library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_1D_array
def test_1D_array(self): a = array([1, 2]) b = array([2, 3]) res = [atleast_1d(a), atleast_1d(b)] desired = [array([1, 2]), array([2, 3])] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_2D_array
def test_2D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) res = [atleast_1d(a), atleast_1d(b)] desired = [a, b] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_3D_array
def test_3D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) a = array([a, a]) b = array([b, b]) res = [atleast_1d(a), atleast_1d(b)] desired = [a, b] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_non_iterable
def test_non_iterable(self): assert_raises(TypeError, hstack, 1)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_empty_input
def test_empty_input(self): assert_raises(ValueError, hstack, ())
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_0D_array
def test_0D_array(self): a = array(1) b = array(2) res = [atleast_1d(a), atleast_1d(b)] desired = [array([1]), array([2])] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_1D_array
def test_1D_array(self): a = array([1, 2]) b = array([2, 3]) res = [atleast_1d(a), atleast_1d(b)] desired = [array([1, 2]), array([2, 3])] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_2D_array
def test_2D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) res = [atleast_1d(a), atleast_1d(b)] desired = [a, b] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_casting_and_dtype
def test_casting_and_dtype(self): a = np.array([1, 2, 3]) b = np.array([2.5, 3.5, 4.5]) res = np.hstack(np.append(a, b), casting="unsafe", dtype=np.int64) expected_res = np.array([1, 2, 3, 2, 3, 4]) assert_array_equal(res, expected_res)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_casting_and_dtype_type_error
def test_casting_and_dtype_type_error(self): a = np.array([1, 2, 3]) b = np.array([2.5, 3.5, 4.5]) with pytest.raises(TypeError): hstack((a, b), casting="safe", dtype=np.int64)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_non_iterable
def test_non_iterable(self): assert_raises(TypeError, hstack, 1)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_empty_input
def test_empty_input(self): assert_raises(ValueError, hstack, ())
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_0D_array
def test_0D_array(self): a = array(1) b = array(2) res = [atleast_1d(a), atleast_1d(b)] desired = [array([1]), array([2])] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_1D_array
def test_1D_array(self): a = array([1, 2]) b = array([2, 3]) res = [atleast_1d(a), atleast_1d(b)] desired = [array([1, 2]), array([2, 3])] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_2D_array
def test_2D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) res = [atleast_1d(a), atleast_1d(b)] desired = [a, b] assert_array_equal(res, desired)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestAtleast1d(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_casting_and_dtype
def test_casting_and_dtype(self): a = np.array([1, 2, 3]) b = np.array([2.5, 3.5, 4.5]) res = np.hstack(np.append(a, b), casting="unsafe", dtype=np.int64) expected_res = np.array([1, 2, 3, 2, 3, 4]) assert_array_equal(res, expected_res)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_casting_and_dtype_type_error
def test_casting_and_dtype_type_error(self): a = np.array([1, 2, 3]) b = np.array([2.5, 3.5, 4.5]) with pytest.raises(TypeError): hstack((a, b), casting="safe", dtype=np.int64)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False class TestHstack(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_out_and_dtype_simple
def test_out_and_dtype_simple(self): # numpy raises TypeError on both out=... and dtype=... a, b, out = np.ones(3), np.ones(4), np.ones(3 + 4) with pytest.raises(TypeError): np.concatenate((a, b), out=out, dtype=float)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False @instantiate_parametrized_tests class TestConcatenate(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_returns_copy
def test_returns_copy(self): a = np.eye(3) b = np.concatenate([a]) b[0, 0] = 2 assert b[0, 0] != a[0, 0]
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False @instantiate_parametrized_tests class TestConcatenate(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_exceptions
def test_exceptions(self): # test axis must be in bounds for ndim in [1, 2, 3]: a = np.ones((1,) * ndim) np.concatenate((a, a), axis=0) # OK assert_raises((IndexError, np.AxisError), np.concatenate, (a, a), axis=ndim) assert_raises( (IndexError, np.AxisError), np.concatenate, (a, a), axis=-(ndim + 1) ) # Scalars cannot be concatenated assert_raises((RuntimeError, ValueError), concatenate, (0,)) assert_raises((RuntimeError, ValueError), concatenate, (np.array(0),)) # dimensionality must match assert_raises( (RuntimeError, ValueError), # assert_raises_regex( # ValueError, # r"all the input arrays must have same number of dimensions, but " # r"the array at index 0 has 1 dimension\(s\) and the array at " # r"index 1 has 2 dimension\(s\)", np.concatenate, (np.zeros(1), np.zeros((1, 1))), ) # test shapes must match except for concatenation axis a = np.ones((1, 2, 3)) b = np.ones((2, 2, 3)) axis = list(range(3)) for i in range(3): np.concatenate((a, b), axis=axis[0]) # OK # assert_raises_regex( assert_raises( (RuntimeError, ValueError), # "all the input array dimensions except for the concatenation axis " # "must match exactly, but along dimension {}, the array at " # "index 0 has size 1 and the array at index 1 has size 2" # .format(i), np.concatenate, (a, b), axis=axis[1], ) assert_raises( (RuntimeError, ValueError), np.concatenate, (a, b), axis=axis[2] ) a = np.moveaxis(a, -1, 0) b = np.moveaxis(b, -1, 0) axis.append(axis.pop(0)) # No arrays to concatenate raises ValueError assert_raises(ValueError, concatenate, ())
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False @instantiate_parametrized_tests class TestConcatenate(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_large_concatenate_axis_None
def test_large_concatenate_axis_None(self): # When no axis is given, concatenate uses flattened versions. # This also had a bug with many arrays (see gh-5979). x = np.arange(1, 100) r = np.concatenate(x, None) assert np.all(x == r) # This should probably be deprecated: r = np.concatenate(x, 100) # axis is >= MAXDIMS assert_array_equal(x, r)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False @instantiate_parametrized_tests class TestConcatenate(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_operator_concat
def test_operator_concat(self): import operator a = array([1, 2]) b = array([3, 4]) n = [1, 2] res = array([1, 2, 3, 4]) assert_raises(TypeError, operator.concat, a, b) assert_raises(TypeError, operator.concat, a, n) assert_raises(TypeError, operator.concat, n, a) assert_raises(TypeError, operator.concat, a, 1) assert_raises(TypeError, operator.concat, 1, a)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False @instantiate_parametrized_tests class TestConcatenate(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_out_and_dtype
def test_out_and_dtype(self, axis, out_dtype, casting): # Compare usage of `out=out` with `dtype=out.dtype` out = np.empty(4, dtype=out_dtype) to_concat = (array([1.1, 2.2]), array([3.3, 4.4])) if not np.can_cast(to_concat[0], out_dtype, casting=casting): with assert_raises(TypeError): concatenate(to_concat, out=out, axis=axis, casting=casting) with assert_raises(TypeError): concatenate(to_concat, dtype=out.dtype, axis=axis, casting=casting) else: res_out = concatenate(to_concat, out=out, axis=axis, casting=casting) res_dtype = concatenate( to_concat, dtype=out.dtype, axis=axis, casting=casting ) assert res_out is out assert_array_equal(out, res_dtype) assert res_dtype.dtype == out_dtype with assert_raises(TypeError): concatenate(to_concat, out=out, dtype=out_dtype, axis=axis)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False @instantiate_parametrized_tests class TestConcatenate(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_stack_out_and_dtype
def test_stack_out_and_dtype(self, axis, out_dtype, casting): to_concat = (array([1, 2]), array([3, 4])) res = array([[1, 2], [3, 4]]) out = np.zeros_like(res) if not np.can_cast(to_concat[0], out_dtype, casting=casting): with assert_raises(TypeError): stack(to_concat, dtype=out_dtype, axis=axis, casting=casting) else: res_out = stack(to_concat, out=out, axis=axis, casting=casting) res_dtype = stack(to_concat, dtype=out_dtype, axis=axis, casting=casting) assert res_out is out assert_array_equal(out, res_dtype) assert res_dtype.dtype == out_dtype with assert_raises(TypeError): stack(to_concat, out=out, dtype=out_dtype, axis=axis)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @instantiate_parametrized_tests class TestStackMisc(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
block
def block(self, request): # blocking small arrays and large arrays go through different paths. # the algorithm is triggered depending on the number of element # copies required. # We define a test fixture that forces most tests to go through # both code paths. # Ultimately, this should be removed if a single algorithm is found # to be faster for both small and large arrays. def _block_force_concatenate(arrays): arrays, list_ndim, result_ndim, _ = _block_setup(arrays) return _block_concatenate(arrays, list_ndim, result_ndim) def _block_force_slicing(arrays): arrays, list_ndim, result_ndim, _ = _block_setup(arrays) return _block_slicing(arrays, list_ndim, result_ndim) if request.param == "force_concatenate": return _block_force_concatenate elif request.param == "force_slicing": return _block_force_slicing elif request.param == "block": return block else: raise ValueError("Unknown blocking request. There is a typo in the tests.")
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
_block_force_concatenate
def _block_force_concatenate(arrays): arrays, list_ndim, result_ndim, _ = _block_setup(arrays) return _block_concatenate(arrays, list_ndim, result_ndim)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
_block_force_slicing
def _block_force_slicing(arrays): arrays, list_ndim, result_ndim, _ = _block_setup(arrays) return _block_slicing(arrays, list_ndim, result_ndim) if request.param == "force_concatenate": return _block_force_concatenate elif request.param == "force_slicing": return _block_force_slicing elif request.param == "block": return block else: raise ValueError("Unknown blocking request. There is a typo in the tests.")
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_fft_with_order
def test_fft_with_order(self, dtype, order, fft): # Check that FFT/IFFT produces identical results for C, Fortran and # non contiguous arrays # rng = np.random.RandomState(42) rng = np.random X = rng.rand(8, 7, 13).astype(dtype) # , copy=False) # See discussion in pull/14178 _tol = float(8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps) if order == "F": raise SkipTest("Fortran order arrays") Y = np.asfortranarray(X) else: # Make a non contiguous array Z = np.empty((16, 7, 13), dtype=X.dtype) Z[::2] = X Y = Z[::2] X = Y.copy() if fft.__name__.endswith("fft"): for axis in range(3): X_res = fft(X, axis=axis) Y_res = fft(Y, axis=axis) assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) elif fft.__name__.endswith(("fft2", "fftn")): axes = [(0, 1), (1, 2), (0, 2)] if fft.__name__.endswith("fftn"): axes.extend([(0,), (1,), (2,), None]) for ax in axes: X_res = fft(X, axes=ax) Y_res = fft(Y, axes=ax) assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) else: raise ValueError
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
worker
def worker(args, q): q.put(func(*args)) q = queue.Queue() expected = func(*args) # Spin off a bunch of threads to call the same function simultaneously t = [ threading.Thread(target=worker, args=(args, q)) for i in range(self.threads) ] [x.start() for x in t] [x.join() for x in t] # Make sure all threads returned the correct value for i in range(self.threads): # under torch.dynamo `assert_array_equal` fails with relative errors of # about 1.5e-14. Hence replace it with `assert_allclose(..., rtol=2e-14)` assert_allclose( q.get(timeout=5), expected, atol=2e-14 # msg="Function returned wrong value in multithreaded context", )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_ifft
def test_ifft(self, norm): x = random(30) + 1j * random(30) assert_allclose(x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), atol=1e-6) # Ensure we get the correct error message # NB: Exact wording differs slightly under Dynamo and in eager. with pytest.raises((ValueError, RuntimeError), match="Invalid number of"): np.fft.ifft([], norm=norm)
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_rfft
def test_rfft(self): x = random(30) for n in [x.size, 2 * x.size]: for norm in [None, "backward", "ortho", "forward"]: assert_allclose( np.fft.fft(x, n=n, norm=norm)[: (n // 2 + 1)], np.fft.rfft(x, n=n, norm=norm), atol=1e-6, ) assert_allclose( np.fft.rfft(x, n=n), np.fft.rfft(x, n=n, norm="backward"), atol=1e-6 ) assert_allclose( np.fft.rfft(x, n=n) / np.sqrt(n), np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.rfft(x, n=n) / n, np.fft.rfft(x, n=n, norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_irfft
def test_irfft(self): x = random(30) assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="backward"), norm="backward"), atol=1e-6 ) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6 ) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="forward"), norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraypad.py
test_check_constant
def test_check_constant(self): a = np.arange(100) a = np.pad(a, (25, 20), "constant", constant_values=(10, 20)) b = np.array( [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, ] ) assert_array_equal(a, b)
from unittest import skipIf as skipif from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_allclose, assert_array_equal import torch._numpy as np from torch._numpy.testing import assert_allclose, assert_array_equal class TestConstant(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraypad.py
test_check_constant_zeros
def test_check_constant_zeros(self): a = np.arange(100) a = np.pad(a, (25, 20), "constant") b = np.array( [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ] ) assert_array_equal(a, b)
from unittest import skipIf as skipif from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_allclose, assert_array_equal import torch._numpy as np from torch._numpy.testing import assert_allclose, assert_array_equal class TestConstant(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraypad.py
test_check_constant_float
def test_check_constant_float(self): # If input array is int, but constant_values are float, the dtype of # the array to be padded is kept arr = np.arange(30).reshape(5, 6) test = np.pad(arr, (1, 2), mode="constant", constant_values=1.1) expected = np.array( [ [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 1, 2, 3, 4, 5, 1, 1], [1, 6, 7, 8, 9, 10, 11, 1, 1], [1, 12, 13, 14, 15, 16, 17, 1, 1], [1, 18, 19, 20, 21, 22, 23, 1, 1], [1, 24, 25, 26, 27, 28, 29, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1], ] ) assert_allclose(test, expected)
from unittest import skipIf as skipif from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_allclose, assert_array_equal import torch._numpy as np from torch._numpy.testing import assert_allclose, assert_array_equal class TestConstant(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_irfft
def test_irfft(self): x = random(30) assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="backward"), norm="backward"), atol=1e-6 ) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6 ) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="forward"), norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_rfft2
def test_rfft2(self): x = random((30, 20)) assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6) assert_allclose(np.fft.rfft2(x), np.fft.rfft2(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.rfft2(x) / np.sqrt(30 * 20), np.fft.rfft2(x, norm="ortho"), atol=1e-6 ) assert_allclose( np.fft.rfft2(x) / (30.0 * 20.0), np.fft.rfft2(x, norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_irfft2
def test_irfft2(self): x = random((30, 20)) assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6) assert_allclose( x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"), norm="backward"), atol=1e-6, ) assert_allclose( x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6 ) assert_allclose( x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_rfftn
def test_rfftn(self): x = random((30, 20, 10)) assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6) assert_allclose(np.fft.rfftn(x), np.fft.rfftn(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.rfftn(x) / np.sqrt(30 * 20 * 10), np.fft.rfftn(x, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.rfftn(x) / (30.0 * 20.0 * 10.0), np.fft.rfftn(x, norm="forward"), atol=1e-6, )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_irfftn
def test_irfftn(self): x = random((30, 20, 10)) assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6) assert_allclose( x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"), norm="backward"), atol=1e-6, ) assert_allclose( x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6 ) assert_allclose( x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_hfft
def test_hfft(self): x = random(14) + 1j * random(14) x_herm = np.concatenate((random(1), x, random(1))) x = np.concatenate((x_herm, np.flip(x).conj())) assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6) assert_allclose( np.fft.hfft(x_herm), np.fft.hfft(x_herm, norm="backward"), atol=1e-6 ) assert_allclose( np.fft.hfft(x_herm) / np.sqrt(30), np.fft.hfft(x_herm, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.hfft(x_herm) / 30.0, np.fft.hfft(x_herm, norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_axes
def test_axes(self, op): x = random((30, 20, 10)) axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] for a in axes: op_tr = op(np.transpose(x, a)) tr_op = np.transpose(op(x, axes=a), a) assert_allclose(op_tr, tr_op, atol=1e-6)
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_returns_copy
def test_returns_copy(self): a = np.eye(3) b = np.concatenate([a]) b[0, 0] = 2 assert b[0, 0] != a[0, 0]
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False @instantiate_parametrized_tests class TestConcatenate(TestCase): import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_total_size_estimate
def test_block_total_size_estimate(self, block): _, _, _, total_size = _block_setup([1]) assert total_size == 1 _, _, _, total_size = _block_setup([[1]]) assert total_size == 1 _, _, _, total_size = _block_setup([[1, 1]]) assert total_size == 2 _, _, _, total_size = _block_setup([[1], [1]]) assert total_size == 2 _, _, _, total_size = _block_setup([[1, 2], [3, 4]]) assert total_size == 4
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_simple_row_wise
def test_block_simple_row_wise(self, block): a_2d = np.ones((2, 2)) b_2d = 2 * a_2d desired = np.array([[1, 1, 2, 2], [1, 1, 2, 2]]) result = block([a_2d, b_2d]) assert_equal(desired, result)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_simple_column_wise
def test_block_simple_column_wise(self, block): a_2d = np.ones((2, 2)) b_2d = 2 * a_2d expected = np.array([[1, 1], [1, 1], [2, 2], [2, 2]]) result = block([[a_2d], [b_2d]]) assert_equal(expected, result)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_with_1d_arrays_row_wise
def test_block_with_1d_arrays_row_wise(self, block): # # # 1-D vectors are treated as row arrays a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) expected = np.array([1, 2, 3, 2, 3, 4]) result = block([a, b]) assert_equal(expected, result)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_with_1d_arrays_multiple_rows
def test_block_with_1d_arrays_multiple_rows(self, block): a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) expected = np.array([[1, 2, 3, 2, 3, 4], [1, 2, 3, 2, 3, 4]]) result = block([[a, b], [a, b]]) assert_equal(expected, result)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_with_1d_arrays_column_wise
def test_block_with_1d_arrays_column_wise(self, block): # # # 1-D vectors are treated as row arrays a_1d = np.array([1, 2, 3]) b_1d = np.array([2, 3, 4]) expected = np.array([[1, 2, 3], [2, 3, 4]]) result = block([[a_1d], [b_1d]]) assert_equal(expected, result)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_mixed_1d_and_2d
def test_block_mixed_1d_and_2d(self, block): a_2d = np.ones((2, 2)) b_1d = np.array([2, 2]) result = block([[a_2d], [b_1d]]) expected = np.array([[1, 1], [1, 1], [2, 2]]) assert_equal(expected, result)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_complicated
def test_block_complicated(self, block): # a bit more complicated one_2d = np.array([[1, 1, 1]]) two_2d = np.array([[2, 2, 2]]) three_2d = np.array([[3, 3, 3, 3, 3, 3]]) four_1d = np.array([4, 4, 4, 4, 4, 4]) five_0d = np.array(5) six_1d = np.array([6, 6, 6, 6, 6]) zero_2d = np.zeros((2, 6)) expected = np.array( [ [1, 1, 1, 2, 2, 2], [3, 3, 3, 3, 3, 3], [4, 4, 4, 4, 4, 4], [5, 6, 6, 6, 6, 6], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ] ) result = block( [[one_2d, two_2d], [three_2d], [four_1d], [five_0d, six_1d], [zero_2d]] ) assert_equal(result, expected)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_nested
def test_nested(self, block): one = np.array([1, 1, 1]) two = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]]) three = np.array([3, 3, 3]) four = np.array([4, 4, 4]) five = np.array(5) six = np.array([6, 6, 6, 6, 6]) zero = np.zeros((2, 6)) result = block([[block([[one], [three], [four]]), two], [five, six], [zero]]) expected = np.array( [ [1, 1, 1, 2, 2, 2], [3, 3, 3, 2, 2, 2], [4, 4, 4, 2, 2, 2], [5, 6, 6, 6, 6, 6], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ] ) assert_equal(result, expected)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_3d
def test_3d(self, block): a000 = np.ones((2, 2, 2), int) * 1 a100 = np.ones((3, 2, 2), int) * 2 a010 = np.ones((2, 3, 2), int) * 3 a001 = np.ones((2, 2, 3), int) * 4 a011 = np.ones((2, 3, 3), int) * 5 a101 = np.ones((3, 2, 3), int) * 6 a110 = np.ones((3, 3, 2), int) * 7 a111 = np.ones((3, 3, 3), int) * 8 result = block( [ [ [a000, a001], [a010, a011], ], [ [a100, a101], [a110, a111], ], ] ) expected = array( [ [ [1, 1, 4, 4, 4], [1, 1, 4, 4, 4], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5], ], [ [1, 1, 4, 4, 4], [1, 1, 4, 4, 4], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5], ], [ [2, 2, 6, 6, 6], [2, 2, 6, 6, 6], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], ], [ [2, 2, 6, 6, 6], [2, 2, 6, 6, 6], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], ], [ [2, 2, 6, 6, 6], [2, 2, 6, 6, 6], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], ], ] ) assert_array_equal(result, expected)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_with_mismatched_shape
def test_block_with_mismatched_shape(self, block): a = np.array([0, 0]) b = np.eye(2) assert_raises(ValueError, block, [a, b]) assert_raises(ValueError, block, [b, a]) to_block = [ [np.ones((2, 3)), np.ones((2, 2))], [np.ones((2, 2)), np.ones((2, 2))], ] assert_raises(ValueError, block, to_block)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_no_lists
def test_no_lists(self, block): assert_equal(block(1), np.array(1)) assert_equal(block(np.eye(3)), np.eye(3))
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_invalid_nesting
def test_invalid_nesting(self, block): msg = "depths are mismatched" assert_raises_regex(ValueError, msg, block, [1, [2]]) assert_raises_regex(ValueError, msg, block, [1, []]) assert_raises_regex(ValueError, msg, block, [[1], 2]) assert_raises_regex(ValueError, msg, block, [[], 2]) assert_raises_regex( ValueError, msg, block, [[[1], [2]], [[3, 4]], [5]] # missing brackets )
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_empty_lists
def test_empty_lists(self, block): assert_raises_regex(ValueError, "empty", block, []) assert_raises_regex(ValueError, "empty", block, [[]]) assert_raises_regex(ValueError, "empty", block, [[1], []])
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_tuple
def test_tuple(self, block): assert_raises_regex(TypeError, "tuple", block, ([1, 2], [3, 4])) assert_raises_regex(TypeError, "tuple", block, [(1, 2), (3, 4)])
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_different_ndims
def test_different_ndims(self, block): a = 1.0 b = 2 * np.ones((1, 2)) c = 3 * np.ones((1, 1, 3)) result = block([a, b, c]) expected = np.array([[[1.0, 2.0, 2.0, 3.0, 3.0, 3.0]]]) assert_equal(result, expected)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_different_ndims_depths
def test_different_ndims_depths(self, block): a = 1.0 b = 2 * np.ones((1, 2)) c = 3 * np.ones((1, 2, 3)) result = block([[a, b], [c]]) expected = np.array([[[1.0, 2.0, 2.0], [3.0, 3.0, 3.0], [3.0, 3.0, 3.0]]]) assert_equal(result, expected)
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_shape_base.py
test_block_memory_order
def test_block_memory_order(self, block): # 3D arr_c = np.zeros((3,) * 3, order="C") arr_f = np.zeros((3,) * 3, order="F") b_c = [[[arr_c, arr_c], [arr_c, arr_c]], [[arr_c, arr_c], [arr_c, arr_c]]] b_f = [[[arr_f, arr_f], [arr_f, arr_f]], [[arr_f, arr_f], [arr_f, arr_f]]] assert block(b_c).flags["C_CONTIGUOUS"] assert block(b_f).flags["F_CONTIGUOUS"] arr_c = np.zeros((3, 3), order="C") arr_f = np.zeros((3, 3), order="F") # 2D b_c = [[arr_c, arr_c], [arr_c, arr_c]] b_f = [[arr_f, arr_f], [arr_f, arr_f]] assert block(b_c).flags["C_CONTIGUOUS"] assert block(b_f).flags["F_CONTIGUOUS"]
import functools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from numpy.testing import assert_, assert_array_equal, assert_equal import torch._numpy as np from torch._numpy import ( array, atleast_1d, atleast_2d, atleast_3d, AxisError, concatenate, hstack, newaxis, stack, vstack, ) from torch._numpy.testing import assert_, assert_array_equal, assert_equal skip = functools.partial(skipif, True) IS_PYPY = False import operator @xfail # (reason="TODO: implement block(...)") @instantiate_parametrized_tests class TestBlock(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_definition
def test_definition(self): x = [0, 1, 2, 3, 4, -4, -3, -2, -1] y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x) x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x)
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal class TestFFTShift(TestCase): from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_inverse
def test_inverse(self): for n in [1, 4, 9, 100, 211]: x = np.random.random((n,)) assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal class TestFFTShift(TestCase): from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_axes_keyword
def test_axes_keyword(self): freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]] shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]] assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted) assert_array_almost_equal( fft.fftshift(freqs, axes=0), fft.fftshift(freqs, axes=(0,)) ) assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs) assert_array_almost_equal( fft.ifftshift(shifted, axes=0), fft.ifftshift(shifted, axes=(0,)) ) assert_array_almost_equal(fft.fftshift(freqs), shifted) assert_array_almost_equal(fft.ifftshift(shifted), freqs)
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal class TestFFTShift(TestCase): from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_uneven_dims
def test_uneven_dims(self): """Test 2D input, which has uneven dimension sizes""" freqs = [[0, 1], [2, 3], [4, 5]] # shift in dimension 0 shift_dim0 = [[4, 5], [0, 1], [2, 3]] assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0) assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs) assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0) assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs) # shift in dimension 1 shift_dim1 = [[1, 0], [3, 2], [5, 4]] assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1) assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs) # shift in both dimensions shift_dim_both = [[5, 4], [1, 0], [3, 2]] assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs) assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs) # axes=None (default) shift in all dimensions assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs) assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal class TestFFTShift(TestCase): from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_equal_to_original
def test_equal_to_original(self): """Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14)""" if TEST_WITH_TORCHDYNAMO: from numpy import arange, asarray, concatenate, take else: from torch._numpy import arange, asarray, concatenate, take def original_fftshift(x, axes=None): """How fftshift was implemented in v1.14""" tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, int): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = (n + 1) // 2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y def original_ifftshift(x, axes=None): """How ifftshift was implemented in v1.14""" tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, int): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = n - (n + 1) // 2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y # create possible 2d array combinations and try all possible keywords # compare output to original functions for i in range(16): for j in range(16): for axes_keyword in [0, 1, None, (0,), (0, 1)]: inp = np.random.rand(i, j) assert_array_almost_equal( fft.fftshift(inp, axes_keyword), original_fftshift(inp, axes_keyword), ) assert_array_almost_equal( fft.ifftshift(inp, axes_keyword), original_ifftshift(inp, axes_keyword), )
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal class TestFFTShift(TestCase): from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
original_fftshift
def original_fftshift(x, axes=None): """How fftshift was implemented in v1.14""" tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, int): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = (n + 1) // 2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
original_ifftshift
def original_ifftshift(x, axes=None): """How ifftshift was implemented in v1.14""" tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, int): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = n - (n + 1) // 2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y # create possible 2d array combinations and try all possible keywords # compare output to original functions for i in range(16): for j in range(16): for axes_keyword in [0, 1, None, (0,), (0, 1)]: inp = np.random.rand(i, j) assert_array_almost_equal( fft.fftshift(inp, axes_keyword), original_fftshift(inp, axes_keyword), ) assert_array_almost_equal( fft.ifftshift(inp, axes_keyword), original_ifftshift(inp, axes_keyword), )
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_definition
def test_definition(self): x = [0, 1, 2, 3, 4, -4, -3, -2, -1] y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x) x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x)
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal class TestFFTShift(TestCase): from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_definition
def test_definition(self): x = [0, 1, 2, 3, 4, -4, -3, -2, -1] y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x) x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x)
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal class TestFFTShift(TestCase): from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_helper.py
test_not_last_axis_success
def test_not_last_axis_success(self): ar, ai = np.random.random((2, 16, 8, 32)) a = ar + 1j * ai axes = (-2,) # Should not raise error fft.irfftn(a, axes=axes)
from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy import fft, pi from numpy.testing import assert_array_almost_equal import torch._numpy as np from torch._numpy import fft, pi from torch._numpy.testing import assert_array_almost_equal from numpy import arange, asarray, concatenate, take from torch._numpy import arange, asarray, concatenate, take class TestIRFFTN(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
fft1
def fft1(x): L = len(x) phase = -2j * np.pi * (np.arange(L) / L) phase = np.arange(L).reshape(-1, 1) * phase return np.sum(x * np.exp(phase), axis=1) class TestFFTShift(TestCase): def test_fft_n(self): assert_raises((ValueError, RuntimeError), np.fft.fft, [1, 2, 3], 0) @instantiate_parametrized_tests class TestFFT1D(TestCase): def setUp(self): super().setUp() np.random.seed(123456) def test_identity(self): maxlen = 512 x = random(maxlen) + 1j * random(maxlen) xr = random(maxlen) for i in range(1, maxlen): assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], atol=1e-12) assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), xr[0:i], atol=1e-12) def test_fft(self): np.random.seed(1234) x = random(30) + 1j * random(30) assert_allclose(fft1(x), np.fft.fft(x), atol=3e-5) assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=3e-5) assert_allclose(fft1(x) / np.sqrt(30), np.fft.fft(x, norm="ortho"), atol=5e-6) assert_allclose(fft1(x) / 30.0, np.fft.fft(x, norm="forward"), atol=5e-6) @parametrize("norm", (None, "backward", "ortho", "forward")) def test_ifft(self, norm): x = random(30) + 1j * random(30) assert_allclose(x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), atol=1e-6) # Ensure we get the correct error message # NB: Exact wording differs slightly under Dynamo and in eager. with pytest.raises((ValueError, RuntimeError), match="Invalid number of"): np.fft.ifft([], norm=norm) def test_fft2(self): x = random((30, 20)) + 1j * random((30, 20)) assert_allclose( np.fft.fft(np.fft.fft(x, axis=1), axis=0), np.fft.fft2(x), atol=1e-6 ) assert_allclose(np.fft.fft2(x), np.fft.fft2(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.fft2(x) / np.sqrt(30 * 20), np.fft.fft2(x, norm="ortho"), atol=1e-6 ) assert_allclose( np.fft.fft2(x) / (30.0 * 20.0), np.fft.fft2(x, norm="forward"), atol=1e-6 ) def test_ifft2(self): x = random((30, 20)) + 1j * random((30, 20)) assert_allclose( np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), np.fft.ifft2(x), atol=1e-6 ) assert_allclose(np.fft.ifft2(x), np.fft.ifft2(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.ifft2(x) * np.sqrt(30 * 20), np.fft.ifft2(x, norm="ortho"), atol=1e-6 ) assert_allclose( np.fft.ifft2(x) * (30.0 * 20.0), np.fft.ifft2(x, norm="forward"), atol=1e-6 ) def test_fftn(self): x = random((30, 20, 10)) + 1j * random((30, 20, 10)) assert_allclose( np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0), np.fft.fftn(x), atol=1e-6, ) assert_allclose(np.fft.fftn(x), np.fft.fftn(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.fftn(x) / np.sqrt(30 * 20 * 10), np.fft.fftn(x, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.fftn(x) / (30.0 * 20.0 * 10.0), np.fft.fftn(x, norm="forward"), atol=1e-6, ) def test_ifftn(self): x = random((30, 20, 10)) + 1j * random((30, 20, 10)) assert_allclose( np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0), np.fft.ifftn(x), atol=1e-6, ) assert_allclose(np.fft.ifftn(x), np.fft.ifftn(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.ifftn(x) * np.sqrt(30 * 20 * 10), np.fft.ifftn(x, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.ifftn(x) * (30.0 * 20.0 * 10.0), np.fft.ifftn(x, norm="forward"), atol=1e-6, ) def test_rfft(self): x = random(30) for n in [x.size, 2 * x.size]: for norm in [None, "backward", "ortho", "forward"]: assert_allclose( np.fft.fft(x, n=n, norm=norm)[: (n // 2 + 1)], np.fft.rfft(x, n=n, norm=norm), atol=1e-6, ) assert_allclose( np.fft.rfft(x, n=n), np.fft.rfft(x, n=n, norm="backward"), atol=1e-6 ) assert_allclose( np.fft.rfft(x, n=n) / np.sqrt(n), np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.rfft(x, n=n) / n, np.fft.rfft(x, n=n, norm="forward"), atol=1e-6 ) def test_irfft(self): x = random(30) assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="backward"), norm="backward"), atol=1e-6 ) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6 ) assert_allclose( x, np.fft.irfft(np.fft.rfft(x, norm="forward"), norm="forward"), atol=1e-6 ) def test_rfft2(self): x = random((30, 20)) assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6) assert_allclose(np.fft.rfft2(x), np.fft.rfft2(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.rfft2(x) / np.sqrt(30 * 20), np.fft.rfft2(x, norm="ortho"), atol=1e-6 ) assert_allclose( np.fft.rfft2(x) / (30.0 * 20.0), np.fft.rfft2(x, norm="forward"), atol=1e-6 ) def test_irfft2(self): x = random((30, 20)) assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6) assert_allclose( x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"), norm="backward"), atol=1e-6, ) assert_allclose( x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6 ) assert_allclose( x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), norm="forward"), atol=1e-6 ) def test_rfftn(self): x = random((30, 20, 10)) assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6) assert_allclose(np.fft.rfftn(x), np.fft.rfftn(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.rfftn(x) / np.sqrt(30 * 20 * 10), np.fft.rfftn(x, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.rfftn(x) / (30.0 * 20.0 * 10.0), np.fft.rfftn(x, norm="forward"), atol=1e-6, ) def test_irfftn(self): x = random((30, 20, 10)) assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6) assert_allclose( x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"), norm="backward"), atol=1e-6, ) assert_allclose( x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6 ) assert_allclose( x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), norm="forward"), atol=1e-6 ) def test_hfft(self): x = random(14) + 1j * random(14) x_herm = np.concatenate((random(1), x, random(1))) x = np.concatenate((x_herm, np.flip(x).conj())) assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6) assert_allclose( np.fft.hfft(x_herm), np.fft.hfft(x_herm, norm="backward"), atol=1e-6 ) assert_allclose( np.fft.hfft(x_herm) / np.sqrt(30), np.fft.hfft(x_herm, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.hfft(x_herm) / 30.0, np.fft.hfft(x_herm, norm="forward"), atol=1e-6 ) def test_ihfft(self): x = random(14) + 1j * random(14) x_herm = np.concatenate((random(1), x, random(1))) x = np.concatenate((x_herm, np.flip(x).conj())) assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6) assert_allclose( x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="backward"), norm="backward"), atol=1e-6, ) assert_allclose( x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"), norm="ortho"), atol=1e-6, ) assert_allclose( x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="forward"), norm="forward"), atol=1e-6, ) @parametrize("op", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn, np.fft.irfftn]) def test_axes(self, op): x = random((30, 20, 10)) axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] for a in axes: op_tr = op(np.transpose(x, a)) tr_op = np.transpose(op(x, axes=a), a) assert_allclose(op_tr, tr_op, atol=1e-6) def test_all_1d_norm_preserving(self): # verify that round-trip transforms are norm-preserving x = random(30) x_norm = np.linalg.norm(x) n = x.size * 2 func_pairs = [ (np.fft.fft, np.fft.ifft), (np.fft.rfft, np.fft.irfft), # hfft: order so the first function takes x.size samples # (necessary for comparison to x_norm above) (np.fft.ihfft, np.fft.hfft), ] for forw, back in func_pairs: for n in [x.size, 2 * x.size]: for norm in [None, "backward", "ortho", "forward"]: tmp = forw(x, n=n, norm=norm) tmp = back(tmp, n=n, norm=norm) assert_allclose(x_norm, np.linalg.norm(tmp), atol=1e-6) @parametrize("dtype", [np.half, np.single, np.double]) def test_dtypes(self, dtype): # make sure that all input precisions are accepted and internally # converted to 64bit x = random(30).astype(dtype) assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6) assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6) @parametrize("dtype", [np.float32, np.float64, np.complex64, np.complex128]) @parametrize("order", ["F", "non-contiguous"]) @parametrize( "fft", [np.fft.fft, np.fft.fft2, np.fft.fftn, np.fft.ifft, np.fft.ifft2, np.fft.ifftn], ) def test_fft_with_order(self, dtype, order, fft): # Check that FFT/IFFT produces identical results for C, Fortran and # non contiguous arrays # rng = np.random.RandomState(42) rng = np.random X = rng.rand(8, 7, 13).astype(dtype) # , copy=False) # See discussion in pull/14178 _tol = float(8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps) if order == "F": raise SkipTest("Fortran order arrays") Y = np.asfortranarray(X) else: # Make a non contiguous array Z = np.empty((16, 7, 13), dtype=X.dtype) Z[::2] = X Y = Z[::2] X = Y.copy() if fft.__name__.endswith("fft"): for axis in range(3): X_res = fft(X, axis=axis) Y_res = fft(Y, axis=axis) assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) elif fft.__name__.endswith(("fft2", "fftn")): axes = [(0, 1), (1, 2), (0, 2)] if fft.__name__.endswith("fftn"): axes.extend([(0,), (1,), (2,), None]) for ax in axes: X_res = fft(X, axes=ax) Y_res = fft(Y, axes=ax) assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) else: raise ValueError @skipif(IS_WASM, reason="Cannot start thread") class TestFFTThreadSafe(TestCase): threads = 16 input_shape = (800, 200) def _test_mtsame(self, func, *args): def worker(args, q): q.put(func(*args)) q = queue.Queue() expected = func(*args) # Spin off a bunch of threads to call the same function simultaneously t = [ threading.Thread(target=worker, args=(args, q)) for i in range(self.threads) ] [x.start() for x in t] [x.join() for x in t] # Make sure all threads returned the correct value for i in range(self.threads): # under torch.dynamo `assert_array_equal` fails with relative errors of # about 1.5e-14. Hence replace it with `assert_allclose(..., rtol=2e-14)` assert_allclose( q.get(timeout=5), expected, atol=2e-14 # msg="Function returned wrong value in multithreaded context", ) def test_fft(self): a = np.ones(self.input_shape) * 1 + 0j self._test_mtsame(np.fft.fft, a) def test_ifft(self): a = np.ones(self.input_shape) * 1 + 0j self._test_mtsame(np.fft.ifft, a) def test_rfft(self): a = np.ones(self.input_shape) self._test_mtsame(np.fft.rfft, a) def test_irfft(self): a = np.ones(self.input_shape) * 1 + 0j self._test_mtsame(np.fft.irfft, a) if __name__ == "__main__": run_tests()
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_fft_n
def test_fft_n(self): assert_raises((ValueError, RuntimeError), np.fft.fft, [1, 2, 3], 0)
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False class TestFFTShift(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
setUp
def setUp(self): super().setUp() np.random.seed(123456)
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_identity
def test_identity(self): maxlen = 512 x = random(maxlen) + 1j * random(maxlen) xr = random(maxlen) for i in range(1, maxlen): assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], atol=1e-12) assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), xr[0:i], atol=1e-12)
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_ifft
def test_ifft(self, norm): x = random(30) + 1j * random(30) assert_allclose(x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), atol=1e-6) # Ensure we get the correct error message # NB: Exact wording differs slightly under Dynamo and in eager. with pytest.raises((ValueError, RuntimeError), match="Invalid number of"): np.fft.ifft([], norm=norm)
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_fft2
def test_fft2(self): x = random((30, 20)) + 1j * random((30, 20)) assert_allclose( np.fft.fft(np.fft.fft(x, axis=1), axis=0), np.fft.fft2(x), atol=1e-6 ) assert_allclose(np.fft.fft2(x), np.fft.fft2(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.fft2(x) / np.sqrt(30 * 20), np.fft.fft2(x, norm="ortho"), atol=1e-6 ) assert_allclose( np.fft.fft2(x) / (30.0 * 20.0), np.fft.fft2(x, norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_ifft2
def test_ifft2(self): x = random((30, 20)) + 1j * random((30, 20)) assert_allclose( np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), np.fft.ifft2(x), atol=1e-6 ) assert_allclose(np.fft.ifft2(x), np.fft.ifft2(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.ifft2(x) * np.sqrt(30 * 20), np.fft.ifft2(x, norm="ortho"), atol=1e-6 ) assert_allclose( np.fft.ifft2(x) * (30.0 * 20.0), np.fft.ifft2(x, norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_fftn
def test_fftn(self): x = random((30, 20, 10)) + 1j * random((30, 20, 10)) assert_allclose( np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0), np.fft.fftn(x), atol=1e-6, ) assert_allclose(np.fft.fftn(x), np.fft.fftn(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.fftn(x) / np.sqrt(30 * 20 * 10), np.fft.fftn(x, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.fftn(x) / (30.0 * 20.0 * 10.0), np.fft.fftn(x, norm="forward"), atol=1e-6, )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_ifftn
def test_ifftn(self): x = random((30, 20, 10)) + 1j * random((30, 20, 10)) assert_allclose( np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0), np.fft.ifftn(x), atol=1e-6, ) assert_allclose(np.fft.ifftn(x), np.fft.ifftn(x, norm="backward"), atol=1e-6) assert_allclose( np.fft.ifftn(x) * np.sqrt(30 * 20 * 10), np.fft.ifftn(x, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.ifftn(x) * (30.0 * 20.0 * 10.0), np.fft.ifftn(x, norm="forward"), atol=1e-6, )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/fft/test_pocketfft.py
test_rfft
def test_rfft(self): x = random(30) for n in [x.size, 2 * x.size]: for norm in [None, "backward", "ortho", "forward"]: assert_allclose( np.fft.fft(x, n=n, norm=norm)[: (n // 2 + 1)], np.fft.rfft(x, n=n, norm=norm), atol=1e-6, ) assert_allclose( np.fft.rfft(x, n=n), np.fft.rfft(x, n=n, norm="backward"), atol=1e-6 ) assert_allclose( np.fft.rfft(x, n=n) / np.sqrt(n), np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6, ) assert_allclose( np.fft.rfft(x, n=n) / n, np.fft.rfft(x, n=n, norm="forward"), atol=1e-6 )
import functools import queue import threading from unittest import skipIf as skipif, SkipTest import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.random import random from numpy.testing import assert_allclose # , IS_WASM import torch._numpy as np from torch._numpy.random import random from torch._numpy.testing import assert_allclose # , IS_WASM skip = functools.partial(skipif, True) IS_WASM = False @instantiate_parametrized_tests class TestFFT1D(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraypad.py
test_check_constant_float3
def test_check_constant_float3(self): a = np.arange(100, dtype=float) a = np.pad(a, (25, 20), "constant", constant_values=(-1.1, -1.2)) b = np.array( [ -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, ] ) assert_allclose(a, b)
from unittest import skipIf as skipif from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_allclose, assert_array_equal import torch._numpy as np from torch._numpy.testing import assert_allclose, assert_array_equal class TestConstant(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraypad.py
test_check_large_integers
def test_check_large_integers(self): int64_max = 2**63 - 1 arr = np.full(5, int64_max, dtype=np.int64) test = np.pad(arr, 1, mode="constant", constant_values=arr.min()) expected = np.full(7, int64_max, dtype=np.int64) assert_array_equal(test, expected)
from unittest import skipIf as skipif from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_allclose, assert_array_equal import torch._numpy as np from torch._numpy.testing import assert_allclose, assert_array_equal class TestConstant(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraypad.py
test_pad_empty_dimension
def test_pad_empty_dimension(self): arr = np.zeros((3, 0, 2)) result = np.pad(arr, [(0,), (2,), (1,)], mode="constant") assert result.shape == (3, 4, 4)
from unittest import skipIf as skipif from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_allclose, assert_array_equal import torch._numpy as np from torch._numpy.testing import assert_allclose, assert_array_equal class TestConstant(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_intersect1d
def test_intersect1d(self): # unique inputs a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5]) ec = np.array([1, 2, 5]) c = intersect1d(a, b, assume_unique=True) assert_array_equal(c, ec) # non-unique inputs a = np.array([5, 5, 7, 1, 2]) b = np.array([2, 1, 4, 3, 3, 1, 5]) ed = np.array([1, 2, 5]) c = intersect1d(a, b) assert_array_equal(c, ed) assert_array_equal([], intersect1d([], []))
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_intersect1d_array_like
def test_intersect1d_array_like(self): # See gh-11772 class Test: def __array__(self): return np.arange(3) a = Test() res = intersect1d(a, a) assert_array_equal(res, a) res = intersect1d([1, 2, 3], [1, 2, 3]) assert_array_equal(res, [1, 2, 3])
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
__array__
def __array__(self): return np.arange(3)
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal class Test:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_intersect1d_indices
def test_intersect1d_indices(self): # unique inputs a = np.array([1, 2, 3, 4]) b = np.array([2, 1, 4, 6]) c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) ee = np.array([1, 2, 4]) assert_array_equal(c, ee) assert_array_equal(a[i1], ee) assert_array_equal(b[i2], ee) # non-unique inputs a = np.array([1, 2, 2, 3, 4, 3, 2]) b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) c, i1, i2 = intersect1d(a, b, return_indices=True) ef = np.array([1, 2, 3, 4]) assert_array_equal(c, ef) assert_array_equal(a[i1], ef) assert_array_equal(b[i2], ef) # non1d, unique inputs a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) ui1 = np.unravel_index(i1, a.shape) ui2 = np.unravel_index(i2, b.shape) ea = np.array([2, 6, 7, 8]) assert_array_equal(ea, a[ui1]) assert_array_equal(ea, b[ui2]) # non1d, not assumed to be uniqueinputs a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) c, i1, i2 = intersect1d(a, b, return_indices=True) ui1 = np.unravel_index(i1, a.shape) ui2 = np.unravel_index(i2, b.shape) ea = np.array([2, 7, 8]) assert_array_equal(ea, a[ui1]) assert_array_equal(ea, b[ui2])
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_setxor1d
def test_setxor1d(self): a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5]) ec = np.array([3, 4, 7]) c = setxor1d(a, b) assert_array_equal(c, ec) a = np.array([1, 2, 3]) b = np.array([6, 5, 4]) ec = np.array([1, 2, 3, 4, 5, 6]) c = setxor1d(a, b) assert_array_equal(c, ec) a = np.array([1, 8, 2, 3]) b = np.array([6, 5, 4, 8]) ec = np.array([1, 2, 3, 4, 5, 6]) c = setxor1d(a, b) assert_array_equal(c, ec) assert_array_equal([], setxor1d([], []))
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_in1d_with_arrays_containing_tuples
def test_in1d_with_arrays_containing_tuples(self): ar1 = np.array([(1,), 2], dtype=object) ar2 = np.array([(1,), 2], dtype=object) expected = np.array([True, True]) result = np.in1d(ar1, ar2) assert_array_equal(result, expected) result = np.in1d(ar1, ar2, invert=True) assert_array_equal(result, np.invert(expected)) # An integer is added at the end of the array to make sure # that the array builder will create the array with tuples # and after it's created the integer is removed. # There's a bug in the array constructor that doesn't handle # tuples properly and adding the integer fixes that. ar1 = np.array([(1,), (2, 1), 1], dtype=object) ar1 = ar1[:-1] ar2 = np.array([(1,), (2, 1), 1], dtype=object) ar2 = ar2[:-1] expected = np.array([True, True]) result = np.in1d(ar1, ar2) assert_array_equal(result, expected) result = np.in1d(ar1, ar2, invert=True) assert_array_equal(result, np.invert(expected)) ar1 = np.array([(1,), (2, 3), 1], dtype=object) ar1 = ar1[:-1] ar2 = np.array([(1,), 2], dtype=object) expected = np.array([True, False]) result = np.in1d(ar1, ar2) assert_array_equal(result, expected) result = np.in1d(ar1, ar2, invert=True) assert_array_equal(result, np.invert(expected))
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_in1d_errors
def test_in1d_errors(self): """Test that in1d raises expected errors.""" # Error 1: `kind` is not one of 'sort' 'table' or None. ar1 = np.array([1, 2, 3, 4, 5]) ar2 = np.array([2, 4, 6, 8, 10]) assert_raises(ValueError, in1d, ar1, ar2, kind="quicksort") # Error 2: `kind="table"` does not work for non-integral arrays. obj_ar1 = np.array([1, "a", 3, "b", 5], dtype=object) obj_ar2 = np.array([1, "a", 3, "b", 5], dtype=object) assert_raises(ValueError, in1d, obj_ar1, obj_ar2, kind="table") for dtype in [np.int32, np.int64]: ar1 = np.array([-1, 2, 3, 4, 5], dtype=dtype) # The range of this array will overflow: overflow_ar2 = np.array([-1, np.iinfo(dtype).max], dtype=dtype) # Error 3: `kind="table"` will trigger a runtime error # if there is an integer overflow expected when computing the # range of ar2 assert_raises(RuntimeError, in1d, ar1, overflow_ar2, kind="table") # Non-error: `kind=None` will *not* trigger a runtime error # if there is an integer overflow, it will switch to # the `sort` algorithm. result = np.in1d(ar1, overflow_ar2, kind=None) assert_array_equal(result, [True] + [False] * 4) result = np.in1d(ar1, overflow_ar2, kind="sort") assert_array_equal(result, [True] + [False] * 4)
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_union1d
def test_union1d(self): a = np.array([5, 4, 7, 1, 2]) b = np.array([2, 4, 3, 3, 2, 1, 5]) ec = np.array([1, 2, 3, 4, 5, 7]) c = union1d(a, b) assert_array_equal(c, ec) # Tests gh-10340, arguments to union1d should be # flattened if they are not already 1D x = np.array([[0, 1, 2], [3, 4, 5]]) y = np.array([0, 1, 2, 3, 4]) ez = np.array([0, 1, 2, 3, 4, 5]) z = union1d(x, y) assert_array_equal(z, ez) assert_array_equal([], union1d([], []))
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_setdiff1d
def test_setdiff1d(self): a = np.array([6, 5, 4, 7, 1, 2, 7, 4]) b = np.array([2, 4, 3, 3, 2, 1, 5]) ec = np.array([6, 7]) c = setdiff1d(a, b) assert_array_equal(c, ec) a = np.arange(21) b = np.arange(19) ec = np.array([19, 20]) c = setdiff1d(a, b) assert_array_equal(c, ec) assert_array_equal([], setdiff1d([], [])) a = np.array((), np.uint32) assert_equal(setdiff1d(a, []).dtype, np.uint32)
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_setdiff1d_unique
def test_setdiff1d_unique(self): a = np.array([3, 2, 1]) b = np.array([7, 5, 2]) expected = np.array([3, 1]) actual = setdiff1d(a, b, assume_unique=True) assert_equal(actual, expected)
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_setdiff1d_char_array
def test_setdiff1d_char_array(self): a = np.array(["a", "b", "c"]) b = np.array(["a", "b", "s"]) assert_array_equal(setdiff1d(a, b), np.array(["c"]))
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_manyways
def test_manyways(self): a = np.array([5, 7, 1, 2, 8]) b = np.array([9, 8, 2, 4, 3, 1, 5]) c1 = setxor1d(a, b) aux1 = intersect1d(a, b) aux2 = union1d(a, b) c2 = setdiff1d(aux2, aux1) assert_array_equal(c1, c2)
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x") @skipIf(True, reason="TODO implement these ops") @instantiate_parametrized_tests class TestSetOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_unique_1d_2
def test_unique_1d_2(self): # test for ticket 2111 - float a = [2.0, np.nan, 1.0, np.nan] ua = [1.0, 2.0, np.nan] ua_idx = [2, 0, 1] ua_inv = [1, 2, 0, 2] ua_cnt = [1, 1, 2] assert_equal(np.unique(a), ua) assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) # test for ticket 2111 - complex a = [2.0 - 1j, np.nan, 1.0 + 1j, complex(0.0, np.nan), complex(1.0, np.nan)] ua = [1.0 + 1j, 2.0 - 1j, complex(0.0, np.nan)] ua_idx = [2, 0, 3] ua_inv = [1, 2, 0, 2, 2] ua_cnt = [1, 1, 3] assert_equal(np.unique(a), ua) assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) # test for gh-19300 all_nans = [np.nan] * 4 ua = [np.nan] ua_idx = [0] ua_inv = [0, 0, 0, 0] ua_cnt = [4] assert_equal(np.unique(all_nans), ua) assert_equal(np.unique(all_nans, return_index=True), (ua, ua_idx)) assert_equal(np.unique(all_nans, return_inverse=True), (ua, ua_inv)) assert_equal(np.unique(all_nans, return_counts=True), (ua, ua_cnt))
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @instantiate_parametrized_tests class TestUnique(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
test_unique_axis_errors
def test_unique_axis_errors(self): assert_raises(np.AxisError, unique, np.arange(10), axis=2) assert_raises(np.AxisError, unique, np.arange(10), axis=-2)
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal @instantiate_parametrized_tests class TestUnique(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
_isin_slow
def _isin_slow(a, b): b = np.asarray(b).flatten().tolist() return a in b isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1})
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/lib/test_arraysetops.py
assert_isin_equal
def assert_isin_equal(a, b): x = np.isin(a, b, kind=kind) y = isin_slow(a, b) assert_array_equal(x, y) # multidimensional arrays in both arguments a = np.arange(24).reshape([2, 3, 4]) b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]]) assert_isin_equal(a, b) # array-likes as both arguments c = [(9, 8), (7, 6)] d = (9, 7) assert_isin_equal(c, d) # zero-d array: f = np.array(3) assert_isin_equal(f, b) assert_isin_equal(a, f) assert_isin_equal(f, f) # scalar: assert_isin_equal(5, b) assert_isin_equal(a, 6) assert_isin_equal(5, 6) # empty array-like: if kind != "table": # An empty list will become float64, # which is invalid for kind="table" x = [] assert_isin_equal(x, b) assert_isin_equal(a, x) assert_isin_equal(x, x) # empty array with various types: for dtype in [bool, np.int64, np.float64]: if kind == "table" and dtype == np.float64: continue if dtype in {np.int64, np.float64}: ar = np.array([10, 20, 30], dtype=dtype) elif dtype in {bool}: ar = np.array([True, False, False]) empty_array = np.array([], dtype=dtype) assert_isin_equal(empty_array, ar) assert_isin_equal(ar, empty_array) assert_isin_equal(empty_array, empty_array)
from unittest import expectedFailure as xfail, skipIf import numpy from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy import ediff1d, in1d, intersect1d, setdiff1d, setxor1d, union1d, unique from numpy.testing import assert_array_equal, assert_equal, assert_raises_regex import torch._numpy as np from torch._numpy import unique from torch._numpy.testing import assert_array_equal, assert_equal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added