library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_c_
|
def test_c_(self):
a = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])]
assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]])
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestC(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_basic
|
def test_basic(self):
assert_equal(np.unravel_index(2, (2, 2)), (1, 0))
# test that new shape argument works properly
assert_equal(np.unravel_index(indices=2, shape=(2, 2)), (1, 0))
# test that an invalid second keyword argument
# is properly handled, including the old name `dims`.
with assert_raises(TypeError):
np.unravel_index(indices=2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(254, ims=(17, 94))
with assert_raises(TypeError):
np.unravel_index(254, dims=(17, 94))
assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2)
assert_equal(np.unravel_index(254, (17, 94)), (2, 66))
assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254)
assert_raises(ValueError, np.unravel_index, -1, (2, 2))
assert_raises(TypeError, np.unravel_index, 0.5, (2, 2))
assert_raises(ValueError, np.unravel_index, 4, (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2))
assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.0), (2, 2))
assert_equal(np.unravel_index((2 * 3 + 1) * 6 + 4, (4, 3, 6)), [2, 1, 4])
assert_equal(np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2 * 3 + 1) * 6 + 4)
arr = np.array([[3, 6, 6], [4, 5, 1]])
assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37])
assert_equal(np.ravel_multi_index(arr, (7, 6), order="F"), [31, 41, 13])
assert_equal(np.ravel_multi_index(arr, (4, 6), mode="clip"), [22, 23, 19])
assert_equal(
np.ravel_multi_index(arr, (4, 4), mode=("clip", "wrap")), [12, 13, 13]
)
assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621)
assert_equal(
np.unravel_index(np.array([22, 41, 37]), (7, 6)), [[3, 6, 6], [4, 5, 1]]
)
assert_equal(
np.unravel_index(np.array([31, 41, 13]), (7, 6), order="F"),
[[3, 6, 6], [4, 5, 1]],
)
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
@xpassIfTorchDynamo # (reason="unravel_index not implemented")
@instantiate_parametrized_tests
class TestRavelUnravelIndex(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_tall_matrix
|
def test_tall_matrix(self):
a = np.zeros((10, 3), dtype=int)
fill_diagonal(a, 5)
assert_array_equal(
a,
np.array(
[
[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
]
),
)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestFillDiagonal(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_tall_matrix_wrap
|
def test_tall_matrix_wrap(self):
a = np.zeros((10, 3), dtype=int)
fill_diagonal(a, 5, True)
assert_array_equal(
a,
np.array(
[
[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[5, 0, 0],
[0, 5, 0],
]
),
)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestFillDiagonal(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_wide_matrix
|
def test_wide_matrix(self):
a = np.zeros((3, 10), dtype=int)
fill_diagonal(a, 5)
assert_array_equal(
a,
np.array(
[
[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 5, 0, 0, 0, 0, 0, 0, 0],
]
),
)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestFillDiagonal(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_operate_4d_array
|
def test_operate_4d_array(self):
a = np.zeros((3, 3, 3, 3), dtype=int)
fill_diagonal(a, 4)
i = np.array([0, 1, 2])
assert_equal(np.where(a != 0), (i, i, i, i))
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestFillDiagonal(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_low_dim_handling
|
def test_low_dim_handling(self):
# raise error with low dimensionality
a = np.zeros(3, dtype=int)
with assert_raises(ValueError):
fill_diagonal(a, 5)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestFillDiagonal(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_hetero_shape_handling
|
def test_hetero_shape_handling(self):
# raise error with high dimensionality and
# shape mismatch
a = np.zeros((3, 3, 7, 3), dtype=int)
with assert_raises(ValueError):
fill_diagonal(a, 2)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestFillDiagonal(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_broadcast
|
def test_broadcast(self):
"""Test that non-indexing dimensions are broadcast in both directions"""
a = np.ones((3, 4, 1))
ai = np.ones((1, 2, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, (3, 2, 5))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTakeAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_broadcast
|
def test_broadcast(self):
"""Test that non-indexing dimensions are broadcast in both directions"""
a = np.ones((3, 4, 1))
ai = np.ones((1, 2, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, (3, 2, 5))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTakeAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_simple
|
def test_simple(self):
a = np.ones((20, 10), "d")
assert_array_equal(apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1]))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
@xpassIfTorchDynamo # (reason="apply_along_axis not implemented")
class TestApplyAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_simple101
|
def test_simple101(self):
a = np.ones((10, 101), "d")
assert_array_equal(apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1]))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
@xpassIfTorchDynamo # (reason="apply_along_axis not implemented")
class TestApplyAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_3d
|
def test_3d(self):
a = np.arange(27).reshape((3, 3, 3))
assert_array_equal(
apply_along_axis(np.sum, 0, a), [[27, 30, 33], [36, 39, 42], [45, 48, 51]]
)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
@xpassIfTorchDynamo # (reason="apply_along_axis not implemented")
class TestApplyAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_scalar_array
|
def test_scalar_array(self, cls=np.ndarray):
a = np.ones((6, 3)).view(cls)
res = apply_along_axis(np.sum, 0, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
@xpassIfTorchDynamo # (reason="apply_along_axis not implemented")
class TestApplyAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
sum_to_0d
|
def sum_to_0d(x):
"""Sum x, returning a 0d array of the same class"""
assert_equal(x.ndim, 1)
return np.squeeze(np.sum(x, keepdims=True))
a = np.ones((6, 3)).view(cls)
res = apply_along_axis(sum_to_0d, 0, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
res = apply_along_axis(sum_to_0d, 1, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
f1to2
|
def f1to2(x):
"""produces an asymmetric non-square matrix from x"""
assert_equal(x.ndim, 1)
return (x[::-1] * x[1:, None]).view(cls)
a2d = np.arange(6 * 3).reshape((6, 3))
# 2d insertion along first axis
actual = apply_along_axis(f1to2, 0, a2d)
expected = np.stack(
[f1to2(a2d[:, i]) for i in range(a2d.shape[1])], axis=-1
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 2d insertion along last axis
actual = apply_along_axis(f1to2, 1, a2d)
expected = np.stack(
[f1to2(a2d[i, :]) for i in range(a2d.shape[0])], axis=0
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 3d insertion along middle axis
a3d = np.arange(6 * 5 * 3).reshape((6, 5, 3))
actual = apply_along_axis(f1to2, 1, a3d)
expected = np.stack(
[
np.stack([f1to2(a3d[i, :, j]) for i in range(a3d.shape[0])], axis=0)
for j in range(a3d.shape[2])
],
axis=-1,
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
f1to2
|
def f1to2(x):
"""produces an asymmetric non-square matrix from x"""
assert_equal(x.ndim, 1)
return (x[::-1] * x[1:, None]).view(cls)
a2d = np.arange(6 * 3).reshape((6, 3))
# 2d insertion along first axis
actual = apply_along_axis(f1to2, 0, a2d)
expected = np.stack(
[f1to2(a2d[:, i]) for i in range(a2d.shape[1])], axis=-1
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 2d insertion along last axis
actual = apply_along_axis(f1to2, 1, a2d)
expected = np.stack(
[f1to2(a2d[i, :]) for i in range(a2d.shape[0])], axis=0
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 3d insertion along middle axis
a3d = np.arange(6 * 5 * 3).reshape((6, 5, 3))
actual = apply_along_axis(f1to2, 1, a3d)
expected = np.stack(
[
np.stack([f1to2(a3d[i, :, j]) for i in range(a3d.shape[0])], axis=0)
for j in range(a3d.shape[2])
],
axis=-1,
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_more_mixed_type
|
def test_more_mixed_type(self):
g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0]
assert_(g.dtype == "f8")
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
@xfail # (reason="r_ not implemented")
class TestConcatenator(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_complex_step
|
def test_complex_step(self):
# Regression test for #12262
g = r_[0:36:100j]
assert_(g.shape == (100,))
# Related to #16466
g = r_[0 : 36 : np.complex64(100j)]
assert_(g.shape == (100,))
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
@xfail # (reason="r_ not implemented")
class TestConcatenator(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_2d
|
def test_2d(self):
b = np.random.rand(5, 5)
c = np.random.rand(5, 5)
d = r_["1", b, c] # append columns
assert_(d.shape == (5, 10))
assert_array_equal(d[:, :5], b)
assert_array_equal(d[:, 5:], c)
d = r_[b, c]
assert_(d.shape == (10, 5))
assert_array_equal(d[:5, :], b)
assert_array_equal(d[5:, :], c)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
@xfail # (reason="r_ not implemented")
class TestConcatenator(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_basic
|
def test_basic(self):
assert_equal(np.unravel_index(2, (2, 2)), (1, 0))
# test that new shape argument works properly
assert_equal(np.unravel_index(indices=2, shape=(2, 2)), (1, 0))
# test that an invalid second keyword argument
# is properly handled, including the old name `dims`.
with assert_raises(TypeError):
np.unravel_index(indices=2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(254, ims=(17, 94))
with assert_raises(TypeError):
np.unravel_index(254, dims=(17, 94))
assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2)
assert_equal(np.unravel_index(254, (17, 94)), (2, 66))
assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254)
assert_raises(ValueError, np.unravel_index, -1, (2, 2))
assert_raises(TypeError, np.unravel_index, 0.5, (2, 2))
assert_raises(ValueError, np.unravel_index, 4, (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2))
assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.0), (2, 2))
assert_equal(np.unravel_index((2 * 3 + 1) * 6 + 4, (4, 3, 6)), [2, 1, 4])
assert_equal(np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2 * 3 + 1) * 6 + 4)
arr = np.array([[3, 6, 6], [4, 5, 1]])
assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37])
assert_equal(np.ravel_multi_index(arr, (7, 6), order="F"), [31, 41, 13])
assert_equal(np.ravel_multi_index(arr, (4, 6), mode="clip"), [22, 23, 19])
assert_equal(
np.ravel_multi_index(arr, (4, 4), mode=("clip", "wrap")), [12, 13, 13]
)
assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621)
assert_equal(
np.unravel_index(np.array([22, 41, 37]), (7, 6)), [[3, 6, 6], [4, 5, 1]]
)
assert_equal(
np.unravel_index(np.array([31, 41, 13]), (7, 6), order="F"),
[[3, 6, 6], [4, 5, 1]],
)
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
@xpassIfTorchDynamo # (reason="unravel_index not implemented")
@instantiate_parametrized_tests
class TestRavelUnravelIndex(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_regression_1
|
def test_regression_1(self):
# ticket #1196
a = np.arange(2)
assert_equal(a[:-1], a[s_[:-1]])
assert_equal(a[:-1], a[index_exp[:-1]])
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestIndexExpression(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_simple_1
|
def test_simple_1(self):
a = np.random.rand(4, 5, 6)
assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]])
assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]])
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestIndexExpression(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_regression_1
|
def test_regression_1(self):
# ticket #1196
a = np.arange(2)
assert_equal(a[:-1], a[s_[:-1]])
assert_equal(a[:-1], a[index_exp[:-1]])
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestIndexExpression(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_shape_and_dtype
|
def test_shape_and_dtype(self):
sizes = (4, 5, 3, 2)
# Test both lists and arrays
for func in (range, np.arange):
arrays = ix_(*[func(sz) for sz in sizes])
for k, (a, sz) in enumerate(zip(arrays, sizes)):
assert_equal(a.shape[k], sz)
assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k))
assert_(np.issubdtype(a.dtype, np.integer))
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
@xfail # (reason="ix_ not implemented")
class TestIx_(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_bool
|
def test_bool(self):
bool_a = [True, False, True, True]
(int_a,) = np.nonzero(bool_a)
assert_equal(ix_(bool_a)[0], int_a)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
@xfail # (reason="ix_ not implemented")
class TestIx_(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
sample_1d
|
def sample_1d(x):
return x[1], x[0]
res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]]))
assert_array_equal(res, np.array([[2, 1], [4, 3]]))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_empty
|
def test_empty(self):
"""Test everything is ok with empty results, even with inserted dims"""
a = np.ones((3, 4, 5))
ai = np.ones((3, 0, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, ai.shape)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTakeAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
never_call
|
def never_call(x):
assert_(False) # should never be reached
a = np.empty((0, 0))
assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)
# but it's sometimes ok with some non-zero dimensions
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
empty_to_1
|
def empty_to_1(x):
assert_(len(x) == 0)
return 1
a = np.empty((10, 0))
actual = np.apply_along_axis(empty_to_1, 1, a)
assert_equal(actual, np.ones(10))
assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_with_iterable_object
|
def test_with_iterable_object(self):
# from issue 5248
d = np.array([[{1, 11}, {2, 22}, {3, 33}], [{4, 44}, {5, 55}, {6, 66}]])
actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])
assert_equal(actual, expected)
# issue 8642 - assert_equal doesn't detect this!
for i in np.ndindex(actual.shape):
assert_equal(type(actual[i]), type(expected[i]))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
@xpassIfTorchDynamo # (reason="apply_along_axis not implemented")
class TestApplyAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_simple
|
def test_simple(self):
a = np.ones((20, 10), "d")
assert_array_equal(apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1]))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
@xpassIfTorchDynamo # (reason="apply_along_axis not implemented")
class TestApplyAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_functionality
|
def test_functionality(self):
s = (2, 3, 4, 5)
a = np.empty(s)
for axis in range(-5, 4):
b = expand_dims(a, axis)
assert_(b.shape[axis] == 1)
assert_(np.squeeze(b).shape == s)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestExpandDims(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_axis_tuple
|
def test_axis_tuple(self):
a = np.empty((3, 3, 3))
assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3)
assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1)
assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1)
assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestExpandDims(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_axis_out_of_range
|
def test_axis_out_of_range(self):
s = (2, 3, 4, 5)
a = np.empty(s)
assert_raises(np.AxisError, expand_dims, a, -6)
assert_raises(np.AxisError, expand_dims, a, 5)
a = np.empty((3, 3, 3))
assert_raises(np.AxisError, expand_dims, a, (0, -6))
assert_raises(np.AxisError, expand_dims, a, (0, 5))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestExpandDims(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_repeated_axis
|
def test_repeated_axis(self):
a = np.empty((3, 3, 3))
assert_raises(ValueError, expand_dims, a, axis=(1, 1))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestExpandDims(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_integer_0_split
|
def test_integer_0_split(self):
a = np.arange(10)
assert_raises(ValueError, array_split, a, 0)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_integer_split
|
def test_integer_split(self):
a = np.arange(10)
res = array_split(a, 1)
desired = [np.arange(10)]
compare_results(res, desired)
res = array_split(a, 2)
desired = [np.arange(5), np.arange(5, 10)]
compare_results(res, desired)
res = array_split(a, 3)
desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)]
compare_results(res, desired)
res = array_split(a, 4)
desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8), np.arange(8, 10)]
compare_results(res, desired)
res = array_split(a, 5)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 6),
np.arange(6, 8),
np.arange(8, 10),
]
compare_results(res, desired)
res = array_split(a, 6)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 6),
np.arange(6, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 7)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 8)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 9)
desired = [
np.arange(2),
np.arange(2, 3),
np.arange(3, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 10)
desired = [
np.arange(1),
np.arange(1, 2),
np.arange(2, 3),
np.arange(3, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 11)
desired = [
np.arange(1),
np.arange(1, 2),
np.arange(2, 3),
np.arange(3, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
np.array([]),
]
compare_results(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_integer_split_2D_rows
|
def test_integer_split_2D_rows(self):
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3, axis=0)
tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), np.zeros((0, 10))]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
# Same thing for manual splits:
res = array_split(a, [0, 1], axis=0)
tgt = [np.zeros((0, 10)), np.array([np.arange(10)]), np.array([np.arange(10)])]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_integer_split_2D_cols
|
def test_integer_split_2D_cols(self):
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3, axis=-1)
desired = [
np.array([np.arange(4), np.arange(4)]),
np.array([np.arange(4, 7), np.arange(4, 7)]),
np.array([np.arange(7, 10), np.arange(7, 10)]),
]
compare_results(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_integer_split_2D_rows_greater_max_int32
|
def test_integer_split_2D_rows_greater_max_int32(self):
a = np.broadcast_to([0], (1 << 32, 2))
res = array_split(a, 4)
chunk = np.broadcast_to([0], (1 << 30, 2))
tgt = [chunk] * 4
for i in range(len(tgt)):
assert_equal(res[i].shape, tgt[i].shape)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_index_split_simple
|
def test_index_split_simple(self):
a = np.arange(10)
indices = [1, 5, 7]
res = array_split(a, indices, axis=-1)
desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7), np.arange(7, 10)]
compare_results(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_index_split_low_bound
|
def test_index_split_low_bound(self):
a = np.arange(10)
indices = [0, 5, 7]
res = array_split(a, indices, axis=-1)
desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), np.arange(7, 10)]
compare_results(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_index_split_high_bound
|
def test_index_split_high_bound(self):
a = np.arange(10)
indices = [0, 5, 7, 10, 12]
res = array_split(a, indices, axis=-1)
desired = [
np.array([]),
np.arange(0, 5),
np.arange(5, 7),
np.arange(7, 10),
np.array([]),
np.array([]),
]
compare_results(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestArraySplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_equal_split
|
def test_equal_split(self):
a = np.arange(10)
res = split(a, 2)
desired = [np.arange(5), np.arange(5, 10)]
compare_results(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestSplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_diag_indices
|
def test_diag_indices(self):
di = diag_indices(4)
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
a[di] = 100
assert_array_equal(
a,
np.array(
[[100, 2, 3, 4], [5, 100, 7, 8], [9, 10, 100, 12], [13, 14, 15, 100]]
),
)
# Now, we create indices to manipulate a 3-d array:
d3 = diag_indices(2, 3)
# And use it to set the diagonal of a zeros array to 1:
a = np.zeros((2, 2, 2), dtype=int)
a[d3] = 1
assert_array_equal(a, np.array([[[1, 0], [0, 0]], [[0, 0], [0, 1]]]))
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestDiagIndices(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_diag_indices_from
|
def test_diag_indices_from(self):
x = np.random.random((4, 4))
r, c = diag_indices_from(x)
assert_array_equal(r, np.arange(4))
assert_array_equal(c, np.arange(4))
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestDiagIndicesFrom(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_error_small_input
|
def test_error_small_input(self):
x = np.ones(7)
with assert_raises(ValueError):
diag_indices_from(x)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestDiagIndicesFrom(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_error_shape_mismatch
|
def test_error_shape_mismatch(self):
x = np.zeros((3, 3, 2, 3), dtype=int)
with assert_raises(ValueError):
diag_indices_from(x)
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestDiagIndicesFrom(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_index_tricks.py
|
test_ndindex
|
def test_ndindex(self):
x = list(ndindex(1, 2, 3))
expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))]
assert_array_equal(x, expected)
x = list(ndindex((1, 2, 3)))
assert_array_equal(x, expected)
# Test use of scalars and tuples
x = list(ndindex((3,)))
assert_array_equal(x, list(ndindex(3)))
# Make sure size argument is optional
x = list(ndindex())
assert_equal(x, [()])
x = list(ndindex(()))
assert_equal(x, [()])
# Make sure 0-sized ndindex works correctly
x = list(ndindex(*[0]))
assert_equal(x, [])
|
import functools
from unittest import expectedFailure as xfail, skipIf
from pytest import raises as assert_raises # , assert_raises_regex,
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipIf, True)
import numpy as np
from numpy import diag_indices, diag_indices_from, fill_diagonal, index_exp, s_
from numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
)
import torch._numpy as np
from torch._numpy import (
diag_indices,
diag_indices_from,
fill_diagonal,
index_exp,
s_,
)
from torch._numpy.testing import (
assert_,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
class TestNdIndex(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
_add_keepdims
|
def _add_keepdims(func):
"""hack in keepdims behavior into a function taking an axis"""
@functools.wraps(func)
def wrapped(a, axis, **kwargs):
res = func(a, axis=axis, **kwargs)
if axis is None:
axis = 0 # res is now a scalar, so we can insert this anywhere
return np.expand_dims(res, axis=axis)
return wrapped
class TestTakeAlongAxis(TestCase):
def test_argequivalent(self):
"""Test it translates from arg<func> to <func>"""
a = rand(3, 4, 5)
funcs = [
(np.sort, np.argsort, {}),
(_add_keepdims(np.min), _add_keepdims(np.argmin), {}),
(_add_keepdims(np.max), _add_keepdims(np.argmax), {}),
# FIXME (np.partition, np.argpartition, dict(kth=2)),
]
for func, argfunc, kwargs in funcs:
for axis in list(range(a.ndim)) + [None]:
a_func = func(a, axis=axis, **kwargs)
ai_func = argfunc(a, axis=axis, **kwargs)
assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
def test_invalid(self):
"""Test it errors when indices has too few dimensions"""
a = np.ones((10, 10))
ai = np.ones((10, 2), dtype=np.intp)
# sanity check
take_along_axis(a, ai, axis=1)
# not enough indices
assert_raises(
(ValueError, RuntimeError), take_along_axis, a, np.array(1), axis=1
)
# bool arrays not allowed
assert_raises(
(IndexError, RuntimeError), take_along_axis, a, ai.astype(bool), axis=1
)
# float arrays not allowed
assert_raises(
(IndexError, RuntimeError), take_along_axis, a, ai.astype(float), axis=1
)
# invalid axis
assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)
def test_empty(self):
"""Test everything is ok with empty results, even with inserted dims"""
a = np.ones((3, 4, 5))
ai = np.ones((3, 0, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, ai.shape)
def test_broadcast(self):
"""Test that non-indexing dimensions are broadcast in both directions"""
a = np.ones((3, 4, 1))
ai = np.ones((1, 2, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, (3, 2, 5))
class TestPutAlongAxis(TestCase):
def test_replace_max(self):
a_base = np.array([[10, 30, 20], [60, 40, 50]])
for axis in list(range(a_base.ndim)) + [None]:
# we mutate this in the loop
a = a_base.copy()
# replace the max with a small value
i_max = _add_keepdims(np.argmax)(a, axis=axis)
put_along_axis(a, i_max, -99, axis=axis)
# find the new minimum, which should max
i_min = _add_keepdims(np.argmin)(a, axis=axis)
assert_equal(i_min, i_max)
@xpassIfTorchDynamo # (
# reason="RuntimeError: Expected index [1, 2, 5] to be smaller than self [3, 4, 1] apart from dimension 1")
def test_broadcast(self):
"""Test that non-indexing dimensions are broadcast in both directions"""
a = np.ones((3, 4, 1))
ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4
put_along_axis(a, ai, 20, axis=1)
assert_equal(take_along_axis(a, ai, axis=1), 20)
@xpassIfTorchDynamo # (reason="apply_along_axis not implemented")
class TestApplyAlongAxis(TestCase):
def test_simple(self):
a = np.ones((20, 10), "d")
assert_array_equal(apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1]))
def test_simple101(self):
a = np.ones((10, 101), "d")
assert_array_equal(apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1]))
def test_3d(self):
a = np.arange(27).reshape((3, 3, 3))
assert_array_equal(
apply_along_axis(np.sum, 0, a), [[27, 30, 33], [36, 39, 42], [45, 48, 51]]
)
def test_scalar_array(self, cls=np.ndarray):
a = np.ones((6, 3)).view(cls)
res = apply_along_axis(np.sum, 0, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
def test_0d_array(self, cls=np.ndarray):
def sum_to_0d(x):
"""Sum x, returning a 0d array of the same class"""
assert_equal(x.ndim, 1)
return np.squeeze(np.sum(x, keepdims=True))
a = np.ones((6, 3)).view(cls)
res = apply_along_axis(sum_to_0d, 0, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
res = apply_along_axis(sum_to_0d, 1, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls))
def test_axis_insertion(self, cls=np.ndarray):
def f1to2(x):
"""produces an asymmetric non-square matrix from x"""
assert_equal(x.ndim, 1)
return (x[::-1] * x[1:, None]).view(cls)
a2d = np.arange(6 * 3).reshape((6, 3))
# 2d insertion along first axis
actual = apply_along_axis(f1to2, 0, a2d)
expected = np.stack(
[f1to2(a2d[:, i]) for i in range(a2d.shape[1])], axis=-1
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 2d insertion along last axis
actual = apply_along_axis(f1to2, 1, a2d)
expected = np.stack(
[f1to2(a2d[i, :]) for i in range(a2d.shape[0])], axis=0
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 3d insertion along middle axis
a3d = np.arange(6 * 5 * 3).reshape((6, 5, 3))
actual = apply_along_axis(f1to2, 1, a3d)
expected = np.stack(
[
np.stack([f1to2(a3d[i, :, j]) for i in range(a3d.shape[0])], axis=0)
for j in range(a3d.shape[2])
],
axis=-1,
).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
def test_axis_insertion_ma(self):
def f1to2(x):
"""produces an asymmetric non-square matrix from x"""
assert_equal(x.ndim, 1)
res = x[::-1] * x[1:, None]
return np.ma.masked_where(res % 5 == 0, res)
a = np.arange(6 * 3).reshape((6, 3))
res = apply_along_axis(f1to2, 0, a)
assert_(isinstance(res, np.ma.masked_array))
assert_equal(res.ndim, 3)
assert_array_equal(res[:, :, 0].mask, f1to2(a[:, 0]).mask)
assert_array_equal(res[:, :, 1].mask, f1to2(a[:, 1]).mask)
assert_array_equal(res[:, :, 2].mask, f1to2(a[:, 2]).mask)
def test_tuple_func1d(self):
def sample_1d(x):
return x[1], x[0]
res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]]))
assert_array_equal(res, np.array([[2, 1], [4, 3]]))
def test_empty(self):
# can't apply_along_axis when there's no chance to call the function
def never_call(x):
assert_(False) # should never be reached
a = np.empty((0, 0))
assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)
# but it's sometimes ok with some non-zero dimensions
def empty_to_1(x):
assert_(len(x) == 0)
return 1
a = np.empty((10, 0))
actual = np.apply_along_axis(empty_to_1, 1, a)
assert_equal(actual, np.ones(10))
assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a)
@skip # TypeError: descriptor 'union' for 'set' objects doesn't apply to a 'numpy.int64' object
def test_with_iterable_object(self):
# from issue 5248
d = np.array([[{1, 11}, {2, 22}, {3, 33}], [{4, 44}, {5, 55}, {6, 66}]])
actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])
assert_equal(actual, expected)
# issue 8642 - assert_equal doesn't detect this!
for i in np.ndindex(actual.shape):
assert_equal(type(actual[i]), type(expected[i]))
@xfail # (reason="apply_over_axes not implemented")
class TestApplyOverAxes(TestCase):
def test_simple(self):
a = np.arange(24).reshape(2, 3, 4)
aoa_a = apply_over_axes(np.sum, a, [0, 2])
assert_array_equal(aoa_a, np.array([[[60], [92], [124]]]))
class TestExpandDims(TestCase):
def test_functionality(self):
s = (2, 3, 4, 5)
a = np.empty(s)
for axis in range(-5, 4):
b = expand_dims(a, axis)
assert_(b.shape[axis] == 1)
assert_(np.squeeze(b).shape == s)
def test_axis_tuple(self):
a = np.empty((3, 3, 3))
assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3)
assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1)
assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1)
assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3)
def test_axis_out_of_range(self):
s = (2, 3, 4, 5)
a = np.empty(s)
assert_raises(np.AxisError, expand_dims, a, -6)
assert_raises(np.AxisError, expand_dims, a, 5)
a = np.empty((3, 3, 3))
assert_raises(np.AxisError, expand_dims, a, (0, -6))
assert_raises(np.AxisError, expand_dims, a, (0, 5))
def test_repeated_axis(self):
a = np.empty((3, 3, 3))
assert_raises(ValueError, expand_dims, a, axis=(1, 1))
class TestArraySplit(TestCase):
def test_integer_0_split(self):
a = np.arange(10)
assert_raises(ValueError, array_split, a, 0)
def test_integer_split(self):
a = np.arange(10)
res = array_split(a, 1)
desired = [np.arange(10)]
compare_results(res, desired)
res = array_split(a, 2)
desired = [np.arange(5), np.arange(5, 10)]
compare_results(res, desired)
res = array_split(a, 3)
desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)]
compare_results(res, desired)
res = array_split(a, 4)
desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8), np.arange(8, 10)]
compare_results(res, desired)
res = array_split(a, 5)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 6),
np.arange(6, 8),
np.arange(8, 10),
]
compare_results(res, desired)
res = array_split(a, 6)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 6),
np.arange(6, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 7)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 8)
desired = [
np.arange(2),
np.arange(2, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 9)
desired = [
np.arange(2),
np.arange(2, 3),
np.arange(3, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 10)
desired = [
np.arange(1),
np.arange(1, 2),
np.arange(2, 3),
np.arange(3, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
]
compare_results(res, desired)
res = array_split(a, 11)
desired = [
np.arange(1),
np.arange(1, 2),
np.arange(2, 3),
np.arange(3, 4),
np.arange(4, 5),
np.arange(5, 6),
np.arange(6, 7),
np.arange(7, 8),
np.arange(8, 9),
np.arange(9, 10),
np.array([]),
]
compare_results(res, desired)
def test_integer_split_2D_rows(self):
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3, axis=0)
tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), np.zeros((0, 10))]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
# Same thing for manual splits:
res = array_split(a, [0, 1], axis=0)
tgt = [np.zeros((0, 10)), np.array([np.arange(10)]), np.array([np.arange(10)])]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
def test_integer_split_2D_cols(self):
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3, axis=-1)
desired = [
np.array([np.arange(4), np.arange(4)]),
np.array([np.arange(4, 7), np.arange(4, 7)]),
np.array([np.arange(7, 10), np.arange(7, 10)]),
]
compare_results(res, desired)
def test_integer_split_2D_default(self):
"""This will fail if we change default axis"""
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3)
tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), np.zeros((0, 10))]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
# perhaps should check higher dimensions
@skipif(not IS_64BIT, reason="Needs 64bit platform")
def test_integer_split_2D_rows_greater_max_int32(self):
a = np.broadcast_to([0], (1 << 32, 2))
res = array_split(a, 4)
chunk = np.broadcast_to([0], (1 << 30, 2))
tgt = [chunk] * 4
for i in range(len(tgt)):
assert_equal(res[i].shape, tgt[i].shape)
def test_index_split_simple(self):
a = np.arange(10)
indices = [1, 5, 7]
res = array_split(a, indices, axis=-1)
desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7), np.arange(7, 10)]
compare_results(res, desired)
def test_index_split_low_bound(self):
a = np.arange(10)
indices = [0, 5, 7]
res = array_split(a, indices, axis=-1)
desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), np.arange(7, 10)]
compare_results(res, desired)
def test_index_split_high_bound(self):
a = np.arange(10)
indices = [0, 5, 7, 10, 12]
res = array_split(a, indices, axis=-1)
desired = [
np.array([]),
np.arange(0, 5),
np.arange(5, 7),
np.arange(7, 10),
np.array([]),
np.array([]),
]
compare_results(res, desired)
class TestSplit(TestCase):
# The split function is essentially the same as array_split,
# except that it test if splitting will result in an
# equal split. Only test for this case.
def test_equal_split(self):
a = np.arange(10)
res = split(a, 2)
desired = [np.arange(5), np.arange(5, 10)]
compare_results(res, desired)
def test_unequal_split(self):
a = np.arange(10)
assert_raises(ValueError, split, a, 3)
class TestColumnStack(TestCase):
def test_non_iterable(self):
assert_raises(TypeError, column_stack, 1)
def test_1D_arrays(self):
# example from docstring
a = np.array((1, 2, 3))
b = np.array((2, 3, 4))
expected = np.array([[1, 2], [2, 3], [3, 4]])
actual = np.column_stack((a, b))
assert_equal(actual, expected)
def test_2D_arrays(self):
# same as hstack 2D docstring example
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
expected = np.array([[1, 2], [2, 3], [3, 4]])
actual = np.column_stack((a, b))
assert_equal(actual, expected)
def test_generator(self):
# numpy 1.24 emits a warning but we don't
# with assert_warns(FutureWarning):
column_stack([np.arange(3) for _ in range(2)])
class TestDstack(TestCase):
def test_non_iterable(self):
assert_raises(TypeError, dstack, 1)
def test_0D_array(self):
a = np.array(1)
b = np.array(2)
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
def test_1D_array(self):
a = np.array([1])
b = np.array([2])
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
def test_2D_array(self):
a = np.array([[1], [2]])
b = np.array([[1], [2]])
res = dstack([a, b])
desired = np.array(
[
[[1, 1]],
[
[
2,
2,
]
],
]
)
assert_array_equal(res, desired)
def test_2D_array2(self):
a = np.array([1, 2])
b = np.array([1, 2])
res = dstack([a, b])
desired = np.array([[[1, 1], [2, 2]]])
assert_array_equal(res, desired)
def test_generator(self):
# numpy 1.24 emits a warning but we don't
# with assert_warns(FutureWarning):
dstack([np.arange(3) for _ in range(2)])
# array_split has more comprehensive test of splitting.
# only do simple test on hsplit, vsplit, and dsplit
class TestHsplit(TestCase):
"""Only testing for integer splits."""
def test_non_iterable(self):
assert_raises(ValueError, hsplit, 1, 1)
def test_0D_array(self):
a = np.array(1)
try:
hsplit(a, 2)
assert_(0)
except ValueError:
pass
def test_1D_array(self):
a = np.array([1, 2, 3, 4])
res = hsplit(a, 2)
desired = [np.array([1, 2]), np.array([3, 4])]
compare_results(res, desired)
def test_2D_array(self):
a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
res = hsplit(a, 2)
desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])]
compare_results(res, desired)
class TestVsplit(TestCase):
"""Only testing for integer splits."""
def test_non_iterable(self):
assert_raises(ValueError, vsplit, 1, 1)
def test_0D_array(self):
a = np.array(1)
assert_raises(ValueError, vsplit, a, 2)
def test_1D_array(self):
a = np.array([1, 2, 3, 4])
try:
vsplit(a, 2)
assert_(0)
except ValueError:
pass
def test_2D_array(self):
a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
res = vsplit(a, 2)
desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
compare_results(res, desired)
class TestDsplit(TestCase):
# Only testing for integer splits.
def test_non_iterable(self):
assert_raises(ValueError, dsplit, 1, 1)
def test_0D_array(self):
a = np.array(1)
assert_raises(ValueError, dsplit, a, 2)
def test_1D_array(self):
a = np.array([1, 2, 3, 4])
assert_raises(ValueError, dsplit, a, 2)
def test_2D_array(self):
a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
try:
dsplit(a, 2)
assert_(0)
except ValueError:
pass
def test_3D_array(self):
a = np.array([[[1, 2, 3, 4], [1, 2, 3, 4]], [[1, 2, 3, 4], [1, 2, 3, 4]]])
res = dsplit(a, 2)
desired = [
np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]),
np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]]),
]
compare_results(res, desired)
class TestSqueeze(TestCase):
def test_basic(self):
a = rand(20, 10, 10, 1, 1)
b = rand(20, 1, 10, 1, 20)
c = rand(1, 1, 20, 10)
assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))
# Squeezing to 0-dim should still give an ndarray
a = [[[1.5]]]
res = np.squeeze(a)
assert_equal(res, 1.5)
assert_equal(res.ndim, 0)
assert type(res) is np.ndarray
@xfailIfTorchDynamo
def test_basic_2(self):
aa = np.ones((3, 1, 4, 1, 1))
assert aa.squeeze().tensor._base is aa.tensor
def test_squeeze_axis(self):
A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]]
assert_equal(np.squeeze(A).shape, (3, 3))
assert_equal(np.squeeze(A, axis=()), A)
assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3))
assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3))
def test_squeeze_type(self):
# Ticket #133
a = np.array([3])
b = np.array(3)
assert type(a.squeeze()) is np.ndarray
assert type(b.squeeze()) is np.ndarray
@skip(reason="XXX: order='F' not implemented")
def test_squeeze_contiguous(self):
# Similar to GitHub issue #387
a = np.zeros((1, 2)).squeeze()
b = np.zeros((2, 2, 2), order="F")[:, :, ::2].squeeze()
assert_(a.flags.c_contiguous)
assert_(a.flags.f_contiguous)
assert_(b.flags.f_contiguous)
@xpassIfTorchDynamo # (reason="XXX: noop in torch, while numpy raises")
def test_squeeze_axis_handling(self):
with assert_raises(ValueError):
np.squeeze(np.array([[1], [2], [3]]), axis=0)
@instantiate_parametrized_tests
class TestKron(TestCase):
def test_basic(self):
# Using 0-dimensional ndarray
a = np.array(1)
b = np.array([[1, 2], [3, 4]])
k = np.array([[1, 2], [3, 4]])
assert_array_equal(np.kron(a, b), k)
a = np.array([[1, 2], [3, 4]])
b = np.array(1)
assert_array_equal(np.kron(a, b), k)
# Using 1-dimensional ndarray
a = np.array([3])
b = np.array([[1, 2], [3, 4]])
k = np.array([[3, 6], [9, 12]])
assert_array_equal(np.kron(a, b), k)
a = np.array([[1, 2], [3, 4]])
b = np.array([3])
assert_array_equal(np.kron(a, b), k)
# Using 3-dimensional ndarray
a = np.array([[[1]], [[2]]])
b = np.array([[1, 2], [3, 4]])
k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
assert_array_equal(np.kron(a, b), k)
a = np.array([[1, 2], [3, 4]])
b = np.array([[[1]], [[2]]])
k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
assert_array_equal(np.kron(a, b), k)
@skip(reason="NP_VER: fails on CI")
@parametrize(
"shape_a,shape_b",
[
((1, 1), (1, 1)),
((1, 2, 3), (4, 5, 6)),
((2, 2), (2, 2, 2)),
((1, 0), (1, 1)),
((2, 0, 2), (2, 2)),
((2, 0, 0, 2), (2, 0, 2)),
],
)
def test_kron_shape(self, shape_a, shape_b):
a = np.ones(shape_a)
b = np.ones(shape_b)
normalised_shape_a = (1,) * max(0, len(shape_b) - len(shape_a)) + shape_a
normalised_shape_b = (1,) * max(0, len(shape_a) - len(shape_b)) + shape_b
expected_shape = np.multiply(normalised_shape_a, normalised_shape_b)
k = np.kron(a, b)
assert np.array_equal(k.shape, expected_shape), "Unexpected shape from kron"
class TestTile(TestCase):
def test_basic(self):
a = np.array([0, 1, 2])
b = [[1, 2], [3, 4]]
assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2])
assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]])
assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]])
assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]])
assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]])
assert_equal(
tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]
)
def test_tile_one_repetition_on_array_gh4679(self):
a = np.arange(5)
b = tile(a, 1)
b += 2
assert_equal(a, np.arange(5))
def test_empty(self):
a = np.array([[[]]])
b = np.array([[], []])
c = tile(b, 2).shape
d = tile(a, (3, 2, 5)).shape
assert_equal(c, (2, 0))
assert_equal(d, (3, 2, 0))
def test_kroncompare(self):
reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
for s in shape:
b = randint(0, 10, size=s)
for r in reps:
a = np.ones(r, b.dtype)
large = tile(b, r)
klarge = kron(a, b)
assert_equal(large, klarge)
@xfail # Maybe implement one day
class TestMayShareMemory(TestCase):
def test_basic(self):
d = np.ones((50, 60))
d2 = np.ones((30, 60, 6))
assert_(np.may_share_memory(d, d))
assert_(np.may_share_memory(d, d[::-1]))
assert_(np.may_share_memory(d, d[::2]))
assert_(np.may_share_memory(d, d[1:, ::-1]))
assert_(not np.may_share_memory(d[::-1], d2))
assert_(not np.may_share_memory(d[::2], d2))
assert_(not np.may_share_memory(d[1:, ::-1], d2))
assert_(np.may_share_memory(d2[1:, ::-1], d2))
# Utility
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
wrapped
|
def wrapped(a, axis, **kwargs):
res = func(a, axis=axis, **kwargs)
if axis is None:
axis = 0 # res is now a scalar, so we can insert this anywhere
return np.expand_dims(res, axis=axis)
return wrapped
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_argequivalent
|
def test_argequivalent(self):
"""Test it translates from arg<func> to <func>"""
a = rand(3, 4, 5)
funcs = [
(np.sort, np.argsort, {}),
(_add_keepdims(np.min), _add_keepdims(np.argmin), {}),
(_add_keepdims(np.max), _add_keepdims(np.argmax), {}),
# FIXME (np.partition, np.argpartition, dict(kth=2)),
]
for func, argfunc, kwargs in funcs:
for axis in list(range(a.ndim)) + [None]:
a_func = func(a, axis=axis, **kwargs)
ai_func = argfunc(a, axis=axis, **kwargs)
assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTakeAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_invalid
|
def test_invalid(self):
"""Test it errors when indices has too few dimensions"""
a = np.ones((10, 10))
ai = np.ones((10, 2), dtype=np.intp)
# sanity check
take_along_axis(a, ai, axis=1)
# not enough indices
assert_raises(
(ValueError, RuntimeError), take_along_axis, a, np.array(1), axis=1
)
# bool arrays not allowed
assert_raises(
(IndexError, RuntimeError), take_along_axis, a, ai.astype(bool), axis=1
)
# float arrays not allowed
assert_raises(
(IndexError, RuntimeError), take_along_axis, a, ai.astype(float), axis=1
)
# invalid axis
assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTakeAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_empty
|
def test_empty(self):
"""Test everything is ok with empty results, even with inserted dims"""
a = np.ones((3, 4, 5))
ai = np.ones((3, 0, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, ai.shape)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTakeAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_unequal_split
|
def test_unequal_split(self):
a = np.arange(10)
assert_raises(ValueError, split, a, 3)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestSplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_non_iterable
|
def test_non_iterable(self):
assert_raises(TypeError, column_stack, 1)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_1D_arrays
|
def test_1D_arrays(self):
# example from docstring
a = np.array((1, 2, 3))
b = np.array((2, 3, 4))
expected = np.array([[1, 2], [2, 3], [3, 4]])
actual = np.column_stack((a, b))
assert_equal(actual, expected)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_2D_arrays
|
def test_2D_arrays(self):
# same as hstack 2D docstring example
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
expected = np.array([[1, 2], [2, 3], [3, 4]])
actual = np.column_stack((a, b))
assert_equal(actual, expected)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_generator
|
def test_generator(self):
# numpy 1.24 emits a warning but we don't
# with assert_warns(FutureWarning):
column_stack([np.arange(3) for _ in range(2)])
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_non_iterable
|
def test_non_iterable(self):
assert_raises(TypeError, column_stack, 1)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_0D_array
|
def test_0D_array(self):
a = np.array(1)
b = np.array(2)
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_1D_array
|
def test_1D_array(self):
a = np.array([1])
b = np.array([2])
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_2D_array
|
def test_2D_array(self):
a = np.array([[1], [2]])
b = np.array([[1], [2]])
res = dstack([a, b])
desired = np.array(
[
[[1, 1]],
[
[
2,
2,
]
],
]
)
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_2D_array2
|
def test_2D_array2(self):
a = np.array([1, 2])
b = np.array([1, 2])
res = dstack([a, b])
desired = np.array([[[1, 1], [2, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_kron_shape
|
def test_kron_shape(self, shape_a, shape_b):
a = np.ones(shape_a)
b = np.ones(shape_b)
normalised_shape_a = (1,) * max(0, len(shape_b) - len(shape_a)) + shape_a
normalised_shape_b = (1,) * max(0, len(shape_a) - len(shape_b)) + shape_b
expected_shape = np.multiply(normalised_shape_a, normalised_shape_b)
k = np.kron(a, b)
assert np.array_equal(k.shape, expected_shape), "Unexpected shape from kron"
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
@instantiate_parametrized_tests
class TestKron(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_tile_one_repetition_on_array_gh4679
|
def test_tile_one_repetition_on_array_gh4679(self):
a = np.arange(5)
b = tile(a, 1)
b += 2
assert_equal(a, np.arange(5))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTile(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_empty
|
def test_empty(self):
"""Test everything is ok with empty results, even with inserted dims"""
a = np.ones((3, 4, 5))
ai = np.ones((3, 0, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, ai.shape)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTakeAlongAxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_kroncompare
|
def test_kroncompare(self):
reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
for s in shape:
b = randint(0, 10, size=s)
for r in reps:
a = np.ones(r, b.dtype)
large = tile(b, r)
klarge = kron(a, b)
assert_equal(large, klarge)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestTile(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
compare_results
|
def compare_results(res, desired):
"""Compare lists of arrays."""
if len(res) != len(desired):
raise ValueError("Iterables have different lengths")
# See also PEP 618 for Python 3.10
for x, y in zip(res, desired):
assert_array_equal(x, y)
if __name__ == "__main__":
run_tests()
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
get_mat
|
def get_mat(n):
data = np.arange(n)
# data = np.add.outer(data, data)
data = data[:, None] + data[None, :]
return data
class TestEye(TestCase):
def test_basic(self):
assert_equal(
eye(4), array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
)
assert_equal(
eye(4, dtype="f"),
array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], "f"),
)
assert_equal(eye(3) == 1, eye(3, dtype=bool))
def test_diag(self):
assert_equal(
eye(4, k=1), array([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]])
)
assert_equal(
eye(4, k=-1),
array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]),
)
def test_2d(self):
assert_equal(eye(4, 3), array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]))
assert_equal(eye(3, 4), array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]))
def test_diag2d(self):
assert_equal(eye(3, 4, k=2), array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]]))
assert_equal(
eye(4, 3, k=-2), array([[0, 0, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0]])
)
def test_eye_bounds(self):
assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]])
assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]])
assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]])
assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]])
assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]])
assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]])
assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]])
assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]])
assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]])
def test_bool(self):
assert_equal(eye(2, 2, dtype=bool), [[True, False], [False, True]])
@xpassIfTorchDynamo # (reason="TODO: implement order=non-default")
def test_order(self):
mat_c = eye(4, 3, k=-1)
mat_f = eye(4, 3, k=-1, order="F")
assert_equal(mat_c, mat_f)
assert mat_c.flags.c_contiguous
assert not mat_c.flags.f_contiguous
assert not mat_f.flags.c_contiguous
assert mat_f.flags.f_contiguous
class TestDiag(TestCase):
def test_vector(self):
vals = (100 * arange(5)).astype("l")
b = zeros((5, 5))
for k in range(5):
b[k, k] = vals[k]
assert_equal(diag(vals), b)
b = zeros((7, 7))
c = b.copy()
for k in range(5):
b[k, k + 2] = vals[k]
c[k + 2, k] = vals[k]
assert_equal(diag(vals, k=2), b)
assert_equal(diag(vals, k=-2), c)
def test_matrix(self):
self.check_matrix(vals=(100 * get_mat(5) + 1).astype("l"))
def check_matrix(self, vals):
b = zeros((5,))
for k in range(5):
b[k] = vals[k, k]
assert_equal(diag(vals), b)
b = b * 0
for k in range(3):
b[k] = vals[k, k + 2]
assert_equal(diag(vals, 2), b[:3])
for k in range(3):
b[k] = vals[k + 2, k]
assert_equal(diag(vals, -2), b[:3])
@xpassIfTorchDynamo # (reason="TODO implement orders")
def test_fortran_order(self):
vals = array((100 * get_mat(5) + 1), order="F", dtype="l")
self.check_matrix(vals)
def test_diag_bounds(self):
A = [[1, 2], [3, 4], [5, 6]]
assert_equal(diag(A, k=2), [])
assert_equal(diag(A, k=1), [2])
assert_equal(diag(A, k=0), [1, 4])
assert_equal(diag(A, k=-1), [3, 6])
assert_equal(diag(A, k=-2), [5])
assert_equal(diag(A, k=-3), [])
def test_failure(self):
assert_raises((ValueError, RuntimeError), diag, [[[1]]])
class TestFliplr(TestCase):
def test_basic(self):
assert_raises((ValueError, RuntimeError), fliplr, ones(4))
a = get_mat(4)
# b = a[:, ::-1]
b = np.flip(a, 1)
assert_equal(fliplr(a), b)
a = [[0, 1, 2], [3, 4, 5]]
b = [[2, 1, 0], [5, 4, 3]]
assert_equal(fliplr(a), b)
class TestFlipud(TestCase):
def test_basic(self):
a = get_mat(4)
# b = a[::-1, :]
b = np.flip(a, 0)
assert_equal(flipud(a), b)
a = [[0, 1, 2], [3, 4, 5]]
b = [[3, 4, 5], [0, 1, 2]]
assert_equal(flipud(a), b)
@instantiate_parametrized_tests
class TestHistogram2d(TestCase):
def test_simple(self):
x = array([0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891])
y = array([0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
xedges = np.linspace(0, 1, 10)
yedges = np.linspace(0, 1, 10)
H = histogram2d(x, y, (xedges, yedges))[0]
answer = array(
[
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
]
)
assert_array_equal(H.T, answer)
H = histogram2d(x, y, xedges)[0]
assert_array_equal(H.T, answer)
H, xedges, yedges = histogram2d(list(range(10)), list(range(10)))
assert_array_equal(H, eye(10, 10))
assert_array_equal(xedges, np.linspace(0, 9, 11))
assert_array_equal(yedges, np.linspace(0, 9, 11))
def test_asym(self):
x = array([1, 1, 2, 3, 4, 4, 4, 5])
y = array([1, 3, 2, 0, 1, 2, 3, 4])
H, xed, yed = histogram2d(x, y, (6, 5), range=[[0, 6], [0, 5]], density=True)
answer = array(
[
[0.0, 0, 0, 0, 0],
[0, 1, 0, 1, 0],
[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 1],
]
)
assert_array_almost_equal(H, answer / 8.0, 3)
assert_array_equal(xed, np.linspace(0, 6, 7))
assert_array_equal(yed, np.linspace(0, 5, 6))
def test_density(self):
x = array([1, 2, 3, 1, 2, 3, 1, 2, 3])
y = array([1, 1, 1, 2, 2, 2, 3, 3, 3])
H, xed, yed = histogram2d(x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], density=True)
answer = array([[1, 1, 0.5], [1, 1, 0.5], [0.5, 0.5, 0.25]]) / 9.0
assert_array_almost_equal(H, answer, 3)
def test_all_outliers(self):
r = np.random.rand(100) + 1.0 + 1e6 # histogramdd rounds by decimal=6
H, xed, yed = histogram2d(r, r, (4, 5), range=([0, 1], [0, 1]))
assert_array_equal(H, 0)
def test_empty(self):
a, edge1, edge2 = histogram2d([], [], bins=([0, 1], [0, 1]))
# assert_array_max_ulp(a, array([[0.]]))
assert_allclose(a, np.array([[0.0]]), atol=1e-15)
a, edge1, edge2 = histogram2d([], [], bins=4)
# assert_array_max_ulp(a, np.zeros((4, 4)))
assert_allclose(a, np.zeros((4, 4)), atol=1e-15)
@xpassIfTorchDynamo # (reason="pytorch does not support bins = [int, array]")
def test_binparameter_combination(self):
x = array([0, 0.09207008, 0.64575234, 0.12875982, 0.47390599, 0.59944483, 1])
y = array([0, 0.14344267, 0.48988575, 0.30558665, 0.44700682, 0.15886423, 1])
edges = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
H, xe, ye = histogram2d(x, y, (edges, 4))
answer = array(
[
[2.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
assert_array_equal(H, answer)
assert_array_equal(ye, array([0.0, 0.25, 0.5, 0.75, 1]))
H, xe, ye = histogram2d(x, y, (4, edges))
answer = array(
[
[1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
]
)
assert_array_equal(H, answer)
assert_array_equal(xe, array([0.0, 0.25, 0.5, 0.75, 1]))
@skip(reason="NP_VER: fails on CI with older NumPy")
@parametrize("x_len, y_len", [(10, 11), (20, 19)])
def test_bad_length(self, x_len, y_len):
x, y = np.ones(x_len), np.ones(y_len)
with pytest.raises(ValueError, match="x and y must have the same length."):
histogram2d(x, y)
class TestTri(TestCase):
def test_dtype(self):
out = array([[1, 0, 0], [1, 1, 0], [1, 1, 1]])
assert_array_equal(tri(3), out)
assert_array_equal(tri(3, dtype=bool), out.astype(bool))
def test_tril_triu_ndim2(self):
for dtype in np.typecodes["AllFloat"] + np.typecodes["AllInteger"]:
a = np.ones((2, 2), dtype=dtype)
b = np.tril(a)
c = np.triu(a)
assert_array_equal(b, [[1, 0], [1, 1]])
assert_array_equal(c, b.T)
# should return the same dtype as the original array
assert_equal(b.dtype, a.dtype)
assert_equal(c.dtype, a.dtype)
def test_tril_triu_ndim3(self):
for dtype in np.typecodes["AllFloat"] + np.typecodes["AllInteger"]:
a = np.array(
[
[[1, 1], [1, 1]],
[[1, 1], [1, 0]],
[[1, 1], [0, 0]],
],
dtype=dtype,
)
a_tril_desired = np.array(
[
[[1, 0], [1, 1]],
[[1, 0], [1, 0]],
[[1, 0], [0, 0]],
],
dtype=dtype,
)
a_triu_desired = np.array(
[
[[1, 1], [0, 1]],
[[1, 1], [0, 0]],
[[1, 1], [0, 0]],
],
dtype=dtype,
)
a_triu_observed = np.triu(a)
a_tril_observed = np.tril(a)
assert_array_equal(a_triu_observed, a_triu_desired)
assert_array_equal(a_tril_observed, a_tril_desired)
assert_equal(a_triu_observed.dtype, a.dtype)
assert_equal(a_tril_observed.dtype, a.dtype)
def test_tril_triu_with_inf(self):
# Issue 4859
arr = np.array([[1, 1, np.inf], [1, 1, 1], [np.inf, 1, 1]])
out_tril = np.array([[1, 0, 0], [1, 1, 0], [np.inf, 1, 1]])
out_triu = out_tril.T
assert_array_equal(np.triu(arr), out_triu)
assert_array_equal(np.tril(arr), out_tril)
def test_tril_triu_dtype(self):
# Issue 4916
# tril and triu should return the same dtype as input
for c in "efdFDBbhil?": # np.typecodes["All"]:
arr = np.zeros((3, 3), dtype=c)
assert_equal(np.triu(arr).dtype, arr.dtype)
assert_equal(np.tril(arr).dtype, arr.dtype)
@xfail # (reason="TODO: implement mask_indices")
def test_mask_indices(self):
# simple test without offset
iu = mask_indices(3, np.triu)
a = np.arange(9).reshape(3, 3)
assert_array_equal(a[iu], array([0, 1, 2, 4, 5, 8]))
# Now with an offset
iu1 = mask_indices(3, np.triu, 1)
assert_array_equal(a[iu1], array([1, 2, 5]))
@xfail # (reason="np.tril_indices == our tuple(tril_indices)")
def test_tril_indices(self):
# indices without and with offset
il1 = tril_indices(4)
il2 = tril_indices(4, k=2)
il3 = tril_indices(4, m=5)
il4 = tril_indices(4, k=2, m=5)
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
b = np.arange(1, 21).reshape(4, 5)
# indexing:
assert_array_equal(a[il1], array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16]))
assert_array_equal(b[il3], array([1, 6, 7, 11, 12, 13, 16, 17, 18, 19]))
# And for assigning values:
a[il1] = -1
assert_array_equal(
a,
array([[-1, 2, 3, 4], [-1, -1, 7, 8], [-1, -1, -1, 12], [-1, -1, -1, -1]]),
)
b[il3] = -1
assert_array_equal(
b,
array(
[
[-1, 2, 3, 4, 5],
[-1, -1, 8, 9, 10],
[-1, -1, -1, 14, 15],
[-1, -1, -1, -1, 20],
]
),
)
# These cover almost the whole array (two diagonals right of the main one):
a[il2] = -10
assert_array_equal(
a,
array(
[
[-10, -10, -10, 4],
[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10],
]
),
)
b[il4] = -10
assert_array_equal(
b,
array(
[
[-10, -10, -10, 4, 5],
[-10, -10, -10, -10, 10],
[-10, -10, -10, -10, -10],
[-10, -10, -10, -10, -10],
]
),
)
@xfail # (reason="np.triu_indices == our tuple(triu_indices)")
class TestTriuIndices(TestCase):
def test_triu_indices(self):
iu1 = triu_indices(4)
iu2 = triu_indices(4, k=2)
iu3 = triu_indices(4, m=5)
iu4 = triu_indices(4, k=2, m=5)
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
b = np.arange(1, 21).reshape(4, 5)
# Both for indexing:
assert_array_equal(a[iu1], array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16]))
assert_array_equal(
b[iu3], array([1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 19, 20])
)
# And for assigning values:
a[iu1] = -1
assert_array_equal(
a,
array(
[[-1, -1, -1, -1], [5, -1, -1, -1], [9, 10, -1, -1], [13, 14, 15, -1]]
),
)
b[iu3] = -1
assert_array_equal(
b,
array(
[
[-1, -1, -1, -1, -1],
[6, -1, -1, -1, -1],
[11, 12, -1, -1, -1],
[16, 17, 18, -1, -1],
]
),
)
# These cover almost the whole array (two diagonals right of the
# main one):
a[iu2] = -10
assert_array_equal(
a,
array(
[
[-1, -1, -10, -10],
[5, -1, -1, -10],
[9, 10, -1, -1],
[13, 14, 15, -1],
]
),
)
b[iu4] = -10
assert_array_equal(
b,
array(
[
[-1, -1, -10, -10, -10],
[6, -1, -1, -10, -10],
[11, 12, -1, -1, -10],
[16, 17, 18, -1, -1],
]
),
)
class TestTrilIndicesFrom(TestCase):
def test_exceptions(self):
assert_raises(ValueError, tril_indices_from, np.ones((2,)))
assert_raises(ValueError, tril_indices_from, np.ones((2, 2, 2)))
# assert_raises(ValueError, tril_indices_from, np.ones((2, 3)))
class TestTriuIndicesFrom(TestCase):
def test_exceptions(self):
assert_raises(ValueError, triu_indices_from, np.ones((2,)))
assert_raises(ValueError, triu_indices_from, np.ones((2, 2, 2)))
# assert_raises(ValueError, triu_indices_from, np.ones((2, 3)))
class TestVander(TestCase):
def test_basic(self):
c = np.array([0, 1, -2, 3])
v = vander(c)
powers = np.array(
[[0, 0, 0, 0, 1], [1, 1, 1, 1, 1], [16, -8, 4, -2, 1], [81, 27, 9, 3, 1]]
)
# Check default value of N:
assert_array_equal(v, powers[:, 1:])
# Check a range of N values, including 0 and 5 (greater than default)
m = powers.shape[1]
for n in range(6):
v = vander(c, N=n)
assert_array_equal(v, powers[:, m - n : m])
def test_dtypes(self):
c = array([11, -12, 13], dtype=np.int8)
v = vander(c)
expected = np.array([[121, 11, 1], [144, -12, 1], [169, 13, 1]])
assert_array_equal(v, expected)
c = array([1.0 + 1j, 1.0 - 1j])
v = vander(c, N=3)
expected = np.array([[2j, 1 + 1j, 1], [-2j, 1 - 1j, 1]])
# The data is floating point, but the values are small integers,
# so assert_array_equal *should* be safe here (rather than, say,
# assert_array_almost_equal).
assert_array_equal(v, expected)
if __name__ == "__main__":
run_tests()
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_basic
|
def test_basic(self):
assert_equal(
eye(4), array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
)
assert_equal(
eye(4, dtype="f"),
array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], "f"),
)
assert_equal(eye(3) == 1, eye(3, dtype=bool))
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestEye(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_0D_array
|
def test_0D_array(self):
a = np.array(1)
b = np.array(2)
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_1D_array
|
def test_1D_array(self):
a = np.array([1])
b = np.array([2])
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_2D_array
|
def test_2D_array(self):
a = np.array([[1], [2]])
b = np.array([[1], [2]])
res = dstack([a, b])
desired = np.array(
[
[[1, 1]],
[
[
2,
2,
]
],
]
)
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_3D_array
|
def test_3D_array(self):
a = np.array([[[1, 2, 3, 4], [1, 2, 3, 4]], [[1, 2, 3, 4], [1, 2, 3, 4]]])
res = dsplit(a, 2)
desired = [
np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]),
np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]]),
]
compare_results(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDsplit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_basic_2
|
def test_basic_2(self):
aa = np.ones((3, 1, 4, 1, 1))
assert aa.squeeze().tensor._base is aa.tensor
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestSqueeze(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_squeeze_axis
|
def test_squeeze_axis(self):
A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]]
assert_equal(np.squeeze(A).shape, (3, 3))
assert_equal(np.squeeze(A, axis=()), A)
assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3))
assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3))
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestSqueeze(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_squeeze_axis_handling
|
def test_squeeze_axis_handling(self):
with assert_raises(ValueError):
np.squeeze(np.array([[1], [2], [3]]), axis=0)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestSqueeze(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_diag
|
def test_diag(self):
assert_equal(
eye(4, k=1), array([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]])
)
assert_equal(
eye(4, k=-1),
array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]),
)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestEye(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_2d
|
def test_2d(self):
assert_equal(eye(4, 3), array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]))
assert_equal(eye(3, 4), array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]))
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestEye(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_diag2d
|
def test_diag2d(self):
assert_equal(eye(3, 4, k=2), array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]]))
assert_equal(
eye(4, 3, k=-2), array([[0, 0, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0]])
)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestEye(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_eye_bounds
|
def test_eye_bounds(self):
assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]])
assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]])
assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]])
assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]])
assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]])
assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]])
assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]])
assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]])
assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]])
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestEye(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_order
|
def test_order(self):
mat_c = eye(4, 3, k=-1)
mat_f = eye(4, 3, k=-1, order="F")
assert_equal(mat_c, mat_f)
assert mat_c.flags.c_contiguous
assert not mat_c.flags.f_contiguous
assert not mat_f.flags.c_contiguous
assert mat_f.flags.f_contiguous
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestEye(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_vector
|
def test_vector(self):
vals = (100 * arange(5)).astype("l")
b = zeros((5, 5))
for k in range(5):
b[k, k] = vals[k]
assert_equal(diag(vals), b)
b = zeros((7, 7))
c = b.copy()
for k in range(5):
b[k, k + 2] = vals[k]
c[k + 2, k] = vals[k]
assert_equal(diag(vals, k=2), b)
assert_equal(diag(vals, k=-2), c)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestDiag(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_matrix
|
def test_matrix(self):
self.check_matrix(vals=(100 * get_mat(5) + 1).astype("l"))
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestDiag(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_fortran_order
|
def test_fortran_order(self):
vals = array((100 * get_mat(5) + 1), order="F", dtype="l")
self.check_matrix(vals)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestDiag(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_generator
|
def test_generator(self):
# numpy 1.24 emits a warning but we don't
# with assert_warns(FutureWarning):
column_stack([np.arange(3) for _ in range(2)])
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_non_iterable
|
def test_non_iterable(self):
assert_raises(TypeError, column_stack, 1)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_0D_array
|
def test_0D_array(self):
a = np.array(1)
b = np.array(2)
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_1D_array
|
def test_1D_array(self):
a = np.array([1])
b = np.array([2])
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_2D_array
|
def test_2D_array(self):
a = np.array([[1], [2]])
b = np.array([[1], [2]])
res = dstack([a, b])
desired = np.array(
[
[[1, 1]],
[
[
2,
2,
]
],
]
)
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_non_iterable
|
def test_non_iterable(self):
assert_raises(TypeError, column_stack, 1)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_0D_array
|
def test_0D_array(self):
a = np.array(1)
b = np.array(2)
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_1D_array
|
def test_1D_array(self):
a = np.array([1])
b = np.array([2])
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_2D_array
|
def test_2D_array(self):
a = np.array([[1], [2]])
b = np.array([[1], [2]])
res = dstack([a, b])
desired = np.array(
[
[[1, 1]],
[
[
2,
2,
]
],
]
)
assert_array_equal(res, desired)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestDstack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_shape_base_.py
|
test_non_iterable
|
def test_non_iterable(self):
assert_raises(TypeError, column_stack, 1)
|
import functools
import sys
from unittest import expectedFailure as xfail, skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
apply_along_axis,
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from numpy.random import rand, randint
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array_split,
column_stack,
dsplit,
dstack,
expand_dims,
hsplit,
kron,
put_along_axis,
split,
take_along_axis,
tile,
vsplit,
)
from torch._numpy.random import rand, randint
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_64BIT = sys.maxsize > 2**32
class TestColumnStack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_bad_length
|
def test_bad_length(self, x_len, y_len):
x, y = np.ones(x_len), np.ones(y_len)
with pytest.raises(ValueError, match="x and y must have the same length."):
histogram2d(x, y)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
@instantiate_parametrized_tests
class TestHistogram2d(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_dtype
|
def test_dtype(self):
out = array([[1, 0, 0], [1, 1, 0], [1, 1, 1]])
assert_array_equal(tri(3), out)
assert_array_equal(tri(3, dtype=bool), out.astype(bool))
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestTri(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_twodim_base.py
|
test_tril_triu_ndim2
|
def test_tril_triu_ndim2(self):
for dtype in np.typecodes["AllFloat"] + np.typecodes["AllInteger"]:
a = np.ones((2, 2), dtype=dtype)
b = np.tril(a)
c = np.triu(a)
assert_array_equal(b, [[1, 0], [1, 1]])
assert_array_equal(c, b.T)
# should return the same dtype as the original array
assert_equal(b.dtype, a.dtype)
assert_equal(c.dtype, a.dtype)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy import (
arange,
array,
diag,
eye,
fliplr,
flipud,
histogram2d,
ones,
tri,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
vander,
zeros,
)
from torch._numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
class TestTri(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.