype=self.dt)), 0.0)
def test_matrix_return_type(self):
a = np.array([[1, 0, 1], [0, 1, 1]])
exact_types = "Bbhil" # np.typecodes["AllInteger"]
# float32, complex64, float64, complex128 types are the only types
# allowed by `linalg`, which performs the matrix operations used
# within `norm`.
inexact_types = "fdFD"
all_types = exact_types + inexact_types
for each_type in all_types:
at = a.astype(each_type)
an = norm(at, -np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
self.check_dtype(at, an)
assert_almost_equal(an, 1.0)
an = norm(at, 1)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, 2)
self.check_dtype(at, an)
assert_almost_equal(an, 3.0 ** (1.0 / 2.0))
an = norm(at, -2)
self.check_dtype(at, an)
assert_almost_equal(an, 1.0)
an = norm(at, np.inf)
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, "fro")
self.check_dtype(at, an)
assert_almost_equal(an, 2.0)
an = norm(at, "nuc")
self.check_dtype(at, an)
# Lower bar needed to support low precision floats.
# They end up being off by 1 in the 7th place.
np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)
def test_matrix_2x2(self):
A = np.array([[1, 3], [5, 7]], dtype=self.dt)
assert_almost_equal(norm(A), 84**0.5)
assert_almost_equal(norm(A, "fro"), 84**0.5)
assert_almost_equal(norm(A, "nuc"), 10.0)
assert_almost_equal(norm(A, inf), 12.0)
assert_almost_equal(norm(A, -inf), 4.0)
assert_almost_equal(norm(A, 1), 10.0)
assert_almost_equal(norm(A, -1), 6.0)
assert_almost_equal(norm(A, 2), 9.1231056256176615)
assert_almost_equal(norm(A, -2), 0.87689437438234041)
assert_raises((RuntimeError, ValueError), norm, A, "nofro")
assert_raises((RuntimeError, ValueError), norm, A, -3)
assert_raises((RuntimeError, ValueError), norm, A, 0)
def test_matrix_3x3(self):
# This test has been added because the 2x2 example
# happened to have equal nuclear norm and induced 1-norm.
# The 1/10 scaling factor accommodates the absolute tolerance
# used in assert_almost_equal.
A = (1 / 10) * np.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
assert_almost_equal(norm(A), (1 / 10) * 89**0.5)
assert_almost_equal(norm(A, "fro"), (1 / 10) * 89**0.5)
assert_almost_equal(norm(A, "nuc"), 1.3366836911774836)
assert_almost_equal(norm(A, inf), 1.1)
assert_almost_equal(norm(A, -inf), 0.6)
assert_almost_equal(norm(A, 1), 1.0)
assert_almost_equal(norm(A, -1), 0.4)
assert_almost_equal(norm(A, 2), 0.88722940323461277)
assert_almost_equal(norm(A, -2), 0.19456584790481812)
def test_bad_args(self):
# Check that bad arguments raise the appropriate exceptions.
A = np.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
# Using `axis=<integer>` or passing in a 1-D array implies vector
# norms are being computed, so also using `ord='fro'`
# or `ord='nuc'` or any other string raises a ValueError.
assert_raises((RuntimeError, ValueError), norm, A, "fro", 0)
assert_raises((RuntimeError, ValueError), norm, A, "nuc", 0)
assert_raises((RuntimeError, ValueError), norm, [3, 4], "fro", None)
assert_raises((RuntimeError, ValueError), norm, [3, 4], "nuc", None)
assert_raises((RuntimeError, ValueError), norm, [3, 4], "test", None)
# Similarly, norm should raise an exception when ord is any finite
# number other than 1, 2, -1 or -2 when computing matrix norms.
for order in [0, 3]:
assert_raises((RuntimeError, ValueError), norm, A, order, None)
assert_raises((RuntimeError, ValueError), norm, A, order, (0, 1))
assert_raises((RuntimeError, ValueError), norm, B, order, (1, 2))
# Invalid axis
assert_raises((IndexError, np.AxisError), norm, B, None, 3)
assert_raises((IndexError, np.AxisError), norm, B, None, (2, 3))
assert_raises((RuntimeError, ValueError), norm, B, None, (0, 1, 2))
class _TestNorm(_TestNorm2D, _TestNormGeneral):
pass
class TestNorm_NonSystematic(TestCase):
def test_intmin(self):
# Non-regression test: p-norm of signed integer would previously do
# float cast and abs in the wrong order.
x = np.array([-(2**31)], dtype=np.int32)
old_assert_almost_equal(norm(x, ord=3), 2**31, decimal=5)
# Separate definitions so we can use them for matrix tests.
class _TestNormDoubleBase(_TestNormBase, TestCase):
dt = np.double
dec = 12
class _TestNormSingleBase(_TestNormBase, TestCase):
dt = np.float32
dec = 6
class _TestNormInt64Base(_TestNormBase, TestCase):
dt = np.int64
dec = 12
class TestNormDouble(_TestNorm, _TestNormDoubleBase, TestCase):
pass
class TestNormSingle(_TestNorm, _TestNormSingleBase, TestCase):
pass
class TestNormInt64(_TestNorm, _TestNormInt64Base):
pass
class TestMatrixRank(TestCase):
def test_matrix_rank(self):
# Full rank matrix
assert_equal(4, matrix_rank(np.eye(4)))
# rank deficient matrix
I = np.eye(4)
I[-1, -1] = 0.0
assert_equal(matrix_rank(I), 3)
# All zeros - zero rank
assert_equal(matrix_rank(np.zeros((4, 4))), 0)
# 1 dimension - rank 1 unless all 0
assert_equal(matrix_rank([1, 0, 0, 0]), 1)
assert_equal(matrix_rank(np.zeros((4,))), 0)
# accepts array-like
assert_equal(matrix_rank([1]), 1)
# greater than 2 dimensions treated as stacked matrices
ms = np.array([I, np.eye(4), np.zeros((4, 4))])
assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
# works on scalar
assert_equal(matrix_rank(1), 1)
def test_symmetric_rank(self):
assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
# rank deficient matrix
I = np.eye(4)
I[-1, -1] = 0.0
assert_equal(3, matrix_rank(I, hermitian=True))
# manually supplied tolerance
I[-1, -1] = 1e-8
assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
def test_reduced_rank(self):
# Test matrices with reduced rank
# rng = np.random.RandomState(20120714)
np.random.seed(20120714)
for i in range(100):
# Make a rank deficient matrix
X = np.random.normal(size=(40, 10))
X[:, 0] = X[:, 1] + X[:, 2]
# Assert that matrix_rank detected deficiency
assert_equal(matrix_rank(X), 9)
X[:, 3] = X[:, 4] + X[:, 5]
assert_equal(matrix_rank(X), 8)
@instantiate_parametrized_tests
class TestQR(TestCase):
def check_qr(self, a):
# This test expects the argument `a` to be an ndarray or
# a subclass of an ndarray of inexact type.
a_type = type(a)
a_dtype = a.dtype
m, n = a.shape
k = min(m, n)
# mode == 'complete'
q, r = linalg.qr(a, mode="complete")
assert_(q.dtype == a_dtype)
assert_(r.dtype == a_dtype)
assert_(isinstance(q, a_type))
assert_(isinstance(r, a_type))
assert_(q.shape == (m, m))
assert_(r.shape == (m, n))
assert_almost_equal(dot(q, r), a, single_decimal=5)
assert_almost_equal(dot(q.T.conj(), q), np.eye(m))
assert_almost_equal(np.triu(r), r)
# mode == 'reduced'
q1, r1 = linalg.qr(a, mode="reduced")
assert_(q1.dtype == a_dtype)
assert_(r1.dtype == a_dtype)
assert_(isinstance(q1, a_type))
assert_(isinstance(r1, a_type))
assert_(q1.shape == (m, k))
assert_(r1.shape == (k, n))
assert_almost_equal(dot(q1, r1), a, single_decimal=5)
assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
assert_almost_equal(np.triu(r1), r1)
# mode == 'r'
r2 = linalg.qr(a, mode="r")
assert_(r2.dtype == a_dtype)
assert_(isinstance(r2, a_type))
assert_almost_equal(r2, r1)
@xpassIfTorchDynamo # (reason="torch does not allow qr(..., mode='raw'")
@parametrize("m, n", [(3, 0), (0, 3), (0, 0)])
def test_qr_empty(self, m, n):
k = min(m, n)
a = np.empty((m, n))
self.check_qr(a)
h, tau = np.linalg.qr(a, mode="raw")
assert_equal(h.dtype, np.double)
assert_equal(tau.dtype, np.double)
assert_equal(h.shape, (n, m))
assert_equal(tau.shape, (k,))
@xpassIfTorchDynamo # (reason="torch does not allow qr(..., mode='raw'")
def test_mode_raw(self):
# The factorization is not unique and varies between libraries,
# so it is not possible to check against known values. Functional
# testing is a possibility, but awaits the exposure of more
# of the functions in lapack_lite. Consequently, this test is
# very limited in scope. Note that the results are in FORTRAN
# order, hence the h arrays are transposed.
a = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
# Test double
h, tau = linalg.qr(a, mode="raw")
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (2, 3))
assert_(tau.shape == (2,))
h, tau = linalg.qr(a.T, mode="raw")
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (3, 2))
assert_(tau.shape == (2,))
def test_mode_all_but_economic(self):
a = np.array([[1, 2], [3, 4]])
b = np.array([[1, 2], [3, 4], [5, 6]])
for dt in "fd":
m1 = a.astype(dt)
m2 = b.astype(dt)
self.check_qr(m1)
self.check_qr(m2)
self.check_qr(m2.T)
for dt in "fd":
m1 = 1 + 1j * a.astype(dt)
m2 = 1 + 1j * b.astype(dt)
self.check_qr(m1)
self.check_qr(m2)
self.check_qr(m2.T)
def check_qr_stacked(self, a):
# This test expects the argument `a` to be an ndarray or
# a subclass of an ndarray of inexact type.
a_type = type(a)
a_dtype = a.dtype
m, n = a.shape[-2:]
k = min(m, n)
# mode == 'complete'
q, r = linalg.qr(a, mode="complete")
assert_(q.dtype == a_dtype)
assert_(r.dtype == a_dtype)
assert_(isinstance(q, a_type))
assert_(isinstance(r, a_type))
assert_(q.shape[-2:] == (m, m))
assert_(r.shape[-2:] == (m, n))
assert_almost_equal(matmul(q, r), a, single_decimal=5)
I_mat = np.identity(q.shape[-1])
stack_I_mat = np.broadcast_to(I_mat, q.shape[:-2] + (q.shape[-1],) * 2)
assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat)
assert_almost_equal(np.triu(r[..., :, :]), r)
# mode == 'reduced'
q1, r1 = linalg.qr(a, mode="reduced")
assert_(q1.dtype == a_dtype)
assert_(r1.dtype == a_dtype)
assert_(isinstance(q1, a_type))
assert_(isinstance(r1, a_type))
assert_(q1.shape[-2:] == (m, k))
assert_(r1.shape[-2:] == (k, n))
assert_almost_equal(matmul(q1, r1), a, single_decimal=5)
I_mat = np.identity(q1.shape[-1])
stack_I_mat = np.broadcast_to(I_mat, q1.shape[:-2] + (q1.shape[-1],) * 2)
assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1), stack_I_mat)
assert_almost_equal(np.triu(r1[..., :, :]), r1)
# mode == 'r'
r2 = linalg.qr(a, mode="r")
assert_(r2.dtype == a_dtype)
assert_(isinstance(r2, a_type))
assert_almost_equal(r2, r1)
@skipif(numpy.__version__ < "1.22", reason="NP_VER: fails on CI with numpy 1.21.2")
@parametrize("size", [(3, 4), (4, 3), (4, 4), (3, 0), (0, 3)])
@parametrize("outer_size", [(2, 2), (2,), (2, 3, 4)])
@parametrize("dt", [np.single, np.double, np.csingle, np.cdouble])
def test_stacked_inputs(self, outer_size, size, dt):
A = np.random.normal(size=outer_size + size).astype(dt)
B = np.random.normal(size=outer_size + size).astype(dt)
self.check_qr_stacked(A)
self.check_qr_stacked(A + 1.0j * B)
@instantiate_parametrized_tests
class TestCholesky(TestCase):
# TODO: are there no other tests for cholesky?
@parametrize("shape", [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)])
@parametrize("dtype", (np.float32, np.float64, np.complex64, np.complex128))
def test_basic_property(self, shape, dtype):
# Check A = L L^H
np.random.seed(1)
a = np.random.randn(*shape)
if np.issubdtype(dtype, np.complexfloating):
a = a + 1j * np.random.randn(*shape)
t = list(range(len(shape)))
t[-2:] = -1, -2
a = np.matmul(a.transpose(t).conj(), a)
a = np.asarray(a, dtype=dtype)
c = np.linalg.cholesky(a)
b = np.matmul(c, c.transpose(t).conj())
atol = 500 * a.shape[0] * np.finfo(dtype).eps
assert_allclose(b, a, atol=atol, err_msg=f"{shape} {dtype}\n{a}\n{c}")
def test_0_size(self):
# class ArraySubclass(np.ndarray):
# pass
a = np.zeros((0, 1, 1), dtype=np.int_) # .view(ArraySubclass)
res = linalg.cholesky(a)
assert_equal(a.shape, res.shape)
assert_(res.dtype.type is np.float64)
# for documentation purpose:
assert_(isinstance(res, np.ndarray))
a = np.zeros((1, 0, 0), dtype=np.complex64) # .view(ArraySubclass)
res = linalg.cholesky(a)
assert_equal(a.shape, res.shape)
assert_(res.dtype.type is np.complex64)
assert_(isinstance(res, np.ndarray))
class TestMisc(TestCase):
@xpassIfTorchDynamo # (reason="endianness")
def test_byteorder_check(self):
# Byte order check should pass for native order
if sys.byteorder == "little":
native = "<"
else:
native = ">"
for dtt in (np.float32, np.float64):
arr = np.eye(4, dtype=dtt)
n_arr = arr.newbyteorder(native)
sw_arr = arr.newbyteorder("S").byteswap()
assert_equal(arr.dtype.byteorder, "=")
for routine in (linalg.inv, linalg.det, linalg.pinv):
# Normal call
res = routine(arr)
# Native but not '='
assert_array_equal(res, routine(n_arr))
# Swapped
assert_array_equal(res, routine(sw_arr))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_generalized_raise_multiloop(self):
# It should raise an error even if the error doesn't occur in the
# last iteration of the ufunc inner loop
invertible = np.array([[1, 2], [3, 4]])
non_invertible = np.array([[1, 1], [1, 1]])
x = np.zeros([4, 4, 2, 2])[1::2]
x[...] = invertible
x[0, 0] = non_invertible
assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
def test_xerbla_override(self):
# Check that our xerbla has been successfully linked in. If it is not,
# the default xerbla routine is called, which prints a message to stdout
# and may, or may not, abort the process depending on the LAPACK package.
XERBLA_OK = 255
try:
pid = os.fork()
except (OSError, AttributeError):
# fork failed, or not running on POSIX
raise SkipTest("Not POSIX or fork failed.") # noqa: B904
if pid == 0:
# child; close i/o file handles
os.close(1)
os.close(0)
# Avoid producing core files.
import resource
resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
# These calls may abort.
try:
np.linalg.lapack_lite.xerbla()
except ValueError:
pass
except Exception:
os._exit(os.EX_CONFIG)
try:
a = np.array([[1.0]])
np.linalg.lapack_lite.dorgqr(
1, 1, 1, a, 0, a, a, 0, 0
) # <- invalid value
except ValueError as e:
if "DORGQR parameter number 5" in str(e):
# success, reuse error code to mark success as
# FORTRAN STOP returns as success.
os._exit(XERBLA_OK)
# Did not abort, but our xerbla was not linked in.
os._exit(os.EX_CONFIG)
else:
# parent
pid, status = os.wait()
if os.WEXITSTATUS(status) != XERBLA_OK:
raise SkipTest("Numpy xerbla not linked in.")
@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
@slow
def test_sdot_bug_8577(self):
# Regression test that loading certain other libraries does not
# result to wrong results in float32 linear algebra.
#
# There's a bug gh-8577 on OSX that can trigger this, and perhaps
# there are also other situations in which it occurs.
#
# Do the check in a separate process.
bad_libs = ["PyQt5.QtWidgets", "IPython"]
template = textwrap.dedent(
"""
import sys
{before}
try:
import {bad_lib}
except ImportError:
sys.exit(0)
{after}
x = np.ones(2, dtype=np.float32)
sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
"""
)
for bad_lib in bad_libs:
code = template.format(
before="import numpy as np", after="", bad_lib=bad_lib
)
subprocess.check_call([sys.executable, "-c", code])
# Swapped import order
code = template.format(
after="import numpy as np", before="", bad_lib=bad_lib
)
subprocess.check_call([sys.executable, "-c", code])
class TestMultiDot(TestCase):
def test_basic_function_with_three_arguments(self):
# multi_dot with three arguments uses a fast hand coded algorithm to
# determine the optimal order. Therefore test it separately.
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
def test_basic_function_with_two_arguments(self):
# separate code path with two arguments
A = np.random.random((6, 2))
B = np.random.random((2, 6))
assert_almost_equal(multi_dot([A, B]), A.dot(B))
assert_almost_equal(multi_dot([A, B]), np.dot(A, B))
def test_basic_function_with_dynamic_programming_optimization(self):
# multi_dot with four or more arguments uses the dynamic programming
# optimization and therefore deserve a separate
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 1))
assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
def test_vector_as_first_argument(self):
# The first argument can be 1-D
A1d = np.random.random(2) # 1-D
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 2))
# the result should be 1-D
assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
def test_vector_as_last_argument(self):
# The last argument can be 1-D
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D1d = np.random.random(2) # 1-D
# the result should be 1-D
assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
def test_vector_as_first_and_last_argument(self):
# The first and last arguments can be 1-D
A1d = np.random.random(2) # 1-D
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D1d = np.random.random(2) # 1-D
# the result should be a scalar
assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
def test_three_arguments_and_out(self):
# multi_dot with three arguments uses a fast hand coded algorithm to
# determine the optimal order. Therefore test it separately.
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
out = np.zeros((6, 2))
ret = multi_dot([A, B, C], out=out)
assert out is ret
assert_almost_equal(out, A.dot(B).dot(C))
assert_almost_equal(out, np.dot(A, np.dot(B, C)))
def test_two_arguments_and_out(self):
# separate code path with two arguments
A = np.random.random((6, 2))
B = np.random.random((2, 6))
out = np.zeros((6, 6))
ret = multi_dot([A, B], out=out)
assert out is ret
assert_almost_equal(out, A.dot(B))
assert_almost_equal(out, np.dot(A, B))
def test_dynamic_programming_optimization_and_out(self):
# multi_dot with four or more arguments uses the dynamic programming
# optimization and therefore deserve a separate test
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 1))
out = np.zeros((6, 1))
ret = multi_dot([A, B, C, D], out=out)
assert out is ret
assert_almost_equal(out, A.dot(B).dot(C).dot(D))
def test_dynamic_programming_logic(self):
# Test for the dynamic programming part
# This test is directly taken from Cormen page 376.
arrays = [
np.random.random((30, 35)),
np.random.random((35, 15)),
np.random.random((15, 5)),
np.random.random((5, 10)),
np.random.random((10, 20)),
np.random.random((20, 25)),
]
m_expected = np.array(
[
[0.0, 15750.0, 7875.0, 9375.0, 11875.0, 15125.0],
[0.0, 0.0, 2625.0, 4375.0, 7125.0, 10500.0],
[0.0, 0.0, 0.0, 750.0, 2500.0, 5375.0],
[0.0, 0.0, 0.0, 0.0, 1000.0, 3500.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 5000.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
]
)
s_expected = np.array(
[
[0, 1, 1, 3, 3, 3],
[0, 0, 2, 3, 3, 3],
[0, 0, 0, 3, 3, 3],
[0, 0, 0, 0, 4, 5],
[0, 0, 0, 0, 0, 5],
[0, 0, 0, 0, 0, 0],
],
dtype=int,
)
s_expected -= 1 # Cormen uses 1-based index, python does not.
s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
# Only the upper triangular part (without the diagonal) is interesting.
assert_almost_equal(np.triu(s[:-1, 1:]), np.triu(s_expected[:-1, 1:]))
assert_almost_equal(np.triu(m), np.triu(m_expected))
def test_too_few_input_arrays(self):
assert_raises((RuntimeError, ValueError), multi_dot, [])
assert_raises((RuntimeError, ValueError), multi_dot, [np.random.random((3, 3))])
@instantiate_parametrized_tests
class TestTensorinv(TestCase):
@parametrize(
"arr, ind",
[
(np.ones((4, 6, 8, 2)), 2),
(np.ones((3, 3, 2)), 1),
],
)
def test_non_square_handling(self, arr, ind):
with assert_raises((LinAlgError, RuntimeError)):
linalg.tensorinv(arr, ind=ind)
@parametrize(
"shape, ind",
[
# examples from docstring
((4, 6, 8, 3), 2),
((24, 8, 3), 1),
],
)
def test_tensorinv_shape(self, shape, ind):
a = np.eye(24).reshape(shape)
ainv = linalg.tensorinv(a=a, ind=ind)
expected = a.shape[ind:] + a.shape[:ind]
actual = ainv.shape
assert_equal(actual, expected)
@parametrize(
"ind",
[
0,
-2,
],
)
def test_tensorinv_ind_limit(self, ind):
a = np.eye(24).reshape(4, 6, 8, 3)
with assert_raises((ValueError, RuntimeError)):
linalg.tensorinv(a=a, ind=ind)
def test_tensorinv_result(self):
# mimic a docstring example
a = np.eye(24).reshape(24, 8, 3)
ainv = linalg.tensorinv(a, ind=1)
b = np.ones(24)
assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
@instantiate_parametrized_tests
class TestTensorsolve(TestCase):
@parametrize(
"a, axes",
[
(np.ones((4, 6, 8, 2)), None),
(np.ones((3, 3, 2)), (0, 2)),
],
)
def test_non_square_handling(self, a, axes):
with assert_raises((LinAlgError, RuntimeError)):
b = np.ones(a.shape[:2])
linalg.tensorsolve(a, b, axes=axes)
@skipif(numpy.__version__ < "1.22", reason="NP_VER: fails on CI with numpy 1.21.2")
@parametrize(
"shape",
[(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)],
)
def test_tensorsolve_result(self, shape):
a = np.random.randn(*shape)
b = np.ones(a.shape[:2])
x = np.linalg.tensorsolve(a, b)
assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)
class TestMisc2(TestCase):
@xpassIfTorchDynamo # (reason="TODO")
def test_unsupported_commontype(self):
# linalg gracefully handles unsupported type
arr = np.array([[1, -2], [2, 5]], dtype="float16")
# with assert_raises_regex(TypeError, "unsupported in linalg"):
with assert_raises(TypeError):
linalg.cholesky(arr)
# @slow
# @pytest.mark.xfail(not HAS_LAPACK64, run=False,
# reason="Numpy not compiled with 64-bit BLAS/LAPACK")
# @requires_memory(free_bytes=16e9)
@skip(reason="Bad memory reports lead to OOM in ci testing")
def test_blas64_dot(self):
n = 2**32
a = np.zeros([1, n], dtype=np.float32)
b = np.ones([1, 1], dtype=np.float32)
a[0, -1] = 1
c = np.dot(b, a)
assert_equal(c[0, -1], 1)
@skip(reason="lapack-lite specific")
@xfail # (
# not HAS_LAPACK64, reason="Numpy not compiled with 64-bit BLAS/LAPACK"
# )
def test_blas64_geqrf_lwork_smoketest(self):
# Smoke test LAPACK geqrf lwork call with 64-bit integers
dtype = np.float64
lapack_routine = np.linalg.lapack_lite.dgeqrf
m = 2**32 + 1
n = 2**32 + 1
lda = m
# Dummy arrays, not referenced by the lapack routine, so don't
# need to be of the right size
a = np.zeros([1, 1], dtype=dtype)
work = np.zeros([1], dtype=dtype)
tau = np.zeros([1], dtype=dtype)
# Size query
results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
assert_equal(results["info"], 0)
assert_equal(results["m"], m)
assert_equal(results["n"], m)
# Should result to an integer of a reasonable size
lwork = int(work.item())
assert_(2**32 < lwork < 2**42)
if __name__ == "__main__":
run_tests()
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
do
|
def do(self, a, b, tags):
x = linalg.solve(a, b)
assert_almost_equal(b, dot_generalized(a, x))
assert_(consistent_subclass(x, b))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_mode_all_but_economic
|
def test_mode_all_but_economic(self):
a = np.array([[1, 2], [3, 4]])
b = np.array([[1, 2], [3, 4], [5, 6]])
for dt in "fd":
m1 = a.astype(dt)
m2 = b.astype(dt)
self.check_qr(m1)
self.check_qr(m2)
self.check_qr(m2.T)
for dt in "fd":
m1 = 1 + 1j * a.astype(dt)
m2 = 1 + 1j * b.astype(dt)
self.check_qr(m1)
self.check_qr(m2)
self.check_qr(m2.T)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestQR(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_stacked_inputs
|
def test_stacked_inputs(self, outer_size, size, dt):
A = np.random.normal(size=outer_size + size).astype(dt)
B = np.random.normal(size=outer_size + size).astype(dt)
self.check_qr_stacked(A)
self.check_qr_stacked(A + 1.0j * B)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestQR(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_basic_property
|
def test_basic_property(self, shape, dtype):
# Check A = L L^H
np.random.seed(1)
a = np.random.randn(*shape)
if np.issubdtype(dtype, np.complexfloating):
a = a + 1j * np.random.randn(*shape)
t = list(range(len(shape)))
t[-2:] = -1, -2
a = np.matmul(a.transpose(t).conj(), a)
a = np.asarray(a, dtype=dtype)
c = np.linalg.cholesky(a)
b = np.matmul(c, c.transpose(t).conj())
atol = 500 * a.shape[0] * np.finfo(dtype).eps
assert_allclose(b, a, atol=atol, err_msg=f"{shape} {dtype}\n{a}\n{c}")
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
@instantiate_parametrized_tests
class TestCholesky(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_generalized_raise_multiloop
|
def test_generalized_raise_multiloop(self):
# It should raise an error even if the error doesn't occur in the
# last iteration of the ufunc inner loop
invertible = np.array([[1, 2], [3, 4]])
non_invertible = np.array([[1, 1], [1, 1]])
x = np.zeros([4, 4, 2, 2])[1::2]
x[...] = invertible
x[0, 0] = non_invertible
assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class TestMisc(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_sdot_bug_8577
|
def test_sdot_bug_8577(self):
# Regression test that loading certain other libraries does not
# result to wrong results in float32 linear algebra.
#
# There's a bug gh-8577 on OSX that can trigger this, and perhaps
# there are also other situations in which it occurs.
#
# Do the check in a separate process.
bad_libs = ["PyQt5.QtWidgets", "IPython"]
template = textwrap.dedent(
"""
import sys
{before}
try:
import {bad_lib}
except ImportError:
sys.exit(0)
{after}
x = np.ones(2, dtype=np.float32)
sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
"""
)
for bad_lib in bad_libs:
code = template.format(
before="import numpy as np", after="", bad_lib=bad_lib
)
subprocess.check_call([sys.executable, "-c", code])
# Swapped import order
code = template.format(
after="import numpy as np", before="", bad_lib=bad_lib
)
subprocess.check_call([sys.executable, "-c", code])
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
class TestMisc(TestCase):
import resource
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_basic_function_with_three_arguments
|
def test_basic_function_with_three_arguments(self):
# multi_dot with three arguments uses a fast hand coded algorithm to
# determine the optimal order. Therefore test it separately.
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMultiDot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_tensorinv_ind_limit
|
def test_tensorinv_ind_limit(self, ind):
a = np.eye(24).reshape(4, 6, 8, 3)
with assert_raises((ValueError, RuntimeError)):
linalg.tensorinv(a=a, ind=ind)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
@instantiate_parametrized_tests
class TestTensorinv(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_tensorinv_result
|
def test_tensorinv_result(self):
# mimic a docstring example
a = np.eye(24).reshape(24, 8, 3)
ainv = linalg.tensorinv(a, ind=1)
b = np.ones(24)
assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
@instantiate_parametrized_tests
class TestTensorinv(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_tensorsolve_result
|
def test_tensorsolve_result(self, shape):
a = np.random.randn(*shape)
b = np.ones(a.shape[:2])
x = np.linalg.tensorsolve(a, b)
assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
@instantiate_parametrized_tests
class TestTensorsolve(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/linalg/test_linalg.py
|
test_blas64_geqrf_lwork_smoketest
|
def test_blas64_geqrf_lwork_smoketest(self):
# Smoke test LAPACK geqrf lwork call with 64-bit integers
dtype = np.float64
lapack_routine = np.linalg.lapack_lite.dgeqrf
m = 2**32 + 1
n = 2**32 + 1
lda = m
# Dummy arrays, not referenced by the lapack routine, so don't
# need to be of the right size
a = np.zeros([1, 1], dtype=dtype)
work = np.zeros([1], dtype=dtype)
tau = np.zeros([1], dtype=dtype)
# Size query
results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
assert_equal(results["info"], 0)
assert_equal(results["m"], m)
assert_equal(results["n"], m)
# Should result to an integer of a reasonable size
lwork = int(work.item())
assert_(2**32 < lwork < 2**42)
|
import functools
import itertools
import os
import subprocess
import sys
import textwrap
import traceback
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
from numpy.testing import ( # assert_raises_regex, HAS_LAPACK64, IS_WASM
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
array,
asarray,
atleast_2d,
cdouble,
csingle,
dot,
double,
identity,
inf,
linalg,
matmul,
single,
swapaxes,
)
from torch._numpy.linalg import (
LinAlgError,
matrix_power,
matrix_rank,
multi_dot,
norm,
)
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_WASM = False
HAS_LAPACK64 = False
old_assert_almost_equal = assert_almost_equal
all_tags = {
"square",
"nonsquare",
"hermitian", # mutually exclusive
"generalized",
"size-0",
"strided", # optional additions
}
CASES = []
import resource
class TestMisc2(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_andshape_array
|
def test_andshape_array(self, func):
t = w.asarray([[1, 2, 3], [4, 5, 6]])
shape_dict = {self.shape_arg_name.get(func, "shape"): self.shape}
ta = func(t, **shape_dict)
assert isinstance(ta, w.ndarray)
assert ta.shape == self.shape
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
@instantiate_parametrized_tests
class TestOneArrAndShape(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_toscalar_array
|
def test_toscalar_array(self, func, np_func):
t = w.asarray([[1, 2, 3], [4, 5, 6]])
ta = func(t)
tn = np_func(t)
assert not isinstance(ta, w.ndarray)
assert ta == tn
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
@instantiate_parametrized_tests
class TestOneArrToScalar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_shape
|
def test_shape(self, func):
a = func(self.shape)
assert isinstance(a, w.ndarray)
assert a.shape == self.shape
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
@instantiate_parametrized_tests
class TestShapeLikeToArray(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_several
|
def test_several(self, func):
arys = (
torch.Tensor([[1, 2, 3], [4, 5, 6]]),
w.asarray([[1, 2, 3], [4, 5, 6]]),
[[1, 2, 3], [4, 5, 6]],
)
result = func(*arys)
assert isinstance(result, (tuple, list))
assert len(result) == len(arys)
assert all(isinstance(_, w.ndarray) for _ in result)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
@instantiate_parametrized_tests
class TestSequenceOfArrays(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_several
|
def test_several(self, func):
arys = (
torch.Tensor([[1, 2, 3], [4, 5, 6]]),
w.asarray([[1, 2, 3], [4, 5, 6]]),
[[1, 2, 3], [4, 5, 6]],
)
result = func(*arys)
assert isinstance(result, (tuple, list))
assert len(result) == len(arys)
assert all(isinstance(_, w.ndarray) for _ in result)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
@instantiate_parametrized_tests
class TestSequenceOfArrays(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_asarray_array
|
def test_asarray_array(self, func):
a = w.asarray([[1.0, 2, 3], [4, 5, 6]])
la = func(a)
assert isinstance(la, w.ndarray)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
@instantiate_parametrized_tests
class TestOneArr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_argstoarray_simple
|
def test_argstoarray_simple(self, func, args):
a = func(*args)
assert isinstance(a, w.ndarray)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
@instantiate_parametrized_tests
class TestPythonArgsToArray(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_unknown_args
|
def test_unknown_args(self):
# Check that unknown args to decorated functions fail
a = w.arange(7) % 2 == 0
# unknown positional args
with assert_raises(TypeError):
w.nonzero(a, "kaboom")
# unknown kwarg
with assert_raises(TypeError):
w.nonzero(a, oops="ouch")
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestNormalizations(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_too_few_args_positional
|
def test_too_few_args_positional(self):
with assert_raises(TypeError):
w.nonzero()
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestNormalizations(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_unknown_args_with_defaults
|
def test_unknown_args_with_defaults(self):
# check a function 5 arguments and 4 defaults: this should work
w.eye(3)
# five arguments, four defaults: this should fail
with assert_raises(TypeError):
w.eye()
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestNormalizations(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_copyto_basic
|
def test_copyto_basic(self):
dst = w.empty(4)
src = w.arange(4)
w.copyto(dst, src)
assert (dst == src).all()
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestCopyTo(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_copytobcast
|
def test_copytobcast(self):
dst = w.empty((4, 2))
src = w.arange(4)
# cannot broadcast => error out
with assert_raises(RuntimeError):
w.copyto(dst, src)
# broadcast src against dst
dst = w.empty((2, 4))
w.copyto(dst, src)
assert (dst == src).all()
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestCopyTo(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_asarray_array
|
def test_asarray_array(self, func):
a = w.asarray([[1.0, 2, 3], [4, 5, 6]])
la = func(a)
assert isinstance(la, w.ndarray)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
@instantiate_parametrized_tests
class TestOneArr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_andaxis_array
|
def test_andaxis_array(self, func, axis):
t = w.asarray([[1.0, 2, 3], [4, 5, 6]])
ta = func(t, axis=axis)
assert isinstance(ta, w.ndarray)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
@instantiate_parametrized_tests
class TestOneArrAndAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_andtuple_array
|
def test_andtuple_array(self, func, axes):
t = w.asarray([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]])
ta = func(t, axes=axes)
assert isinstance(ta, w.ndarray)
if axes is None:
newshape = (3, 2, 1)
else:
newshape = tuple(t.shape[axes[i]] for i in range(t.ndim))
assert ta.shape == newshape
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
@instantiate_parametrized_tests
class TestOneArrAndAxesTuple(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_copyto_typecast
|
def test_copyto_typecast(self):
dst = w.empty(4, dtype=int)
src = w.arange(4, dtype=float)
with assert_raises(TypeError):
w.copyto(dst, src, casting="no")
# force the type cast
w.copyto(dst, src, casting="unsafe")
assert (dst == src).all()
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestCopyTo(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_divmod_out
|
def test_divmod_out(self):
x1 = w.arange(8, 15)
x2 = w.arange(4, 11)
out = (w.empty_like(x1), w.empty_like(x1))
quot, rem = w.divmod(x1, x2, out=out)
assert_equal(quot, x1 // x2)
assert_equal(rem, x1 % x2)
out1, out2 = out
assert quot is out[0]
assert rem is out[1]
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestDivmod(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_divmod_pos_only
|
def test_divmod_pos_only(self):
x1 = [4, 5, 6]
x2 = [2, 1, 2]
out1, out2 = w.empty_like(x1), w.empty_like(x1)
quot, rem = w.divmod(x1, x2, out1, out2)
assert quot is out1
assert rem is out2
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestDivmod(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_divmod_no_out
|
def test_divmod_no_out(self):
# check that the out= machinery handles no out at all
x1 = w.array([4, 5, 6])
x2 = w.array([2, 1, 2])
quot, rem = w.divmod(x1, x2)
assert_equal(quot, x1 // x2)
assert_equal(rem, x1 % x2)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestDivmod(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_divmod_out_both_pos_and_kw
|
def test_divmod_out_both_pos_and_kw(self):
o = w.empty(1)
with assert_raises(TypeError):
w.divmod(1, 2, o, o, out=(o, o))
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestDivmod(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_nimpl_basic
|
def test_nimpl_basic(self):
# smoke test that the "NotImplemented" annotation is picked up
with assert_raises(NotImplementedError):
w.empty(3, like="ooops")
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestSmokeNotImpl(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_set_default_float
|
def test_set_default_float(self, dt):
try:
w.set_default_dtype(fp_dtype=dt)
x = w.empty(3)
z = x + 1j * x
assert x.dtype.torch_dtype == torch.float32
assert z.dtype.torch_dtype == torch.complex64
finally:
# restore the
w.set_default_dtype(fp_dtype="numpy")
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
@instantiate_parametrized_tests
class TestDefaultDtype(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_exported_objects
|
def test_exported_objects(self):
exported_fns = (
x
for x in dir(w)
if inspect.isfunction(getattr(w, x))
and not x.startswith("_")
and x != "set_default_dtype"
)
diff = set(exported_fns).difference(set(dir(_np)))
assert len(diff) == 0, str(diff)
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
@skip(_np.__version__ <= "1.23", reason="from_dlpack is new in NumPy 1.23")
class TestExport(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_equal
|
def test_equal(self):
assert_allclose(
np.equal(0.5, 0.6), equal(0.5, 0.6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_float_power
|
def test_float_power(self):
assert_allclose(
np.float_power(0.5, 0.6),
float_power(0.5, 0.6),
atol=1e-7,
check_dtype=False,
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_floor_divide
|
def test_floor_divide(self):
assert_allclose(
np.floor_divide(0.5, 0.6),
floor_divide(0.5, 0.6),
atol=1e-7,
check_dtype=False,
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_fmax
|
def test_fmax(self):
assert_allclose(np.fmax(0.5, 0.6), fmax(0.5, 0.6), atol=1e-7, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_fmin
|
def test_fmin(self):
assert_allclose(np.fmin(0.5, 0.6), fmin(0.5, 0.6), atol=1e-7, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_fmod
|
def test_fmod(self):
assert_allclose(np.fmod(0.5, 0.6), fmod(0.5, 0.6), atol=1e-7, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_gcd
|
def test_gcd(self):
assert_allclose(np.gcd(5, 6), gcd(5, 6), atol=1e-7, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_greater
|
def test_greater(self):
assert_allclose(
np.greater(0.5, 0.6), greater(0.5, 0.6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_greater_equal
|
def test_greater_equal(self):
assert_allclose(
np.greater_equal(0.5, 0.6),
greater_equal(0.5, 0.6),
atol=1e-7,
check_dtype=False,
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_heaviside
|
def test_heaviside(self):
assert_allclose(
np.heaviside(0.5, 0.6), heaviside(0.5, 0.6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_arrays_in_lists
|
def test_arrays_in_lists(self):
lst = [[1, 2], [3, w.array(4)]]
assert_equal(w.asarray(lst), [[1, 2], [3, 4]])
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestCtorNested(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_basic.py
|
test_f16_on_cuda
|
def test_f16_on_cuda(self):
# make sure operations with float16 tensors give same results on CUDA and on CPU
t = torch.arange(5, dtype=torch.float16)
assert_allclose(w.vdot(t.cuda(), t.cuda()), w.vdot(t, t))
assert_allclose(w.inner(t.cuda(), t.cuda()), w.inner(t, t))
assert_allclose(w.matmul(t.cuda(), t.cuda()), w.matmul(t, t))
assert_allclose(w.einsum("i,i", t.cuda(), t.cuda()), w.einsum("i,i", t, t))
assert_allclose(w.mean(t.cuda()), w.mean(t))
assert_allclose(w.cov(t.cuda(), t.cuda()), w.cov(t, t).tensor.cuda())
assert_allclose(w.corrcoef(t.cuda()), w.corrcoef(t).tensor.cuda())
|
import functools
import inspect
from unittest import expectedFailure as xfail, skipIf as skip
import numpy as _np
from pytest import raises as assert_raises
import torch
import torch._numpy as w
import torch._numpy._ufuncs as _ufuncs
import torch._numpy._util as _util
from torch._numpy.testing import assert_allclose, assert_equal
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
one_arg_funcs = [
w.asarray,
w.empty_like,
w.ones_like,
w.zeros_like,
functools.partial(w.full_like, fill_value=42),
w.corrcoef,
w.squeeze,
w.argmax,
# w.bincount, # XXX: input dtypes
w.prod,
w.sum,
w.real,
w.imag,
w.angle,
w.real_if_close,
w.isreal,
w.iscomplex,
w.isneginf,
w.isposinf,
w.i0,
w.copy,
w.array,
w.round,
w.around,
w.flip,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
w.flatnonzero,
]
ufunc_names = _ufuncs._unary
one_arg_axis_funcs = [
w.argmax,
w.argmin,
w.prod,
w.sum,
w.all,
w.any,
w.mean,
w.argsort,
w.std,
w.var,
w.flip,
]
arr_shape_funcs = [
w.reshape,
w.empty_like,
w.ones_like,
functools.partial(w.full_like, fill_value=42),
w.broadcast_to,
]
one_arg_scalar_funcs = [(w.size, _np.size), (w.shape, _np.shape), (w.ndim, _np.ndim)]
shape_funcs = [w.zeros, w.empty, w.ones, functools.partial(w.full, fill_value=42)]
seq_funcs = [w.atleast_1d, w.atleast_2d, w.atleast_3d, w.broadcast_arrays]
seq_to_single_funcs = [
w.concatenate,
w.stack,
w.vstack,
w.hstack,
w.dstack,
w.column_stack,
w.row_stack,
]
single_to_seq_funcs = (
w.nonzero,
# https://github.com/Quansight-Labs/numpy_pytorch_interop/pull/121#discussion_r1172824545
# w.tril_indices_from,
# w.triu_indices_from,
w.where,
)
funcs_and_args = [
(w.linspace, (0, 10, 11)),
(w.logspace, (1, 2, 5)),
(w.logspace, (1, 2, 5, 11)),
(w.geomspace, (1, 1000, 5, 11)),
(w.eye, (5, 6)),
(w.identity, (3,)),
(w.arange, (5,)),
(w.arange, (5, 8)),
(w.arange, (5, 8, 0.5)),
(w.tri, (3, 3, -1)),
]
class TestMisc(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_add
|
def test_add(self):
assert_allclose(np.add(0.5, 0.6), add(0.5, 0.6), atol=1e-7, check_dtype=False)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_arctan2
|
def test_arctan2(self):
assert_allclose(
np.arctan2(0.5, 0.6), arctan2(0.5, 0.6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_bitwise_and
|
def test_bitwise_and(self):
assert_allclose(
np.bitwise_and(5, 6), bitwise_and(5, 6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_bitwise_or
|
def test_bitwise_or(self):
assert_allclose(
np.bitwise_or(5, 6), bitwise_or(5, 6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_bitwise_xor
|
def test_bitwise_xor(self):
assert_allclose(
np.bitwise_xor(5, 6), bitwise_xor(5, 6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_copysign
|
def test_copysign(self):
assert_allclose(
np.copysign(0.5, 0.6), copysign(0.5, 0.6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_divide
|
def test_divide(self):
assert_allclose(
np.divide(0.5, 0.6), divide(0.5, 0.6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_binary_ufuncs.py
|
test_subtract
|
def test_subtract(self):
assert_allclose(
np.subtract(0.5, 0.6), subtract(0.5, 0.6), atol=1e-7, check_dtype=False
)
|
import numpy as np
from torch._numpy._ufuncs import * # noqa: F403
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase
class TestBinaryUfuncBasic(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_dtype.py
|
test_convert_np_dtypes
|
def test_convert_np_dtypes(self, name, np_dtype):
tnp_dtype = tnp.dtype(np_dtype)
if name == "bool_":
assert tnp_dtype == tnp.bool_
elif tnp_dtype.name == "bool_":
assert name.startswith("bool")
else:
assert tnp_dtype.name == name
|
from unittest import expectedFailure as xfail
import numpy
import torch._numpy as tnp
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TestCase,
)
dtype_names = [
"bool_",
*[f"int{w}" for w in [8, 16, 32, 64]],
*[f"uint{w}" for w in [8, 16, 32, 64]],
*[f"float{w}" for w in [16, 32, 64]],
*[f"complex{w}" for w in [64, 128]],
]
np_dtype_params = []
np_dtype_params = [
subtest(("bool", "bool"), name="bool"),
subtest(
("bool", numpy.dtype("bool")),
name="numpy.dtype('bool')",
decorators=[xfail], # reason="XXX: np.dtype() objects not supported"),
),
]
@instantiate_parametrized_tests
class TestConvertDType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_function_base.py
|
test_basic
|
def test_basic(self):
result = np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
assert_equal(result, np.arange(1, 10, dtype=int))
# When `axis` is specified, `values` must have the correct shape.
result = np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
assert_equal(result, np.arange(1, 10, dtype=int).reshape((3, 3)))
with pytest.raises((RuntimeError, ValueError)):
np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
|
import pytest
from torch.testing._internal.common_utils import (
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
)
import numpy as np
from numpy.testing import assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_equal
class TestAppend(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_ndarray_methods.py
|
test_indexing_simple
|
def test_indexing_simple(self):
a = np.array([[1, 2, 3], [4, 5, 6]])
assert isinstance(a[0, 0], np.ndarray)
assert isinstance(a[0, :], np.ndarray)
assert a[0, :].tensor._base is a.tensor
|
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_equal
class TestIndexing(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_ndarray_methods.py
|
test_setitem
|
def test_setitem(self):
a = np.array([[1, 2, 3], [4, 5, 6]])
a[0, 0] = 8
assert isinstance(a, np.ndarray)
assert_equal(a, [[8, 2, 3], [4, 5, 6]])
|
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_equal
class TestIndexing(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/test_ndarray_methods.py
|
test_reshape_method
|
def test_reshape_method(self):
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
arr_shape = arr.shape
tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
# reshape(*shape_tuple)
assert np.all(arr.reshape(2, 6) == tgt)
assert arr.reshape(2, 6).tensor._base is arr.tensor # reshape keeps the base
assert arr.shape == arr_shape # arr is intact
# XXX: move out to dedicated test(s)
assert arr.reshape(2, 6).tensor._base is arr.tensor
# reshape(shape_tuple)
assert np.all(arr.reshape((2, 6)) == tgt)
assert arr.reshape((2, 6)).tensor._base is arr.tensor
assert arr.shape == arr_shape
tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
assert np.all(arr.reshape(3, 4) == tgt)
assert arr.reshape(3, 4).tensor._base is arr.tensor
assert arr.shape == arr_shape
assert np.all(arr.reshape((3, 4)) == tgt)
assert arr.reshape((3, 4)).tensor._base is arr.tensor
assert arr.shape == arr_shape
# XXX : order='C' / 'F'
# tgt = [[1, 4, 7, 10],
# [2, 5, 8, 11],
# [3, 6, 9, 12]]
# assert np.all(arr.T.reshape((3, 4), order='C') == tgt)
#
# tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]]
# assert_equal(arr.reshape((3, 4), order='F'), tgt)
#
|
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_equal
class TestReshape(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.