library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
_generate_flt_data
|
def _generate_flt_data(self, n, m):
return (randn(n, m)).astype(np.float32)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
_neg_byteorder
|
def _neg_byteorder(self, a):
a = np.asarray(a)
if sys.byteorder == "little":
a = a.astype(a.dtype.newbyteorder(">"))
else:
a = a.astype(a.dtype.newbyteorder("<"))
return a
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
_generate_non_native_data
|
def _generate_non_native_data(self, n, m):
data = randn(n, m)
data = self._neg_byteorder(data)
assert_(not data.dtype.isnative)
return data
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
_generate_int_data
|
def _generate_int_data(self, n, m):
return (10 * rand(n, m)).astype(np.int64)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ones_pathological_2
|
def test_ones_pathological_2(self, dtype):
if dtype in "FD":
# FIXME: make xfail
raise SkipTest("torch.clamp not implemented for complex types")
# for preservation of behavior described in
# gh-12519; amin > amax behavior may still change
# in the future
arr = np.ones(10, dtype=dtype)
expected = np.zeros(10, dtype=dtype)
actual = np.clip(arr, 1, 0)
assert_equal(actual, expected)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_countnonzero_axis_empty
|
def test_countnonzero_axis_empty(self):
a = np.array([[0, 0, 1], [1, 0, 1]])
assert_equal(np.count_nonzero(a, axis=()), a.astype(bool))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestNonzeroAndCountNonzero(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_countnonzero_keepdims
|
def test_countnonzero_keepdims(self):
a = np.array([[0, 0, 1, 0], [0, 3, 5, 0], [7, 9, 2, 0]])
assert_array_equal(np.count_nonzero(a, axis=0, keepdims=True), [[1, 2, 3, 0]])
assert_array_equal(np.count_nonzero(a, axis=1, keepdims=True), [[1], [2], [3]])
assert_array_equal(np.count_nonzero(a, keepdims=True), [[6]])
assert isinstance(np.count_nonzero(a, axis=1, keepdims=True), np.ndarray)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestNonzeroAndCountNonzero(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_boolean
|
def test_boolean(self):
a = rand(3, 5, 8)
V = rand(5, 8)
g1 = randint(0, 5, size=15)
g2 = randint(0, 8, size=15)
V[g1, g2] = -V[g1, g2]
assert_(
(np.array([a[0][V > 0], a[1][V > 0], a[2][V > 0]]) == a[:, V > 0]).all()
)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIndex(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_boolean_edgecase
|
def test_boolean_edgecase(self):
a = np.array([], dtype="int32")
b = np.array([], dtype="bool")
c = a[b]
assert_equal(c, [])
assert_equal(c.dtype, np.dtype("int32"))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIndex(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_zero
|
def test_zero(self):
assert_equal(np.binary_repr(0), "0")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBinaryRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_positive
|
def test_positive(self):
assert_equal(np.binary_repr(10), "1010")
assert_equal(np.binary_repr(12522), "11000011101010")
assert_equal(np.binary_repr(10736848), "101000111101010011010000")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBinaryRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_negative
|
def test_negative(self):
assert_equal(np.binary_repr(-1), "-1")
assert_equal(np.binary_repr(-10), "-1010")
assert_equal(np.binary_repr(-12522), "-11000011101010")
assert_equal(np.binary_repr(-10736848), "-101000111101010011010000")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBinaryRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_sufficient_width
|
def test_sufficient_width(self):
assert_equal(np.binary_repr(0, width=5), "00000")
assert_equal(np.binary_repr(10, width=7), "0001010")
assert_equal(np.binary_repr(-5, width=7), "1111011")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBinaryRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_neg_width_boundaries
|
def test_neg_width_boundaries(self):
# see gh-8670
# Ensure that the example in the issue does not
# break before proceeding to a more thorough test.
assert_equal(np.binary_repr(-128, width=8), "10000000")
for width in range(1, 11):
num = -(2 ** (width - 1))
exp = "1" + (width - 1) * "0"
assert_equal(np.binary_repr(num, width=width), exp)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBinaryRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_large_neg_int64
|
def test_large_neg_int64(self):
# See gh-14289.
assert_equal(np.binary_repr(np.int64(-(2**62)), width=64), "11" + "0" * 62)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestBinaryRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_simple_double
|
def test_simple_double(self):
# Test native double input with scalar min/max.
a = self._generate_data(self.nr, self.nc)
m = 0.1
M = 0.6
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_simple_int
|
def test_simple_int(self):
# Test native int input with scalar min/max.
a = self._generate_int_data(self.nr, self.nc)
a = a.astype(int)
m = -2
M = 4
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_complex
|
def test_clip_complex(self):
# Address Issue gh-5354 for clipping complex arrays
# Test native complex input without explicit min/max
# ie, either min=None or max=None
a = np.ones(10, dtype=complex)
m = a.min()
M = a.max()
am = self.fastclip(a, m, None)
aM = self.fastclip(a, None, M)
assert_array_equal(am, a)
assert_array_equal(aM, a)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_non_contig
|
def test_clip_non_contig(self):
# Test clip for non contiguous native input and native scalar min/max.
a = self._generate_data(self.nr * 2, self.nc * 3)
a = a[::2, ::3]
assert_(not a.flags["F_CONTIGUOUS"])
assert_(not a.flags["C_CONTIGUOUS"])
ac = self.fastclip(a, -1.6, 1.7)
act = self.clip(a, -1.6, 1.7)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_simple_int32_inout
|
def test_simple_int32_inout(self, casting):
# Test native int32 input with double min/max and int32 out.
a = self._generate_int32_data(self.nr, self.nc)
m = np.float64(0)
M = np.float64(2)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
if casting is not None:
# explicitly passing "unsafe" will silence warning
self.fastclip(a, m, M, ac, casting=casting)
self.clip(a, m, M, act)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_simple_int32_out
|
def test_simple_int32_out(self):
# Test native double input with scalar min/max and int out.
a = self._generate_data(self.nr, self.nc)
m = -1.0
M = 2.0
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
self.clip(a, m, M, act)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_simple_inplace_01
|
def test_simple_inplace_01(self):
# Test native double input with array min/max in-place.
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = np.zeros(a.shape)
M = 1.0
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_equal(a, ac)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_simple_inplace_02
|
def test_simple_inplace_02(self):
# Test native double input with scalar min/max in-place.
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = -0.5
M = 0.6
self.fastclip(a, m, M, a)
self.clip(ac, m, M, ac)
assert_array_equal(a, ac)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_noncontig_inplace
|
def test_noncontig_inplace(self):
# Test non contiguous double input with double scalar min/max in-place.
a = self._generate_data(self.nr * 2, self.nc * 3)
a = a[::2, ::3]
assert_(not a.flags["F_CONTIGUOUS"])
assert_(not a.flags["C_CONTIGUOUS"])
ac = a.copy()
m = -0.5
M = 0.6
self.fastclip(a, m, M, a)
self.clip(ac, m, M, ac)
assert_array_equal(a, ac)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_type_cast_01
|
def test_type_cast_01(self):
# Test native double input with scalar min/max.
a = self._generate_data(self.nr, self.nc)
m = -0.5
M = 0.6
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_type_cast_02
|
def test_type_cast_02(self):
# Test native int32 input with int32 scalar min/max.
a = self._generate_int_data(self.nr, self.nc)
a = a.astype(np.int32)
m = -2
M = 4
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_type_cast_03
|
def test_type_cast_03(self):
# Test native int32 input with float64 scalar min/max.
a = self._generate_int32_data(self.nr, self.nc)
m = -2
M = 4
ac = self.fastclip(a, np.float64(m), np.float64(M))
act = self.clip(a, np.float64(m), np.float64(M))
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_type_cast_04
|
def test_type_cast_04(self):
# Test native int32 input with float32 scalar min/max.
a = self._generate_int32_data(self.nr, self.nc)
m = np.float32(-2)
M = np.float32(4)
act = self.fastclip(a, m, M)
ac = self.clip(a, m, M)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_with_out_array_outint32
|
def test_clip_with_out_array_outint32(self):
# Test native double input with scalar min/max and int out
a = self._generate_data(self.nr, self.nc)
m = -1.0
M = 2.0
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
self.clip(a, m, M, act)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_with_out_transposed
|
def test_clip_with_out_transposed(self):
# Test that the out argument works when transposed
a = np.arange(16).reshape(4, 4)
out = np.empty_like(a).T
a.clip(4, 10, out=out)
expected = self.clip(a, 4, 10)
assert_array_equal(out, expected)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_with_out_memory_overlap
|
def test_clip_with_out_memory_overlap(self):
# Test that the out argument works when it has memory overlap
a = np.arange(16).reshape(4, 4)
ac = a.copy()
a[:-1].clip(4, 10, out=a[1:])
expected = self.clip(ac[:-1], 4, 10)
assert_array_equal(a[1:], expected)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_inplace_array
|
def test_clip_inplace_array(self):
# Test native double input with array min/max
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = np.zeros(a.shape)
M = 1.0
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_equal(a, ac)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_inplace_simple
|
def test_clip_inplace_simple(self):
# Test native double input with scalar min/max
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = -0.5
M = 0.6
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_equal(a, ac)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_type_cast_09
|
def test_type_cast_09(self):
# Test native with NON native array min/max.
a = self._generate_data(self.nr, self.nc)
m = -0.5 * np.ones(a.shape)
M = 1.0
m_s = self._neg_byteorder(m)
assert_(not m_s.dtype.isnative)
ac = self.fastclip(a, m_s, M)
act = self.clip(a, m_s, M)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_type_cast_11
|
def test_type_cast_11(self):
# Test non native with native scalar, min/max, out non native
a = self._generate_non_native_data(self.nr, self.nc)
b = a.copy()
b = b.astype(b.dtype.newbyteorder(">"))
bt = b.copy()
m = -0.5
M = 1.0
self.fastclip(a, m, M, out=b)
self.clip(a, m, M, out=bt)
assert_array_equal(b, bt)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_type_cast_12
|
def test_type_cast_12(self):
# Test native int32 input and min/max and float out
a = self._generate_int_data(self.nr, self.nc)
b = np.zeros(a.shape, dtype=np.float32)
m = np.int32(0)
M = np.int32(1)
act = self.clip(a, m, M, out=b)
ac = self.fastclip(a, m, M, out=b)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_with_out_simple2
|
def test_clip_with_out_simple2(self):
# Test native int32 input with double min/max and int32 out
a = self._generate_int32_data(self.nr, self.nc)
m = np.float64(0)
M = np.float64(2)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
self.clip(a, m, M, act)
assert_array_equal(ac, act)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
tst_all_isclose
|
def tst_all_isclose(self, x, y):
assert_(np.all(np.isclose(x, y)), f"{x} and {y} not close")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
tst_none_isclose
|
def tst_none_isclose(self, x, y):
msg = "%s and %s shouldn't be close"
assert_(not np.any(np.isclose(x, y)), msg % (x, y))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
tst_isclose_allclose
|
def tst_isclose_allclose(self, x, y):
msg = "isclose.all() and allclose aren't same for %s and %s"
msg2 = "isclose and allclose aren't same for %s and %s"
if np.isscalar(x) and np.isscalar(y):
assert_(np.isclose(x, y) == np.allclose(x, y), msg=msg2 % (x, y))
else:
assert_array_equal(np.isclose(x, y).all(), np.allclose(x, y), msg % (x, y))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ip_all_isclose
|
def test_ip_all_isclose(self):
self._setup()
for x, y in self.all_close_tests:
self.tst_all_isclose(x, y)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ip_none_isclose
|
def test_ip_none_isclose(self):
self._setup()
for x, y in self.none_close_tests:
self.tst_none_isclose(x, y)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ip_isclose_allclose
|
def test_ip_isclose_allclose(self):
self._setup()
tests = self.all_close_tests + self.none_close_tests + self.some_close_tests
for x, y in tests:
self.tst_isclose_allclose(x, y)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_scalar_return
|
def test_scalar_return(self):
assert_(np.isscalar(np.isclose(1, 1)))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_no_parameter_modification
|
def test_no_parameter_modification(self):
x = np.array([np.inf, 1])
y = np.array([0, np.inf])
np.allclose(x, y)
assert_array_equal(x, np.array([np.inf, 1]))
assert_array_equal(y, np.array([0, np.inf]))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_non_finite_scalar
|
def test_non_finite_scalar(self):
# GH7014, when two scalars are compared the output should also be a
# scalar
# XXX: test modified since there are array scalars
assert_(np.isclose(np.inf, -np.inf).item() is False)
assert_(np.isclose(0, np.inf).item() is False)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
setUp
|
def setUp(self):
super().setUp()
# offset for simd tests
self.t = np.array([True] * 41, dtype=bool)[1::]
self.f = np.array([False] * 41, dtype=bool)[1::]
self.o = np.array([False] * 42, dtype=bool)[2::]
self.nm = self.f.copy()
self.im = self.t.copy()
self.nm[3] = True
self.nm[-2] = True
self.im[3] = False
self.im[-2] = False
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestBoolArray(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_basic
|
def test_basic(self):
assert_almost_equal(np.var(self.A), self.real_var)
assert_almost_equal(np.std(self.A) ** 2, self.real_var)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestStdVar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_scalars
|
def test_scalars(self):
assert_equal(np.var(1), 0)
assert_equal(np.std(1), 0)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestStdVar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ddof1
|
def test_ddof1(self):
assert_almost_equal(
np.var(self.A, ddof=1), self.real_var * len(self.A) / (len(self.A) - 1)
)
assert_almost_equal(
np.std(self.A, ddof=1) ** 2, self.real_var * len(self.A) / (len(self.A) - 1)
)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestStdVar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ddof2
|
def test_ddof2(self):
assert_almost_equal(
np.var(self.A, ddof=2), self.real_var * len(self.A) / (len(self.A) - 2)
)
assert_almost_equal(
np.std(self.A, ddof=2) ** 2, self.real_var * len(self.A) / (len(self.A) - 2)
)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestStdVar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_out_scalar
|
def test_out_scalar(self):
d = np.arange(10)
out = np.array(0.0)
r = np.std(d, out=out)
assert_(r is out)
assert_array_equal(r, out)
r = np.var(d, out=out)
assert_(r is out)
assert_array_equal(r, out)
r = np.mean(d, out=out)
assert_(r is out)
assert_array_equal(r, out)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestStdVar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_basic
|
def test_basic(self):
assert_almost_equal(np.var(self.A), self.real_var)
assert_almost_equal(np.std(self.A) ** 2, self.real_var)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestStdVar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_scalars
|
def test_scalars(self):
assert_equal(np.var(1), 0)
assert_equal(np.std(1), 0)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestStdVar(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
setUp
|
def setUp(self):
super().setUp()
# offset for simd tests
self.t = np.array([True] * 41, dtype=bool)[1::]
self.f = np.array([False] * 41, dtype=bool)[1::]
self.o = np.array([False] * 42, dtype=bool)[2::]
self.nm = self.f.copy()
self.im = self.t.copy()
self.nm[3] = True
self.nm[-2] = True
self.im[3] = False
self.im[-2] = False
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestBoolArray(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
check_function
|
def check_function(self, func, fill_value=None):
par = ((0, 1, 2), range(self.ndims), self.orders, self.dtypes)
fill_kwarg = {}
if fill_value is not None:
fill_kwarg = {"fill_value": fill_value}
for size, ndims, order, dtype in itertools.product(*par):
shape = ndims * [size]
arr = func(shape, order=order, dtype=dtype, **fill_kwarg)
assert_equal(arr.dtype, dtype)
assert_(getattr(arr.flags, self.orders[order]))
if fill_value is not None:
val = fill_value
assert_equal(arr, dtype.type(val))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCreationFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_no_overwrite
|
def test_no_overwrite(self):
d = np.ones(100)
k = np.ones(3)
np.correlate(d, k)
assert_array_equal(d, np.ones(100))
assert_array_equal(k, np.ones(3))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCorrelate(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_mode
|
def test_mode(self):
d = np.ones(100)
k = np.ones(3)
default_mode = np.correlate(d, k, mode="valid")
with assert_warns(DeprecationWarning):
valid_mode = np.correlate(d, k, mode="v")
assert_array_equal(valid_mode, default_mode)
# integer mode
with assert_raises(ValueError):
np.correlate(d, k, mode=-1)
assert_array_equal(np.correlate(d, k, mode=0), valid_mode)
# illegal arguments
with assert_raises(TypeError):
np.correlate(d, k, mode=None)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCorrelate(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_numpy_doc_examples
|
def test_numpy_doc_examples(self):
conv = np.convolve([1, 2, 3], [0, 1, 0.5])
assert_allclose(conv, [0.0, 1.0, 2.5, 4.0, 1.5], atol=1e-15)
conv = np.convolve([1, 2, 3], [0, 1, 0.5], "same")
assert_allclose(conv, [1.0, 2.5, 4.0], atol=1e-15)
conv = np.convolve([1, 2, 3], [0, 1, 0.5], "valid")
assert_allclose(conv, [2.5], atol=1e-15)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestConvolve(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_dtype_positional
|
def test_dtype_positional(self):
np.empty((2,), bool)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestDtypePositional(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_nd
|
def test_nd(self, nd):
# get an nd array with multiple elements in every dimension
x = np.empty((2,) * nd, dtype=bool)
# none
x[...] = False
assert_equal(np.argwhere(x).shape, (0, nd))
# only one
x[...] = False
x.ravel()[0] = True
assert_equal(np.argwhere(x).shape, (1, nd))
# all but one
x[...] = True
x.ravel()[0] = False
assert_equal(np.argwhere(x).shape, (x.size - 1, nd))
# all
x[...] = True
assert_equal(np.argwhere(x).shape, (x.size, nd))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestArgwhere(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_2D
|
def test_2D(self):
x = np.arange(6).reshape((2, 3))
assert_array_equal(np.argwhere(x > 1), [[0, 2], [1, 0], [1, 1], [1, 2]])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestArgwhere(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_list
|
def test_list(self):
assert_equal(np.argwhere([4, 0, 2, 1, 3]), [[0], [2], [3], [4]])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestArgwhere(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_set_string_function
|
def test_set_string_function(self):
a = np.array([1])
np.set_string_function(lambda x: "FOO", repr=True)
assert_equal(repr(a), "FOO")
np.set_string_function(None, repr=True)
assert_equal(repr(a), "array([1])")
np.set_string_function(lambda x: "FOO", repr=False)
assert_equal(str(a), "FOO")
np.set_string_function(None, repr=False)
assert_equal(str(a), "[1]")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@xpassIfTorchDynamo # (reason="TODO")
class TestStringFunction(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_roll1d
|
def test_roll1d(self):
x = np.arange(10)
xr = np.roll(x, 2)
assert_equal(xr, np.array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestRoll(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_roll2d
|
def test_roll2d(self):
x2 = np.reshape(np.arange(10), (2, 5))
x2r = np.roll(x2, 1)
assert_equal(x2r, np.array([[9, 0, 1, 2, 3], [4, 5, 6, 7, 8]]))
x2r = np.roll(x2, 1, axis=0)
assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]]))
x2r = np.roll(x2, 1, axis=1)
assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
# Roll multiple axes at once.
x2r = np.roll(x2, 1, axis=(0, 1))
assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]]))
x2r = np.roll(x2, (1, 0), axis=(0, 1))
assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]]))
x2r = np.roll(x2, (-1, 0), axis=(0, 1))
assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]]))
x2r = np.roll(x2, (0, 1), axis=(0, 1))
assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
x2r = np.roll(x2, (0, -1), axis=(0, 1))
assert_equal(x2r, np.array([[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]]))
x2r = np.roll(x2, (1, 1), axis=(0, 1))
assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]]))
x2r = np.roll(x2, (-1, -1), axis=(0, 1))
assert_equal(x2r, np.array([[6, 7, 8, 9, 5], [1, 2, 3, 4, 0]]))
# Roll the same axis multiple times.
x2r = np.roll(x2, 1, axis=(0, 0))
assert_equal(x2r, np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]))
x2r = np.roll(x2, 1, axis=(1, 1))
assert_equal(x2r, np.array([[3, 4, 0, 1, 2], [8, 9, 5, 6, 7]]))
# Roll more than one turn in either direction.
x2r = np.roll(x2, 6, axis=1)
assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
x2r = np.roll(x2, -4, axis=1)
assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestRoll(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_clip_property
|
def test_clip_property(self, data, arr):
"""A property-based test using Hypothesis.
This aims for maximum generality: it could in principle generate *any*
valid inputs to np.clip, and in practice generates much more varied
inputs than human testers come up with.
Because many of the inputs have tricky dependencies - compatible dtypes
and mutually-broadcastable shapes - we use `st.data()` strategy draw
values *inside* the test function, from strategies we construct based
on previous values. An alternative would be to define a custom strategy
with `@st.composite`, but until we have duplicated code inline is fine.
That accounts for most of the function; the actual test is just three
lines to calculate and compare actual vs expected results!
"""
numeric_dtypes = hynp.integer_dtypes() | hynp.floating_dtypes()
# Generate shapes for the bounds which can be broadcast with each other
# and with the base shape. Below, we might decide to use scalar bounds,
# but it's clearer to generate these shapes unconditionally in advance.
in_shapes, result_shape = data.draw(
hynp.mutually_broadcastable_shapes(num_shapes=2, base_shape=arr.shape)
)
# Scalar `nan` is deprecated due to the differing behaviour it shows.
s = numeric_dtypes.flatmap(lambda x: hynp.from_dtype(x, allow_nan=False))
amin = data.draw(
s
| hynp.arrays(
dtype=numeric_dtypes, shape=in_shapes[0], elements={"allow_nan": False}
)
)
amax = data.draw(
s
| hynp.arrays(
dtype=numeric_dtypes, shape=in_shapes[1], elements={"allow_nan": False}
)
)
# Then calculate our result and expected result and check that they're
# equal! See gh-12519 and gh-19457 for discussion deciding on this
# property and the result_type argument.
result = np.clip(arr, amin, amax)
t = np.result_type(arr, amin, amax)
expected = np.minimum(amax, np.maximum(arr, amin, dtype=t), dtype=t)
assert result.dtype == t
assert_array_equal(result, expected)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestClip(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
tst_allclose
|
def tst_allclose(self, x, y):
assert_(np.allclose(x, y), f"{x} and {y} not close")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
tst_not_allclose
|
def tst_not_allclose(self, x, y):
assert_(not np.allclose(x, y), f"{x} and {y} shouldn't be close")
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ip_allclose
|
def test_ip_allclose(self):
# Parametric test factory.
arr = np.array([100, 1000])
aran = np.arange(125).reshape((5, 5, 5))
atol = self.atol
rtol = self.rtol
data = [
([1, 0], [1, 0]),
([atol], [0]),
([1], [1 + rtol + atol]),
(arr, arr + arr * rtol),
(arr, arr + arr * rtol + atol * 2),
(aran, aran + aran * rtol),
(np.inf, np.inf),
(np.inf, [np.inf]),
]
for x, y in data:
self.tst_allclose(x, y)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ip_not_allclose
|
def test_ip_not_allclose(self):
# Parametric test factory.
aran = np.arange(125).reshape((5, 5, 5))
atol = self.atol
rtol = self.rtol
data = [
([np.inf, 0], [1, np.inf]),
([np.inf, 0], [1, 0]),
([np.inf, np.inf], [1, np.inf]),
([np.inf, np.inf], [1, 0]),
([-np.inf, 0], [np.inf, 0]),
([np.nan, 0], [np.nan, 0]),
([atol * 2], [0]),
([1], [1 + rtol + atol * 2]),
(aran, aran + aran * atol + atol * 2),
(np.array([np.inf, 1]), np.array([0, np.inf])),
]
for x, y in data:
self.tst_not_allclose(x, y)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_no_parameter_modification
|
def test_no_parameter_modification(self):
x = np.array([np.inf, 1])
y = np.array([0, np.inf])
np.allclose(x, y)
assert_array_equal(x, np.array([np.inf, 1]))
assert_array_equal(y, np.array([0, np.inf]))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_min_int
|
def test_min_int(self):
# Could make problems because of abs(min_int) == min_int
min_int = np.iinfo(np.int_).min
a = np.array([min_int], dtype=np.int_)
assert_(np.allclose(a, a))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_equalnan
|
def test_equalnan(self):
x = np.array([1.0, np.nan])
assert_(np.allclose(x, x, equal_nan=True))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestAllclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
_setup
|
def _setup(self):
atol = self.atol
rtol = self.rtol
arr = np.array([100, 1000])
aran = np.arange(125).reshape((5, 5, 5))
self.all_close_tests = [
([1, 0], [1, 0]),
([atol], [0]),
([1], [1 + rtol + atol]),
(arr, arr + arr * rtol),
(arr, arr + arr * rtol + atol),
(aran, aran + aran * rtol),
(np.inf, np.inf),
(np.inf, [np.inf]),
([np.inf, -np.inf], [np.inf, -np.inf]),
]
self.none_close_tests = [
([np.inf, 0], [1, np.inf]),
([np.inf, -np.inf], [1, 0]),
([np.inf, np.inf], [1, -np.inf]),
([np.inf, np.inf], [1, 0]),
([np.nan, 0], [np.nan, -np.inf]),
([atol * 2], [0]),
([1], [1 + rtol + atol * 2]),
(aran, aran + rtol * 1.1 * aran + atol * 1.1),
(np.array([np.inf, 1]), np.array([0, np.inf])),
]
self.some_close_tests = [
([np.inf, 0], [np.inf, atol * 2]),
([atol, 1, 1e6 * (1 + 2 * rtol) + atol], [0, np.nan, 1e6]),
(np.arange(3), [0, 1, 2.1]),
(np.nan, [np.nan, np.nan, np.nan]),
([0], [atol, np.inf, -np.inf, np.nan]),
(0, [atol, np.inf, -np.inf, np.nan]),
]
self.some_close_results = [
[True, False],
[True, False, False],
[True, True, False],
[False, False, False],
[True, False, False, False],
[True, False, False, False],
]
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ip_isclose
|
def test_ip_isclose(self):
self._setup()
tests = self.some_close_tests
results = self.some_close_results
for (x, y), result in zip(tests, results):
assert_array_equal(np.isclose(x, y), result)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestIsclose(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_zeros
|
def test_zeros(self):
self.check_function(np.zeros)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCreationFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ones
|
def test_ones(self):
self.check_function(np.ones)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCreationFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_empty
|
def test_empty(self):
self.check_function(np.empty)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCreationFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_for_reference_leak
|
def test_for_reference_leak(self):
# Make sure we have an object for reference
dim = 1
beg = sys.getrefcount(dim)
np.zeros([dim] * 10)
assert_(sys.getrefcount(dim) == beg)
np.ones([dim] * 10)
assert_(sys.getrefcount(dim) == beg)
np.empty([dim] * 10)
assert_(sys.getrefcount(dim) == beg)
np.full([dim] * 10, 0)
assert_(sys.getrefcount(dim) == beg)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCreationFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
setUp
|
def setUp(self):
super().setUp()
# offset for simd tests
self.t = np.array([True] * 41, dtype=bool)[1::]
self.f = np.array([False] * 41, dtype=bool)[1::]
self.o = np.array([False] * 42, dtype=bool)[2::]
self.nm = self.f.copy()
self.im = self.t.copy()
self.nm[3] = True
self.nm[-2] = True
self.im[3] = False
self.im[-2] = False
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestBoolArray(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
compare_array_value
|
def compare_array_value(self, dz, value, fill_value):
if value is not None:
if fill_value:
# Conversion is close to what np.full_like uses
# but we may want to convert directly in the future
# which may result in errors (where this does not).
z = np.array(value).astype(dz.dtype)
assert_(np.all(dz == z))
else:
assert_(np.all(dz == value))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@skip(reason="implement order etc") # FIXME: make xfail
@instantiate_parametrized_tests
class TestLikeFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
check_like_function
|
def check_like_function(self, like_function, value, fill_value=False):
if fill_value:
fill_kwarg = {"fill_value": value}
else:
fill_kwarg = {}
for d, dtype in self.data:
# default (K) order, dtype
dz = like_function(d, dtype=dtype, **fill_kwarg)
assert_equal(dz.shape, d.shape)
assert_equal(
np.array(dz.strides) * d.dtype.itemsize,
np.array(d.strides) * dz.dtype.itemsize,
)
assert_equal(d.flags.c_contiguous, dz.flags.c_contiguous)
assert_equal(d.flags.f_contiguous, dz.flags.f_contiguous)
if dtype is None:
assert_equal(dz.dtype, d.dtype)
else:
assert_equal(dz.dtype, np.dtype(dtype))
self.compare_array_value(dz, value, fill_value)
# C order, default dtype
dz = like_function(d, order="C", dtype=dtype, **fill_kwarg)
assert_equal(dz.shape, d.shape)
assert_(dz.flags.c_contiguous)
if dtype is None:
assert_equal(dz.dtype, d.dtype)
else:
assert_equal(dz.dtype, np.dtype(dtype))
self.compare_array_value(dz, value, fill_value)
# F order, default dtype
dz = like_function(d, order="F", dtype=dtype, **fill_kwarg)
assert_equal(dz.shape, d.shape)
assert_(dz.flags.f_contiguous)
if dtype is None:
assert_equal(dz.dtype, d.dtype)
else:
assert_equal(dz.dtype, np.dtype(dtype))
self.compare_array_value(dz, value, fill_value)
# A order
dz = like_function(d, order="A", dtype=dtype, **fill_kwarg)
assert_equal(dz.shape, d.shape)
if d.flags.f_contiguous:
assert_(dz.flags.f_contiguous)
else:
assert_(dz.flags.c_contiguous)
if dtype is None:
assert_equal(dz.dtype, d.dtype)
else:
assert_equal(dz.dtype, np.dtype(dtype))
self.compare_array_value(dz, value, fill_value)
# Test the 'shape' parameter
for s in self.shapes:
for o in "CFA":
sz = like_function(d, dtype=dtype, shape=s, order=o, **fill_kwarg)
assert_equal(sz.shape, s)
if dtype is None:
assert_equal(sz.dtype, d.dtype)
else:
assert_equal(sz.dtype, np.dtype(dtype))
if o == "C" or (o == "A" and d.flags.c_contiguous):
assert_(sz.flags.c_contiguous)
elif o == "F" or (o == "A" and d.flags.f_contiguous):
assert_(sz.flags.f_contiguous)
self.compare_array_value(sz, value, fill_value)
if d.ndim != len(s):
assert_equal(
np.argsort(
like_function(
d, dtype=dtype, shape=s, order="K", **fill_kwarg
).strides
),
np.argsort(np.empty(s, dtype=dtype, order="C").strides),
)
else:
assert_equal(
np.argsort(
like_function(
d, dtype=dtype, shape=s, order="K", **fill_kwarg
).strides
),
np.argsort(d.strides),
)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@skip(reason="implement order etc") # FIXME: make xfail
@instantiate_parametrized_tests
class TestLikeFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_ones_like
|
def test_ones_like(self):
self.check_like_function(np.ones_like, 1)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@skip(reason="implement order etc") # FIXME: make xfail
@instantiate_parametrized_tests
class TestLikeFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_zeros_like
|
def test_zeros_like(self):
self.check_like_function(np.zeros_like, 0)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@skip(reason="implement order etc") # FIXME: make xfail
@instantiate_parametrized_tests
class TestLikeFuncs(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_3x3
|
def test_3x3(self):
u = [1, 2, 3]
v = [4, 5, 6]
z = np.array([-3, 6, -3])
cp = np.cross(u, v)
assert_equal(cp, z)
cp = np.cross(v, u)
assert_equal(cp, -z)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCross(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_broadcasting
|
def test_broadcasting(self):
# Ticket #2624 (Trac #2032)
u = np.tile([1, 2], (11, 1))
v = np.tile([3, 4], (11, 1))
z = -2
assert_equal(np.cross(u, v), z)
assert_equal(np.cross(v, u), -z)
assert_equal(np.cross(u, u), 0)
u = np.tile([1, 2], (11, 1)).T
v = np.tile([3, 4, 5], (11, 1))
z = np.tile([10, -5, -2], (11, 1))
assert_equal(np.cross(u, v, axisa=0), z)
assert_equal(np.cross(v, u.T), -z)
assert_equal(np.cross(v, v), 0)
u = np.tile([1, 2, 3], (11, 1)).T
v = np.tile([3, 4], (11, 1)).T
z = np.tile([-12, 9, -2], (11, 1))
assert_equal(np.cross(u, v, axisa=0, axisb=0), z)
assert_equal(np.cross(v.T, u.T), -z)
assert_equal(np.cross(u.T, u.T), 0)
u = np.tile([1, 2, 3], (5, 1))
v = np.tile([4, 5, 6], (5, 1)).T
z = np.tile([-3, 6, -3], (5, 1))
assert_equal(np.cross(u, v, axisb=0), z)
assert_equal(np.cross(v.T, u), -z)
assert_equal(np.cross(u, u), 0)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCross(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_uint8_int32_mixed_dtypes
|
def test_uint8_int32_mixed_dtypes(self):
# regression test for gh-19138
u = np.array([[195, 8, 9]], np.uint8)
v = np.array([250, 166, 68], np.int32)
z = np.array([[950, 11010, -30370]], dtype=np.int32)
assert_equal(np.cross(v, u), z)
assert_equal(np.cross(u, v), -z)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestCross(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_outer_out_param
|
def test_outer_out_param(self):
arr1 = np.ones((5,))
arr2 = np.ones((2,))
arr3 = np.linspace(-2, 2, 5)
out1 = np.empty(shape=(5, 5))
out2 = np.empty(shape=(2, 5))
res1 = np.outer(arr1, arr3, out1)
assert_equal(res1, out1)
assert_equal(np.outer(arr2, arr3, out2), out2)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestOuterMisc(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_simple
|
def test_simple(self):
[x, y] = np.indices((4, 3))
assert_array_equal(x, np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3]]))
assert_array_equal(y, np.array([[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestIndices(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_single_input
|
def test_single_input(self):
[x] = np.indices((4,))
assert_array_equal(x, np.array([0, 1, 2, 3]))
[x] = np.indices((4,), sparse=True)
assert_array_equal(x, np.array([0, 1, 2, 3]))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestIndices(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_scalar_input
|
def test_scalar_input(self):
assert_array_equal([], np.indices(()))
assert_array_equal([], np.indices((), sparse=True))
assert_array_equal([[]], np.indices((0,)))
assert_array_equal([[]], np.indices((0,), sparse=True))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestIndices(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_sparse
|
def test_sparse(self):
# test special sparse condition boolean code path
for i in range(20):
c = np.zeros(200, dtype=bool)
c[i::20] = True
assert_equal(np.nonzero(c)[0], np.arange(i, 200 + i, 20))
c = np.zeros(400, dtype=bool)
c[10 + i : 20 + i] = True
c[20 + i * 2] = True
assert_equal(
np.nonzero(c)[0],
np.concatenate((np.arange(10 + i, 20 + i), [20 + i * 2])),
)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestNonzeroAndCountNonzero(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_return_type
|
def test_return_type(self, dtype, dims):
inds = np.indices(dims, dtype=dtype)
assert_(inds.dtype == dtype)
for arr in np.indices(dims, dtype=dtype, sparse=True):
assert_(arr.dtype == dtype)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
@instantiate_parametrized_tests
class TestIndices(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_roll_empty
|
def test_roll_empty(self):
x = np.array([])
assert_equal(np.roll(x, 1), np.array([]))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestRoll(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_results
|
def test_results(self):
a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4).copy()
aind = np.indices(a.shape)
assert_(a.flags["OWNDATA"])
for i, j in self.tgtshape:
# positive axis, positive start
res = np.rollaxis(a, axis=i, start=j)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(i, j)], str((i, j)))
assert_(not res.flags["OWNDATA"])
# negative axis, positive start
ip = i + 1
res = np.rollaxis(a, axis=-ip, start=j)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(4 - ip, j)])
assert_(not res.flags["OWNDATA"])
# positive axis, negative start
jp = j + 1 if j < 4 else j
res = np.rollaxis(a, axis=i, start=-jp)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(i, 4 - jp)])
assert_(not res.flags["OWNDATA"])
# negative axis, negative start
ip = i + 1
jp = j + 1 if j < 4 else j
res = np.rollaxis(a, axis=-ip, start=-jp)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(4 - ip, 4 - jp)])
assert_(not res.flags["OWNDATA"])
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestRollaxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_move_to_end
|
def test_move_to_end(self):
x = np.random.randn(5, 6, 7)
for source, expected in [
(0, (6, 7, 5)),
(1, (5, 7, 6)),
(2, (5, 6, 7)),
(-1, (5, 6, 7)),
]:
actual = np.moveaxis(x, source, -1).shape
assert_(actual, expected)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestMoveaxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_move_new_position
|
def test_move_new_position(self):
x = np.random.randn(1, 2, 3, 4)
for source, destination, expected in [
(0, 1, (2, 1, 3, 4)),
(1, 2, (1, 3, 2, 4)),
(1, -1, (1, 3, 4, 2)),
]:
actual = np.moveaxis(x, source, destination).shape
assert_(actual, expected)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestMoveaxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_preserve_order
|
def test_preserve_order(self):
x = np.zeros((1, 2, 3, 4))
for source, destination in [
(0, 0),
(3, -1),
(-1, 3),
([0, -1], [0, -1]),
([2, 0], [2, 0]),
(range(4), range(4)),
]:
actual = np.moveaxis(x, source, destination).shape
assert_(actual, (1, 2, 3, 4))
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestMoveaxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_numeric.py
|
test_move_multiples
|
def test_move_multiples(self):
x = np.zeros((0, 1, 2, 3))
for source, destination, expected in [
([0, 1], [2, 3], (2, 3, 0, 1)),
([2, 3], [0, 1], (2, 3, 0, 1)),
([0, 1, 2], [2, 3, 0], (2, 3, 0, 1)),
([3, 0], [1, 0], (0, 3, 1, 2)),
([0, 3], [0, 1], (0, 3, 1, 2)),
]:
actual = np.moveaxis(x, source, destination).shape
assert_(actual, expected)
|
import functools
import itertools
import math
import platform
import sys
import warnings
import numpy
import pytest
IS_WASM = False
HAS_REFCOUNT = True
import operator
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from hypothesis import given, strategies as st
from hypothesis.extra import numpy as hynp
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
import torch._numpy as np
from torch._numpy.random import rand, randint, randn
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM
)
skip = functools.partial(skipif, True)
from fractions import Fraction
from numbers import Number
class TestMoveaxis(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.