library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_errors
|
def test_errors(self):
x = np.random.randn(1, 2, 3)
assert_raises(np.AxisError, np.moveaxis, x, 3, 0) # 'source.*out of bounds',
assert_raises(np.AxisError, np.moveaxis, x, -4, 0) # 'source.*out of bounds',
assert_raises(
np.AxisError, np.moveaxis, x, 0, 5 # 'destination.*out of bounds',
)
assert_raises(
ValueError, np.moveaxis, x, [0, 0], [0, 1] # 'repeated axis in `source`',
)
assert_raises(
ValueError, # 'repeated axis in `destination`',
np.moveaxis,
x,
[0, 1],
[1, 1],
)
assert_raises(
(ValueError, RuntimeError), # 'must have the same number',
np.moveaxis,
x,
0,
[0, 1],
)
assert_raises(
(ValueError, RuntimeError), # 'must have the same number',
np.moveaxis,
x,
[0, 1],
[0],
)
x = [1, 2, 3]
result = np.moveaxis(x, 0, 0)
assert_(x, list(result))
assert_(isinstance(result, np.ndarray))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestMoveaxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_2x2
|
def test_2x2(self):
u = [1, 2]
v = [3, 4]
z = -2
cp = np.cross(u, v)
assert_equal(cp, z)
cp = np.cross(v, u)
assert_equal(cp, -z)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCross(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_2x3
|
def test_2x3(self):
u = [1, 2]
v = [3, 4, 5]
z = np.array([10, -5, -2])
cp = np.cross(u, v)
assert_equal(cp, z)
cp = np.cross(v, u)
assert_equal(cp, -z)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCross(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_empty_like
|
def test_empty_like(self):
self.check_like_function(np.empty_like, None)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@skip(reason="implement order etc") # FIXME: make xfail
@instantiate_parametrized_tests
class TestLikeFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_dtype_str_bytes
|
def test_dtype_str_bytes(self, likefunc, dtype):
# Regression test for gh-19860
a = np.arange(16).reshape(2, 8)
b = a[:, ::2] # Ensure b is not contiguous.
kwargs = {"fill_value": ""} if likefunc == np.full_like else {}
result = likefunc(b, dtype=dtype, **kwargs)
if dtype == str:
assert result.strides == (16, 4)
else:
# dtype is bytes
assert result.strides == (4, 1)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@skip(reason="implement order etc") # FIXME: make xfail
@instantiate_parametrized_tests
class TestLikeFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
_setup
|
def _setup(self):
atol = self.atol
rtol = self.rtol
arr = np.array([100, 1000])
aran = np.arange(125).reshape((5, 5, 5))
self.all_close_tests = [
([1, 0], [1, 0]),
([atol], [0]),
([1], [1 + rtol + atol]),
(arr, arr + arr * rtol),
(arr, arr + arr * rtol + atol),
(aran, aran + aran * rtol),
(np.inf, np.inf),
(np.inf, [np.inf]),
([np.inf, -np.inf], [np.inf, -np.inf]),
]
self.none_close_tests = [
([np.inf, 0], [1, np.inf]),
([np.inf, -np.inf], [1, 0]),
([np.inf, np.inf], [1, -np.inf]),
([np.inf, np.inf], [1, 0]),
([np.nan, 0], [np.nan, -np.inf]),
([atol * 2], [0]),
([1], [1 + rtol + atol * 2]),
(aran, aran + rtol * 1.1 * aran + atol * 1.1),
(np.array([np.inf, 1]), np.array([0, np.inf])),
]
self.some_close_tests = [
([np.inf, 0], [np.inf, atol * 2]),
([atol, 1, 1e6 * (1 + 2 * rtol) + atol], [0, np.nan, 1e6]),
(np.arange(3), [0, 1, 2.1]),
(np.nan, [np.nan, np.nan, np.nan]),
([0], [atol, np.inf, -np.inf, np.nan]),
(0, [atol, np.inf, -np.inf, np.nan]),
]
self.some_close_results = [
[True, False],
[True, False, False],
[True, True, False],
[False, False, False],
[True, False, False, False],
[True, False, False, False],
]
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_float
|
def test_float(self):
# offset for alignment test
for i in range(4):
assert_array_equal(self.f[i:] > 0, self.ef[i:])
assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:])
assert_array_equal(self.f[i:] == 0, ~self.ef[i:])
assert_array_equal(-self.f[i:] < 0, self.ef[i:])
assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:])
r = self.f[i:] != 0
assert_array_equal(r, self.ef[i:])
r2 = self.f[i:] != np.zeros_like(self.f[i:])
r3 = 0 != self.f[i:]
assert_array_equal(r, r2)
assert_array_equal(r, r3)
# check bool == 0x1
assert_array_equal(r.view(np.int8), r.astype(np.int8))
assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
assert_array_equal(r3.view(np.int8), r3.astype(np.int8))
# isnan on amd64 takes the same code path
assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:])
assert_array_equal(np.isfinite(self.nf[i:]), ~self.ef[i:])
assert_array_equal(np.isfinite(self.inff[i:]), ~self.ef[i:])
assert_array_equal(np.isinf(self.inff[i:]), self.efnonan[i:])
assert_array_equal(np.signbit(self.signf[i:]), self.ef[i:])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xfailIfTorchDynamo
class TestBoolCmp(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_no_overwrite
|
def test_no_overwrite(self):
d = np.ones(100)
k = np.ones(3)
np.correlate(d, k)
assert_array_equal(d, np.ones(100))
assert_array_equal(k, np.ones(3))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCorrelate(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_complex
|
def test_complex(self):
x = np.array([1, 2, 3, 4 + 1j], dtype=complex)
y = np.array([-1, -2j, 3 + 1j], dtype=complex)
r_z = np.array([3 - 1j, 6, 8 + 1j, 11 + 5j, -5 + 8j, -4 - 1j], dtype=complex)
r_z = np.flip(r_z).conjugate()
z = np.correlate(y, x, mode="full")
assert_array_almost_equal(z, r_z)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCorrelate(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_mode
|
def test_mode(self):
d = np.ones(100)
k = np.ones(3)
default_mode = np.correlate(d, k, mode="valid")
with assert_warns(DeprecationWarning):
valid_mode = np.correlate(d, k, mode="v")
assert_array_equal(valid_mode, default_mode)
# integer mode
with assert_raises(ValueError):
np.correlate(d, k, mode=-1)
assert_array_equal(np.correlate(d, k, mode=0), valid_mode)
# illegal arguments
with assert_raises(TypeError):
np.correlate(d, k, mode=None)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCorrelate(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_object
|
def test_object(self):
d = [1.0] * 100
k = [1.0] * 3
assert_array_almost_equal(np.convolve(d, k)[2:-2], np.full(98, 3))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestConvolve(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
generate_all_false
|
def generate_all_false(self, dtype):
arr = np.zeros((2, 2), [("junk", "i1"), ("a", dtype)])
arr.setflags(write=False)
a = arr["a"]
assert_(not a.flags["C"])
assert_(not a.flags["F"])
assert_(not a.flags["O"])
assert_(not a.flags["W"])
assert_(not a.flags["A"])
return a
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestRequire(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
set_and_check_flag
|
def set_and_check_flag(self, flag, dtype, arr):
if dtype is None:
dtype = arr.dtype
b = np.require(arr, dtype, [flag])
assert_(b.flags[flag])
assert_(b.dtype == dtype)
# a further call to np.require ought to return the same array
# unless OWNDATA is specified.
c = np.require(b, None, [flag])
if flag[0] != "O":
assert_(c is b)
else:
assert_(c.flags[flag])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestRequire(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_require_each
|
def test_require_each(self):
id = ["f8", "i4"]
fd = [None, "f8", "c16"]
for idtype, fdtype, flag in itertools.product(id, fd, self.flag_names):
a = self.generate_all_false(idtype)
self.set_and_check_flag(flag, fdtype, a)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestRequire(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_unknown_requirement
|
def test_unknown_requirement(self):
a = self.generate_all_false("f8")
assert_raises(KeyError, np.require, a, None, "Q")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestRequire(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_non_array_input
|
def test_non_array_input(self):
a = np.require([1, 2, 3, 4], "i4", ["C", "A", "O"])
assert_(a.flags["O"])
assert_(a.flags["C"])
assert_(a.flags["A"])
assert_(a.dtype == "i4")
assert_equal(a, [1, 2, 3, 4])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestRequire(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_C_and_F_simul
|
def test_C_and_F_simul(self):
a = self.generate_all_false("f8")
assert_raises(ValueError, np.require, a, None, ["C", "F"])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestRequire(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_broadcast_in_args
|
def test_broadcast_in_args(self):
# gh-5881
arrs = [
np.empty((6, 7)),
np.empty((5, 6, 1)),
np.empty((7,)),
np.empty((5, 1, 7)),
]
mits = [
np.broadcast(*arrs),
np.broadcast(np.broadcast(*arrs[:0]), np.broadcast(*arrs[0:])),
np.broadcast(np.broadcast(*arrs[:1]), np.broadcast(*arrs[1:])),
np.broadcast(np.broadcast(*arrs[:2]), np.broadcast(*arrs[2:])),
np.broadcast(arrs[0], np.broadcast(*arrs[1:-1]), arrs[-1]),
]
for mit in mits:
assert_equal(mit.shape, (5, 6, 7))
assert_equal(mit.ndim, 3)
assert_equal(mit.nd, 3)
assert_equal(mit.numiter, 4)
for a, ia in zip(arrs, mit.iters):
assert_(a is ia.base)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBroadcast(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_broadcast_single_arg
|
def test_broadcast_single_arg(self):
# gh-6899
arrs = [np.empty((5, 6, 7))]
mit = np.broadcast(*arrs)
assert_equal(mit.shape, (5, 6, 7))
assert_equal(mit.ndim, 3)
assert_equal(mit.nd, 3)
assert_equal(mit.numiter, 1)
assert_(arrs[0] is mit.iters[0].base)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBroadcast(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_number_of_arguments
|
def test_number_of_arguments(self):
arr = np.empty((5,))
for j in range(35):
arrs = [arr] * j
if j > 32:
assert_raises(ValueError, np.broadcast, *arrs)
else:
mit = np.broadcast(*arrs)
assert_equal(mit.numiter, j)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBroadcast(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_ctors.py
|
test_floating_overflow
|
def test_floating_overflow(self):
"""Strings containing an unrepresentable float overflow"""
fhalf = np.half("1e10000")
assert_equal(fhalf, np.inf)
fsingle = np.single("1e10000")
assert_equal(fsingle, np.inf)
fdouble = np.double("1e10000")
assert_equal(fdouble, np.inf)
fhalf = np.half("-1e10000")
assert_equal(fhalf, -np.inf)
fsingle = np.single("-1e10000")
assert_equal(fsingle, -np.inf)
fdouble = np.double("-1e10000")
assert_equal(fdouble, -np.inf)
|
import functools
from unittest import skipIf as skipif
import pytest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_almost_equal, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_almost_equal, assert_equal
skip = functools.partial(skipif, True)
class TestFromString(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_ctors.py
|
test_bool
|
def test_bool(self):
with pytest.raises(TypeError):
np.bool_(False, garbage=True)
|
import functools
from unittest import skipIf as skipif
import pytest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_almost_equal, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_almost_equal, assert_equal
skip = functools.partial(skipif, True)
class TestFromString(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_ctors.py
|
test_intp
|
def test_intp(self):
# Ticket #99
assert_equal(1024, np.intp(1024))
|
import functools
from unittest import skipIf as skipif
import pytest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_almost_equal, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_almost_equal, assert_equal
skip = functools.partial(skipif, True)
class TestFromInt(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_ctors.py
|
test_uint64_from_negative
|
def test_uint64_from_negative(self):
# NumPy test was asserting a DeprecationWarning
assert_equal(np.uint8(-2), np.uint8(254))
|
import functools
from unittest import skipIf as skipif
import pytest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_almost_equal, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_almost_equal, assert_equal
skip = functools.partial(skipif, True)
class TestFromInt(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_ctors.py
|
test_complex
|
def test_complex(self, t1, t2):
return self._do_test(t1, t2)
|
import functools
from unittest import skipIf as skipif
import pytest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_almost_equal, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_almost_equal, assert_equal
skip = functools.partial(skipif, True)
int_types = [
subtest(np.byte, name="np_byte"),
subtest(np.short, name="np_short"),
subtest(np.intc, name="np_intc"),
subtest(np.int_, name="np_int_"),
subtest(np.longlong, name="np_longlong"),
]
uint_types = [np.ubyte]
float_types = [np.half, np.single, np.double]
cfloat_types = [np.csingle, np.cdouble]
@instantiate_parametrized_tests
class TestArrayFromScalar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_shape_mismatch_error_message
|
def test_shape_mismatch_error_message(self):
with assert_raises(
ValueError,
match=r"arg 0 with shape \(1, 3\) and " r"arg 2 with shape \(2,\)",
):
np.broadcast([[1, 2, 3]], [[4], [5]], [6, 7])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBroadcast(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_zero_dimension
|
def test_zero_dimension(self):
# Test resolution to issue #5663
a = np.zeros((3, 0))
b = np.zeros((0, 4))
td = np.tensordot(a, b, (1, 0))
assert_array_equal(td, np.dot(a, b))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestTensordot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_zero_dimension_einsum
|
def test_zero_dimension_einsum(self):
# Test resolution to issue #5663
a = np.zeros((3, 0))
b = np.zeros((0, 4))
td = np.tensordot(a, b, (1, 0))
assert_array_equal(td, np.einsum("ij,jk", a, b))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestTensordot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_zero_dimensional
|
def test_zero_dimensional(self):
# gh-12130
arr_0d = np.array(1)
ret = np.tensordot(
arr_0d, arr_0d, ([], [])
) # contracting no axes is well defined
assert_array_equal(ret, arr_0d)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestTensordot(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_scalar_loses1
|
def test_scalar_loses1(self):
res = np.find_common_type(["f4", "f4", "i2"], ["f8"])
assert_(res == "f4")
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@xpassIfTorchDynamo # (
# reason="We do not disctinguish between scalar and array types."
# " Thus, scalars can upcast arrays."
# )
class TestCommonType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_scalar_loses2
|
def test_scalar_loses2(self):
res = np.find_common_type(["f4", "f4"], ["i8"])
assert_(res == "f4")
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@xpassIfTorchDynamo # (
# reason="We do not disctinguish between scalar and array types."
# " Thus, scalars can upcast arrays."
# )
class TestCommonType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_scalar_wins
|
def test_scalar_wins(self):
res = np.find_common_type(["f4", "f4", "i2"], ["c8"])
assert_(res == "c8")
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@xpassIfTorchDynamo # (
# reason="We do not disctinguish between scalar and array types."
# " Thus, scalars can upcast arrays."
# )
class TestCommonType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_scalar_wins2
|
def test_scalar_wins2(self):
res = np.find_common_type(["u4", "i4", "i4"], ["f4"])
assert_(res == "f8")
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@xpassIfTorchDynamo # (
# reason="We do not disctinguish between scalar and array types."
# " Thus, scalars can upcast arrays."
# )
class TestCommonType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_scalar_wins3
|
def test_scalar_wins3(self): # doesn't go up to 'f16' on purpose
res = np.find_common_type(["u8", "i8", "i8"], ["f8"])
assert_(res == "f8")
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@xpassIfTorchDynamo # (
# reason="We do not disctinguish between scalar and array types."
# " Thus, scalars can upcast arrays."
# )
class TestCommonType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_both_abstract
|
def test_both_abstract(self):
assert_(np.issubdtype(np.floating, np.inexact))
assert_(not np.issubdtype(np.inexact, np.floating))
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
class TestIsSubDType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_methods.py
|
test_errors
|
def test_errors(self, ftype):
assert_raises(OverflowError, ftype("inf").as_integer_ratio)
assert_raises(OverflowError, ftype("-inf").as_integer_ratio)
assert_raises(ValueError, ftype("nan").as_integer_ratio)
|
import fractions
import functools
import sys
import types
from typing import Any, Type
from unittest import skipIf as skipif, SkipTest
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
)
import numpy as np
from numpy.testing import assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_equal
skip = functools.partial(skipif, True)
@skip(reason="XXX: scalar.as_integer_ratio not implemented")
@instantiate_parametrized_tests
class TestAsIntegerRatio(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_methods.py
|
test_roundtrip
|
def test_roundtrip(self, ftype, frac_vals, exp_vals):
for frac, exp in zip(frac_vals, exp_vals):
f = np.ldexp(ftype(frac), exp)
assert f.dtype == ftype
n, d = f.as_integer_ratio()
try:
nf = np.longdouble(n)
df = np.longdouble(d)
except (OverflowError, RuntimeWarning):
# the values may not fit in any float type
raise SkipTest("longdouble too small on this platform") # noqa: B904
assert_equal(nf / df, f, f"{n}/{d}")
|
import fractions
import functools
import sys
import types
from typing import Any, Type
from unittest import skipIf as skipif, SkipTest
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
)
import numpy as np
from numpy.testing import assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_equal
skip = functools.partial(skipif, True)
@skip(reason="XXX: scalar.as_integer_ratio not implemented")
@instantiate_parametrized_tests
class TestAsIntegerRatio(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalar_methods.py
|
test_bit_count
|
def test_bit_count(self):
for exp in [10, 17, 63]:
a = 2**exp
assert np.uint64(a).bit_count() == 1
assert np.uint64(a - 1).bit_count() == exp
assert np.uint64(a ^ 63).bit_count() == 7
assert np.uint64((a - 1) ^ 510).bit_count() == exp - 8
|
import fractions
import functools
import sys
import types
from typing import Any, Type
from unittest import skipIf as skipif, SkipTest
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
)
import numpy as np
from numpy.testing import assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_equal
skip = functools.partial(skipif, True)
@skip(reason="scalartype(...).bit_count() not implemented")
@instantiate_parametrized_tests
class TestBitCount(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarinherit.py
|
__new__
|
def __new__(cls, *args, **kwargs):
return cls, args, kwargs
|
import functools
from unittest import skipIf as skipif
import pytest
import torch._numpy as np
from torch._numpy.testing import assert_
from torch.testing._internal.common_utils import run_tests, TestCase
skip = functools.partial(skipif, True)
class HasNew:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarinherit.py
|
test_init
|
def test_init(self):
x = B(1.0)
assert_(str(x) == "1.0")
y = C(2.0)
assert_(str(y) == "2.0")
z = D(3.0)
assert_(str(z) == "3.0")
|
import functools
from unittest import skipIf as skipif
import pytest
import torch._numpy as np
from torch._numpy.testing import assert_
from torch.testing._internal.common_utils import run_tests, TestCase
skip = functools.partial(skipif, True)
@skip(reason="scalar repr: numpy plans to make it more explicit")
class TestInherit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarinherit.py
|
test_init2
|
def test_init2(self):
x = B0(1.0)
assert_(str(x) == "1.0")
y = C0(2.0)
assert_(str(y) == "2.0")
|
import functools
from unittest import skipIf as skipif
import pytest
import torch._numpy as np
from torch._numpy.testing import assert_
from torch.testing._internal.common_utils import run_tests, TestCase
skip = functools.partial(skipif, True)
@skip(reason="scalar repr: numpy plans to make it more explicit")
class TestInherit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_same
|
def test_same(self):
for cls in (np.float32, np.int32):
for w1, w2 in itertools.product(self.wrappers, repeat=2):
assert_(np.issubdtype(w1(cls), w2(cls)))
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
class TestIsSubDType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_subclass
|
def test_subclass(self):
# note we cannot promote floating to a dtype, as it would turn into a
# concrete type
for w in self.wrappers:
assert_(np.issubdtype(w(np.float32), np.floating))
assert_(np.issubdtype(w(np.float64), np.floating))
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
class TestIsSubDType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_subclass_backwards
|
def test_subclass_backwards(self):
for w in self.wrappers:
assert_(not np.issubdtype(np.floating, w(np.float32)))
assert_(not np.issubdtype(np.floating, w(np.float64)))
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
class TestIsSubDType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_sibling_class
|
def test_sibling_class(self):
for w1, w2 in itertools.product(self.wrappers, repeat=2):
assert_(not np.issubdtype(w1(np.float32), w2(np.float64)))
assert_(not np.issubdtype(w1(np.float64), w2(np.float32)))
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
class TestIsSubDType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_nondtype_nonscalartype
|
def test_nondtype_nonscalartype(self):
# See gh-14619 and gh-9505 which introduced the deprecation to fix
# this. These tests are directly taken from gh-9505
assert not np.issubdtype(np.float32, "float64")
assert not np.issubdtype(np.float32, "f8")
assert not np.issubdtype(np.int32, "int64")
# for the following the correct spellings are
# np.integer, np.floating, or np.complexfloating respectively:
assert not np.issubdtype(np.int8, int) # np.int8 is never np.int_
assert not np.issubdtype(np.float32, float)
assert not np.issubdtype(np.complex64, complex)
assert not np.issubdtype(np.float32, "float")
assert not np.issubdtype(np.float64, "f")
# Test the same for the correct first datatype and abstract one
# in the case of int, float, complex:
assert np.issubdtype(np.float64, "float64")
assert np.issubdtype(np.float64, "f8")
assert np.issubdtype(np.int64, "int64")
assert np.issubdtype(np.int8, np.integer)
assert np.issubdtype(np.float32, np.floating)
assert np.issubdtype(np.complex64, np.complexfloating)
assert np.issubdtype(np.float64, "float")
assert np.issubdtype(np.float32, "f")
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
class TestIsSubDType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_abstract
|
def test_abstract(self):
assert_raises(ValueError, np.core.numerictypes.bitname, np.floating)
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@xpassIfTorchDynamo # (
# reason="We do not have (or need) np.core.numerictypes."
# " Our type aliases are in _dtypes.py."
# )
class TestBitName(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_platform_dependent_aliases
|
def test_platform_dependent_aliases(self):
if np.int64 is np.int_:
assert_("int64" in np.int_.__doc__)
elif np.int64 is np.longlong:
assert_("int64" in np.longlong.__doc__)
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@skip(reason="Docstrings for scalar types, not yet.")
@skipif(
sys.flags.optimize > 1,
reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1",
)
class TestDocStrings(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numerictypes.py
|
test_names_are_undersood_by_dtype
|
def test_names_are_undersood_by_dtype(self, t):
"""Test the dtype constructor maps names back to the type"""
assert np.dtype(t.__name__).type is t
|
import functools
import itertools
import sys
from unittest import skipIf as skipif
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_
import torch._numpy as np
from torch._numpy.testing import assert_
skip = functools.partial(skipif, True)
@instantiate_parametrized_tests
class TestScalarTypeNames(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarinherit.py
|
test_gh_15395
|
def test_gh_15395(self):
# HasNew is the second base, so `np.float64` should have priority
x = B1(1.0)
assert_(str(x) == "1.0")
# previously caused RecursionError!?
with pytest.raises(TypeError):
B1(1.0, 2.0)
|
import functools
from unittest import skipIf as skipif
import pytest
import torch._numpy as np
from torch._numpy.testing import assert_
from torch.testing._internal.common_utils import run_tests, TestCase
skip = functools.partial(skipif, True)
@skip(reason="scalar repr: numpy plans to make it more explicit")
class TestInherit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_types
|
def test_types(self):
for atype in types:
a = atype(1)
assert_(a == 1, f"error with {atype!r}: got {a!r}")
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestTypes(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_type_add
|
def test_type_add(self):
# list of types
for k, atype in enumerate(types):
a_scalar = atype(3)
a_array = np.array([3], dtype=atype)
for l, btype in enumerate(types):
b_scalar = btype(1)
b_array = np.array([1], dtype=btype)
c_scalar = a_scalar + b_scalar
c_array = a_array + b_array
# It was comparing the type numbers, but the new ufunc
# function-finding mechanism finds the lowest function
# to which both inputs can be cast - which produces 'l'
# when you do 'q' + 'b'. The old function finding mechanism
# skipped ahead based on the first argument, but that
# does not produce properly symmetric results...
assert_equal(
c_scalar.dtype,
c_array.dtype,
"error with types (%d/'%s' + %d/'%s')"
% (k, np.dtype(atype).name, l, np.dtype(btype).name),
)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestTypes(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_leak
|
def test_leak(self):
# test leak of scalar objects
# a leak would show up in valgrind as still-reachable of ~2.6MB
for i in range(200000):
np.add(1, 1)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestTypes(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_lower_align
|
def test_lower_align(self):
# check data that is not aligned to element size
# i.e doubles are aligned to 4 bytes on i386
d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
o = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
assert_almost_equal(d + d, d * 2)
np.add(d, d, out=o)
np.add(np.ones_like(d), d, out=o)
np.add(d, np.ones_like(d), out=o)
np.add(np.ones_like(d), d)
np.add(d, np.ones_like(d))
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestBaseMath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_small_types
|
def test_small_types(self):
for t in [np.int8, np.int16, np.float16]:
a = t(3)
b = a**4
assert_(b == 81, f"error with {t!r}: got {b!r}")
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestPower(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_integers_to_negative_integer_power
|
def test_integers_to_negative_integer_power(self):
# Note that the combination of uint64 with a signed integer
# has common type np.float64. The other combinations should all
# raise a ValueError for integer ** negative integer.
exp = [np.array(-1, dt)[()] for dt in "bhil"]
# 1 ** -1 possible special case
base = [np.array(1, dt)[()] for dt in "bhilB"]
for i1, i2 in itertools.product(base, exp):
if i1.dtype != np.uint64:
assert_raises(ValueError, operator.pow, i1, i2)
else:
res = operator.pow(i1, i2)
assert_(res.dtype.type is np.float64)
assert_almost_equal(res, 1.0)
# -1 ** -1 possible special case
base = [np.array(-1, dt)[()] for dt in "bhil"]
for i1, i2 in itertools.product(base, exp):
if i1.dtype != np.uint64:
assert_raises(ValueError, operator.pow, i1, i2)
else:
res = operator.pow(i1, i2)
assert_(res.dtype.type is np.float64)
assert_almost_equal(res, -1.0)
# 2 ** -1 perhaps generic
base = [np.array(2, dt)[()] for dt in "bhilB"]
for i1, i2 in itertools.product(base, exp):
if i1.dtype != np.uint64:
assert_raises(ValueError, operator.pow, i1, i2)
else:
res = operator.pow(i1, i2)
assert_(res.dtype.type is np.float64)
assert_almost_equal(res, 0.5)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestPower(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_branches
|
def test_branches(self):
for t in [np.complex64, np.complex128]:
# tupled (numerator, denominator, expected)
# for testing as expected == numerator/denominator
data = []
# trigger branch: real(fabs(denom)) > imag(fabs(denom))
# followed by else condition as neither are == 0
data.append(((2.0, 1.0), (2.0, 1.0), (1.0, 0.0)))
# trigger branch: real(fabs(denom)) > imag(fabs(denom))
# followed by if condition as both are == 0
# is performed in test_zero_division(), so this is skipped
# trigger else if branch: real(fabs(denom)) < imag(fabs(denom))
data.append(((1.0, 2.0), (1.0, 2.0), (1.0, 0.0)))
for cases in data:
n = cases[0]
d = cases[1]
ex = cases[2]
result = t(complex(n[0], n[1])) / t(complex(d[0], d[1]))
# check real and imag parts separately to avoid comparison
# in array context, which does not account for signed zeros
assert_equal(result.real, ex[0])
assert_equal(result.imag, ex[1])
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestComplexDivision(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_iinfo_long_values_1
|
def test_iinfo_long_values_1(self):
for code in "bBh":
with pytest.warns(DeprecationWarning):
res = np.array(np.iinfo(code).max + 1, dtype=code)
tgt = np.iinfo(code).min
assert_(res == tgt)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestConversion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_iinfo_long_values_2
|
def test_iinfo_long_values_2(self):
for code in np.typecodes["AllInteger"]:
res = np.array(np.iinfo(code).max, dtype=code)
tgt = np.iinfo(code).max
assert_(res == tgt)
for code in np.typecodes["AllInteger"]:
res = np.dtype(code).type(np.iinfo(code).max)
tgt = np.iinfo(code).max
assert_(res == tgt)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestConversion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
overflow_error_func
|
def overflow_error_func(dtype):
dtype(np.iinfo(dtype).max + 1)
for code in [np.int_, np.longlong]:
assert_raises((OverflowError, RuntimeError), overflow_error_func, code)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_numpy_scalar_relational_operators
|
def test_numpy_scalar_relational_operators(self):
# All integer
for dt1 in np.typecodes["AllInteger"]:
assert_(1 > np.array(0, dtype=dt1)[()], f"type {dt1} failed")
assert_(not 1 < np.array(0, dtype=dt1)[()], f"type {dt1} failed")
for dt2 in np.typecodes["AllInteger"]:
assert_(
np.array(1, dtype=dt1)[()] > np.array(0, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
assert_(
not np.array(1, dtype=dt1)[()] < np.array(0, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
# Signed integers and floats
for dt1 in "bhl" + np.typecodes["Float"]:
assert_(1 > np.array(-1, dtype=dt1)[()], f"type {dt1} failed")
assert_(not 1 < np.array(-1, dtype=dt1)[()], f"type {dt1} failed")
assert_(-1 == np.array(-1, dtype=dt1)[()], f"type {dt1} failed")
for dt2 in "bhl" + np.typecodes["Float"]:
assert_(
np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
assert_(
not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
assert_(
np.array(-1, dtype=dt1)[()] == np.array(-1, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestConversion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_numpy_scalar_relational_operators_2
|
def test_numpy_scalar_relational_operators_2(self):
# Unsigned integers
for dt1 in "B":
assert_(-1 < np.array(1, dtype=dt1)[()], f"type {dt1} failed")
assert_(not -1 > np.array(1, dtype=dt1)[()], f"type {dt1} failed")
assert_(-1 != np.array(1, dtype=dt1)[()], f"type {dt1} failed")
# unsigned vs signed
for dt2 in "bhil":
assert_(
np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
assert_(
not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
assert_(
np.array(1, dtype=dt1)[()] != np.array(-1, dtype=dt2)[()],
f"type {dt1} and {dt2} failed",
)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestConversion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_scalar_comparison_to_none
|
def test_scalar_comparison_to_none(self):
# Scalars should just return False and not give a warnings.
# The comparisons are flagged by pep8, ignore that.
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always", "", FutureWarning)
assert_(np.float32(1) is not None)
assert_(np.float32(1) is not None)
assert_(len(w) == 0)
# class TestRepr:
# def test_repr(self):
# for t in types:
# val = t(1197346475.0137341)
# val_repr = repr(val)
# val2 = eval(val_repr)
# assert_equal( val, val2 )
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestConversion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
_test_type_repr
|
def _test_type_repr(self, t):
finfo = np.finfo(t)
last_fraction_bit_idx = finfo.nexp + finfo.nmant
last_exponent_bit_idx = finfo.nexp
storage_bytes = np.dtype(t).itemsize * 8
# could add some more types to the list below
for which in ["small denorm", "small norm"]:
# Values from https://en.wikipedia.org/wiki/IEEE_754
constr = np.array([0x00] * storage_bytes, dtype=np.uint8)
if which == "small denorm":
byte = last_fraction_bit_idx // 8
bytebit = 7 - (last_fraction_bit_idx % 8)
constr[byte] = 1 << bytebit
elif which == "small norm":
byte = last_exponent_bit_idx // 8
bytebit = 7 - (last_exponent_bit_idx % 8)
constr[byte] = 1 << bytebit
else:
raise ValueError("hmm")
val = constr.view(t)[0]
val_repr = repr(val)
val2 = t(eval(val_repr))
if not (val2 == 0 and val < 1e-100):
assert_equal(val, val2)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@xpassIfTorchDynamo # (reason="can delegate repr to pytorch")
class TestRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_float_repr
|
def test_float_repr(self):
# long double test cannot work, because eval goes through a python
# float
for t in [np.float32, np.float64]:
self._test_type_repr(t)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@xpassIfTorchDynamo # (reason="can delegate repr to pytorch")
class TestRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_mixed_types
|
def test_mixed_types(self):
typelist = [
np.int8,
np.int16,
np.float16,
np.float32,
np.float64,
np.int8,
np.int16,
np.int32,
np.int64,
]
for t1 in typelist:
for t2 in typelist:
a = t1(3)
b = t2(2)
result = a**b
msg = f"error with {t1!r} and {t2!r}:" f"got {result!r}, expected {9!r}"
if np.issubdtype(np.dtype(result), np.integer):
assert_(result == 9, msg)
else:
assert_almost_equal(result, 9, err_msg=msg)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestPower(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_modular_power
|
def test_modular_power(self):
# modular power is not implemented, so ensure it errors
a = 5
b = 4
c = 10
expected = pow(a, b, c) # noqa: F841
for t in (np.int32, np.float32, np.complex64):
# note that 3-operand power only dispatches on the first argument
assert_raises(TypeError, operator.pow, t(a), b, c)
assert_raises(TypeError, operator.pow, np.array(t(a)), b, c)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestPower(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
floordiv_and_mod
|
def floordiv_and_mod(x, y):
return (x // y, x % y)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_float_modulus_exact
|
def test_float_modulus_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = [divmod(*t) for t in arg]
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for op in [floordiv_and_mod, divmod]:
for dt in np.typecodes["Float"]:
msg = f"op: {op.__name__}, dtype: {dt}"
fa = a.astype(dt)
fb = b.astype(dt)
# use list comprehension so a_ and b_ are scalars
div, rem = zip(*[op(a_, b_) for a_, b_ in zip(fa, fb)])
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@instantiate_parametrized_tests
class TestModulus(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_float_modulus_corner_cases
|
def test_float_modulus_corner_cases(self, dt):
if dt == "e":
# FIXME: make xfail
raise SkipTest("RuntimeError: 'nextafter_cpu' not implemented for 'Half'")
b = np.array(1.0, dtype=dt)
a = np.nextafter(np.array(0.0, dtype=dt), -b)
rem = operator.mod(a, b)
assert_(rem <= b, f"dt: {dt}")
rem = operator.mod(-a, -b)
assert_(rem >= -b, f"dt: {dt}")
# Check nans, inf
# with suppress_warnings() as sup:
# sup.filter(RuntimeWarning, "invalid value encountered in remainder")
# sup.filter(RuntimeWarning, "divide by zero encountered in remainder")
# sup.filter(RuntimeWarning, "divide by zero encountered in floor_divide")
# sup.filter(RuntimeWarning, "divide by zero encountered in divmod")
# sup.filter(RuntimeWarning, "invalid value encountered in divmod")
for dt in "efd":
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
rem = operator.mod(fone, fzer)
assert_(np.isnan(rem), f"dt: {dt}")
# MSVC 2008 returns NaN here, so disable the check.
# rem = operator.mod(fone, finf)
# assert_(rem == fone, 'dt: %s' % dt)
rem = operator.mod(fone, fnan)
assert_(np.isnan(rem), f"dt: {dt}")
rem = operator.mod(finf, fone)
assert_(np.isnan(rem), f"dt: {dt}")
for op in [floordiv_and_mod, divmod]:
div, mod = op(fone, fzer)
assert_(np.isinf(div)) and assert_(np.isnan(mod))
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@instantiate_parametrized_tests
class TestModulus(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_zero_division
|
def test_zero_division(self):
for t in [np.complex64, np.complex128]:
a = t(0.0)
b = t(1.0)
assert_(np.isinf(b / a))
b = t(complex(np.inf, np.inf))
assert_(np.isinf(b / a))
b = t(complex(np.inf, np.nan))
assert_(np.isinf(b / a))
b = t(complex(np.nan, np.inf))
assert_(np.isinf(b / a))
b = t(complex(np.nan, np.nan))
assert_(np.isnan(b / a))
b = t(0.0)
assert_(np.isnan(b / a))
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestComplexDivision(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_signed_zeros
|
def test_signed_zeros(self):
for t in [np.complex64, np.complex128]:
# tupled (numerator, denominator, expected)
# for testing as expected == numerator/denominator
data = (
((0.0, -1.0), (0.0, 1.0), (-1.0, -0.0)),
((0.0, -1.0), (0.0, -1.0), (1.0, -0.0)),
((0.0, -1.0), (-0.0, -1.0), (1.0, 0.0)),
((0.0, -1.0), (-0.0, 1.0), (-1.0, 0.0)),
((0.0, 1.0), (0.0, -1.0), (-1.0, 0.0)),
((0.0, -1.0), (0.0, -1.0), (1.0, -0.0)),
((-0.0, -1.0), (0.0, -1.0), (1.0, -0.0)),
((-0.0, 1.0), (0.0, -1.0), (-1.0, -0.0)),
)
for cases in data:
n = cases[0]
d = cases[1]
ex = cases[2]
result = t(complex(n[0], n[1])) / t(complex(d[0], d[1]))
# check real and imag parts separately to avoid comparison
# in array context, which does not account for signed zeros
assert_equal(result.real, ex[0])
assert_equal(result.imag, ex[1])
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestComplexDivision(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
op_func
|
def op_func(self, other):
return __op__
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
ops_with_names = [
("__lt__", "__gt__", operator.lt, True),
("__le__", "__ge__", operator.le, True),
("__eq__", "__eq__", operator.eq, True),
# Note __op__ and __rop__ may be identical here:
("__ne__", "__ne__", operator.ne, True),
("__gt__", "__lt__", operator.gt, True),
("__ge__", "__le__", operator.ge, True),
("__floordiv__", "__rfloordiv__", operator.floordiv, False),
("__truediv__", "__rtruediv__", operator.truediv, False),
("__add__", "__radd__", operator.add, False),
("__mod__", "__rmod__", operator.mod, False),
("__mul__", "__rmul__", operator.mul, False),
("__pow__", "__rpow__", operator.pow, False),
("__sub__", "__rsub__", operator.sub, False),
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
rop_func
|
def rop_func(self, other):
return __rop__
myf_op = type("myf_op", (sctype,), {__op__: op_func, __rop__: rop_func})
# inheritance has to override, or this is correctly lost:
res = op(myf_simple1(1), myf_simple2(2))
assert type(res) == sctype or type(res) == np.bool_
assert op(myf_simple1(1), myf_simple2(2)) == op(1, 2) # inherited
# Two independent subclasses do not really define an order. This could
# be attempted, but we do not since Python's `int` does neither:
assert op(myf_op(1), myf_simple1(2)) == __op__
assert op(myf_simple1(1), myf_op(2)) == op(1, 2) # inherited
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
ops_with_names = [
("__lt__", "__gt__", operator.lt, True),
("__le__", "__ge__", operator.le, True),
("__eq__", "__eq__", operator.eq, True),
# Note __op__ and __rop__ may be identical here:
("__ne__", "__ne__", operator.ne, True),
("__gt__", "__lt__", operator.gt, True),
("__ge__", "__le__", operator.ge, True),
("__floordiv__", "__rfloordiv__", operator.floordiv, False),
("__truediv__", "__rtruediv__", operator.truediv, False),
("__add__", "__radd__", operator.add, False),
("__mod__", "__rmod__", operator.mod, False),
("__mul__", "__rmul__", operator.mul, False),
("__pow__", "__rpow__", operator.pow, False),
("__sub__", "__rsub__", operator.sub, False),
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
op_func
|
def op_func(self, other):
return __op__
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
ops_with_names = [
("__lt__", "__gt__", operator.lt, True),
("__le__", "__ge__", operator.le, True),
("__eq__", "__eq__", operator.eq, True),
# Note __op__ and __rop__ may be identical here:
("__ne__", "__ne__", operator.ne, True),
("__gt__", "__lt__", operator.gt, True),
("__ge__", "__le__", operator.ge, True),
("__floordiv__", "__rfloordiv__", operator.floordiv, False),
("__truediv__", "__rtruediv__", operator.truediv, False),
("__add__", "__radd__", operator.add, False),
("__mod__", "__rmod__", operator.mod, False),
("__mul__", "__rmul__", operator.mul, False),
("__pow__", "__rpow__", operator.pow, False),
("__sub__", "__rsub__", operator.sub, False),
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
rop_func
|
def rop_func(self, other):
return __rop__
myf_op = type("myf_op", (sctype,), {__op__: op_func, __rop__: rop_func})
# inheritance has to override, or this is correctly lost:
res = op(myf_simple1(1), myf_simple2(2))
assert type(res) == sctype or type(res) == np.bool_
assert op(myf_simple1(1), myf_simple2(2)) == op(1, 2) # inherited
# Two independent subclasses do not really define an order. This could
# be attempted, but we do not since Python's `int` does neither:
assert op(myf_op(1), myf_simple1(2)) == __op__
assert op(myf_simple1(1), myf_op(2)) == op(1, 2) # inherited
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
ops_with_names = [
("__lt__", "__gt__", operator.lt, True),
("__le__", "__ge__", operator.le, True),
("__eq__", "__eq__", operator.eq, True),
# Note __op__ and __rop__ may be identical here:
("__ne__", "__ne__", operator.ne, True),
("__gt__", "__lt__", operator.gt, True),
("__ge__", "__le__", operator.ge, True),
("__floordiv__", "__rfloordiv__", operator.floordiv, False),
("__truediv__", "__rtruediv__", operator.truediv, False),
("__add__", "__radd__", operator.add, False),
("__mod__", "__rmod__", operator.mod, False),
("__mul__", "__rmul__", operator.mul, False),
("__pow__", "__rpow__", operator.pow, False),
("__sub__", "__rsub__", operator.sub, False),
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_0D_array
|
def test_0D_array(self):
a = array(1)
b = array(2)
res = [atleast_1d(a), atleast_1d(b)]
desired = [array([1]), array([2])]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_1D_array
|
def test_1D_array(self):
a = array([1, 2])
b = array([2, 3])
res = [atleast_1d(a), atleast_1d(b)]
desired = [array([1, 2]), array([2, 3])]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_2D_array
|
def test_2D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
res = [atleast_1d(a), atleast_1d(b)]
desired = [a, b]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_3D_array
|
def test_3D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
a = array([a, a])
b = array([b, b])
res = [atleast_1d(a), atleast_1d(b)]
desired = [a, b]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_r1array
|
def test_r1array(self):
"""Test to make sure equivalent Travis O's r1array function"""
assert atleast_1d(3).shape == (1,)
assert atleast_1d(3j).shape == (1,)
assert atleast_1d(3.0).shape == (1,)
assert atleast_1d([[2, 3], [4, 5]]).shape == (2, 2)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_numpy_abs
|
def test_numpy_abs(self, dtype):
self._test_abs_func(np.abs, dtype)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@instantiate_parametrized_tests
class TestAbs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_shift_all_bits
|
def test_shift_all_bits(self, type_code, op):
"""Shifts where the shift amount is the width of the type or wider"""
# gh-2449
dt = np.dtype(type_code)
nbits = dt.itemsize * 8
if dt in (np.dtype(np.uint64), np.dtype(np.uint32), np.dtype(np.uint16)):
raise SkipTest("NYI: bitshift uint64")
for val in [5, -5]:
for shift in [nbits, nbits + 4]:
val_scl = np.array(val).astype(dt)[()]
shift_scl = dt.type(shift)
res_scl = op(val_scl, shift_scl)
if val_scl < 0 and op is operator.rshift:
# sign bit is preserved
assert_equal(res_scl, -1)
else:
if type_code in ("i", "l") and shift == np.iinfo(type_code).bits:
# FIXME: make xfail
raise SkipTest(
"https://github.com/pytorch/pytorch/issues/70904"
)
assert_equal(res_scl, 0)
# Result on scalars should be the same as on arrays
val_arr = np.array([val_scl] * 32, dtype=dt)
shift_arr = np.array([shift] * 32, dtype=dt)
res_arr = op(val_arr, shift_arr)
assert_equal(res_arr, res_scl)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@instantiate_parametrized_tests
class TestBitShifts(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_complex_hashes
|
def test_complex_hashes(self, type_code):
# Test some complex valued hashes specifically:
scalar = np.dtype(type_code).type
for val in [np.pi + 1j, np.inf - 3j, 3j, 6.0 + 1j]:
numpy_val = scalar(val)
assert hash(complex(numpy_val)) == hash(numpy_val)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@skip(reason="Will rely on pytest for hashing")
@instantiate_parametrized_tests
class TestHash(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
recursionlimit
|
def recursionlimit(n):
o = sys.getrecursionlimit()
try:
sys.setrecursionlimit(n)
yield
finally:
sys.setrecursionlimit(o)
@instantiate_parametrized_tests
class TestScalarOpsMisc(TestCase):
@xfail # (reason="pytorch does not warn on overflow")
@parametrize("dtype", "Bbhil")
@parametrize(
"operation",
[
lambda min, max: max + max,
lambda min, max: min - max,
lambda min, max: max * max,
],
)
def test_scalar_integer_operation_overflow(self, dtype, operation):
st = np.dtype(dtype).type
min = st(np.iinfo(dtype).min)
max = st(np.iinfo(dtype).max)
with pytest.warns(RuntimeWarning, match="overflow encountered"):
operation(min, max)
@skip(reason="integer overflow UB: crashes pytorch under ASAN")
@parametrize("dtype", "bhil")
@parametrize(
"operation",
[
lambda min, neg_1: -min,
lambda min, neg_1: abs(min),
lambda min, neg_1: min * neg_1,
subtest(
lambda min, neg_1: min // neg_1,
decorators=[skip(reason="broken on some platforms")],
),
],
)
def test_scalar_signed_integer_overflow(self, dtype, operation):
# The minimum signed integer can "overflow" for some additional operations
st = np.dtype(dtype).type
min = st(np.iinfo(dtype).min)
neg_1 = st(-1)
with pytest.warns(RuntimeWarning, match="overflow encountered"):
operation(min, neg_1)
@skipif(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x")
@xpassIfTorchDynamo # (reason="pytorch does not warn on overflow")
@parametrize("dtype", "B")
def test_scalar_unsigned_integer_overflow(self, dtype):
val = np.dtype(dtype).type(8)
with pytest.warns(RuntimeWarning, match="overflow encountered"):
-val
zero = np.dtype(dtype).type(0)
-zero # does not warn
@xfail # (reason="pytorch raises RuntimeError on division by zero")
@parametrize("dtype", np.typecodes["AllInteger"])
@parametrize(
"operation",
[
lambda val, zero: val // zero,
lambda val, zero: val % zero,
],
)
def test_scalar_integer_operation_divbyzero(self, dtype, operation):
st = np.dtype(dtype).type
val = st(100)
zero = st(0)
with pytest.warns(RuntimeWarning, match="divide by zero"):
operation(val, zero)
ops_with_names = [
("__lt__", "__gt__", operator.lt, True),
("__le__", "__ge__", operator.le, True),
("__eq__", "__eq__", operator.eq, True),
# Note __op__ and __rop__ may be identical here:
("__ne__", "__ne__", operator.ne, True),
("__gt__", "__lt__", operator.gt, True),
("__ge__", "__le__", operator.ge, True),
("__floordiv__", "__rfloordiv__", operator.floordiv, False),
("__truediv__", "__rtruediv__", operator.truediv, False),
("__add__", "__radd__", operator.add, False),
("__mod__", "__rmod__", operator.mod, False),
("__mul__", "__rmul__", operator.mul, False),
("__pow__", "__rpow__", operator.pow, False),
("__sub__", "__rsub__", operator.sub, False),
]
@instantiate_parametrized_tests
class TestScalarSubclassingMisc(TestCase):
@skip(reason="We do not support subclassing scalars.")
@parametrize("__op__, __rop__, op, cmp", ops_with_names)
@parametrize("sctype", [np.float32, np.float64])
def test_subclass_deferral(self, sctype, __op__, __rop__, op, cmp):
"""
This test covers scalar subclass deferral. Note that this is exceedingly
complicated, especially since it tends to fall back to the array paths and
these additionally add the "array priority" mechanism.
The behaviour was modified subtly in 1.22 (to make it closer to how Python
scalars work). Due to its complexity and the fact that subclassing NumPy
scalars is probably a bad idea to begin with. There is probably room
for adjustments here.
"""
class myf_simple1(sctype):
pass
class myf_simple2(sctype):
pass
def op_func(self, other):
return __op__
def rop_func(self, other):
return __rop__
myf_op = type("myf_op", (sctype,), {__op__: op_func, __rop__: rop_func})
# inheritance has to override, or this is correctly lost:
res = op(myf_simple1(1), myf_simple2(2))
assert type(res) == sctype or type(res) == np.bool_
assert op(myf_simple1(1), myf_simple2(2)) == op(1, 2) # inherited
# Two independent subclasses do not really define an order. This could
# be attempted, but we do not since Python's `int` does neither:
assert op(myf_op(1), myf_simple1(2)) == __op__
assert op(myf_simple1(1), myf_op(2)) == op(1, 2) # inherited
@skip(reason="We do not support subclassing scalars.")
@parametrize("__op__, __rop__, op, cmp", ops_with_names)
@parametrize("subtype", [float, int, complex, np.float16])
# @np._no_nep50_warning()
def test_pyscalar_subclasses(self, subtype, __op__, __rop__, op, cmp):
def op_func(self, other):
return __op__
def rop_func(self, other):
return __rop__
# Check that deferring is indicated using `__array_ufunc__`:
myt = type(
"myt",
(subtype,),
{__op__: op_func, __rop__: rop_func, "__array_ufunc__": None},
)
# Just like normally, we should never presume we can modify the float.
assert op(myt(1), np.float64(2)) == __op__
assert op(np.float64(1), myt(2)) == __rop__
if op in {operator.mod, operator.floordiv} and subtype == complex:
return # module is not support for complex. Do not test.
if __rop__ == __op__:
return
# When no deferring is indicated, subclasses are handled normally.
myt = type("myt", (subtype,), {__rop__: rop_func})
# Check for float32, as a float subclass float64 may behave differently
res = op(myt(1), np.float16(2))
expected = op(subtype(1), np.float16(2))
assert res == expected
assert type(res) == type(expected)
res = op(np.float32(2), myt(1))
expected = op(np.float32(2), subtype(1))
assert res == expected
assert type(res) == type(expected)
if __name__ == "__main__":
run_tests()
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_scalar_integer_operation_divbyzero
|
def test_scalar_integer_operation_divbyzero(self, dtype, operation):
st = np.dtype(dtype).type
val = st(100)
zero = st(0)
with pytest.warns(RuntimeWarning, match="divide by zero"):
operation(val, zero)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@instantiate_parametrized_tests
class TestScalarOpsMisc(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_seq_repeat
|
def test_seq_repeat(self):
# Test that basic sequences get repeated when multiplied with
# numpy integers. And errors are raised when multiplied with others.
# Some of this behaviour may be controversial and could be open for
# change.
accepted_types = set(np.typecodes["AllInteger"])
deprecated_types = {"?"}
forbidden_types = set(np.typecodes["All"]) - accepted_types - deprecated_types
forbidden_types -= {"V"} # can't default-construct void scalars
for seq_type in (list, tuple):
seq = seq_type([1, 2, 3])
for numpy_type in accepted_types:
i = np.dtype(numpy_type).type(2)
assert_equal(seq * i, seq * int(i))
assert_equal(i * seq, int(i) * seq)
for numpy_type in deprecated_types:
i = np.dtype(numpy_type).type()
assert_equal(
assert_warns(DeprecationWarning, operator.mul, seq, i), seq * int(i)
)
assert_equal(
assert_warns(DeprecationWarning, operator.mul, i, seq), int(i) * seq
)
for numpy_type in forbidden_types:
i = np.dtype(numpy_type).type()
assert_raises(TypeError, operator.mul, seq, i)
assert_raises(TypeError, operator.mul, i, seq)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@skip(reason="Array scalars do not decay to python scalars.")
class TestMultiply(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_no_seq_repeat_basic_array_like
|
def test_no_seq_repeat_basic_array_like(self):
# Test that an array-like which does not know how to be multiplied
# does not attempt sequence repeat (raise TypeError).
# See also gh-7428.
class ArrayLike:
def __init__(self, arr):
self.arr = arr
def __array__(self):
return self.arr
# Test for simple ArrayLike above and memoryviews (original report)
for arr_like in (ArrayLike(np.ones(3)), memoryview(np.ones(3))):
assert_array_equal(arr_like * np.float32(3.0), np.full(3, 3.0))
assert_array_equal(np.float32(3.0) * arr_like, np.full(3, 3.0))
assert_array_equal(arr_like * np.int_(3), np.full(3, 3))
assert_array_equal(np.int_(3) * arr_like, np.full(3, 3))
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
@skip(reason="Array scalars do not decay to python scalars.")
class TestMultiply(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
__init__
|
def __init__(self, arr):
self.arr = arr
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class ArrayLike:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
__array__
|
def __array__(self):
return self.arr
# Test for simple ArrayLike above and memoryviews (original report)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class ArrayLike:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_exceptions
|
def test_exceptions(self):
a = np.ones((), dtype=np.bool_)[()]
# XXX: TypeError from numpy, RuntimeError from torch
assert_raises((TypeError, RuntimeError), operator.neg, a)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestNegative(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_result
|
def test_result(self):
types = np.typecodes["AllInteger"] + np.typecodes["AllFloat"]
# with suppress_warnings() as sup:
# sup.filter(RuntimeWarning)
for dt in types:
a = np.ones((), dtype=dt)[()]
if dt in np.typecodes["UnsignedInteger"]:
st = np.dtype(dt).type
max = st(np.iinfo(dt).max)
assert_equal(operator.neg(a), max)
else:
assert_equal(operator.neg(a) + a, 0)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestNegative(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_exceptions
|
def test_exceptions(self):
a = np.ones((), dtype=np.bool_)[()]
# XXX: TypeError from numpy, RuntimeError from torch
assert_raises((TypeError, RuntimeError), operator.neg, a)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestNegative(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_scalarmath.py
|
test_result
|
def test_result(self):
types = np.typecodes["AllInteger"] + np.typecodes["AllFloat"]
# with suppress_warnings() as sup:
# sup.filter(RuntimeWarning)
for dt in types:
a = np.ones((), dtype=dt)[()]
if dt in np.typecodes["UnsignedInteger"]:
st = np.dtype(dt).type
max = st(np.iinfo(dt).max)
assert_equal(operator.neg(a), max)
else:
assert_equal(operator.neg(a) + a, 0)
|
import contextlib
import functools
import itertools
import operator
import sys
import warnings
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
import torch._numpy as np
from torch._numpy.testing import (
_gen_alignment_data,
assert_,
assert_almost_equal,
assert_equal,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
types = [
np.bool_,
np.byte,
np.ubyte,
np.short,
np.intc,
np.int_,
np.longlong,
np.single,
np.double,
np.csingle,
np.cdouble,
]
floating_types = np.floating.__subclasses__()
complex_floating_types = np.complexfloating.__subclasses__()
objecty_things = [object(), None]
reasonable_operators_for_scalars = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.ge,
operator.gt,
operator.add,
operator.floordiv,
operator.mod,
operator.mul,
operator.pow,
operator.sub,
operator.truediv,
]
class TestNegative(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_0D_array
|
def test_0D_array(self):
a = array(1)
b = array(2)
res = [atleast_1d(a), atleast_1d(b)]
desired = [array([1]), array([2])]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_1D_array
|
def test_1D_array(self):
a = array([1, 2])
b = array([2, 3])
res = [atleast_1d(a), atleast_1d(b)]
desired = [array([1, 2]), array([2, 3])]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_2D_array
|
def test_2D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
res = [atleast_1d(a), atleast_1d(b)]
desired = [a, b]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_3D_array
|
def test_3D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
a = array([a, a])
b = array([b, b])
res = [atleast_1d(a), atleast_1d(b)]
desired = [a, b]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_r2array
|
def test_r2array(self):
"""Test to make sure equivalent Travis O's r2array function"""
assert atleast_2d(3).shape == (1, 1)
assert atleast_2d([3j, 1]).shape == (1, 2)
assert atleast_2d([[[3, 1], [4, 5]], [[3, 5], [1, 2]]]).shape == (2, 2, 2)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast2d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_shape_base.py
|
test_0D_array
|
def test_0D_array(self):
a = array(1)
b = array(2)
res = [atleast_1d(a), atleast_1d(b)]
desired = [array([1]), array([2])]
assert_array_equal(res, desired)
|
import functools
from unittest import expectedFailure as xfail, skipIf as skipif
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from numpy.testing import assert_, assert_array_equal, assert_equal
import torch._numpy as np
from torch._numpy import (
array,
atleast_1d,
atleast_2d,
atleast_3d,
AxisError,
concatenate,
hstack,
newaxis,
stack,
vstack,
)
from torch._numpy.testing import assert_, assert_array_equal, assert_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
class TestAtleast1d(TestCase):
import operator
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.