library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/torch_np/test_ndarray_methods.py
test_transpose_method
def test_transpose_method(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) assert_equal(a.transpose(None), [[1, 3], [2, 4]]) assert_raises((RuntimeError, ValueError), lambda: a.transpose(0)) assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 0)) assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 1, 2)) assert a.transpose().tensor._base is a.tensor
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestTranspose(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_iter_1d
def test_iter_1d(self): # numpy generates array scalars, we do 0D arrays a = np.arange(5) lst = list(a) assert all(type(x) == np.ndarray for x in lst), f"{[type(x) for x in lst]}" assert all(x.ndim == 0 for x in lst)
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestIter(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_iter_2d
def test_iter_2d(self): # numpy iterates over the 0th axis a = np.arange(5)[None, :] lst = list(a) assert len(lst) == 1 assert type(lst[0]) == np.ndarray assert_equal(lst[0], np.arange(5))
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestIter(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_nep50_examples.py
test_nep50_exceptions
def test_nep50_exceptions(self, example): old, new = examples[example] if new == Exception: with assert_raises(OverflowError): eval(example) else: result = eval(example) if new is unchanged: new = old assert_allclose(result, new, atol=1e-16) assert result.dtype == new.dtype # ### Directly compare to numpy ###
import itertools from unittest import skipIf as skipif, SkipTest import numpy as _np import torch._numpy as tnp from torch._numpy import ( # noqa: F401 array, bool_, complex128, complex64, float32, float64, inf, int16, int32, int64, uint8, ) from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) uint16 = uint8 # can be anything here, see below from pytest import raises as assert_raises unchanged = None examples = { "uint8(1) + 2": (int64(3), uint8(3)), "array([1], uint8) + int64(1)": (array([2], uint8), array([2], int64)), "array([1], uint8) + array(1, int64)": (array([2], uint8), array([2], int64)), "array([1.], float32) + float64(1.)": ( array([2.0], float32), array([2.0], float64), ), "array([1.], float32) + array(1., float64)": ( array([2.0], float32), array([2.0], float64), ), "array([1], uint8) + 1": (array([2], uint8), unchanged), "array([1], uint8) + 200": (array([201], uint8), unchanged), "array([100], uint8) + 200": (array([44], uint8), unchanged), "array([1], uint8) + 300": (array([301], uint16), Exception), "uint8(1) + 300": (int64(301), Exception), "uint8(100) + 200": (int64(301), uint8(44)), # and RuntimeWarning "float32(1) + 3e100": (float64(3e100), float32(inf)), # and RuntimeWarning [T7] "array([1.0], float32) + 1e-14 == 1.0": (array([True]), unchanged), "array([0.1], float32) == float64(0.1)": (array([True]), array([False])), "array(1.0, float32) + 1e-14 == 1.0": (array(False), array(True)), "array([1.], float32) + 3": (array([4.0], float32), unchanged), "array([1.], float32) + int64(3)": (array([4.0], float32), array([4.0], float64)), "3j + array(3, complex64)": (array(3 + 3j, complex128), array(3 + 3j, complex64)), "float32(1) + 1j": (array(1 + 1j, complex128), array(1 + 1j, complex64)), "int32(1) + 5j": (array(1 + 5j, complex128), unchanged), # additional examples from the NEP text "int16(2) + 2": (int64(4), int16(4)), "int16(4) + 4j": (complex128(4 + 4j), unchanged), "float32(5) + 5j": (complex128(5 + 5j), complex64(5 + 5j)), "bool_(True) + 1": (int64(2), unchanged), "True + uint8(2)": (uint8(3), unchanged), } @skipif(not HAVE_NUMPY, reason="NumPy not found") @instantiate_parametrized_tests class TestNEP50Table(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_nep50_examples.py
test_compare_ufuncs
def test_compare_ufuncs(self, name, scalar, array): if name in corners and ( array.dtype.name in corners[name] or tnp.asarray(scalar).dtype.name in corners[name] ): raise SkipTest(f"{name}(..., dtype=array.dtype)") try: state = _np._get_promotion_state() _np._set_promotion_state("weak") if name in ["matmul", "modf", "divmod", "ldexp"]: return ufunc = getattr(tnp, name) ufunc_numpy = getattr(_np, name) try: result = ufunc(scalar, array) except RuntimeError: # RuntimeError: "bitwise_xor_cpu" not implemented for 'ComplexDouble' etc result = None try: result_numpy = ufunc_numpy(scalar, array.tensor.numpy()) except TypeError: # TypeError: ufunc 'hypot' not supported for the input types result_numpy = None if result is not None and result_numpy is not None: assert result.tensor.numpy().dtype == result_numpy.dtype finally: _np._set_promotion_state(state)
import itertools from unittest import skipIf as skipif, SkipTest import numpy as _np import torch._numpy as tnp from torch._numpy import ( # noqa: F401 array, bool_, complex128, complex64, float32, float64, inf, int16, int32, int64, uint8, ) from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) uint16 = uint8 # can be anything here, see below from pytest import raises as assert_raises unchanged = None examples = { "uint8(1) + 2": (int64(3), uint8(3)), "array([1], uint8) + int64(1)": (array([2], uint8), array([2], int64)), "array([1], uint8) + array(1, int64)": (array([2], uint8), array([2], int64)), "array([1.], float32) + float64(1.)": ( array([2.0], float32), array([2.0], float64), ), "array([1.], float32) + array(1., float64)": ( array([2.0], float32), array([2.0], float64), ), "array([1], uint8) + 1": (array([2], uint8), unchanged), "array([1], uint8) + 200": (array([201], uint8), unchanged), "array([100], uint8) + 200": (array([44], uint8), unchanged), "array([1], uint8) + 300": (array([301], uint16), Exception), "uint8(1) + 300": (int64(301), Exception), "uint8(100) + 200": (int64(301), uint8(44)), # and RuntimeWarning "float32(1) + 3e100": (float64(3e100), float32(inf)), # and RuntimeWarning [T7] "array([1.0], float32) + 1e-14 == 1.0": (array([True]), unchanged), "array([0.1], float32) == float64(0.1)": (array([True]), array([False])), "array(1.0, float32) + 1e-14 == 1.0": (array(False), array(True)), "array([1.], float32) + 3": (array([4.0], float32), unchanged), "array([1.], float32) + int64(3)": (array([4.0], float32), array([4.0], float64)), "3j + array(3, complex64)": (array(3 + 3j, complex128), array(3 + 3j, complex64)), "float32(1) + 1j": (array(1 + 1j, complex128), array(1 + 1j, complex64)), "int32(1) + 5j": (array(1 + 5j, complex128), unchanged), # additional examples from the NEP text "int16(2) + 2": (int64(4), int16(4)), "int16(4) + 4j": (complex128(4 + 4j), unchanged), "float32(5) + 5j": (complex128(5 + 5j), complex64(5 + 5j)), "bool_(True) + 1": (int64(2), unchanged), "True + uint8(2)": (uint8(3), unchanged), } weaks = (True, 1, 2.0, 3j) non_weaks = ( tnp.asarray(True), tnp.uint8(1), tnp.int8(1), tnp.int32(1), tnp.int64(1), tnp.float32(1), tnp.float64(1), tnp.complex64(1), tnp.complex128(1), ) corners = { "true_divide": ["bool_", "uint8", "int8", "int16", "int32", "int64"], "divide": ["bool_", "uint8", "int8", "int16", "int32", "int64"], "arctan2": ["bool_", "uint8", "int8", "int16", "int32", "int64"], "copysign": ["bool_", "uint8", "int8", "int16", "int32", "int64"], "heaviside": ["bool_", "uint8", "int8", "int16", "int32", "int64"], "ldexp": ["bool_", "uint8", "int8", "int16", "int32", "int64"], "power": ["uint8"], "nextafter": ["float32"], } @skipif(not HAVE_NUMPY, reason="NumPy not found") @instantiate_parametrized_tests class TestCompareToNumpy(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_random.py
control_stream
def control_stream(use_numpy=False): with config.patch(use_numpy_random_stream=use_numpy): yield @instantiate_parametrized_tests class TestScalarReturn(TestCase): @parametrize("use_numpy", [True, False]) @parametrize( "func", [ tnp.random.normal, tnp.random.rand, partial(tnp.random.randint, 0, 5), tnp.random.randn, subtest(tnp.random.random, name="random_random"), subtest(tnp.random.random_sample, name="random_sample"), tnp.random.sample, tnp.random.uniform, ], ) def test_rndm_scalar(self, func, use_numpy): # default `size` means a python scalar return with control_stream(use_numpy): r = func() assert isinstance(r, (int, float)) @parametrize("use_numpy", [True, False]) @parametrize( "func", [ tnp.random.normal, tnp.random.rand, partial(tnp.random.randint, 0, 5), tnp.random.randn, subtest(tnp.random.random, name="random_random"), subtest(tnp.random.random_sample, name="random_sample"), tnp.random.sample, tnp.random.uniform, ], ) def test_rndm_array(self, func, use_numpy): with control_stream(use_numpy): if func in (tnp.random.rand, tnp.random.randn): r = func(10) else: r = func(size=10) assert isinstance(r, tnp.ndarray) @instantiate_parametrized_tests class TestShuffle(TestCase): @parametrize("use_numpy", [True, False]) def test_1d(self, use_numpy): ax = tnp.asarray([1, 2, 3, 4, 5, 6]) ox = ax.copy() tnp.random.seed(1234) tnp.random.shuffle(ax) assert isinstance(ax, tnp.ndarray) assert not (ax == ox).all() @parametrize("use_numpy", [True, False]) def test_2d(self, use_numpy): # np.shuffle only shuffles the first axis ax = tnp.asarray([[1, 2, 3], [4, 5, 6]]) ox = ax.copy() tnp.random.seed(1234) tnp.random.shuffle(ax) assert isinstance(ax, tnp.ndarray) assert not (ax == ox).all() @parametrize("use_numpy", [True, False]) def test_shuffle_list(self, use_numpy): # on eager, we refuse to shuffle lists # under dynamo, we always fall back to numpy # NB: this means that the random stream is different for # shuffling a list or an array when USE_NUMPY_STREAM == False x = [1, 2, 3] with pytest.raises(NotImplementedError): tnp.random.shuffle(x) @instantiate_parametrized_tests class TestChoice(TestCase): @parametrize("use_numpy", [True, False]) def test_choice(self, use_numpy): kwds = dict(size=3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) with control_stream(use_numpy): tnp.random.seed(12345) x = tnp.random.choice(5, **kwds) tnp.random.seed(12345) x_1 = tnp.random.choice(tnp.arange(5), **kwds) assert_equal(x, x_1) class TestNumpyGlobal(TestCase): def test_numpy_global(self): with control_stream(use_numpy=True): tnp.random.seed(12345) x = tnp.random.uniform(0, 1, size=11) # check that the stream is identical to numpy's _np.random.seed(12345) x_np = _np.random.uniform(0, 1, size=11) assert_equal(x, tnp.asarray(x_np)) # switch to the pytorch stream, variates differ with control_stream(use_numpy=False): tnp.random.seed(12345) x_1 = tnp.random.uniform(0, 1, size=11) assert not (x_1 == x).all() if __name__ == "__main__": run_tests()
from contextlib import contextmanager from functools import partial import numpy as _np import pytest import torch._dynamo.config as config import torch._numpy as tnp from torch._numpy.testing import assert_equal from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TestCase, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_random.py
test_rndm_array
def test_rndm_array(self, func, use_numpy): with control_stream(use_numpy): if func in (tnp.random.rand, tnp.random.randn): r = func(10) else: r = func(size=10) assert isinstance(r, tnp.ndarray)
from contextlib import contextmanager from functools import partial import numpy as _np import pytest import torch._dynamo.config as config import torch._numpy as tnp from torch._numpy.testing import assert_equal from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TestCase, ) @instantiate_parametrized_tests class TestScalarReturn(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_np_vs_ndarray_positional
def test_np_vs_ndarray_positional(self, arr_method, np_method): a = np.arange(6).reshape((2, 3)) arg_method = getattr(a, arr_method) # check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(arg_method(1, out1), np_method(a, 1, out2)) assert_equal(out1, out2)
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal @instantiate_parametrized_tests class TestArgmaxArgminCommon(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_combinations
def test_combinations(self, data): arr, pos = data # with suppress_warnings() as sup: # sup.filter(RuntimeWarning, # "invalid value encountered in reduce") # if np.asarray(arr).dtype.kind in "c": # pytest.xfail(reason="'max_values_cpu' not implemented for 'ComplexDouble'") val = np.max(arr) assert_equal(np.argmax(arr), pos) # , err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], val) # , err_msg="%r" % arr) # add padding to test SIMD loops rarr = np.repeat(arr, 129) rpos = pos * 129 assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}") padd = np.repeat(np.min(arr), 513) rarr = np.concatenate((arr, padd)) rpos = pos assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal @instantiate_parametrized_tests class TestArgmax(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_maximum_signed_integers
def test_maximum_signed_integers(self): a = np.array([1, 2**7 - 1, -(2**7)], dtype=np.int8) assert_equal(np.argmax(a), 1) a = np.array([1, 2**15 - 1, -(2**15)], dtype=np.int16) assert_equal(np.argmax(a), 1) a = np.array([1, 2**31 - 1, -(2**31)], dtype=np.int32) assert_equal(np.argmax(a), 1) a = np.array([1, 2**63 - 1, -(2**63)], dtype=np.int64) assert_equal(np.argmax(a), 1)
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal @instantiate_parametrized_tests class TestArgmax(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_combinations
def test_combinations(self, data): arr, pos = data # with suppress_warnings() as sup: # sup.filter(RuntimeWarning, # "invalid value encountered in reduce") # if np.asarray(arr).dtype.kind in "c": # pytest.xfail(reason="'max_values_cpu' not implemented for 'ComplexDouble'") val = np.max(arr) assert_equal(np.argmax(arr), pos) # , err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], val) # , err_msg="%r" % arr) # add padding to test SIMD loops rarr = np.repeat(arr, 129) rpos = pos * 129 assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}") padd = np.repeat(np.min(arr), 513) rarr = np.concatenate((arr, padd)) rpos = pos assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal @instantiate_parametrized_tests class TestArgmax(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_minimum_signed_integers
def test_minimum_signed_integers(self): a = np.array([1, -(2**7), -(2**7) + 1, 2**7 - 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = np.array([1, -(2**15), -(2**15) + 1, 2**15 - 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = np.array([1, -(2**31), -(2**31) + 1, 2**31 - 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = np.array([1, -(2**63), -(2**63) + 1, 2**63 - 1], dtype=np.int64) assert_equal(np.argmin(a), 1)
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal @instantiate_parametrized_tests class TestArgmin(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_basic
def test_basic(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.amax(a), 10.0) b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]] assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) arr = np.asarray(a) assert_equal(np.amax(arr), arr.max())
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestAmax(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_basic
def test_basic(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.amax(a), 10.0) b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]] assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) arr = np.asarray(a) assert_equal(np.amax(arr), arr.max())
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestAmax(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_contains
def test_contains(self): a = np.arange(12).reshape(3, 4) assert 2 in a assert 42 not in a
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestContains(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_extra_methods
def test_extra_methods(self, name): a = np.ones(3) with pytest.raises(AttributeError): getattr(a, name)
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal @instantiate_parametrized_tests class TestNoExtraMethods(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_logical_xor
def test_logical_xor(self): assert_allclose( np.logical_xor(0.5, 0.6), logical_xor(0.5, 0.6), atol=1e-7, check_dtype=False, )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_matmul
def test_matmul(self): assert_allclose( np.matmul([0.5], [0.6]), matmul([0.5], [0.6]), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_maximum
def test_maximum(self): assert_allclose( np.maximum(0.5, 0.6), maximum(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_minimum
def test_minimum(self): assert_allclose( np.minimum(0.5, 0.6), minimum(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_remainder
def test_remainder(self): assert_allclose( np.remainder(0.5, 0.6), remainder(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_multiply
def test_multiply(self): assert_allclose( np.multiply(0.5, 0.6), multiply(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_nextafter
def test_nextafter(self): assert_allclose( np.nextafter(0.5, 0.6), nextafter(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_not_equal
def test_not_equal(self): assert_allclose( np.not_equal(0.5, 0.6), not_equal(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_power
def test_power(self): assert_allclose( np.power(0.5, 0.6), power(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_right_shift
def test_right_shift(self): assert_allclose( np.right_shift(5, 6), right_shift(5, 6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_hypot
def test_hypot(self): assert_allclose( np.hypot(0.5, 0.6), hypot(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_lcm
def test_lcm(self): assert_allclose(np.lcm(5, 6), lcm(5, 6), atol=1e-7, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_ldexp
def test_ldexp(self): assert_allclose(np.ldexp(0.5, 6), ldexp(0.5, 6), atol=1e-7, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_left_shift
def test_left_shift(self): assert_allclose( np.left_shift(5, 6), left_shift(5, 6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_less
def test_less(self): assert_allclose(np.less(0.5, 0.6), less(0.5, 0.6), atol=1e-7, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_less_equal
def test_less_equal(self): assert_allclose( np.less_equal(0.5, 0.6), less_equal(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_logaddexp
def test_logaddexp(self): assert_allclose( np.logaddexp(0.5, 0.6), logaddexp(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_logaddexp2
def test_logaddexp2(self): assert_allclose( np.logaddexp2(0.5, 0.6), logaddexp2(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_logical_and
def test_logical_and(self): assert_allclose( np.logical_and(0.5, 0.6), logical_and(0.5, 0.6), atol=1e-7, check_dtype=False, )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_binary_ufuncs.py
test_logical_or
def test_logical_or(self): assert_allclose( np.logical_or(0.5, 0.6), logical_or(0.5, 0.6), atol=1e-7, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestBinaryUfuncBasic(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_random.py
test_shuffle_list
def test_shuffle_list(self, use_numpy): # on eager, we refuse to shuffle lists # under dynamo, we always fall back to numpy # NB: this means that the random stream is different for # shuffling a list or an array when USE_NUMPY_STREAM == False x = [1, 2, 3] with pytest.raises(NotImplementedError): tnp.random.shuffle(x)
from contextlib import contextmanager from functools import partial import numpy as _np import pytest import torch._dynamo.config as config import torch._numpy as tnp from torch._numpy.testing import assert_equal from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TestCase, ) @instantiate_parametrized_tests class TestShuffle(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_random.py
test_choice
def test_choice(self, use_numpy): kwds = dict(size=3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) with control_stream(use_numpy): tnp.random.seed(12345) x = tnp.random.choice(5, **kwds) tnp.random.seed(12345) x_1 = tnp.random.choice(tnp.arange(5), **kwds) assert_equal(x, x_1)
from contextlib import contextmanager from functools import partial import numpy as _np import pytest import torch._dynamo.config as config import torch._numpy as tnp from torch._numpy.testing import assert_equal from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TestCase, ) @instantiate_parametrized_tests class TestChoice(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_random.py
test_numpy_global
def test_numpy_global(self): with control_stream(use_numpy=True): tnp.random.seed(12345) x = tnp.random.uniform(0, 1, size=11) # check that the stream is identical to numpy's _np.random.seed(12345) x_np = _np.random.uniform(0, 1, size=11) assert_equal(x, tnp.asarray(x_np)) # switch to the pytorch stream, variates differ with control_stream(use_numpy=False): tnp.random.seed(12345) x_1 = tnp.random.uniform(0, 1, size=11) assert not (x_1 == x).all()
from contextlib import contextmanager from functools import partial import numpy as _np import pytest import torch._dynamo.config as config import torch._numpy as tnp from torch._numpy.testing import assert_equal from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TestCase, ) class TestNumpyGlobal(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_basic
def test_basic(self): x = np.arange(-2, 3) assert_equal(np.flatnonzero(x), [0, 1, 3, 4])
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestFlatnonzero(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_basic
def test_basic(self): x = np.arange(-2, 3) assert_equal(np.flatnonzero(x), [0, 1, 3, 4])
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestFlatnonzero(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_nd
def test_nd(self): y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] assert np.any(y1) assert_equal(np.any(y1, axis=0), [1, 1, 0]) assert_equal(np.any(y1, axis=1), [0, 1, 1]) assert_equal(np.any(y1), True) assert isinstance(np.any(y1, axis=1), np.ndarray) # YYY: deduplicate
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestAny(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_method_vs_function
def test_method_vs_function(self): y = np.array([[0, 1, 0, 3], [1, 0, 2, 0]]) assert_equal(np.any(y), y.any())
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestAny(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_basic
def test_basic(self): x = np.arange(-2, 3) assert_equal(np.flatnonzero(x), [0, 1, 3, 4])
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestFlatnonzero(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_nd
def test_nd(self): y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] assert np.any(y1) assert_equal(np.any(y1, axis=0), [1, 1, 0]) assert_equal(np.any(y1, axis=1), [0, 1, 1]) assert_equal(np.any(y1), True) assert isinstance(np.any(y1, axis=1), np.ndarray) # YYY: deduplicate
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestAny(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_method_vs_function
def test_method_vs_function(self): y = np.array([[0, 1, 0, 3], [1, 0, 2, 0]]) assert_equal(np.any(y), y.any())
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestAny(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_sum_where
def test_sum_where(self): # More extensive tests done in test_reduction_with_where. assert_equal(np.sum([[1.0, 2.0], [3.0, 4.0]], where=[True, False]), 4.0) assert_equal( np.sum([[1.0, 2.0], [3.0, 4.0]], axis=0, initial=5.0, where=[True, False]), [9.0, 5.0], )
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import warnings @instantiate_parametrized_tests class TestSum(TestCase): import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_out_scalar
def test_out_scalar(self, func): # out no axis: scalar if func in fails_out_arg: raise SkipTest(f"{func.__name__} does not have out= arg.") a = np.arange(2 * 3 * 4).reshape((2, 3, 4)) result = func(a) out = np.empty_like(result) result_with_out = func(a, out=out) assert result_with_out is out assert_array_equal(result, result_with_out)
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import warnings import warnings parametrize_axis = parametrize( "axis", [0, 1, 2, -1, -2, (0, 1), (1, 0), (0, 1, 2), (1, -1, 0)] ) parametrize_func = parametrize( "func", [ np.any, np.all, np.argmin, np.argmax, np.min, np.max, np.mean, np.sum, np.prod, np.std, np.var, np.count_nonzero, ], ) fails_axes_tuples = { np.any, np.all, np.argmin, np.argmax, np.prod, } fails_out_arg = { np.count_nonzero, } restricts_dtype_casts = {np.var, np.std} fails_empty_tuple = {np.argmin, np.argmax} @instantiate_parametrized_tests class TestGenericReductions(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_ravel_method
def test_ravel_method(self): a = np.array([[0, 1], [2, 3]]) assert_equal(a.ravel(), [0, 1, 2, 3]) assert a.ravel().tensor._base is a.tensor
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestRavel(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_nonzero_trivial
def test_nonzero_trivial(self): assert_equal(np.nonzero(np.array([])), ([],)) assert_equal(np.array([]).nonzero(), ([],)) assert_equal(np.nonzero(np.array([0])), ([],)) assert_equal(np.array([0]).nonzero(), ([],)) assert_equal(np.nonzero(np.array([1])), ([0],)) assert_equal(np.array([1]).nonzero(), ([0],))
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_nonzero_onedim
def test_nonzero_onedim(self): x = np.array([1, 0, 2, -1, 0, 0, 8]) assert_equal(np.nonzero(x), ([0, 2, 3, 6],)) assert_equal(x.nonzero(), ([0, 2, 3, 6],))
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_nonzero_twodim
def test_nonzero_twodim(self): x = np.array([[0, 1, 0], [2, 0, 3]]) assert_equal(np.nonzero(x), ([0, 1, 1], [1, 0, 2])) assert_equal(x.nonzero(), ([0, 1, 1], [1, 0, 2])) x = np.eye(3) assert_equal(np.nonzero(x), ([0, 1, 2], [0, 1, 2])) assert_equal(x.nonzero(), ([0, 1, 2], [0, 1, 2]))
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_sparse
def test_sparse(self): # test special sparse condition boolean code path for i in range(20): c = np.zeros(200, dtype=bool) c[i::20] = True assert_equal(np.nonzero(c)[0], np.arange(i, 200 + i, 20)) assert_equal(c.nonzero()[0], np.arange(i, 200 + i, 20)) c = np.zeros(400, dtype=bool) c[10 + i : 20 + i] = True c[20 + i * 2] = True assert_equal( np.nonzero(c)[0], np.concatenate((np.arange(10 + i, 20 + i), [20 + i * 2])), )
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ndarray_methods.py
test_array_method
def test_array_method(self): # Tests that the array method # call to nonzero works m = np.array([[1, 0, 0], [4, 0, 6]]) tgt = [[0, 1, 1], [0, 0, 2]] assert_equal(m.nonzero(), tgt)
import itertools from unittest import expectedFailure as xfail, skipIf as skipif import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal class TestNonzero(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_keepdims_out
def test_keepdims_out(self, func, axis): if func in fails_out_arg: raise SkipTest(f"{func.__name__} does not have out= arg.") if func in fails_axes_tuples: raise SkipTest(f"{func.__name__} does not hangle tuple axis.") d = np.ones((3, 5, 7, 11)) if axis is None: shape_out = (1,) * d.ndim else: axis_norm = _util.normalize_axis_tuple(axis, d.ndim) shape_out = tuple( 1 if i in axis_norm else d.shape[i] for i in range(d.ndim) ) out = np.empty(shape_out) result = func(d, axis=axis, keepdims=True, out=out) assert result is out assert_equal(result.shape, shape_out)
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import warnings import warnings parametrize_axis = parametrize( "axis", [0, 1, 2, -1, -2, (0, 1), (1, 0), (0, 1, 2), (1, -1, 0)] ) parametrize_func = parametrize( "func", [ np.any, np.all, np.argmin, np.argmax, np.min, np.max, np.mean, np.sum, np.prod, np.std, np.var, np.count_nonzero, ], ) fails_axes_tuples = { np.any, np.all, np.argmin, np.argmax, np.prod, } fails_out_arg = { np.count_nonzero, } restricts_dtype_casts = {np.var, np.std} fails_empty_tuple = {np.argmin, np.argmax} @instantiate_parametrized_tests class TestGenericReductions(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_scalars_0D_arrays.py
test_decay_to_py_scalar
def test_decay_to_py_scalar(self, value): # NumPy distinguishes array scalars and 0D arrays. For instance # `scalar * list` is equivalent to `int(scalar) * list`, but # `0D array * list` is equivalent to `0D array * np.asarray(list)`. # Our scalars follow 0D array behavior (because they are 0D arrays) lst = [1, 2, 3] product = value * lst assert isinstance(product, np.ndarray) assert product.shape == (3,) assert_equal(product, [42, 42 * 2, 42 * 3]) # repeat with right-mulitply product = lst * value assert isinstance(product, np.ndarray) assert product.shape == (3,) assert_equal(product, [42, 42 * 2, 42 * 3])
from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_value = parametrize( "value", [ subtest(np.int64(42), name="int64"), subtest(np.array(42), name="array"), subtest(np.asarray(42), name="asarray"), subtest(np.asarray(np.int64(42)), name="asarray_int"), ], ) @instantiate_parametrized_tests class TestArrayScalars(TestCase): import math
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_mean
def test_mean(self): A = [[1, 2, 3], [4, 5, 6]] assert np.mean(A) == 3.5 assert np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5])) assert np.all(np.mean(A, 1) == np.array([2.0, 5.0])) # XXX: numpy emits a warning on empty slice assert np.isnan(np.mean([])) m = np.asarray(A) assert np.mean(A) == m.mean()
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestMean(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_mean_values
def test_mean_values(self): # rmat = np.random.random((4, 5)) rmat = np.arange(20, dtype=float).reshape((4, 5)) cmat = rmat + 1j * rmat import warnings with warnings.catch_warnings(): warnings.simplefilter("error") for mat in [rmat, cmat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = np.mean(mat, axis=axis) * mat.shape[axis] assert_allclose(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = np.mean(mat, axis=axis) * mat.size assert_allclose(res, tgt)
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestMean(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_mean_where
def test_mean_where(self): a = np.arange(16).reshape((4, 4)) wh_full = np.array( [ [False, True, False, True], [True, False, True, False], [True, True, False, False], [False, False, True, True], ] ) wh_partial = np.array([[False], [True], [True], [False]]) _cases = [ (1, True, [1.5, 5.5, 9.5, 13.5]), (0, wh_full, [6.0, 5.0, 10.0, 9.0]), (1, wh_full, [2.0, 5.0, 8.5, 14.5]), (0, wh_partial, [6.0, 7.0, 8.0, 9.0]), ] for _ax, _wh, _res in _cases: assert_allclose(a.mean(axis=_ax, where=_wh), np.array(_res)) assert_allclose(np.mean(a, axis=_ax, where=_wh), np.array(_res)) a3d = np.arange(16).reshape((2, 2, 4)) _wh_partial = np.array([False, True, True, False]) _res = [[1.5, 5.5], [9.5, 13.5]] assert_allclose(a3d.mean(axis=2, where=_wh_partial), np.array(_res)) assert_allclose(np.mean(a3d, axis=2, where=_wh_partial), np.array(_res)) with pytest.warns(RuntimeWarning) as w: assert_allclose( a.mean(axis=1, where=wh_partial), np.array([np.nan, 5.5, 9.5, np.nan]) ) with pytest.warns(RuntimeWarning) as w: assert_equal(a.mean(where=False), np.nan) with pytest.warns(RuntimeWarning) as w: assert_equal(np.mean(a, where=False), np.nan)
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) class TestMean(TestCase): import warnings import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_sum
def test_sum(self): m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] tgt = [[6], [15], [24]] out = np.sum(m, axis=1, keepdims=True) assert_equal(tgt, out) am = np.asarray(m) assert_equal(np.sum(m), am.sum())
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import warnings @instantiate_parametrized_tests class TestSum(TestCase): import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_sum_stability
def test_sum_stability(self): a = np.ones(500, dtype=np.float32) zero = np.zeros(1, dtype="float32")[0] assert_allclose((a / 10.0).sum() - a.size / 10.0, zero, atol=1.5e-4) a = np.ones(500, dtype=np.float64) assert_allclose((a / 10.0).sum() - a.size / 10.0, 0.0, atol=1.5e-13)
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import warnings @instantiate_parametrized_tests class TestSum(TestCase): import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_reductions.py
test_sum_dtypes_warnings
def test_sum_dtypes_warnings(self): for dt in (int, np.float16, np.float32, np.float64): for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, 128, 1024, 1235): # warning if sum overflows, which it does in float16 import warnings with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", RuntimeWarning) tgt = dt(v * (v + 1) / 2) overflow = not np.isfinite(tgt) assert_equal(len(w), 1 * overflow) d = np.arange(1, v + 1, dtype=dt) assert_almost_equal(np.sum(d), tgt) assert_equal(len(w), 2 * overflow) assert_almost_equal(np.sum(np.flip(d)), tgt) assert_equal(len(w), 3 * overflow)
from unittest import skipIf, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, xpassIfTorchDynamo, ) import numpy as np import numpy.core.numeric as _util # for normalize_axis_tuple from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import torch._numpy as np from torch._numpy import _util from torch._numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_equal, assert_equal, ) import warnings @instantiate_parametrized_tests class TestSum(TestCase): import warnings
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_radians
def test_radians(self): assert_allclose(np.radians(0.5), radians(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_reciprocal
def test_reciprocal(self): assert_allclose( np.reciprocal(0.5), reciprocal(0.5), atol=1e-14, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_rint
def test_rint(self): assert_allclose(np.rint(0.5), rint(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_sign
def test_sign(self): assert_allclose(np.sign(0.5), sign(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_signbit
def test_signbit(self): assert_allclose(np.signbit(0.5), signbit(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_sin
def test_sin(self): assert_allclose(np.sin(0.5), sin(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_sinh
def test_sinh(self): assert_allclose(np.sinh(0.5), sinh(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_sqrt
def test_sqrt(self): assert_allclose(np.sqrt(0.5), sqrt(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_square
def test_square(self): assert_allclose(np.square(0.5), square(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_tan
def test_tan(self): assert_allclose(np.tan(0.5), tan(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_isinf
def test_isinf(self): assert_allclose(np.isinf(0.5), isinf(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_isnan
def test_isnan(self): assert_allclose(np.isnan(0.5), isnan(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_log
def test_log(self): assert_allclose(np.log(0.5), log(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_log10
def test_log10(self): assert_allclose(np.log10(0.5), log10(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_log1p
def test_log1p(self): assert_allclose(np.log1p(0.5), log1p(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_log2
def test_log2(self): assert_allclose(np.log2(0.5), log2(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_logical_not
def test_logical_not(self): assert_allclose( np.logical_not(0.5), logical_not(0.5), atol=1e-14, check_dtype=False )
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_negative
def test_negative(self): assert_allclose(np.negative(0.5), negative(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_positive
def test_positive(self): assert_allclose(np.positive(0.5), positive(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_rad2deg
def test_rad2deg(self): assert_allclose(np.rad2deg(0.5), rad2deg(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_cos
def test_cos(self): assert_allclose(np.cos(0.5), cos(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_cosh
def test_cosh(self): assert_allclose(np.cosh(0.5), cosh(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_deg2rad
def test_deg2rad(self): assert_allclose(np.deg2rad(0.5), deg2rad(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_degrees
def test_degrees(self): assert_allclose(np.degrees(0.5), degrees(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_exp
def test_exp(self): assert_allclose(np.exp(0.5), exp(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_exp2
def test_exp2(self): assert_allclose(np.exp2(0.5), exp2(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_expm1
def test_expm1(self): assert_allclose(np.expm1(0.5), expm1(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_fabs
def test_fabs(self): assert_allclose(np.fabs(0.5), fabs(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_floor
def test_floor(self): assert_allclose(np.floor(0.5), floor(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_isfinite
def test_isfinite(self): assert_allclose(np.isfinite(0.5), isfinite(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_scalars_0D_arrays.py
test_scalar_comparisons
def test_scalar_comparisons(self): scalar = np.int64(42) arr = np.array(42) assert arr == scalar assert arr >= scalar assert arr <= scalar assert scalar == 42 assert arr == 42 # @xfailIfTorchDynamo
from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_value = parametrize( "value", [ subtest(np.int64(42), name="int64"), subtest(np.array(42), name="array"), subtest(np.asarray(42), name="asarray"), subtest(np.asarray(np.int64(42)), name="asarray_int"), ], ) @instantiate_parametrized_tests class TestArrayScalars(TestCase): import math
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_scalars_0D_arrays.py
test_is_not_scalar
def test_is_not_scalar(self, value): assert not np.isscalar(value)
from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_value = parametrize( "value", [ subtest(np.int64(42), name="int64"), subtest(np.array(42), name="array"), subtest(np.asarray(42), name="asarray"), subtest(np.asarray(np.int64(42)), name="asarray_int"), ], ) @instantiate_parametrized_tests class TestIsScalar(TestCase): import math
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ufuncs_basic.py
test_x_and_out_broadcast
def test_x_and_out_broadcast(self, ufunc): x = self.get_x(ufunc) out = np.empty((x.shape[0], x.shape[0])) x_b = np.broadcast_to(x, out.shape) res_out = ufunc(x, out=out) res_bcast = ufunc(x_b) # TODO: switching the order causes a graph break, failing the test. # See test/dynamo/test_misc.py -k test_numpy_graph_break assert res_out is out assert_equal(res_out, res_bcast) out = np.empty((1, x.shape[0])) x_b = np.broadcast_to(x, out.shape) res_out = ufunc(x, out=out) res_bcast = ufunc(x_b) assert res_out is out assert_equal(res_out, res_bcast)
import operator from unittest import skipIf as skip, SkipTest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_unary_ufuncs = parametrize("ufunc", [np.sin]) parametrize_casting = parametrize( "casting", ["no", "equiv", "safe", "same_kind", "unsafe"] ) @instantiate_parametrized_tests class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ufuncs_basic.py
test_xy_and_out_broadcast
def test_xy_and_out_broadcast(self, ufunc): x, y = self.get_xy(ufunc) y = y[:, None] out = np.empty((2, y.shape[0], x.shape[0])) x_b = np.broadcast_to(x, out.shape) y_b = np.broadcast_to(y, out.shape) res_out = ufunc(x, y, out=out) res_bcast = ufunc(x_b, y_b) # TODO: switching the order causes a graph break, failing the test. # See test/dynamo/test_misc.py -k test_numpy_graph_break assert res_out is out assert_equal(res_out, res_bcast)
import operator from unittest import skipIf as skip, SkipTest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_unary_ufuncs = parametrize("ufunc", [np.sin]) parametrize_casting = parametrize( "casting", ["no", "equiv", "safe", "same_kind", "unsafe"] ) ufunc_op_iop_numeric = [ (np.add, operator.__add__, operator.__iadd__), (np.subtract, operator.__sub__, operator.__isub__), (np.multiply, operator.__mul__, operator.__imul__), ] ufuncs_with_dunders = [ufunc for ufunc, _, _ in ufunc_op_iop_numeric] numeric_binary_ufuncs = [ np.float_power, np.power, ] no_complex = [ np.floor_divide, np.hypot, np.arctan2, np.copysign, np.fmax, np.fmin, np.fmod, np.heaviside, np.logaddexp, np.logaddexp2, np.maximum, np.minimum, ] parametrize_binary_ufuncs = parametrize( "ufunc", ufuncs_with_dunders + numeric_binary_ufuncs + no_complex ) @instantiate_parametrized_tests class TestBinaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ufuncs_basic.py
test_other_array_bcast
def test_other_array_bcast(self, ufunc, op, iop): """Test op/rop/iop with broadcasting""" # __op__ a = np.array([1, 2, 3]) result_op = op(a, a[:, None]) result_ufunc = ufunc(a, a[:, None]) assert result_op.shape == result_ufunc.shape assert_equal(result_op, result_ufunc) if result_op.dtype != result_ufunc.dtype: assert result_op.dtype == result_ufunc.dtype # __rop__ a = np.array([1, 2, 3]) result_op = op(a[:, None], a) result_ufunc = ufunc(a[:, None], a) assert result_op.shape == result_ufunc.shape assert_equal(result_op, result_ufunc) if result_op.dtype != result_ufunc.dtype: assert result_op.dtype == result_ufunc.dtype # __iop__ : in-place ops (`self += other` etc) do not broadcast self b = a[:, None].copy() with assert_raises((ValueError, RuntimeError)): # XXX ValueError in numpy iop(a, b) # however, `self += other` broadcasts other aa = np.broadcast_to(a, (3, 3)).copy() aa0 = aa.copy() result = iop(aa, a) result_ufunc = ufunc(aa0, a) assert result.shape == result_ufunc.shape assert_equal(result, result_ufunc) if result_op.dtype != result_ufunc.dtype: assert result_op.dtype == result_ufunc.dtype
import operator from unittest import skipIf as skip, SkipTest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_unary_ufuncs = parametrize("ufunc", [np.sin]) parametrize_casting = parametrize( "casting", ["no", "equiv", "safe", "same_kind", "unsafe"] ) ufunc_op_iop_numeric = [ (np.add, operator.__add__, operator.__iadd__), (np.subtract, operator.__sub__, operator.__isub__), (np.multiply, operator.__mul__, operator.__imul__), ] ufuncs_with_dunders = [ufunc for ufunc, _, _ in ufunc_op_iop_numeric] numeric_binary_ufuncs = [ np.float_power, np.power, ] no_complex = [ np.floor_divide, np.hypot, np.arctan2, np.copysign, np.fmax, np.fmin, np.fmod, np.heaviside, np.logaddexp, np.logaddexp2, np.maximum, np.minimum, ] parametrize_binary_ufuncs = parametrize( "ufunc", ufuncs_with_dunders + numeric_binary_ufuncs + no_complex ) dtypes_numeric = [np.int32, np.float32, np.float64, np.complex128] @instantiate_parametrized_tests class TestNdarrayDunderVsUfunc(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ufuncs_basic.py
test_binary_ufunc_dtype
def test_binary_ufunc_dtype(self): # default computation uses float64: r64 = np.add(1, 1e-15) assert r64.dtype == "float64" assert r64 - 1 > 0 # force the float32 dtype: loss of precision r32 = np.add(1, 1e-15, dtype="float32") assert r32.dtype == "float32" assert r32 == 1 # now force the cast rb = np.add(1.0, 1e-15, dtype=bool, casting="unsafe") assert rb.dtype == bool
import operator from unittest import skipIf as skip, SkipTest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_unary_ufuncs = parametrize("ufunc", [np.sin]) parametrize_casting = parametrize( "casting", ["no", "equiv", "safe", "same_kind", "unsafe"] ) ufunc_op_iop_numeric = [ (np.add, operator.__add__, operator.__iadd__), (np.subtract, operator.__sub__, operator.__isub__), (np.multiply, operator.__mul__, operator.__imul__), ] ufuncs_with_dunders = [ufunc for ufunc, _, _ in ufunc_op_iop_numeric] numeric_binary_ufuncs = [ np.float_power, np.power, ] no_complex = [ np.floor_divide, np.hypot, np.arctan2, np.copysign, np.fmax, np.fmin, np.fmod, np.heaviside, np.logaddexp, np.logaddexp2, np.maximum, np.minimum, ] parametrize_binary_ufuncs = parametrize( "ufunc", ufuncs_with_dunders + numeric_binary_ufuncs + no_complex ) dtypes_numeric = [np.int32, np.float32, np.float64, np.complex128] class TestUfuncDtypeKwd(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_ufuncs_basic.py
test_binary_ufunc_dtype_and_out
def test_binary_ufunc_dtype_and_out(self): # all in float64: no precision loss out64 = np.empty(2, dtype=np.float64) r64 = np.add([1.0, 2.0], 1.0e-15, out=out64) assert (r64 != [1.0, 2.0]).all() assert r64.dtype == np.float64 # all in float32: loss of precision, result is float32 out32 = np.empty(2, dtype=np.float32) r32 = np.add([1.0, 2.0], 1.0e-15, dtype=np.float32, out=out32) assert (r32 == [1, 2]).all() assert r32.dtype == np.float32 # dtype is float32, so computation is in float32: precision loss # the result is then cast to float64 out64 = np.empty(2, dtype=np.float64) r = np.add([1.0, 2.0], 1.0e-15, dtype=np.float32, out=out64) assert (r == [1, 2]).all() assert r.dtype == np.float64 # Internal computations are in float64, but the final cast to out.dtype # truncates the precision => precision loss. out32 = np.empty(2, dtype=np.float32) r = np.add([1.0, 2.0], 1.0e-15, dtype=np.float64, out=out32) assert (r == [1, 2]).all() assert r.dtype == np.float32
import operator from unittest import skipIf as skip, SkipTest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) import numpy as np from numpy.testing import assert_equal import torch._numpy as np from torch._numpy.testing import assert_equal parametrize_unary_ufuncs = parametrize("ufunc", [np.sin]) parametrize_casting = parametrize( "casting", ["no", "equiv", "safe", "same_kind", "unsafe"] ) ufunc_op_iop_numeric = [ (np.add, operator.__add__, operator.__iadd__), (np.subtract, operator.__sub__, operator.__isub__), (np.multiply, operator.__mul__, operator.__imul__), ] ufuncs_with_dunders = [ufunc for ufunc, _, _ in ufunc_op_iop_numeric] numeric_binary_ufuncs = [ np.float_power, np.power, ] no_complex = [ np.floor_divide, np.hypot, np.arctan2, np.copysign, np.fmax, np.fmin, np.fmod, np.heaviside, np.logaddexp, np.logaddexp2, np.maximum, np.minimum, ] parametrize_binary_ufuncs = parametrize( "ufunc", ufuncs_with_dunders + numeric_binary_ufuncs + no_complex ) dtypes_numeric = [np.int32, np.float32, np.float64, np.complex128] class TestUfuncDtypeKwd(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/test_unary_ufuncs.py
test_absolute
def test_absolute(self): assert_allclose(np.absolute(0.5), absolute(0.5), atol=1e-14, check_dtype=False)
import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose from torch.testing._internal.common_utils import run_tests, TestCase class TestUnaryUfuncs(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added