library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_specific_axes
|
def test_specific_axes(self):
# Testing that gradient can work on a given axis only
v = [[1, 1], [3, 4]]
x = np.array(v)
dx = [np.array([[2.0, 3.0], [2.0, 3.0]]), np.array([[0.0, 0.0], [1.0, 1.0]])]
assert_array_equal(gradient(x, axis=0), dx[0])
assert_array_equal(gradient(x, axis=1), dx[1])
assert_array_equal(gradient(x, axis=-1), dx[1])
assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]])
# test axis=None which means all axes
assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]])
# and is the same as no axis keyword given
assert_almost_equal(gradient(x, axis=None), gradient(x))
# test vararg order
assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), [dx[1] / 2.0, dx[0] / 3.0])
# test maximal number of varargs
assert_raises(TypeError, gradient, x, 1, 2, axis=1)
assert_raises(np.AxisError, gradient, x, axis=3)
assert_raises(np.AxisError, gradient, x, axis=-3)
# assert_raises(TypeError, gradient, x, axis=[1,])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@instantiate_parametrized_tests
class TestGradient(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_inexact_dtypes
|
def test_inexact_dtypes(self):
for dt in [np.float16, np.float32, np.float64]:
# dtypes should not be promoted in a different way to what diff does
x = np.array([1, 2, 3], dtype=dt)
assert_equal(gradient(x).dtype, np.diff(x).dtype)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@instantiate_parametrized_tests
class TestGradient(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_x_signed_int_big_jump
|
def test_x_signed_int_big_jump(self, x_dtype):
minint = np.iinfo(x_dtype).min
maxint = np.iinfo(x_dtype).max
x = np.array([-1, maxint], dtype=x_dtype)
f = np.array([minint // 2, 0])
dfdx = gradient(f, x)
assert_array_equal(dfdx, [0.5, 0.5])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@instantiate_parametrized_tests
class TestGradient(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_basic
|
def test_basic(self):
assert_raises(ValueError, np.rot90, np.ones(4))
assert_raises(
(ValueError, RuntimeError), np.rot90, np.ones((2, 2, 2)), axes=(0, 1, 2)
)
assert_raises(ValueError, np.rot90, np.ones((2, 2)), axes=(0, 2))
assert_raises(ValueError, np.rot90, np.ones((2, 2)), axes=(1, 1))
assert_raises(ValueError, np.rot90, np.ones((2, 2, 2)), axes=(-2, 1))
a = [[0, 1, 2], [3, 4, 5]]
b1 = [[2, 5], [1, 4], [0, 3]]
b2 = [[5, 4, 3], [2, 1, 0]]
b3 = [[3, 0], [4, 1], [5, 2]]
b4 = [[0, 1, 2], [3, 4, 5]]
for k in range(-3, 13, 4):
assert_equal(np.rot90(a, k=k), b1)
for k in range(-2, 13, 4):
assert_equal(np.rot90(a, k=k), b2)
for k in range(-1, 13, 4):
assert_equal(np.rot90(a, k=k), b3)
for k in range(0, 13, 4):
assert_equal(np.rot90(a, k=k), b4)
assert_equal(np.rot90(np.rot90(a, axes=(0, 1)), axes=(1, 0)), a)
assert_equal(np.rot90(a, k=1, axes=(1, 0)), np.rot90(a, k=-1, axes=(0, 1)))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
class TestRot90(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
f
|
def f(**kw):
res = 1.0
for _k in kw:
res *= kw[_k]
return res
assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_otypes
|
def test_otypes(self):
f = np.vectorize(lambda x: x)
f.otypes = "i"
x = np.arange(5)
assert_array_equal(f(x), x)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
mean
|
def mean(a):
return a.mean()
f = vectorize(mean, signature="(n)->()")
r = f([[1, 3], [2, 4]])
assert_array_equal(r, [2, 3])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
center
|
def center(a):
return a - a.mean()
f = vectorize(center, signature="(n)->(n)")
r = f([[1, 3], [2, 4]])
assert_array_equal(r, [[-1, 1], [-1, 1]])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_signature_two_outputs
|
def test_signature_two_outputs(self):
f = vectorize(lambda x: (x, x), signature="()->(),()")
r = f([1, 2, 3])
assert_(isinstance(r, tuple) and len(r) == 2)
assert_array_equal(r[0], [1, 2, 3])
assert_array_equal(r[1], [1, 2, 3])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_signature_outer
|
def test_signature_outer(self):
f = vectorize(np.outer, signature="(a),(b)->(a,b)")
r = f([1, 2], [1, 2, 3])
assert_array_equal(r, [[1, 2, 3], [2, 4, 6]])
r = f([[[1, 2]]], [1, 2, 3])
assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]])
r = f([[1, 0], [2, 0]], [1, 2, 3])
assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]], [[2, 4, 6], [0, 0, 0]]])
r = f([1, 2], [[1, 2, 3], [0, 0, 0]])
assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]], [[0, 0, 0], [0, 0, 0]]])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_signature_computed_size
|
def test_signature_computed_size(self):
f = vectorize(lambda x: x[:-1], signature="(n)->(m)")
r = f([1, 2, 3])
assert_array_equal(r, [1, 2])
r = f([[1, 2, 3], [2, 3, 4]])
assert_array_equal(r, [[1, 2], [2, 3]])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
foo
|
def foo(a, b=1):
return a + b
f = vectorize(foo)
args = np.array([1, 2, 3])
r1 = f(args)
r2 = np.array([2, 3, 4])
assert_array_equal(r1, r2)
r1 = f(args, 2)
r2 = np.array([3, 4, 5])
assert_array_equal(r1, r2)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_signature_otypes
|
def test_signature_otypes(self):
f = vectorize(lambda x: x, signature="(n)->(n)", otypes=["float64"])
r = f([1, 2, 3])
assert_equal(r.dtype, np.dtype("float64"))
assert_array_equal(r, [1, 2, 3])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_signature_invalid_inputs
|
def test_signature_invalid_inputs(self):
f = vectorize(operator.add, signature="(n),(n)->(n)")
with assert_raises_regex(TypeError, "wrong number of positional"):
f([1, 2])
with assert_raises_regex(ValueError, "does not have enough dimensions"):
f(1, 2)
with assert_raises_regex(ValueError, "inconsistent size for core dimension"):
f([1, 2], [1, 2, 3])
f = vectorize(operator.add, signature="()->()")
with assert_raises_regex(TypeError, "wrong number of positional"):
f(1, 2)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
f
|
def f(**kw):
res = 1.0
for _k in kw:
res *= kw[_k]
return res
assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_keywords5_ticket_2100
|
def test_keywords5_ticket_2100(self):
# Test vectorizing function with no kwargs args.
@vectorize
def f(*v):
return np.prod(v)
assert_array_equal(f([1, 2], [3, 4]), [3, 8])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
f
|
def f(**kw):
res = 1.0
for _k in kw:
res *= kw[_k]
return res
assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
foo
|
def foo(a, b=1):
return a + b
f = vectorize(foo)
args = np.array([1, 2, 3])
r1 = f(args)
r2 = np.array([2, 3, 4])
assert_array_equal(r1, r2)
r1 = f(args, 2)
r2 = np.array([3, 4, 5])
assert_array_equal(r1, r2)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
foo
|
def foo(a, b=1):
return a + b
f = vectorize(foo)
args = np.array([1, 2, 3])
r1 = f(args)
r2 = np.array([2, 3, 4])
assert_array_equal(r1, r2)
r1 = f(args, 2)
r2 = np.array([3, 4, 5])
assert_array_equal(r1, r2)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_UnboundMethod_ticket_1156
|
def test_UnboundMethod_ticket_1156(self):
# Regression test for issue 1156
class Foo:
b = 2
def bar(self, a):
return a**self.b
assert_array_equal(vectorize(Foo().bar)(np.arange(9)), np.arange(9) ** 2)
assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), np.arange(9) ** 2)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
bar
|
def bar(self, a):
return a**self.b
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class Foo:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_execution_order_ticket_1487
|
def test_execution_order_ticket_1487(self):
# Regression test for dependence on execution order: issue 1487
f1 = vectorize(lambda x: x)
res1a = f1(np.arange(3))
res1b = f1(np.arange(0.1, 3))
f2 = vectorize(lambda x: x)
res2b = f2(np.arange(0.1, 3))
res2a = f2(np.arange(3))
assert_equal(res1a, res2a)
assert_equal(res1b, res2b)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_string_ticket_1892
|
def test_string_ticket_1892(self):
# Test vectorization over strings: issue 1892.
f = np.vectorize(lambda x: x)
s = "0123456789" * 10
assert_equal(s, f(s))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_cache
|
def test_cache(self):
# Ensure that vectorized func called exactly once per argument.
_calls = [0]
@vectorize
def f(x):
_calls[0] += 1
return x**2
f.cache = True
x = np.arange(5)
assert_array_equal(f(x), x * x)
assert_equal(_calls[0], len(x))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_casting_error
|
def test_casting_error(self):
x = [1, 2, 3 + 1.0j]
bins = [1, 2, 3]
assert_raises(TypeError, digitize, x, bins)
x, bins = bins, x
assert_raises(TypeError, digitize, x, bins)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_large_integers_decreasing
|
def test_large_integers_decreasing(self):
# gh-11022
x = 2**54 # loses precision in a float
assert_equal(np.digitize(x, [x + 1, x - 1]), 1)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_period
|
def test_period(self):
# check that unwrap removes jumps greater that 255
assert_array_equal(unwrap([1, 1 + 256], period=255), [1, 2])
# check that unwrap maintains continuity
assert_(np.all(diff(unwrap(rand(10) * 1000, period=255)) < 255))
# check simple case
simple_seq = np.array([0, 75, 150, 225, 300])
wrap_seq = np.mod(simple_seq, 255)
assert_array_equal(unwrap(wrap_seq, period=255), simple_seq)
# check custom discont value
uneven_seq = np.array([0, 75, 150, 225, 300, 430])
wrap_uneven = np.mod(uneven_seq, 250)
no_discont = unwrap(wrap_uneven, period=250)
assert_array_equal(no_discont, [0, 75, 150, 225, 300, 180])
sm_discont = unwrap(wrap_uneven, period=250, discont=140)
assert_array_equal(sm_discont, [0, 75, 150, 225, 300, 430])
assert sm_discont.dtype == wrap_uneven.dtype
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@skip # (reason="TODO: implement; here unwrap if from numpy")
class TestUnwrap(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_ndim
|
def test_ndim(self):
x = np.linspace(0, 1, 3)
y = np.linspace(0, 2, 8)
z = np.linspace(0, 3, 13)
wx = np.ones_like(x) * (x[1] - x[0])
wx[0] /= 2
wx[-1] /= 2
wy = np.ones_like(y) * (y[1] - y[0])
wy[0] /= 2
wy[-1] /= 2
wz = np.ones_like(z) * (z[1] - z[0])
wz[0] /= 2
wz[-1] /= 2
q = x[:, None, None] + y[None, :, None] + z[None, None, :]
qx = (q * wx[:, None, None]).sum(axis=0)
qy = (q * wy[None, :, None]).sum(axis=1)
qz = (q * wz[None, None, :]).sum(axis=2)
# n-d `x`
r = trapz(q, x=x[:, None, None], axis=0)
assert_almost_equal(r, qx)
r = trapz(q, x=y[None, :, None], axis=1)
assert_almost_equal(r, qy)
r = trapz(q, x=z[None, None, :], axis=2)
assert_almost_equal(r, qz)
# 1-d `x`
r = trapz(q, x=x, axis=0)
assert_almost_equal(r, qx)
r = trapz(q, x=y, axis=1)
assert_almost_equal(r, qy)
r = trapz(q, x=z, axis=2)
assert_almost_equal(r, qz)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestTrapz(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_array_like
|
def test_array_like(self):
x = [0, 0.5]
y1 = sinc(np.array(x))
y2 = sinc(list(x))
y3 = sinc(tuple(x))
assert_array_equal(y1, y2)
assert_array_equal(y1, y3)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestSinc(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_corrcoef_dtype
|
def test_corrcoef_dtype(self, test_type):
cast_A = self.A.astype(test_type)
res = corrcoef(cast_A, dtype=test_type)
assert test_type == res.dtype
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_basic
|
def test_basic(self):
assert_raises(ValueError, np.rot90, np.ones(4))
assert_raises(
(ValueError, RuntimeError), np.rot90, np.ones((2, 2, 2)), axes=(0, 1, 2)
)
assert_raises(ValueError, np.rot90, np.ones((2, 2)), axes=(0, 2))
assert_raises(ValueError, np.rot90, np.ones((2, 2)), axes=(1, 1))
assert_raises(ValueError, np.rot90, np.ones((2, 2, 2)), axes=(-2, 1))
a = [[0, 1, 2], [3, 4, 5]]
b1 = [[2, 5], [1, 4], [0, 3]]
b2 = [[5, 4, 3], [2, 1, 0]]
b3 = [[3, 0], [4, 1], [5, 2]]
b4 = [[0, 1, 2], [3, 4, 5]]
for k in range(-3, 13, 4):
assert_equal(np.rot90(a, k=k), b1)
for k in range(-2, 13, 4):
assert_equal(np.rot90(a, k=k), b2)
for k in range(-1, 13, 4):
assert_equal(np.rot90(a, k=k), b3)
for k in range(0, 13, 4):
assert_equal(np.rot90(a, k=k), b4)
assert_equal(np.rot90(np.rot90(a, axes=(0, 1)), axes=(1, 0)), a)
assert_equal(np.rot90(a, k=1, axes=(1, 0)), np.rot90(a, k=-1, axes=(0, 1)))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
class TestRot90(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_complex
|
def test_complex(self):
x = np.array([[1, 2, 3], [1j, 2j, 3j]])
res = corrcoef(x)
tgt = np.array([[1.0, -1.0j], [1.0j, 1.0]])
assert_allclose(res, tgt)
assert_(np.all(np.abs(res) <= 1.0))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_xy
|
def test_xy(self):
x = np.array([[1, 2, 3]])
y = np.array([[1j, 2j, 3j]])
assert_allclose(np.corrcoef(x, y), np.array([[1.0, -1.0j], [1.0j, 1.0]]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_empty
|
def test_empty(self):
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
assert_array_equal(corrcoef(np.array([])), np.nan)
assert_array_equal(
corrcoef(np.array([]).reshape(0, 2)), np.array([]).reshape(0, 0)
)
assert_array_equal(
corrcoef(np.array([]).reshape(2, 0)),
np.array([[np.nan, np.nan], [np.nan, np.nan]]),
)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_wrong_ddof
|
def test_wrong_ddof(self):
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
assert_array_equal(
cov(self.x1, ddof=5), np.array([[np.inf, -np.inf], [-np.inf, np.inf]])
)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCov(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_1D_rowvar
|
def test_1D_rowvar(self):
assert_allclose(cov(self.x3), cov(self.x3, rowvar=False))
y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501])
assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=False))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCov(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_1D_variance
|
def test_1D_variance(self):
assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCov(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_fweights
|
def test_fweights(self):
assert_allclose(cov(self.x2, fweights=self.frequencies), cov(self.x2_repeats))
assert_allclose(cov(self.x1, fweights=self.frequencies), self.res2)
assert_allclose(cov(self.x1, fweights=self.unit_frequencies), self.res1)
nonint = self.frequencies + 0.5
assert_raises((TypeError, RuntimeError), cov, self.x1, fweights=nonint)
f = np.ones((2, 3), dtype=np.int_)
assert_raises(RuntimeError, cov, self.x1, fweights=f)
f = np.ones(2, dtype=np.int_)
assert_raises(RuntimeError, cov, self.x1, fweights=f)
f = -1 * np.ones(3, dtype=np.int_)
assert_raises((ValueError, RuntimeError), cov, self.x1, fweights=f)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCov(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple_complex
|
def test_simple_complex(self):
x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j])
assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestUnique(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_dtype_order
|
def test_dtype_order(self):
# Regression test for missing dtype and order arguments
a = [1, 2, 3]
a = np.lib.asarray_chkfinite(a, order="F", dtype=np.float64)
assert_(a.dtype == np.float64)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestCheckFinite(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_non_array
|
def test_non_array(self):
assert_almost_equal(
np.corrcoef([0, 1, 0], [1, 0, 1]), [[1.0, -1.0], [-1.0, 1.0]]
)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_bias
|
def test_bias(self):
# bias raises DeprecationWarning
with suppress_warnings() as sup:
warnings.simplefilter("always")
assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0)
assert_warns(DeprecationWarning, corrcoef, self.A, bias=0)
sup.filter(DeprecationWarning)
# bias has no or negligible effect on the function
assert_almost_equal(corrcoef(self.A, bias=1), self.res1)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_complex
|
def test_complex(self):
x = np.array([[1, 2, 3], [1j, 2j, 3j]])
res = corrcoef(x)
tgt = np.array([[1.0, -1.0j], [1.0j, 1.0]])
assert_allclose(res, tgt)
assert_(np.all(np.abs(res) <= 1.0))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_xy
|
def test_xy(self):
x = np.array([[1, 2, 3]])
y = np.array([[1j, 2j, 3j]])
assert_allclose(np.corrcoef(x, y), np.array([[1.0, -1.0j], [1.0j, 1.0]]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_empty
|
def test_empty(self):
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
assert_array_equal(corrcoef(np.array([])), np.nan)
assert_array_equal(
corrcoef(np.array([]).reshape(0, 2)), np.array([]).reshape(0, 0)
)
assert_array_equal(
corrcoef(np.array([]).reshape(2, 0)),
np.array([[np.nan, np.nan], [np.nan, np.nan]]),
)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_signature_invalid_outputs
|
def test_signature_invalid_outputs(self):
f = vectorize(lambda x: x[:-1], signature="(n)->(n)")
with assert_raises_regex(ValueError, "inconsistent size for core dimension"):
f([1, 2, 3])
f = vectorize(lambda x: x, signature="()->(),()")
with assert_raises_regex(ValueError, "wrong number of outputs"):
f(1)
f = vectorize(lambda x: (x, x), signature="()->()")
with assert_raises_regex(ValueError, "wrong number of outputs"):
f([1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_size_zero_output
|
def test_size_zero_output(self):
# see issue 5868
f = np.vectorize(lambda x: x)
x = np.zeros([0, 5], dtype=int)
with assert_raises_regex(ValueError, "otypes"):
f(x)
f.otypes = "i"
assert_array_equal(f(x), x)
f = np.vectorize(lambda x: x, signature="()->()")
with assert_raises_regex(ValueError, "otypes"):
f(x)
f = np.vectorize(lambda x: x, signature="()->()", otypes="i")
assert_array_equal(f(x), x)
f = np.vectorize(lambda x: x, signature="(n)->(n)", otypes="i")
assert_array_equal(f(x), x)
f = np.vectorize(lambda x: x, signature="(n)->(n)")
assert_array_equal(f(x.T), x.T)
f = np.vectorize(lambda x: [x], signature="()->(n)", otypes="i")
with assert_raises_regex(ValueError, "new output dimensions"):
f(x)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_forward
|
def test_forward(self):
x = np.arange(-6, 5)
bins = np.arange(-5, 5)
assert_array_equal(digitize(x, bins), np.arange(11))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_reverse
|
def test_reverse(self):
x = np.arange(5, -6, -1)
bins = np.arange(5, -5, -1)
assert_array_equal(digitize(x, bins), np.arange(11))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_random
|
def test_random(self):
x = rand(10)
bin = np.linspace(x.min(), x.max(), 10)
assert_(np.all(digitize(x, bin) != 0))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_right_basic
|
def test_right_basic(self):
x = [1, 5, 4, 10, 8, 11, 0]
bins = [1, 5, 10]
default_answer = [1, 2, 1, 3, 2, 3, 0]
assert_array_equal(digitize(x, bins), default_answer)
right_answer = [0, 1, 1, 2, 2, 3, 0]
assert_array_equal(digitize(x, bins, True), right_answer)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_right_open
|
def test_right_open(self):
x = np.arange(-6, 5)
bins = np.arange(-6, 4)
assert_array_equal(digitize(x, bins, True), np.arange(11))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_right_open_reverse
|
def test_right_open_reverse(self):
x = np.arange(5, -6, -1)
bins = np.arange(4, -6, -1)
assert_array_equal(digitize(x, bins, True), np.arange(11))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_right_open_random
|
def test_right_open_random(self):
x = rand(10)
bins = np.linspace(x.min(), x.max(), 10)
assert_(np.all(digitize(x, bins, True) != 10))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_monotonic
|
def test_monotonic(self):
x = [-1, 0, 1, 2]
bins = [0, 0, 1]
assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3])
assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3])
bins = [1, 1, 0]
assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0])
assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0])
bins = [1, 1, 1, 1]
assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4])
assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4])
bins = [0, 0, 1, 0]
assert_raises(ValueError, digitize, x, bins)
bins = [1, 1, 0, 1]
assert_raises(ValueError, digitize, x, bins)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xpassIfTorchDynamo # (reason="TODO: implement")
class TestDigitize(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_aweights
|
def test_aweights(self):
assert_allclose(cov(self.x1, aweights=self.weights), self.res3)
assert_allclose(
cov(self.x1, aweights=3.0 * self.weights),
cov(self.x1, aweights=self.weights),
)
assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1)
w = np.ones((2, 3))
assert_raises(RuntimeError, cov, self.x1, aweights=w)
w = np.ones(2)
assert_raises(RuntimeError, cov, self.x1, aweights=w)
w = -1.0 * np.ones(3)
assert_raises((ValueError, RuntimeError), cov, self.x1, aweights=w)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCov(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_cov_dtype
|
def test_cov_dtype(self, test_type):
cast_x1 = self.x1.astype(test_type)
res = cov(cast_x1, dtype=test_type)
assert test_type == res.dtype
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCov(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_complex
|
def test_complex(self):
x = np.array([[1, 2, 3], [1j, 2j, 3j]])
res = corrcoef(x)
tgt = np.array([[1.0, -1.0j], [1.0j, 1.0]])
assert_allclose(res, tgt)
assert_(np.all(np.abs(res) <= 1.0))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_int_beta
|
def test_int_beta(self):
kaiser(3, 4)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestKaiser(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_single_input
|
def test_single_input(self):
[X] = meshgrid([1, 2, 3, 4])
assert_array_equal(X, np.array([1, 2, 3, 4]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_no_input
|
def test_no_input(self):
args = []
assert_array_equal([], meshgrid(*args))
assert_array_equal([], meshgrid(*args, copy=False))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_indexing
|
def test_indexing(self):
x = [1, 2, 3]
y = [4, 5, 6, 7]
[X, Y] = meshgrid(x, y, indexing="ij")
assert_array_equal(X, np.array([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]))
assert_array_equal(Y, np.array([[4, 5, 6, 7], [4, 5, 6, 7], [4, 5, 6, 7]]))
# Test expected shapes:
z = [8, 9]
assert_(meshgrid(x, y)[0].shape == (4, 3))
assert_(meshgrid(x, y, indexing="ij")[0].shape == (3, 4))
assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2))
assert_(meshgrid(x, y, z, indexing="ij")[0].shape == (3, 4, 2))
assert_raises(ValueError, meshgrid, x, y, indexing="notvalid")
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_sparse
|
def test_sparse(self):
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True)
assert_array_equal(X, np.array([[1, 2, 3]]))
assert_array_equal(Y, np.array([[4], [5], [6], [7]]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_invalid_arguments
|
def test_invalid_arguments(self):
# Test that meshgrid complains about invalid arguments
# Regression test for issue #4755:
# https://github.com/numpy/numpy/issues/4755
assert_raises(TypeError, meshgrid, [1, 2, 3], [4, 5, 6, 7], indices="ij")
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_return_type
|
def test_return_type(self):
# Test for appropriate dtype in returned arrays.
# Regression test for issue #5297
# https://github.com/numpy/numpy/issues/5297
x = np.arange(0, 10, dtype=np.float32)
y = np.arange(10, 20, dtype=np.float64)
X, Y = np.meshgrid(x, y)
assert_(X.dtype == x.dtype)
assert_(Y.dtype == y.dtype)
# copy
X, Y = np.meshgrid(x, y, copy=True)
assert_(X.dtype == x.dtype)
assert_(Y.dtype == y.dtype)
# sparse
X, Y = np.meshgrid(x, y, sparse=True)
assert_(X.dtype == x.dtype)
assert_(Y.dtype == y.dtype)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_writeback
|
def test_writeback(self):
# Issue 8561
X = np.array([1.1, 2.2])
Y = np.array([3.3, 4.4])
x, y = np.meshgrid(X, Y, sparse=False, copy=True)
x[0, :] = 0
assert_equal(x[0, :], 0)
assert_equal(x[1, :], X)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_nd_shape
|
def test_nd_shape(self):
a, b, c, d, e = np.meshgrid(*([0] * i for i in range(1, 6)))
expected_shape = (2, 1, 3, 4, 5)
assert_equal(a.shape, expected_shape)
assert_equal(b.shape, expected_shape)
assert_equal(c.shape, expected_shape)
assert_equal(d.shape, expected_shape)
assert_equal(e.shape, expected_shape)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_nd_values
|
def test_nd_values(self):
a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5])
assert_equal(a, [[[0, 0, 0]], [[0, 0, 0]]])
assert_equal(b, [[[1, 1, 1]], [[2, 2, 2]]])
assert_equal(c, [[[3, 4, 5]], [[3, 4, 5]]])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_nd_indexing
|
def test_nd_indexing(self):
a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5], indexing="ij")
assert_equal(a, [[[0, 0, 0], [0, 0, 0]]])
assert_equal(b, [[[1, 1, 1], [2, 2, 2]]])
assert_equal(c, [[[3, 4, 5], [3, 4, 5]]])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
class TestMeshgrid(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_two_conditions
|
def test_two_conditions(self):
x = piecewise([1, 2], [[True, False], [False, True]], [3, 4])
assert_array_equal(x, [3, 4])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xfail # (reason="TODO: implement")
class TestPiecewise(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_scalar_domains_three_conditions
|
def test_scalar_domains_three_conditions(self):
x = piecewise(3, [True, False, False], [4, 2, 0])
assert_equal(x, 4)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xfail # (reason="TODO: implement")
class TestPiecewise(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_default
|
def test_default(self):
# No value specified for x[1], should be 0
x = piecewise([1, 2], [True, False], [2])
assert_array_equal(x, [2, 0])
# Should set x[1] to 3
x = piecewise([1, 2], [True, False], [2, 3])
assert_array_equal(x, [2, 3])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xfail # (reason="TODO: implement")
class TestPiecewise(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_0d
|
def test_0d(self):
a = np.array(1)
with pytest.raises(np.AxisError):
insert(a, [], 2, axis=0)
with pytest.raises(TypeError):
insert(a, [], 2, axis="nonsense")
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@xpassIfTorchDynamo # (reason="TODO: implement")
@instantiate_parametrized_tests
class TestInsert(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_0d_comparison
|
def test_0d_comparison(self):
x = 3
y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed.
assert_equal(y, 4)
# With 3 ranges (It was failing, before)
x = 4
y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3])
assert_array_equal(y, 2)
assert_raises_regex(
ValueError,
"2 or 3 functions are expected",
piecewise,
x,
[x <= 3, x > 3],
[1],
)
assert_raises_regex(
ValueError,
"2 or 3 functions are expected",
piecewise,
x,
[x <= 3, x > 3],
[1, 1, 1, 1],
)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xfail # (reason="TODO: implement")
class TestPiecewise(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_0d_0d_condition
|
def test_0d_0d_condition(self):
x = np.array(3)
c = np.array(x > 3)
y = piecewise(x, [c], [1, 2])
assert_equal(y, 2)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xfail # (reason="TODO: implement")
class TestPiecewise(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_multidimensional_extrafunc
|
def test_multidimensional_extrafunc(self):
x = np.array([[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]])
y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3])
assert_array_equal(y, np.array([[-1.0, -1.0, -1.0], [3.0, 3.0, 1.0]]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@xfail # (reason="TODO: implement")
class TestPiecewise(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple
|
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
@skip # (reason="vectorize not implemented")
class TestVectorize(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple2
|
def test_simple2(self):
y = np.bincount(np.array([1, 5, 2, 4, 1]))
assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestBincount(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple_weight
|
def test_simple_weight(self):
x = np.arange(4)
w = np.array([0.2, 0.3, 0.5, 0.1])
y = np.bincount(x, w)
assert_array_equal(y, w)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestBincount(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_basic
|
def test_basic(self):
assert_raises(ValueError, np.rot90, np.ones(4))
assert_raises(
(ValueError, RuntimeError), np.rot90, np.ones((2, 2, 2)), axes=(0, 1, 2)
)
assert_raises(ValueError, np.rot90, np.ones((2, 2)), axes=(0, 2))
assert_raises(ValueError, np.rot90, np.ones((2, 2)), axes=(1, 1))
assert_raises(ValueError, np.rot90, np.ones((2, 2, 2)), axes=(-2, 1))
a = [[0, 1, 2], [3, 4, 5]]
b1 = [[2, 5], [1, 4], [0, 3]]
b2 = [[5, 4, 3], [2, 1, 0]]
b3 = [[3, 0], [4, 1], [5, 2]]
b4 = [[0, 1, 2], [3, 4, 5]]
for k in range(-3, 13, 4):
assert_equal(np.rot90(a, k=k), b1)
for k in range(-2, 13, 4):
assert_equal(np.rot90(a, k=k), b2)
for k in range(-1, 13, 4):
assert_equal(np.rot90(a, k=k), b3)
for k in range(0, 13, 4):
assert_equal(np.rot90(a, k=k), b4)
assert_equal(np.rot90(np.rot90(a, axes=(0, 1)), axes=(1, 0)), a)
assert_equal(np.rot90(a, k=1, axes=(1, 0)), np.rot90(a, k=-1, axes=(0, 1)))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
class TestRot90(TestCase):
import random
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_right_left_behavior
|
def test_right_left_behavior(self):
# Needs range of sizes to test different code paths.
# size ==1 is special cased, 1 < size < 5 is linear search, and
# size >= 5 goes through local search and possibly binary search.
for size in range(1, 10):
xp = np.arange(size, dtype=np.double)
yp = np.ones(size, dtype=np.double)
incpts = np.array([-1, 0, size - 1, size], dtype=np.double)
decpts = incpts[::-1]
incres = interp(incpts, xp, yp)
decres = interp(decpts, xp, yp)
inctgt = np.array([1, 1, 1, 1], dtype=float)
dectgt = inctgt[::-1]
assert_equal(incres, inctgt)
assert_equal(decres, dectgt)
incres = interp(incpts, xp, yp, left=0)
decres = interp(decpts, xp, yp, left=0)
inctgt = np.array([0, 1, 1, 1], dtype=float)
dectgt = inctgt[::-1]
assert_equal(incres, inctgt)
assert_equal(decres, dectgt)
incres = interp(incpts, xp, yp, right=2)
decres = interp(decpts, xp, yp, right=2)
inctgt = np.array([1, 1, 1, 2], dtype=float)
dectgt = inctgt[::-1]
assert_equal(incres, inctgt)
assert_equal(decres, dectgt)
incres = interp(incpts, xp, yp, left=0, right=2)
decres = interp(decpts, xp, yp, left=0, right=2)
inctgt = np.array([0, 1, 1, 2], dtype=float)
dectgt = inctgt[::-1]
assert_equal(incres, inctgt)
assert_equal(decres, dectgt)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
parametrize_interp_sc = parametrize(
"sc",
[
subtest(lambda x: np.float64(x), name="real"),
subtest(lambda x: _make_complex(x, 0), name="complex-real"),
subtest(lambda x: _make_complex(0, x), name="complex-imag"),
subtest(lambda x: _make_complex(x, np.multiply(x, -2)), name="complex-both"),
],
)
@xpassIfTorchDynamo # (reason="TODO: implement")
@instantiate_parametrized_tests
class TestInterp(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_scalar_interpolation_point
|
def test_scalar_interpolation_point(self):
x = np.linspace(0, 1, 5)
y = np.linspace(0, 1, 5)
x0 = 0
assert_almost_equal(np.interp(x0, x, y), x0)
x0 = 0.3
assert_almost_equal(np.interp(x0, x, y), x0)
x0 = np.float32(0.3)
assert_almost_equal(np.interp(x0, x, y), x0)
x0 = np.float64(0.3)
assert_almost_equal(np.interp(x0, x, y), x0)
x0 = np.nan
assert_almost_equal(np.interp(x0, x, y), x0)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
parametrize_interp_sc = parametrize(
"sc",
[
subtest(lambda x: np.float64(x), name="real"),
subtest(lambda x: _make_complex(x, 0), name="complex-real"),
subtest(lambda x: _make_complex(0, x), name="complex-imag"),
subtest(lambda x: _make_complex(x, np.multiply(x, -2)), name="complex-both"),
],
)
@xpassIfTorchDynamo # (reason="TODO: implement")
@instantiate_parametrized_tests
class TestInterp(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_non_finite_half_inf_f
|
def test_non_finite_half_inf_f(self, sc):
"""Test interp where the f axis has a bound at inf"""
assert_equal(np.interp(0.5, [0, 1], sc([0, -np.inf])), sc(-np.inf))
assert_equal(np.interp(0.5, [0, 1], sc([0, +np.inf])), sc(+np.inf))
assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf))
assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf))
assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf))
assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
parametrize_interp_sc = parametrize(
"sc",
[
subtest(lambda x: np.float64(x), name="real"),
subtest(lambda x: _make_complex(x, 0), name="complex-real"),
subtest(lambda x: _make_complex(0, x), name="complex-imag"),
subtest(lambda x: _make_complex(x, np.multiply(x, -2)), name="complex-both"),
],
)
@xpassIfTorchDynamo # (reason="TODO: implement")
@instantiate_parametrized_tests
class TestInterp(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_complex_interp
|
def test_complex_interp(self):
# test complex interpolation
x = np.linspace(0, 1, 5)
y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5)) * 1.0j
x0 = 0.3
y0 = x0 + (1 + x0) * 1.0j
assert_almost_equal(np.interp(x0, x, y), y0)
# test complex left and right
x0 = -1
left = 2 + 3.0j
assert_almost_equal(np.interp(x0, x, y, left=left), left)
x0 = 2.0
right = 2 + 3.0j
assert_almost_equal(np.interp(x0, x, y, right=right), right)
# test complex non finite
x = [1, 2, 2.5, 3, 4]
xp = [1, 2, 3, 4]
fp = [1, 2 + 1j, np.inf, 4]
y = [1, 2 + 1j, np.inf + 0.5j, np.inf, 4]
assert_almost_equal(np.interp(x, xp, fp), y)
# test complex periodic
x = [-180, -170, -185, 185, -10, -5, 0, 365]
xp = [190, -190, 350, -350]
fp = [5 + 1.0j, 10 + 2j, 3 + 3j, 4 + 4j]
y = [
7.5 + 1.5j,
5.0 + 1.0j,
8.75 + 1.75j,
6.25 + 1.25j,
3.0 + 3j,
3.25 + 3.25j,
3.5 + 3.5j,
3.75 + 3.75j,
]
assert_almost_equal(np.interp(x, xp, fp, period=360), y)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
parametrize_interp_sc = parametrize(
"sc",
[
subtest(lambda x: np.float64(x), name="real"),
subtest(lambda x: _make_complex(x, 0), name="complex-real"),
subtest(lambda x: _make_complex(0, x), name="complex-imag"),
subtest(lambda x: _make_complex(x, np.multiply(x, -2)), name="complex-both"),
],
)
@xpassIfTorchDynamo # (reason="TODO: implement")
@instantiate_parametrized_tests
class TestInterp(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_simple_weight2
|
def test_simple_weight2(self):
x = np.array([1, 2, 4, 5, 2])
w = np.array([0.2, 0.3, 0.5, 0.1, 0.2])
y = np.bincount(x, w)
assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestBincount(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_with_minlength
|
def test_with_minlength(self):
x = np.array([0, 1, 0, 1, 1])
y = np.bincount(x, minlength=3)
assert_array_equal(y, np.array([2, 3, 0]))
x = []
y = np.bincount(x, minlength=0)
assert_array_equal(y, np.array([]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestBincount(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_with_minlength_smaller_than_maxvalue
|
def test_with_minlength_smaller_than_maxvalue(self):
x = np.array([0, 1, 1, 2, 2, 3, 3])
y = np.bincount(x, minlength=2)
assert_array_equal(y, np.array([1, 2, 2, 2]))
y = np.bincount(x, minlength=0)
assert_array_equal(y, np.array([1, 2, 2, 2]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestBincount(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_with_minlength_and_weights
|
def test_with_minlength_and_weights(self):
x = np.array([1, 2, 4, 5, 2])
w = np.array([0.2, 0.3, 0.5, 0.1, 0.2])
y = np.bincount(x, w, 8)
assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0]))
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestBincount(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/lib/test_function_base.py
|
test_empty
|
def test_empty(self):
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
assert_array_equal(corrcoef(np.array([])), np.nan)
assert_array_equal(
corrcoef(np.array([]).reshape(0, 2)), np.array([]).reshape(0, 0)
)
assert_array_equal(
corrcoef(np.array([]).reshape(2, 0)),
np.array([[np.nan, np.nan], [np.nan, np.nan]]),
)
|
import functools
import math
import operator
import sys
import warnings
from fractions import Fraction
from unittest import expectedFailure as xfail, skipIf as skipif
import hypothesis
import hypothesis.strategies as st
import numpy
import pytest
from hypothesis.extra.numpy import arrays
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
HAS_REFCOUNT = True
IS_WASM = False
IS_PYPY = False
from numpy.lib import delete, extract, insert, msort, place, setxor1d, unwrap, vectorize
import numpy as np
from numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
digitize,
flipud,
gradient,
hamming,
hanning,
i0,
interp,
kaiser,
meshgrid,
sinc,
trapz,
trim_zeros,
unique,
)
from numpy.core.numeric import normalize_axis_tuple
from numpy.random import rand
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy import (
angle,
bartlett,
blackman,
corrcoef,
cov,
diff,
flipud,
gradient,
hamming,
hanning,
i0,
kaiser,
meshgrid,
sinc,
unique,
)
from torch._numpy._util import normalize_axis_tuple
from torch._numpy.random import rand
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import random
@instantiate_parametrized_tests
class TestCorrCoef(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.