library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/torch_np/numpy_tests/core/test_numeric.py
_generate_flt_data
def _generate_flt_data(self, n, m): return (randn(n, m)).astype(np.float32)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
_neg_byteorder
def _neg_byteorder(self, a): a = np.asarray(a) if sys.byteorder == "little": a = a.astype(a.dtype.newbyteorder(">")) else: a = a.astype(a.dtype.newbyteorder("<")) return a
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
_generate_non_native_data
def _generate_non_native_data(self, n, m): data = randn(n, m) data = self._neg_byteorder(data) assert_(not data.dtype.isnative) return data
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
_generate_int_data
def _generate_int_data(self, n, m): return (10 * rand(n, m)).astype(np.int64)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ones_pathological_2
def test_ones_pathological_2(self, dtype): if dtype in "FD": # FIXME: make xfail raise SkipTest("torch.clamp not implemented for complex types") # for preservation of behavior described in # gh-12519; amin > amax behavior may still change # in the future arr = np.ones(10, dtype=dtype) expected = np.zeros(10, dtype=dtype) actual = np.clip(arr, 1, 0) assert_equal(actual, expected)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_countnonzero_axis_empty
def test_countnonzero_axis_empty(self): a = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(np.count_nonzero(a, axis=()), a.astype(bool))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestNonzeroAndCountNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_countnonzero_keepdims
def test_countnonzero_keepdims(self): a = np.array([[0, 0, 1, 0], [0, 3, 5, 0], [7, 9, 2, 0]]) assert_array_equal(np.count_nonzero(a, axis=0, keepdims=True), [[1, 2, 3, 0]]) assert_array_equal(np.count_nonzero(a, axis=1, keepdims=True), [[1], [2], [3]]) assert_array_equal(np.count_nonzero(a, keepdims=True), [[6]]) assert isinstance(np.count_nonzero(a, axis=1, keepdims=True), np.ndarray)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestNonzeroAndCountNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_boolean
def test_boolean(self): a = rand(3, 5, 8) V = rand(5, 8) g1 = randint(0, 5, size=15) g2 = randint(0, 8, size=15) V[g1, g2] = -V[g1, g2] assert_( (np.array([a[0][V > 0], a[1][V > 0], a[2][V > 0]]) == a[:, V > 0]).all() )
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIndex(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_boolean_edgecase
def test_boolean_edgecase(self): a = np.array([], dtype="int32") b = np.array([], dtype="bool") c = a[b] assert_equal(c, []) assert_equal(c.dtype, np.dtype("int32"))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIndex(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_zero
def test_zero(self): assert_equal(np.binary_repr(0), "0")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @xpassIfTorchDynamo # (reason="TODO") class TestBinaryRepr(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_positive
def test_positive(self): assert_equal(np.binary_repr(10), "1010") assert_equal(np.binary_repr(12522), "11000011101010") assert_equal(np.binary_repr(10736848), "101000111101010011010000")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @xpassIfTorchDynamo # (reason="TODO") class TestBinaryRepr(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_negative
def test_negative(self): assert_equal(np.binary_repr(-1), "-1") assert_equal(np.binary_repr(-10), "-1010") assert_equal(np.binary_repr(-12522), "-11000011101010") assert_equal(np.binary_repr(-10736848), "-101000111101010011010000")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @xpassIfTorchDynamo # (reason="TODO") class TestBinaryRepr(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_sufficient_width
def test_sufficient_width(self): assert_equal(np.binary_repr(0, width=5), "00000") assert_equal(np.binary_repr(10, width=7), "0001010") assert_equal(np.binary_repr(-5, width=7), "1111011")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @xpassIfTorchDynamo # (reason="TODO") class TestBinaryRepr(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_neg_width_boundaries
def test_neg_width_boundaries(self): # see gh-8670 # Ensure that the example in the issue does not # break before proceeding to a more thorough test. assert_equal(np.binary_repr(-128, width=8), "10000000") for width in range(1, 11): num = -(2 ** (width - 1)) exp = "1" + (width - 1) * "0" assert_equal(np.binary_repr(num, width=width), exp)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @xpassIfTorchDynamo # (reason="TODO") class TestBinaryRepr(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_large_neg_int64
def test_large_neg_int64(self): # See gh-14289. assert_equal(np.binary_repr(np.int64(-(2**62)), width=64), "11" + "0" * 62)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @xpassIfTorchDynamo # (reason="TODO") class TestBinaryRepr(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_simple_double
def test_simple_double(self): # Test native double input with scalar min/max. a = self._generate_data(self.nr, self.nc) m = 0.1 M = 0.6 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_simple_int
def test_simple_int(self): # Test native int input with scalar min/max. a = self._generate_int_data(self.nr, self.nc) a = a.astype(int) m = -2 M = 4 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_complex
def test_clip_complex(self): # Address Issue gh-5354 for clipping complex arrays # Test native complex input without explicit min/max # ie, either min=None or max=None a = np.ones(10, dtype=complex) m = a.min() M = a.max() am = self.fastclip(a, m, None) aM = self.fastclip(a, None, M) assert_array_equal(am, a) assert_array_equal(aM, a)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_non_contig
def test_clip_non_contig(self): # Test clip for non contiguous native input and native scalar min/max. a = self._generate_data(self.nr * 2, self.nc * 3) a = a[::2, ::3] assert_(not a.flags["F_CONTIGUOUS"]) assert_(not a.flags["C_CONTIGUOUS"]) ac = self.fastclip(a, -1.6, 1.7) act = self.clip(a, -1.6, 1.7) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_simple_int32_inout
def test_simple_int32_inout(self, casting): # Test native int32 input with double min/max and int32 out. a = self._generate_int32_data(self.nr, self.nc) m = np.float64(0) M = np.float64(2) ac = np.zeros(a.shape, dtype=np.int32) act = ac.copy() if casting is not None: # explicitly passing "unsafe" will silence warning self.fastclip(a, m, M, ac, casting=casting) self.clip(a, m, M, act) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_simple_int32_out
def test_simple_int32_out(self): # Test native double input with scalar min/max and int out. a = self._generate_data(self.nr, self.nc) m = -1.0 M = 2.0 ac = np.zeros(a.shape, dtype=np.int32) act = ac.copy() self.clip(a, m, M, act) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_simple_inplace_01
def test_simple_inplace_01(self): # Test native double input with array min/max in-place. a = self._generate_data(self.nr, self.nc) ac = a.copy() m = np.zeros(a.shape) M = 1.0 self.fastclip(a, m, M, a) self.clip(a, m, M, ac) assert_array_equal(a, ac)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_simple_inplace_02
def test_simple_inplace_02(self): # Test native double input with scalar min/max in-place. a = self._generate_data(self.nr, self.nc) ac = a.copy() m = -0.5 M = 0.6 self.fastclip(a, m, M, a) self.clip(ac, m, M, ac) assert_array_equal(a, ac)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_noncontig_inplace
def test_noncontig_inplace(self): # Test non contiguous double input with double scalar min/max in-place. a = self._generate_data(self.nr * 2, self.nc * 3) a = a[::2, ::3] assert_(not a.flags["F_CONTIGUOUS"]) assert_(not a.flags["C_CONTIGUOUS"]) ac = a.copy() m = -0.5 M = 0.6 self.fastclip(a, m, M, a) self.clip(ac, m, M, ac) assert_array_equal(a, ac)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_type_cast_01
def test_type_cast_01(self): # Test native double input with scalar min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 M = 0.6 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_type_cast_02
def test_type_cast_02(self): # Test native int32 input with int32 scalar min/max. a = self._generate_int_data(self.nr, self.nc) a = a.astype(np.int32) m = -2 M = 4 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_type_cast_03
def test_type_cast_03(self): # Test native int32 input with float64 scalar min/max. a = self._generate_int32_data(self.nr, self.nc) m = -2 M = 4 ac = self.fastclip(a, np.float64(m), np.float64(M)) act = self.clip(a, np.float64(m), np.float64(M)) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_type_cast_04
def test_type_cast_04(self): # Test native int32 input with float32 scalar min/max. a = self._generate_int32_data(self.nr, self.nc) m = np.float32(-2) M = np.float32(4) act = self.fastclip(a, m, M) ac = self.clip(a, m, M) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_with_out_array_outint32
def test_clip_with_out_array_outint32(self): # Test native double input with scalar min/max and int out a = self._generate_data(self.nr, self.nc) m = -1.0 M = 2.0 ac = np.zeros(a.shape, dtype=np.int32) act = ac.copy() self.clip(a, m, M, act) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_with_out_transposed
def test_clip_with_out_transposed(self): # Test that the out argument works when transposed a = np.arange(16).reshape(4, 4) out = np.empty_like(a).T a.clip(4, 10, out=out) expected = self.clip(a, 4, 10) assert_array_equal(out, expected)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_with_out_memory_overlap
def test_clip_with_out_memory_overlap(self): # Test that the out argument works when it has memory overlap a = np.arange(16).reshape(4, 4) ac = a.copy() a[:-1].clip(4, 10, out=a[1:]) expected = self.clip(ac[:-1], 4, 10) assert_array_equal(a[1:], expected)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_inplace_array
def test_clip_inplace_array(self): # Test native double input with array min/max a = self._generate_data(self.nr, self.nc) ac = a.copy() m = np.zeros(a.shape) M = 1.0 self.fastclip(a, m, M, a) self.clip(a, m, M, ac) assert_array_equal(a, ac)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_inplace_simple
def test_clip_inplace_simple(self): # Test native double input with scalar min/max a = self._generate_data(self.nr, self.nc) ac = a.copy() m = -0.5 M = 0.6 self.fastclip(a, m, M, a) self.clip(a, m, M, ac) assert_array_equal(a, ac)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_type_cast_09
def test_type_cast_09(self): # Test native with NON native array min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 * np.ones(a.shape) M = 1.0 m_s = self._neg_byteorder(m) assert_(not m_s.dtype.isnative) ac = self.fastclip(a, m_s, M) act = self.clip(a, m_s, M) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_type_cast_11
def test_type_cast_11(self): # Test non native with native scalar, min/max, out non native a = self._generate_non_native_data(self.nr, self.nc) b = a.copy() b = b.astype(b.dtype.newbyteorder(">")) bt = b.copy() m = -0.5 M = 1.0 self.fastclip(a, m, M, out=b) self.clip(a, m, M, out=bt) assert_array_equal(b, bt)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_type_cast_12
def test_type_cast_12(self): # Test native int32 input and min/max and float out a = self._generate_int_data(self.nr, self.nc) b = np.zeros(a.shape, dtype=np.float32) m = np.int32(0) M = np.int32(1) act = self.clip(a, m, M, out=b) ac = self.fastclip(a, m, M, out=b) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_with_out_simple2
def test_clip_with_out_simple2(self): # Test native int32 input with double min/max and int32 out a = self._generate_int32_data(self.nr, self.nc) m = np.float64(0) M = np.float64(2) ac = np.zeros(a.shape, dtype=np.int32) act = ac.copy() self.clip(a, m, M, act) assert_array_equal(ac, act)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
tst_all_isclose
def tst_all_isclose(self, x, y): assert_(np.all(np.isclose(x, y)), f"{x} and {y} not close")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
tst_none_isclose
def tst_none_isclose(self, x, y): msg = "%s and %s shouldn't be close" assert_(not np.any(np.isclose(x, y)), msg % (x, y))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
tst_isclose_allclose
def tst_isclose_allclose(self, x, y): msg = "isclose.all() and allclose aren't same for %s and %s" msg2 = "isclose and allclose aren't same for %s and %s" if np.isscalar(x) and np.isscalar(y): assert_(np.isclose(x, y) == np.allclose(x, y), msg=msg2 % (x, y)) else: assert_array_equal(np.isclose(x, y).all(), np.allclose(x, y), msg % (x, y))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ip_all_isclose
def test_ip_all_isclose(self): self._setup() for x, y in self.all_close_tests: self.tst_all_isclose(x, y)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ip_none_isclose
def test_ip_none_isclose(self): self._setup() for x, y in self.none_close_tests: self.tst_none_isclose(x, y)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ip_isclose_allclose
def test_ip_isclose_allclose(self): self._setup() tests = self.all_close_tests + self.none_close_tests + self.some_close_tests for x, y in tests: self.tst_isclose_allclose(x, y)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_scalar_return
def test_scalar_return(self): assert_(np.isscalar(np.isclose(1, 1)))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_no_parameter_modification
def test_no_parameter_modification(self): x = np.array([np.inf, 1]) y = np.array([0, np.inf]) np.allclose(x, y) assert_array_equal(x, np.array([np.inf, 1])) assert_array_equal(y, np.array([0, np.inf]))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_non_finite_scalar
def test_non_finite_scalar(self): # GH7014, when two scalars are compared the output should also be a # scalar # XXX: test modified since there are array scalars assert_(np.isclose(np.inf, -np.inf).item() is False) assert_(np.isclose(0, np.inf).item() is False)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
setUp
def setUp(self): super().setUp() # offset for simd tests self.t = np.array([True] * 41, dtype=bool)[1::] self.f = np.array([False] * 41, dtype=bool)[1::] self.o = np.array([False] * 42, dtype=bool)[2::] self.nm = self.f.copy() self.im = self.t.copy() self.nm[3] = True self.nm[-2] = True self.im[3] = False self.im[-2] = False
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestBoolArray(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_basic
def test_basic(self): assert_almost_equal(np.var(self.A), self.real_var) assert_almost_equal(np.std(self.A) ** 2, self.real_var)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestStdVar(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_scalars
def test_scalars(self): assert_equal(np.var(1), 0) assert_equal(np.std(1), 0)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestStdVar(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ddof1
def test_ddof1(self): assert_almost_equal( np.var(self.A, ddof=1), self.real_var * len(self.A) / (len(self.A) - 1) ) assert_almost_equal( np.std(self.A, ddof=1) ** 2, self.real_var * len(self.A) / (len(self.A) - 1) )
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestStdVar(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ddof2
def test_ddof2(self): assert_almost_equal( np.var(self.A, ddof=2), self.real_var * len(self.A) / (len(self.A) - 2) ) assert_almost_equal( np.std(self.A, ddof=2) ** 2, self.real_var * len(self.A) / (len(self.A) - 2) )
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestStdVar(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_out_scalar
def test_out_scalar(self): d = np.arange(10) out = np.array(0.0) r = np.std(d, out=out) assert_(r is out) assert_array_equal(r, out) r = np.var(d, out=out) assert_(r is out) assert_array_equal(r, out) r = np.mean(d, out=out) assert_(r is out) assert_array_equal(r, out)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestStdVar(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_basic
def test_basic(self): assert_almost_equal(np.var(self.A), self.real_var) assert_almost_equal(np.std(self.A) ** 2, self.real_var)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestStdVar(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_scalars
def test_scalars(self): assert_equal(np.var(1), 0) assert_equal(np.std(1), 0)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestStdVar(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
setUp
def setUp(self): super().setUp() # offset for simd tests self.t = np.array([True] * 41, dtype=bool)[1::] self.f = np.array([False] * 41, dtype=bool)[1::] self.o = np.array([False] * 42, dtype=bool)[2::] self.nm = self.f.copy() self.im = self.t.copy() self.nm[3] = True self.nm[-2] = True self.im[3] = False self.im[-2] = False
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestBoolArray(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
check_function
def check_function(self, func, fill_value=None): par = ((0, 1, 2), range(self.ndims), self.orders, self.dtypes) fill_kwarg = {} if fill_value is not None: fill_kwarg = {"fill_value": fill_value} for size, ndims, order, dtype in itertools.product(*par): shape = ndims * [size] arr = func(shape, order=order, dtype=dtype, **fill_kwarg) assert_equal(arr.dtype, dtype) assert_(getattr(arr.flags, self.orders[order])) if fill_value is not None: val = fill_value assert_equal(arr, dtype.type(val))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCreationFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_no_overwrite
def test_no_overwrite(self): d = np.ones(100) k = np.ones(3) np.correlate(d, k) assert_array_equal(d, np.ones(100)) assert_array_equal(k, np.ones(3))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCorrelate(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_mode
def test_mode(self): d = np.ones(100) k = np.ones(3) default_mode = np.correlate(d, k, mode="valid") with assert_warns(DeprecationWarning): valid_mode = np.correlate(d, k, mode="v") assert_array_equal(valid_mode, default_mode) # integer mode with assert_raises(ValueError): np.correlate(d, k, mode=-1) assert_array_equal(np.correlate(d, k, mode=0), valid_mode) # illegal arguments with assert_raises(TypeError): np.correlate(d, k, mode=None)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCorrelate(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_numpy_doc_examples
def test_numpy_doc_examples(self): conv = np.convolve([1, 2, 3], [0, 1, 0.5]) assert_allclose(conv, [0.0, 1.0, 2.5, 4.0, 1.5], atol=1e-15) conv = np.convolve([1, 2, 3], [0, 1, 0.5], "same") assert_allclose(conv, [1.0, 2.5, 4.0], atol=1e-15) conv = np.convolve([1, 2, 3], [0, 1, 0.5], "valid") assert_allclose(conv, [2.5], atol=1e-15)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestConvolve(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_dtype_positional
def test_dtype_positional(self): np.empty((2,), bool)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestDtypePositional(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_nd
def test_nd(self, nd): # get an nd array with multiple elements in every dimension x = np.empty((2,) * nd, dtype=bool) # none x[...] = False assert_equal(np.argwhere(x).shape, (0, nd)) # only one x[...] = False x.ravel()[0] = True assert_equal(np.argwhere(x).shape, (1, nd)) # all but one x[...] = True x.ravel()[0] = False assert_equal(np.argwhere(x).shape, (x.size - 1, nd)) # all x[...] = True assert_equal(np.argwhere(x).shape, (x.size, nd))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestArgwhere(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_2D
def test_2D(self): x = np.arange(6).reshape((2, 3)) assert_array_equal(np.argwhere(x > 1), [[0, 2], [1, 0], [1, 1], [1, 2]])
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestArgwhere(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_list
def test_list(self): assert_equal(np.argwhere([4, 0, 2, 1, 3]), [[0], [2], [3], [4]])
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestArgwhere(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_set_string_function
def test_set_string_function(self): a = np.array([1]) np.set_string_function(lambda x: "FOO", repr=True) assert_equal(repr(a), "FOO") np.set_string_function(None, repr=True) assert_equal(repr(a), "array([1])") np.set_string_function(lambda x: "FOO", repr=False) assert_equal(str(a), "FOO") np.set_string_function(None, repr=False) assert_equal(str(a), "[1]")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @xpassIfTorchDynamo # (reason="TODO") class TestStringFunction(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_roll1d
def test_roll1d(self): x = np.arange(10) xr = np.roll(x, 2) assert_equal(xr, np.array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestRoll(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_roll2d
def test_roll2d(self): x2 = np.reshape(np.arange(10), (2, 5)) x2r = np.roll(x2, 1) assert_equal(x2r, np.array([[9, 0, 1, 2, 3], [4, 5, 6, 7, 8]])) x2r = np.roll(x2, 1, axis=0) assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]])) x2r = np.roll(x2, 1, axis=1) assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]])) # Roll multiple axes at once. x2r = np.roll(x2, 1, axis=(0, 1)) assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]])) x2r = np.roll(x2, (1, 0), axis=(0, 1)) assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]])) x2r = np.roll(x2, (-1, 0), axis=(0, 1)) assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]])) x2r = np.roll(x2, (0, 1), axis=(0, 1)) assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]])) x2r = np.roll(x2, (0, -1), axis=(0, 1)) assert_equal(x2r, np.array([[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]])) x2r = np.roll(x2, (1, 1), axis=(0, 1)) assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]])) x2r = np.roll(x2, (-1, -1), axis=(0, 1)) assert_equal(x2r, np.array([[6, 7, 8, 9, 5], [1, 2, 3, 4, 0]])) # Roll the same axis multiple times. x2r = np.roll(x2, 1, axis=(0, 0)) assert_equal(x2r, np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])) x2r = np.roll(x2, 1, axis=(1, 1)) assert_equal(x2r, np.array([[3, 4, 0, 1, 2], [8, 9, 5, 6, 7]])) # Roll more than one turn in either direction. x2r = np.roll(x2, 6, axis=1) assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]])) x2r = np.roll(x2, -4, axis=1) assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestRoll(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_clip_property
def test_clip_property(self, data, arr): """A property-based test using Hypothesis. This aims for maximum generality: it could in principle generate *any* valid inputs to np.clip, and in practice generates much more varied inputs than human testers come up with. Because many of the inputs have tricky dependencies - compatible dtypes and mutually-broadcastable shapes - we use `st.data()` strategy draw values *inside* the test function, from strategies we construct based on previous values. An alternative would be to define a custom strategy with `@st.composite`, but until we have duplicated code inline is fine. That accounts for most of the function; the actual test is just three lines to calculate and compare actual vs expected results! """ numeric_dtypes = hynp.integer_dtypes() | hynp.floating_dtypes() # Generate shapes for the bounds which can be broadcast with each other # and with the base shape. Below, we might decide to use scalar bounds, # but it's clearer to generate these shapes unconditionally in advance. in_shapes, result_shape = data.draw( hynp.mutually_broadcastable_shapes(num_shapes=2, base_shape=arr.shape) ) # Scalar `nan` is deprecated due to the differing behaviour it shows. s = numeric_dtypes.flatmap(lambda x: hynp.from_dtype(x, allow_nan=False)) amin = data.draw( s | hynp.arrays( dtype=numeric_dtypes, shape=in_shapes[0], elements={"allow_nan": False} ) ) amax = data.draw( s | hynp.arrays( dtype=numeric_dtypes, shape=in_shapes[1], elements={"allow_nan": False} ) ) # Then calculate our result and expected result and check that they're # equal! See gh-12519 and gh-19457 for discussion deciding on this # property and the result_type argument. result = np.clip(arr, amin, amax) t = np.result_type(arr, amin, amax) expected = np.minimum(amax, np.maximum(arr, amin, dtype=t), dtype=t) assert result.dtype == t assert_array_equal(result, expected)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestClip(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
tst_allclose
def tst_allclose(self, x, y): assert_(np.allclose(x, y), f"{x} and {y} not close")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
tst_not_allclose
def tst_not_allclose(self, x, y): assert_(not np.allclose(x, y), f"{x} and {y} shouldn't be close")
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ip_allclose
def test_ip_allclose(self): # Parametric test factory. arr = np.array([100, 1000]) aran = np.arange(125).reshape((5, 5, 5)) atol = self.atol rtol = self.rtol data = [ ([1, 0], [1, 0]), ([atol], [0]), ([1], [1 + rtol + atol]), (arr, arr + arr * rtol), (arr, arr + arr * rtol + atol * 2), (aran, aran + aran * rtol), (np.inf, np.inf), (np.inf, [np.inf]), ] for x, y in data: self.tst_allclose(x, y)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ip_not_allclose
def test_ip_not_allclose(self): # Parametric test factory. aran = np.arange(125).reshape((5, 5, 5)) atol = self.atol rtol = self.rtol data = [ ([np.inf, 0], [1, np.inf]), ([np.inf, 0], [1, 0]), ([np.inf, np.inf], [1, np.inf]), ([np.inf, np.inf], [1, 0]), ([-np.inf, 0], [np.inf, 0]), ([np.nan, 0], [np.nan, 0]), ([atol * 2], [0]), ([1], [1 + rtol + atol * 2]), (aran, aran + aran * atol + atol * 2), (np.array([np.inf, 1]), np.array([0, np.inf])), ] for x, y in data: self.tst_not_allclose(x, y)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_no_parameter_modification
def test_no_parameter_modification(self): x = np.array([np.inf, 1]) y = np.array([0, np.inf]) np.allclose(x, y) assert_array_equal(x, np.array([np.inf, 1])) assert_array_equal(y, np.array([0, np.inf]))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_min_int
def test_min_int(self): # Could make problems because of abs(min_int) == min_int min_int = np.iinfo(np.int_).min a = np.array([min_int], dtype=np.int_) assert_(np.allclose(a, a))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_equalnan
def test_equalnan(self): x = np.array([1.0, np.nan]) assert_(np.allclose(x, x, equal_nan=True))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestAllclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
_setup
def _setup(self): atol = self.atol rtol = self.rtol arr = np.array([100, 1000]) aran = np.arange(125).reshape((5, 5, 5)) self.all_close_tests = [ ([1, 0], [1, 0]), ([atol], [0]), ([1], [1 + rtol + atol]), (arr, arr + arr * rtol), (arr, arr + arr * rtol + atol), (aran, aran + aran * rtol), (np.inf, np.inf), (np.inf, [np.inf]), ([np.inf, -np.inf], [np.inf, -np.inf]), ] self.none_close_tests = [ ([np.inf, 0], [1, np.inf]), ([np.inf, -np.inf], [1, 0]), ([np.inf, np.inf], [1, -np.inf]), ([np.inf, np.inf], [1, 0]), ([np.nan, 0], [np.nan, -np.inf]), ([atol * 2], [0]), ([1], [1 + rtol + atol * 2]), (aran, aran + rtol * 1.1 * aran + atol * 1.1), (np.array([np.inf, 1]), np.array([0, np.inf])), ] self.some_close_tests = [ ([np.inf, 0], [np.inf, atol * 2]), ([atol, 1, 1e6 * (1 + 2 * rtol) + atol], [0, np.nan, 1e6]), (np.arange(3), [0, 1, 2.1]), (np.nan, [np.nan, np.nan, np.nan]), ([0], [atol, np.inf, -np.inf, np.nan]), (0, [atol, np.inf, -np.inf, np.nan]), ] self.some_close_results = [ [True, False], [True, False, False], [True, True, False], [False, False, False], [True, False, False, False], [True, False, False, False], ]
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ip_isclose
def test_ip_isclose(self): self._setup() tests = self.some_close_tests results = self.some_close_results for (x, y), result in zip(tests, results): assert_array_equal(np.isclose(x, y), result)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestIsclose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_zeros
def test_zeros(self): self.check_function(np.zeros)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCreationFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ones
def test_ones(self): self.check_function(np.ones)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCreationFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_empty
def test_empty(self): self.check_function(np.empty)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCreationFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_for_reference_leak
def test_for_reference_leak(self): # Make sure we have an object for reference dim = 1 beg = sys.getrefcount(dim) np.zeros([dim] * 10) assert_(sys.getrefcount(dim) == beg) np.ones([dim] * 10) assert_(sys.getrefcount(dim) == beg) np.empty([dim] * 10) assert_(sys.getrefcount(dim) == beg) np.full([dim] * 10, 0) assert_(sys.getrefcount(dim) == beg)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCreationFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
setUp
def setUp(self): super().setUp() # offset for simd tests self.t = np.array([True] * 41, dtype=bool)[1::] self.f = np.array([False] * 41, dtype=bool)[1::] self.o = np.array([False] * 42, dtype=bool)[2::] self.nm = self.f.copy() self.im = self.t.copy() self.nm[3] = True self.nm[-2] = True self.im[3] = False self.im[-2] = False
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestBoolArray(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
compare_array_value
def compare_array_value(self, dz, value, fill_value): if value is not None: if fill_value: # Conversion is close to what np.full_like uses # but we may want to convert directly in the future # which may result in errors (where this does not). z = np.array(value).astype(dz.dtype) assert_(np.all(dz == z)) else: assert_(np.all(dz == value))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @skip(reason="implement order etc") # FIXME: make xfail @instantiate_parametrized_tests class TestLikeFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
check_like_function
def check_like_function(self, like_function, value, fill_value=False): if fill_value: fill_kwarg = {"fill_value": value} else: fill_kwarg = {} for d, dtype in self.data: # default (K) order, dtype dz = like_function(d, dtype=dtype, **fill_kwarg) assert_equal(dz.shape, d.shape) assert_equal( np.array(dz.strides) * d.dtype.itemsize, np.array(d.strides) * dz.dtype.itemsize, ) assert_equal(d.flags.c_contiguous, dz.flags.c_contiguous) assert_equal(d.flags.f_contiguous, dz.flags.f_contiguous) if dtype is None: assert_equal(dz.dtype, d.dtype) else: assert_equal(dz.dtype, np.dtype(dtype)) self.compare_array_value(dz, value, fill_value) # C order, default dtype dz = like_function(d, order="C", dtype=dtype, **fill_kwarg) assert_equal(dz.shape, d.shape) assert_(dz.flags.c_contiguous) if dtype is None: assert_equal(dz.dtype, d.dtype) else: assert_equal(dz.dtype, np.dtype(dtype)) self.compare_array_value(dz, value, fill_value) # F order, default dtype dz = like_function(d, order="F", dtype=dtype, **fill_kwarg) assert_equal(dz.shape, d.shape) assert_(dz.flags.f_contiguous) if dtype is None: assert_equal(dz.dtype, d.dtype) else: assert_equal(dz.dtype, np.dtype(dtype)) self.compare_array_value(dz, value, fill_value) # A order dz = like_function(d, order="A", dtype=dtype, **fill_kwarg) assert_equal(dz.shape, d.shape) if d.flags.f_contiguous: assert_(dz.flags.f_contiguous) else: assert_(dz.flags.c_contiguous) if dtype is None: assert_equal(dz.dtype, d.dtype) else: assert_equal(dz.dtype, np.dtype(dtype)) self.compare_array_value(dz, value, fill_value) # Test the 'shape' parameter for s in self.shapes: for o in "CFA": sz = like_function(d, dtype=dtype, shape=s, order=o, **fill_kwarg) assert_equal(sz.shape, s) if dtype is None: assert_equal(sz.dtype, d.dtype) else: assert_equal(sz.dtype, np.dtype(dtype)) if o == "C" or (o == "A" and d.flags.c_contiguous): assert_(sz.flags.c_contiguous) elif o == "F" or (o == "A" and d.flags.f_contiguous): assert_(sz.flags.f_contiguous) self.compare_array_value(sz, value, fill_value) if d.ndim != len(s): assert_equal( np.argsort( like_function( d, dtype=dtype, shape=s, order="K", **fill_kwarg ).strides ), np.argsort(np.empty(s, dtype=dtype, order="C").strides), ) else: assert_equal( np.argsort( like_function( d, dtype=dtype, shape=s, order="K", **fill_kwarg ).strides ), np.argsort(d.strides), )
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @skip(reason="implement order etc") # FIXME: make xfail @instantiate_parametrized_tests class TestLikeFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_ones_like
def test_ones_like(self): self.check_like_function(np.ones_like, 1)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @skip(reason="implement order etc") # FIXME: make xfail @instantiate_parametrized_tests class TestLikeFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_zeros_like
def test_zeros_like(self): self.check_like_function(np.zeros_like, 0)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @skip(reason="implement order etc") # FIXME: make xfail @instantiate_parametrized_tests class TestLikeFuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_3x3
def test_3x3(self): u = [1, 2, 3] v = [4, 5, 6] z = np.array([-3, 6, -3]) cp = np.cross(u, v) assert_equal(cp, z) cp = np.cross(v, u) assert_equal(cp, -z)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCross(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_broadcasting
def test_broadcasting(self): # Ticket #2624 (Trac #2032) u = np.tile([1, 2], (11, 1)) v = np.tile([3, 4], (11, 1)) z = -2 assert_equal(np.cross(u, v), z) assert_equal(np.cross(v, u), -z) assert_equal(np.cross(u, u), 0) u = np.tile([1, 2], (11, 1)).T v = np.tile([3, 4, 5], (11, 1)) z = np.tile([10, -5, -2], (11, 1)) assert_equal(np.cross(u, v, axisa=0), z) assert_equal(np.cross(v, u.T), -z) assert_equal(np.cross(v, v), 0) u = np.tile([1, 2, 3], (11, 1)).T v = np.tile([3, 4], (11, 1)).T z = np.tile([-12, 9, -2], (11, 1)) assert_equal(np.cross(u, v, axisa=0, axisb=0), z) assert_equal(np.cross(v.T, u.T), -z) assert_equal(np.cross(u.T, u.T), 0) u = np.tile([1, 2, 3], (5, 1)) v = np.tile([4, 5, 6], (5, 1)).T z = np.tile([-3, 6, -3], (5, 1)) assert_equal(np.cross(u, v, axisb=0), z) assert_equal(np.cross(v.T, u), -z) assert_equal(np.cross(u, u), 0)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCross(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_uint8_int32_mixed_dtypes
def test_uint8_int32_mixed_dtypes(self): # regression test for gh-19138 u = np.array([[195, 8, 9]], np.uint8) v = np.array([250, 166, 68], np.int32) z = np.array([[950, 11010, -30370]], dtype=np.int32) assert_equal(np.cross(v, u), z) assert_equal(np.cross(u, v), -z)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestCross(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_outer_out_param
def test_outer_out_param(self): arr1 = np.ones((5,)) arr2 = np.ones((2,)) arr3 = np.linspace(-2, 2, 5) out1 = np.empty(shape=(5, 5)) out2 = np.empty(shape=(2, 5)) res1 = np.outer(arr1, arr3, out1) assert_equal(res1, out1) assert_equal(np.outer(arr2, arr3, out2), out2)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestOuterMisc(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_simple
def test_simple(self): [x, y] = np.indices((4, 3)) assert_array_equal(x, np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3]])) assert_array_equal(y, np.array([[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestIndices(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_single_input
def test_single_input(self): [x] = np.indices((4,)) assert_array_equal(x, np.array([0, 1, 2, 3])) [x] = np.indices((4,), sparse=True) assert_array_equal(x, np.array([0, 1, 2, 3]))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestIndices(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_scalar_input
def test_scalar_input(self): assert_array_equal([], np.indices(())) assert_array_equal([], np.indices((), sparse=True)) assert_array_equal([[]], np.indices((0,))) assert_array_equal([[]], np.indices((0,), sparse=True))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestIndices(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_sparse
def test_sparse(self): # test special sparse condition boolean code path for i in range(20): c = np.zeros(200, dtype=bool) c[i::20] = True assert_equal(np.nonzero(c)[0], np.arange(i, 200 + i, 20)) c = np.zeros(400, dtype=bool) c[10 + i : 20 + i] = True c[20 + i * 2] = True assert_equal( np.nonzero(c)[0], np.concatenate((np.arange(10 + i, 20 + i), [20 + i * 2])), )
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestNonzeroAndCountNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_return_type
def test_return_type(self, dtype, dims): inds = np.indices(dims, dtype=dtype) assert_(inds.dtype == dtype) for arr in np.indices(dims, dtype=dtype, sparse=True): assert_(arr.dtype == dtype)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number @instantiate_parametrized_tests class TestIndices(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_roll_empty
def test_roll_empty(self): x = np.array([]) assert_equal(np.roll(x, 1), np.array([]))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestRoll(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_results
def test_results(self): a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4).copy() aind = np.indices(a.shape) assert_(a.flags["OWNDATA"]) for i, j in self.tgtshape: # positive axis, positive start res = np.rollaxis(a, axis=i, start=j) i0, i1, i2, i3 = aind[np.array(res.shape) - 1] assert_(np.all(res[i0, i1, i2, i3] == a)) assert_(res.shape == self.tgtshape[(i, j)], str((i, j))) assert_(not res.flags["OWNDATA"]) # negative axis, positive start ip = i + 1 res = np.rollaxis(a, axis=-ip, start=j) i0, i1, i2, i3 = aind[np.array(res.shape) - 1] assert_(np.all(res[i0, i1, i2, i3] == a)) assert_(res.shape == self.tgtshape[(4 - ip, j)]) assert_(not res.flags["OWNDATA"]) # positive axis, negative start jp = j + 1 if j < 4 else j res = np.rollaxis(a, axis=i, start=-jp) i0, i1, i2, i3 = aind[np.array(res.shape) - 1] assert_(np.all(res[i0, i1, i2, i3] == a)) assert_(res.shape == self.tgtshape[(i, 4 - jp)]) assert_(not res.flags["OWNDATA"]) # negative axis, negative start ip = i + 1 jp = j + 1 if j < 4 else j res = np.rollaxis(a, axis=-ip, start=-jp) i0, i1, i2, i3 = aind[np.array(res.shape) - 1] assert_(np.all(res[i0, i1, i2, i3] == a)) assert_(res.shape == self.tgtshape[(4 - ip, 4 - jp)]) assert_(not res.flags["OWNDATA"])
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestRollaxis(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_move_to_end
def test_move_to_end(self): x = np.random.randn(5, 6, 7) for source, expected in [ (0, (6, 7, 5)), (1, (5, 7, 6)), (2, (5, 6, 7)), (-1, (5, 6, 7)), ]: actual = np.moveaxis(x, source, -1).shape assert_(actual, expected)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestMoveaxis(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_move_new_position
def test_move_new_position(self): x = np.random.randn(1, 2, 3, 4) for source, destination, expected in [ (0, 1, (2, 1, 3, 4)), (1, 2, (1, 3, 2, 4)), (1, -1, (1, 3, 4, 2)), ]: actual = np.moveaxis(x, source, destination).shape assert_(actual, expected)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestMoveaxis(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_preserve_order
def test_preserve_order(self): x = np.zeros((1, 2, 3, 4)) for source, destination in [ (0, 0), (3, -1), (-1, 3), ([0, -1], [0, -1]), ([2, 0], [2, 0]), (range(4), range(4)), ]: actual = np.moveaxis(x, source, destination).shape assert_(actual, (1, 2, 3, 4))
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestMoveaxis(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_numeric.py
test_move_multiples
def test_move_multiples(self): x = np.zeros((0, 1, 2, 3)) for source, destination, expected in [ ([0, 1], [2, 3], (2, 3, 0, 1)), ([2, 3], [0, 1], (2, 3, 0, 1)), ([0, 1, 2], [2, 3, 0], (2, 3, 0, 1)), ([3, 0], [1, 0], (0, 3, 1, 2)), ([0, 3], [0, 1], (0, 3, 1, 2)), ]: actual = np.moveaxis(x, source, destination).shape assert_(actual, expected)
import functools import itertools import math import platform import sys import warnings import numpy import pytest IS_WASM = False HAS_REFCOUNT = True import operator from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest from hypothesis import given, strategies as st from hypothesis.extra import numpy as hynp from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) import torch._numpy as np from torch._numpy.random import rand, randint, randn from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_equal, assert_warns, # assert_array_max_ulp, HAS_REFCOUNT, IS_WASM ) skip = functools.partial(skipif, True) from fractions import Fraction from numbers import Number class TestMoveaxis(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added