library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/distributed/_composable/fully_shard/test_fully_shard_init.py
test_raise_scalar_parameter
if __name__ == "__main__": run_tests()
def test_raise_scalar_parameter(self): """Tests raising an exception when the model has scalar parameters.""" device = torch.device("cuda") model = CompositeParamModel(device=device) model.register_parameter("scalar_p", nn.Parameter(torch.tensor(1.0).cuda())) with self.assertRaisesRegex( ValueError, "Change scalar_p to a 1D tensor with numel equal to 1." ): fully_shard(model)
import copy import sys from typing import Optional import torch import torch.distributed as dist import torch.distributed.fsdp._traversal_utils as traversal_utils import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed.fsdp import BackwardPrefetch, FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import _is_fsdp_flattened, clean_tensor_name from torch.distributed.fsdp.wrap import _Policy, CustomPolicy, ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeParamModel, FakeSequential, NestedSequentialModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestInitialization(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/fully_shard/test_fully_shard_model_checkpoint.py
test_state_dict_save_load_flow
def test_state_dict_save_load_flow(self): """ E2E test of save + load with rank0_only + CPU offload for TransformerWithSharedParams on the composable path. """ self.run_subtests( {"ignore_modules": [False, True]}, self._test_save_dict_save_load_flow, )
def test_state_dict_save_load_flow(self): """ E2E test of save + load with rank0_only + CPU offload for TransformerWithSharedParams on the composable path. """ self.run_subtests( {"ignore_modules": [False, True], "sharded_state_dict": [False, True]}, self._test_save_dict_save_load_flow, )
import copy import itertools import sys from typing import Dict import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import ( _zero_model, CUDAInitMode, FSDPInitMode, FSDPTest, TransformerWithSharedParams, ) from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestModelCheckpointing(FSDPTest):
import copy import itertools import sys from typing import Dict import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed._state_dict_utils import _gather_state_dict from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import ( _zero_model, CUDAInitMode, FSDPInitMode, FSDPTest, TransformerWithSharedParams, ) from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestModelCheckpointing(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/fully_shard/test_fully_shard_model_checkpoint.py
test_full_state_dict_save_load_mixed_sharding
def test_full_state_dict_save_load_mixed_sharding(self): """ Tests that the full state dict saved from a module with ``fully_shard`` and ``no_shard`` applied on the module matches that of an equivalent local module. Also ensures that this state_dict can be reloaded into a composable module and is equivalent to the original composable module. """ local_model = CompositeParamModel(device=torch.device("cuda")) def _create_mixed_shard_on_model(mod: nn.Module): fully_shard(mod.u1) fully_shard(mod, strategy=ShardingStrategy.NO_SHARD) return mod save_composable = copy.deepcopy(local_model) save_composable = _create_mixed_shard_on_model(save_composable) local_sd = local_model.state_dict() composable_sd = save_composable.state_dict() self._check_state_dict_parity(local_sd, composable_sd) # Validate load load_composable = copy.deepcopy(local_model) load_composable = _create_mixed_shard_on_model(load_composable) _zero_model(load_composable, summon_full=False) for p in load_composable.parameters(): self.assertEqual(0, p.sum()) sd = {k: v.clone() for k, v in composable_sd.items()} load_composable.load_state_dict(sd) self._check_model_parity(load_composable, save_composable)
import copy import itertools import sys from typing import Dict import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed._state_dict_utils import _gather_state_dict from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import ( _zero_model, CUDAInitMode, FSDPInitMode, FSDPTest, TransformerWithSharedParams, ) from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestModelCheckpointing(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/fully_shard/test_fully_shard_model_checkpoint.py
_create_mixed_shard_on_model
def _create_mixed_shard_on_model(mod: nn.Module): fully_shard(mod.u1) fully_shard(mod, strategy=ShardingStrategy.NO_SHARD) return mod save_composable = copy.deepcopy(local_model) save_composable = _create_mixed_shard_on_model(save_composable) local_sd = local_model.state_dict() composable_sd = save_composable.state_dict() self._check_state_dict_parity(local_sd, composable_sd) # Validate load load_composable = copy.deepcopy(local_model) load_composable = _create_mixed_shard_on_model(load_composable) _zero_model(load_composable, summon_full=False) for p in load_composable.parameters(): self.assertEqual(0, p.sum()) sd = {k: v.clone() for k, v in composable_sd.items()} load_composable.load_state_dict(sd) self._check_model_parity(load_composable, save_composable)
import copy import itertools import sys from typing import Dict import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed._state_dict_utils import _gather_state_dict from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import ( _zero_model, CUDAInitMode, FSDPInitMode, FSDPTest, TransformerWithSharedParams, ) from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/fully_shard/test_fully_shard_optim_checkpoint.py
test_optim_state_dict_submodule_fully_shard
def test_optim_state_dict_submodule_fully_shard(self): orig_model = CompositeParamModel(device=torch.device("cuda")) composable_model = copy.deepcopy(orig_model) fully_shard(composable_model.u1) fully_shard(composable_model.u2) composable_optim = torch.optim.Adam(composable_model.parameters(), lr=1e-2) orig_model = FSDP(orig_model) orig_optim = torch.optim.Adam(orig_model.parameters(), lr=1e-2) self._test_optim_state_save_load( orig_model, orig_optim, composable_model, composable_optim )
def test_optim_state_dict_submodule_fully_shard(self): orig_model = CompositeParamModel(device=torch.device("cuda")) composable_model = copy.deepcopy(orig_model) fully_shard(composable_model.u1) fully_shard(composable_model.u2) composable_optim = _optim_cls(composable_model.parameters(), lr=_optim_lr) orig_model = FSDP(orig_model) orig_optim = _optim_cls(orig_model.parameters(), lr=_optim_lr) self._test_optim_state_save_load( orig_model, orig_optim, composable_model, composable_optim )
import copy import itertools import sys import torch import torch.distributed as dist from torch.distributed._composable import fully_shard from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestOptimStateCheckpointing(FSDPTest):
import copy import itertools import sys import torch import torch.distributed as dist from torch.distributed._composable import fully_shard from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN _optim_cls = torch.optim.Adam _optim_lr = 1e-2 class TestOptimStateCheckpointing(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/fully_shard/test_fully_shard_runtime.py
test_training
def test_training(self): """Tests training (forward, backward, optimizer).""" self.run_subtests( { "fsdp_wrap_mode": [ FSDPWrapMode.AUTO_WRAP, FSDPWrapMode.MANUAL_WRAP, ] }, self._test_training, )
def test_training(self): """Tests training (forward, backward, optimizer).""" self.run_subtests( { "fsdp_wrap_mode": [ FSDPWrapMode.AUTO_WRAP, FSDPWrapMode.MANUAL_WRAP, ], "sharding_strategy": [ ShardingStrategy.FULL_SHARD, ShardingStrategy.SHARD_GRAD_OP, ShardingStrategy.NO_SHARD, ShardingStrategy.HYBRID_SHARD, ], }, self._test_training, )
import contextlib import copy import functools import sys from enum import auto, Enum from typing import Callable, Iterable, List, Tuple import torch import torch.distributed as dist import torch.distributed.fsdp._traversal_utils as traversal_utils import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import _FSDPState from torch.distributed.fsdp.flat_param import _HandlesKey, FlatParamHandle from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestRuntime(FSDPTest):
import contextlib import copy import functools import sys from enum import auto, Enum from typing import Callable, List, Tuple import torch import torch.distributed as dist import torch.distributed.fsdp._traversal_utils as traversal_utils import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy from torch.distributed.fsdp._common_utils import _FSDPState from torch.distributed.fsdp._flat_param import FlatParamHandle from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestRuntime(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_composability/test_2d_composability.py
test_2d_optim_state_dict
def test_2d_optim_state_dict(self, is_even_sharded_model): simple_model = SimpleModel if is_even_sharded_model else SimpleModelUneven # Create a model without wrapper torch.manual_seed(0) no_wrap_model = simple_model().cuda(self.rank) no_wrap_state_dict = no_wrap_model.state_dict() no_wrap_optim = torch.optim.Adam(no_wrap_model.parameters(), lr=0.01) no_wrap_model(no_wrap_model.get_input().cuda(self.rank)).sum().backward() no_wrap_optim.step() no_wrap_osd = get_optimizer_state_dict(no_wrap_model, optimizers=no_wrap_optim) # Create a model and sharded it with 2D FSDP + TP torch.manual_seed(0) mesh_2d = init_device_mesh( self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp") ) parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), } model_2d = parallelize_module( simple_model().cuda(), mesh_2d["tp"], parallelize_plan ) model_2d = FSDP(model_2d, device_mesh=mesh_2d["dp"], use_orig_params=True) FSDP.set_state_dict_type( model_2d, StateDictType.SHARDED_STATE_DICT, ) optim_2d = torch.optim.Adam(model_2d.parameters(), lr=0.01) model_2d(model_2d.get_input().cuda(self.rank)).sum().backward() optim_2d.step() optim_2d_osd = get_optimizer_state_dict(model_2d, optimizers=optim_2d) ref_optim_2d_osd = deepcopy(optim_2d_osd) no_wrap_osd_states = no_wrap_osd["state"] optim_2d_osd_states = optim_2d_osd["state"] self.assertEqual(len(no_wrap_osd_states), len(optim_2d_osd_states)) self.assertEqual(no_wrap_osd_states.keys(), optim_2d_osd_states.keys()) for fqn, states in no_wrap_osd_states.items(): dist_states = optim_2d_osd_states.get(fqn) for state_name, state in states.items(): dist_state = dist_states.get(state_name) # If a state is DTensor, we all gather it in both DP and TP dimension to # compare with no_wrap state. if isinstance(dist_state, DTensor): dist_state = ( dist_state.cuda() .redistribute(placements=(Replicate(), Replicate())) .to_local() ) self.assertTrue(isinstance(dist_state, torch.Tensor)) self.assertTrue(torch.allclose(state, dist_state)) # Update the parameters 2d optim states will be different from ref_optim_state_dict. model_2d(model_2d.get_input().cuda(self.rank)).sum().backward() optim_2d.step() set_optimizer_state_dict( model_2d, optimizers=optim_2d, optim_state_dict=ref_optim_2d_osd ) new_optim_2d_osd = get_optimizer_state_dict(model_2d, optimizers=optim_2d) ref_optim_2d_osd_states = ref_optim_2d_osd["state"] new_optim_2d_osd_states = optim_2d_osd["state"] # Compare the new optim state dict after load with the reference one self.assertEqual(len(ref_optim_2d_osd_states), len(new_optim_2d_osd_states)) self.assertEqual(ref_optim_2d_osd_states.keys(), new_optim_2d_osd_states.keys()) for fqn, states in ref_optim_2d_osd_states.items(): new_states = new_optim_2d_osd_states.get(fqn) for state_name, state in states.items(): new_state = new_states.get(state_name) if isinstance(new_state, DTensor): self.assertEqual(new_state.placements, state.placements) self.assertEqual(new_state.device_mesh, state.device_mesh) self.assertTrue( torch.allclose(new_state.to_local(), state.to_local()) ) else: self.assertEqual(new_state, state)
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestNew2dParallelStateDict(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_pp_composability.py
__init__
def __init__(self, d_hid: int): super().__init__() self.net1 = torch.nn.Linear(d_hid, d_hid) self.relu = torch.nn.ReLU() self.net2 = torch.nn.Linear(d_hid, d_hid)
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, ) class MLPModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_pp_composability.py
forward
def forward(self, x): x = self.net1(x) x = self.relu(x) x = self.net2(x) return x
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, ) class MLPModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_pp_composability.py
setUp
def setUp(self): super().setUp() self._spawn_processes()
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, ) class ComposabilityTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
test_fully_shard_tp_2d_set_full_state_dict
def test_fully_shard_tp_2d_set_full_state_dict(self): dummy_model = SimpleModel().cuda() mesh_2d = init_device_mesh( "cuda", (2, self.world_size // 2), mesh_dim_names=("dp", "tp"), ) tp_mesh = mesh_2d["tp"] dp_mesh = mesh_2d["dp"] parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), "net3": ColwiseParallel(), } model = parallelize_module(dummy_model, tp_mesh, parallelize_plan) fully_shard(model, mesh=dp_mesh) optim = torch.optim.Adam(model.parameters(), lr=0.01) model(model.get_input()).sum().backward() optim.step() # ref_msd, ref_osd are both the default sharded state dict ref_msd = copy.deepcopy(get_model_state_dict(model)) ref_osd = copy.deepcopy(get_optimizer_state_dict(model, optimizers=optim)) options = StateDictOptions( full_state_dict=True, cpu_offload=True, broadcast_from_rank0=True ) full_msd = get_model_state_dict(model, options=options) full_osd = get_optimizer_state_dict(model, optimizers=optim, options=options) # load full_msd and full_osd into model and optim. # this loads the slice of full tensor into each rank's local DTensor. set_model_state_dict(model, full_msd, options=options) set_optimizer_state_dict( model, optimizers=optim, optim_state_dict=full_osd, options=options ) # check after setting full state dict, the model and optim default sharded state dict # are the same as the initial default sharded state dict. new_msd = get_model_state_dict(model) new_osd = get_optimizer_state_dict(model, optimizers=optim) self.assertEqual(ref_msd, new_msd) self.assertEqual(ref_osd, new_osd)
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestFullyShard2DStateDict(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
init_model
def init_model(self, device_type, model_parallel_size=2): torch.manual_seed(0) model = MLPModule(device_type) torch.manual_seed(0) twod_model = MLPModule(device_type) model = DDP(model) # 2-D mesh is [dp, tp] world_size = dist.get_world_size() mesh_2d = init_device_mesh( device_type, (world_size // model_parallel_size, model_parallel_size), mesh_dim_names=("dp", "tp"), ) dp_pg = mesh_2d.get_group(mesh_dim=0) parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), } twod_model = parallelize_module(twod_model, mesh_2d["tp"], parallelize_plan) _pre_dp_module_transform(twod_model) # TODO: Add tests when using gradient_as_bucket_view and static_graph for DDP. twod_model = DDP(twod_model, process_group=dp_pg) return model, twod_model, dp_pg
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class Test2dFSDP1ParallelIntegration(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
test_2d_fsdp_state_enable_extension
def test_2d_fsdp_state_enable_extension(self): mesh_2d = init_device_mesh( self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp") ) model = FSDP( SimpleModel().cuda(), device_mesh=mesh_2d["dp"], ) fsdp_state = _get_module_fsdp_state(model) self.assertTrue(isinstance(fsdp_state._fsdp_extension, DTensorExtensions))
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestNew2dParallelTraining(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
test_2d_e2e_training_not_use_orig_params
def test_2d_e2e_training_not_use_orig_params(self): # TODO: need to revisit input_reshard API about why it failed multi-gpu tests. # self._test_2d_e2e_training(recompute_activation=True) self._test_2d_e2e_training(recompute_activation=False) # TODO: update all state dict unit tests to use distributed.checkpoint.state_dict, # and consolidate all the state_dict test in test.distributed.checkpoint.
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestNew2dParallelTraining(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
__init__
def __init__(self, checkpoint=False): super().__init__() self.fc1 = nn.Linear(DIM, DIM) self.fc2 = nn.Linear(DIM, DIM) self.fc3 = nn.Linear(DIM, DIM) self.fc4 = nn.Linear(DIM, DIM) self.use_checkpoint = checkpoint
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class Net(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
forward
def forward(self, x): if self.use_checkpoint: _fc1 = checkpoint(self.fc1, x, use_reentrant=False) else: _fc1 = self.fc1(x) return self.fc4(self.fc3(self.fc2(_fc1)))
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class Net(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
inner_compiler
def inner_compiler(gm_, example_inputs_): if no_inductor: return gm_ else: return inductor.compile(gm_, example_inputs_) gm = torch.compile(gm, fullgraph=True, backend=inner_compiler) return gm
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
tearDown
def tearDown(self): super().tearDown() try: os.remove(self.file_name) except OSError: pass
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class ReplicateTest(MultiProcessInductorTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
test_compile_cpu
def test_compile_cpu(self): # Test the coalesced_op with CPU. torch._inductor.config._fuse_ddp_communication_passes = [ "fuse_ddp_with_coalesced_op", "schedule_comm_wait", ] self._test_compile(use_gpu=False, no_sync=False)
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class ReplicateTest(MultiProcessInductorTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_checkpoint.py
test_tensor_only_gpu
def test_tensor_only_gpu(self, use_reentrant: bool): x = torch.randn(20, 100, device="cuda:0") net = ToyModel().to("cuda:0") self._test_tensor_only(net, x, use_reentrant)
def test_tensor_only_gpu(self): x = torch.randn(20, 100, device="cuda:0") net = ToyModel().to("cuda:0") self._test_tensor_only(net, x)
import unittest from collections import deque from contextlib import ContextDecorator from copy import deepcopy import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) class TestCheckpoint(TestCase):
import unittest from collections import deque, OrderedDict from contextlib import ContextDecorator, contextmanager, nullcontext from copy import deepcopy from functools import partial from typing import Tuple import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, TestCase from torch.utils.checkpoint import CheckpointError class TestCheckpoint(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_shard/sharded_tensor/ops/test_binary_cmp.py
test_torch_allclose
def test_torch_allclose(self): """ Test torch.allclose(ShardedTensor, ShardedTensor) """ spec, alt_spec = self.get_gpu_specs() st1, st2 = self.get_random_tensors(spec, spec, 10, 10) self.assertTrue(torch.allclose(st1, st2)) self.assertTrue(torch.allclose(st1, st2, atol=0)) # compare different arrays st1, st2 = self.get_random_tensors(spec, spec, 10, 10, seed_offset=1) self.assertFalse(torch.allclose(st1, st2)) # sharded_tensor.rand produces uniform values in the [0,1] range. self.assertTrue(torch.allclose(st1, st2, atol=1))
def test_torch_allclose(self): """Test torch.allclose(ShardedTensor, ShardedTensor)""" spec, alt_spec = self.get_gpu_specs() st1, st2 = self.get_random_tensors(spec, spec, 10, 10) self.assertTrue(torch.allclose(st1, st2)) self.assertTrue(torch.allclose(st1, st2, atol=0)) # compare different arrays st1, st2 = self.get_random_tensors(spec, spec, 10, 10, seed_offset=1) self.assertFalse(torch.allclose(st1, st2)) # sharded_tensor.rand produces uniform values in the [0,1] range. self.assertTrue(torch.allclose(st1, st2, atol=1))
import sys import torch import torch.distributed as dist from torch.distributed._shard import sharded_tensor from torch.distributed.distributed_c10d import _get_default_group from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.distributed._shard.sharding_spec import ( ChunkShardingSpec, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) class TestShardedTensorBinaryOps(ShardedTensorTestBase):
import sys import torch import torch.distributed as dist from torch.distributed._shard import sharded_tensor from torch.distributed._shard.sharding_spec import ChunkShardingSpec from torch.distributed.distributed_c10d import _get_default_group from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) class TestShardedTensorBinaryOps(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_shard/sharded_tensor/ops/test_chunk.py
_compare_chunk_result
def _compare_chunk_result(self, chunked_list, chunked_st_list): self.assertEqual(len(chunked_list), len(chunked_st_list)) for idx, chunked_st in enumerate(chunked_st_list): tensor = chunked_list[idx] st = _shard_tensor(tensor.contiguous(), chunked_st.sharding_spec()) # _shard_tensor generate sharded tensor with metadata ranked by # of rank. st._metadata.shards_metadata.sort( key=lambda x: x.shard_offsets[chunked_st.sharding_spec().dim], ) self.assertTrue(torch.allclose(chunked_st, st))
import sys import torch from torch.distributed._shard import sharded_tensor, _shard_tensor from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( generate_chunk_sharding_specs_for_test, generate_enumerable_sharding_specs_for_test, ) class TestShardedTensorChunkOps(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/ops/test_chunk.py
test_sharded_chunk_error
def test_sharded_chunk_error(self): chunk_spec = generate_chunk_sharding_specs_for_test(-1) with self.assertRaisesRegex( NotImplementedError, "Chunk by sharding dim is not supported." ): st = sharded_tensor.rand(chunk_spec[0], [17, 24]) torch.chunk(st, 5, dim=-1) enumerable_spec = generate_enumerable_sharding_specs_for_test() with self.assertRaisesRegex( NotImplementedError, "Only ChunkShardingSpec is supported for chunk." ): st = sharded_tensor.rand(enumerable_spec[0], [10, 10]) torch.chunk(st, 5, dim=-1)
import sys import torch from torch.distributed._shard import sharded_tensor, _shard_tensor from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( generate_chunk_sharding_specs_for_test, generate_enumerable_sharding_specs_for_test, ) class TestShardedTensorChunkOps(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/ops/test_elementwise_ops.py
_reset_random_seed
def _reset_random_seed(): torch.manual_seed(self.rank + 4) specs = generate_chunk_sharding_specs_for_test( 0 ) + generate_chunk_sharding_specs_for_test(1) for spec in specs: self._run_sharded_elementwise_ops( spec, [12, 17], torch.nn.functional.dropout, p=0.4, reset_seed=_reset_random_seed, ) self._run_sharded_elementwise_ops( spec, [18, 21], torch.nn.functional.dropout, p=0.5, reset_seed=_reset_random_seed, ) _reset_random_seed() dropout = torch.nn.Dropout(p=0.8) self._run_sharded_elementwise_ops( spec, [17, 23], dropout, reset_seed=_reset_random_seed )
import sys import torch from torch.distributed._shard import sharded_tensor, _shard_tensor from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( generate_chunk_sharding_specs_for_test, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import ( _chunk_sharding_specs_list_for_test, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/ops/test_elementwise_ops.py
test_sharded_tensor_nan_to_num
def test_sharded_tensor_nan_to_num(self): specs = _chunk_sharding_specs_list_for_test([0, 1], seed=10) for spec in specs: tensor = torch.rand(16, 12).cuda(self.rank) tensor[:, :2] = float('nan') tensor[:, 4:5] = float('inf') tensor[:, 10:] = -float('inf') st = _shard_tensor(tensor, spec) st_expected = _shard_tensor(torch.nan_to_num(tensor), spec) st = torch.nan_to_num(st) self.assertTrue(torch.allclose(st, st_expected))
import sys import torch from torch.distributed._shard import sharded_tensor, _shard_tensor from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( generate_chunk_sharding_specs_for_test, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import ( _chunk_sharding_specs_list_for_test, ) class TestShardedTensorElementWiseOps(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_composable/test_checkpoint.py
test_multi_args
instantiate_parametrized_tests(TestCheckpoint)
def test_multi_args(self): """ Tests checkpoint for modules with multiple output args and hence multiple backward function input args. """ device = torch.device("cpu") net1 = nn.Sequential( MultiOutputModel(device), MultiInputModel(device), MultiOutputModel(device), MultiInputModel(device), ) net2 = deepcopy(net1) checkpoint(net2[0]) checkpoint(net2[2]) x1 = torch.randn(20, 100, requires_grad=True) x2 = x1.clone() net1(x1).sum().backward() net2(x2).sum().backward() for p1, p2 in zip(net1.parameters(), net2.parameters()): self.assertEqual(p1.grad, p2.grad)
import unittest from collections import deque, OrderedDict from contextlib import ContextDecorator, contextmanager, nullcontext from copy import deepcopy from functools import partial from typing import Tuple import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, TestCase from torch.utils.checkpoint import CheckpointError class TestCheckpoint(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_checkpoint.py
test_clears_state_on_error_in_forward
def test_clears_state_on_error_in_forward(self): class MyModel(torch.nn.Module): def __init__(self, raise_in_recomp): super().__init__() self.fwd_count = 0 self.raise_in_recomp = raise_in_recomp self.a = torch.nn.Linear(2, 2) def forward(self, x): if self.raise_in_recomp and self.fwd_count == 1: raise RuntimeError("foo") else: if not self.raise_in_recomp: # raise in the first forward raise RuntimeError("foo") self.fwd_count += 1 return self.a(x) m = MyModel(raise_in_recomp=True) m_seq = torch.nn.Sequential(OrderedDict({"m": m})) checkpoint(m_seq.m) inp = torch.randn(1, 2) out = m_seq(inp).sum() # Should raise in forward recomputation with self.assertRaisesRegex(RuntimeError, "foo"): out.backward() # Check that _ac_generator is cleared out self.assertEqual(None, checkpoint.state(m)._ac_generator) m = MyModel(raise_in_recomp=False) checkpoint(m) inp = torch.randn(1, 2) # Should raise in first forward with self.assertRaises(RuntimeError): m(inp) self.assertEqual(None, checkpoint.state(m)._ac_generator)
import unittest from collections import deque, OrderedDict from contextlib import ContextDecorator, contextmanager, nullcontext from copy import deepcopy from functools import partial from typing import Tuple import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, TestCase from torch.utils.checkpoint import CheckpointError class TestCheckpoint(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_checkpoint.py
test_checkpoint_kwargs
def test_checkpoint_kwargs(self): class MyModel(torch.nn.Module): def __init__(self, raise_exp: bool, change_shape_in_recomp: bool): super().__init__() self.fwd_count = 0 self.raise_exp = raise_exp self.change_shape_in_recomp = change_shape_in_recomp self.a = torch.nn.Linear(2, 2) def forward(self, x): if self.raise_exp and self.fwd_count == 0: raise RuntimeError("foo") if self.raise_exp and self.fwd_count == 1: raise RuntimeError("bar") if self.change_shape_in_recomp and self.fwd_count == 1: x.relu_() random_tensor = torch.randn(1, 2) x = self.a(x + random_tensor) self.fwd_count += 1 return x m = MyModel(True, False) m0, m1, m2, m3 = (deepcopy(m) for _ in range(4)) # composable checkpoint does not support use_reentrant=True with self.assertRaisesRegex( NotImplementedError, "use_reentrant=True is not supported in composable checkpoint. " "Please use torch.utils.checkpoint.checkpoint instead.", ): checkpoint(m, use_reentrant=True) # check giving an unsupported kwarg with self.assertRaisesRegex(ValueError, "Unexpected keyword arguments: foo"): checkpoint(m0, foo="bar") handled_fwd_exp = False handled_recomp_exp = False @contextmanager def fwd_ctx(mod: MyModel): try: mod.raise_exp = False yield finally: nonlocal handled_fwd_exp handled_fwd_exp = True mod.raise_exp = True @contextmanager def recomp_ctx(mod: MyModel): try: mod.raise_exp = False yield finally: nonlocal handled_recomp_exp handled_recomp_exp = True mod.raise_exp = True # Test different context functions x = torch.randn(1, 2, requires_grad=True) checkpoint( m1, context_fn=lambda: (partial(fwd_ctx, m1)(), partial(recomp_ctx, m1)()) ) m1(x.clone()).sum().backward() self.assertEqual((handled_fwd_exp, handled_recomp_exp), (True, True)) checkpoint(m2, context_fn=lambda: (nullcontext(), partial(recomp_ctx, m2)())) with self.assertRaisesRegex(RuntimeError, "foo"): m2(x.clone()) handled_fwd_exp = False # Reset flag checkpoint(m3, context_fn=lambda: (partial(fwd_ctx, m3)(), nullcontext())) with self.assertRaisesRegex(RuntimeError, "bar"): m3(x.clone()).sum().backward() self.assertEqual(handled_fwd_exp, True) # Test determinism check failure m4 = MyModel(False, True) m5 = deepcopy(m4) # Determinism check should not throw an error, # but autograd should throw a RuntimeError checkpoint(m4, determinism_check="none") with self.assertRaises(RuntimeError): m4(x.clone()).sum().backward() # Determinism check should throw a CheckpointError checkpoint(m5, determinism_check="default") with self.assertRaises(CheckpointError): m5(x.clone()).sum().backward() # Test preserving random state m6 = MyModel(False, False) m7, m8 = (deepcopy(m6) for _ in range(2)) checkpoint(m7, preserve_rng_state=False) checkpoint(m8, preserve_rng_state=True) for mi in (m6, m7, m8): torch.manual_seed(42) loss = mi(x.clone()).sum() torch.manual_seed(41) loss.backward() # check that m6 and m7 have at least one different grad self.assertNotEqual( (p1.grad for p1 in m6.parameters()), (p2.grad for p2 in m7.parameters()) ) # check that m6 and m8 have identical grads for p1, p2 in zip(m6.parameters(), m8.parameters()): self.assertEqual(p1.grad, p2.grad)
import unittest from collections import deque, OrderedDict from contextlib import ContextDecorator, contextmanager, nullcontext from copy import deepcopy from functools import partial from typing import Tuple import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, TestCase from torch.utils.checkpoint import CheckpointError class TestCheckpoint(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_checkpoint.py
recomp_ctx
if __name__ == "__main__": run_tests()
def recomp_ctx(mod: MyModel): try: mod.raise_exp = False yield finally: nonlocal handled_recomp_exp handled_recomp_exp = True mod.raise_exp = True # Test different context functions x = torch.randn(1, 2, requires_grad=True) checkpoint( m1, context_fn=lambda: (partial(fwd_ctx, m1)(), partial(recomp_ctx, m1)()) ) m1(x.clone()).sum().backward() self.assertEqual((handled_fwd_exp, handled_recomp_exp), (True, True)) checkpoint(m2, context_fn=lambda: (nullcontext(), partial(recomp_ctx, m2)())) with self.assertRaisesRegex(RuntimeError, "foo"): m2(x.clone()) handled_fwd_exp = False # Reset flag checkpoint(m3, context_fn=lambda: (partial(fwd_ctx, m3)(), nullcontext())) with self.assertRaisesRegex(RuntimeError, "bar"): m3(x.clone()).sum().backward() self.assertEqual(handled_fwd_exp, True) # Test determinism check failure m4 = MyModel(False, True) m5 = deepcopy(m4) # Determinism check should not throw an error, # but autograd should throw a RuntimeError checkpoint(m4, determinism_check="none") with self.assertRaises(RuntimeError): m4(x.clone()).sum().backward() # Determinism check should throw a CheckpointError checkpoint(m5, determinism_check="default") with self.assertRaises(CheckpointError): m5(x.clone()).sum().backward() # Test preserving random state m6 = MyModel(False, False) m7, m8 = (deepcopy(m6) for _ in range(2)) checkpoint(m7, preserve_rng_state=False) checkpoint(m8, preserve_rng_state=True) for mi in (m6, m7, m8): torch.manual_seed(42) loss = mi(x.clone()).sum() torch.manual_seed(41) loss.backward() # check that m6 and m7 have at least one different grad self.assertNotEqual( (p1.grad for p1 in m6.parameters()), (p2.grad for p2 in m7.parameters()) ) # check that m6 and m8 have identical grads for p1, p2 in zip(m6.parameters(), m8.parameters()): self.assertEqual(p1.grad, p2.grad)
import unittest from collections import deque, OrderedDict from contextlib import ContextDecorator, contextmanager, nullcontext from copy import deepcopy from functools import partial from typing import Tuple import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, TestCase from torch.utils.checkpoint import CheckpointError
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
__init__
def __init__(self): super().__init__() self.net1 = nn.Linear(5, 8) self.relu = nn.ReLU() self.net2 = nn.Linear(8, 4) self.net3 = nn.Linear(4, 12)
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
forward
def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) return x
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
get_input
def get_input(self): return torch.rand(4, 5, device="cuda")
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
__init__
def __init__(self): super().__init__() self.net1 = nn.Linear(5, 8) self.relu = nn.ReLU() self.net2 = nn.Linear(8, 4) self.net3 = nn.Linear(4, 12)
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
forward
def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) return x
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
get_input
def get_input(self): return torch.rand(4, 5, device="cuda")
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
test_train_parity_2d_mlp
def test_train_parity_2d_mlp(self): global_mesh = self.init_global_mesh() self.run_subtests( { "reshard_after_forward": [False, True], "use_activation_checkpointing": [False, True], # TODO: change "mlp_dim" back to [3, 16, 17] when uneven sharding # is supported for FSDP+TP "mlp_dim": [4, 16, 20], }, functools.partial(self._test_train_parity_2d_mlp, global_mesh), )
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestFullyShard2DTraining(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
test_train_parity_2d_transformer_checkpoint_resume
def test_train_parity_2d_transformer_checkpoint_resume(self): """ Tests train parity of a 2D transformer without checkpointing against a 2D transformer with a checkpoint save/load. """ self.run_subtests( { "use_seq_parallel": [False, True], # If reusing, then load into the same model/optimizer instance # else construct new ones (requiring eager optim state init) "reuse_model_optim": [False, True], "optimizer_class": [torch.optim.Adam, torch.optim.AdamW], # TODO: need to update `parallelize` before including foreach=True for testing "foreach": [False], }, self._test_train_parity_2d_transformer_checkpoint_resume, )
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestFullyShard2DTraining(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_2d_composability.py
parallelize
def parallelize(_model: Transformer, mesh: DeviceMesh, use_seq_parallel: bool): _model = Transformer.parallelize(_model, mesh["tp"], use_seq_parallel) for layer in _model.layers: fully_shard(layer, mesh=mesh["dp"]) fully_shard(_model, mesh=mesh["dp"]) return _model global_mesh = self.init_global_mesh() # Baseline: run two iterations without checkpointing seed = 42 torch.manual_seed(seed) model_args = ModelArgs(dropout_p=0.0) model_no_cp = parallelize( Transformer(model_args), global_mesh, use_seq_parallel ) optim_no_cp = optimizer_class( model_no_cp.parameters(), lr=1e-2, foreach=foreach ) torch.manual_seed(42 + global_mesh["dp"].get_local_rank() + 1) inp = torch.randint(0, model_args.vocab_size, (3, 16), device="cuda") loss_no_cp1 = train_step(model_no_cp, optim_no_cp, inp) loss_no_cp2 = train_step(model_no_cp, optim_no_cp, inp) # Test: run one iteration, save checkpoint, zero states or init new # model/optimizer, load checkpoint, and run another iteration torch.manual_seed(seed) model_cp = parallelize(Transformer(model_args), global_mesh, use_seq_parallel) optim_cp = optimizer_class(model_cp.parameters(), lr=1e-2, foreach=foreach) loss_cp1 = train_step(model_cp, optim_cp, inp) self.assertEqual(loss_no_cp1, loss_cp1) sharded_sd = { "model": get_model_state_dict(model_cp), # Use `get_optimizer_state_dict` to handle eager optim state init # when constructing a new optimizer instance "optim": get_optimizer_state_dict(model_cp, optim_cp), } dcp.save( state_dict=sharded_sd, storage_writer=dcp.FileSystemWriter(self.temp_dir), ) if reuse_model_optim: with torch.no_grad(): for param in model_cp.parameters(): param.zero_() optim_sd = optim_cp.state_dict() for param_states in optim_sd["state"].values(): for state_value in param_states.values(): if torch.is_tensor(state_value): state_value.zero_() else: torch.manual_seed(seed + 1) # different seed model_cp = parallelize( Transformer(model_args), global_mesh, use_seq_parallel ) optim_cp = optimizer_class(model_cp.parameters(), lr=1e-2, foreach=foreach) self.assertNotEqual(loss_no_cp2, train_step(model_cp, optim_cp, inp)) sharded_sd = { "model": get_model_state_dict(model_cp), "optim": get_optimizer_state_dict(model_cp, optim_cp), } dcp.load( state_dict=sharded_sd, storage_reader=dcp.FileSystemReader(self.temp_dir), ) self.assertGreater(len(optim_cp.state_dict()["state"]), 0) loss_cp2 = train_step(model_cp, optim_cp, inp) self.assertEqual(loss_no_cp2, loss_cp2)
import copy import functools import io from copy import deepcopy from typing import List, Type import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import replicate from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import ( _get_module_fsdp_state, clean_tensor_name, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform from torch.distributed.tensor.parallel.fsdp import DTensorExtensions from torch.distributed.tensor.parallel.input_reshard import input_reshard from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfRocm, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, ModelArgs, Transformer, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/fully_shard/test_fully_shard_runtime.py
_test_unshard_reshard_order
def _test_unshard_reshard_order(self, fsdp_wrap_mode: FSDPWrapMode): device = torch.device("cuda") ( composable_module, composable_optim, fsdp_wrapped_model, fsdp_wrapped_optim, ) = self._init_models_and_optims(device, fsdp_wrap_mode) # Before checking the unshard/reshard order, sanity check that the # assumption about wrapper FQN being a suffix of composable FQN holds all_composable_handles = traversal_utils._get_fsdp_handles(composable_module) all_wrapped_handles = traversal_utils._get_fsdp_handles(fsdp_wrapped_model) self._check_same_param_handles(all_composable_handles, all_wrapped_handles) num_handles = len(all_composable_handles) orig_unshard = torch.distributed.fsdp._runtime_utils._unshard orig_reshard = torch.distributed.fsdp._runtime_utils._reshard UnshardReshardEvent = Tuple[str, _HandlesKey] def patched_unshard( unshard_reshard_order: List[UnshardReshardEvent], state: _FSDPState, handles: List[FlatParamHandle], *args, **kwargs, ): handles_key = tuple(handles) unshard_reshard_order.append(("unshard", handles_key)) return orig_unshard(state, handles, *args, **kwargs) def patched_reshard( unshard_reshard_order: List[UnshardReshardEvent], state: _FSDPState, handles: List[FlatParamHandle], *args, **kwargs, ): handles_key = tuple(handles) unshard_reshard_order.append(("reshard", handles_key)) return orig_reshard(state, handles, *args, **kwargs) @contextlib.contextmanager def patch_unshard(_patched_unshard: Callable): _orig_unshard = torch.distributed.fsdp._runtime_utils._unshard torch.distributed.fsdp._runtime_utils._unshard = _patched_unshard try: yield finally: torch.distributed.fsdp._runtime_utils._unshard = _orig_unshard @contextlib.contextmanager def patch_reshard(_patched_reshard: Callable): _orig_reshard = torch.distributed.fsdp._runtime_utils._reshard torch.distributed.fsdp._runtime_utils._reshard = _patched_reshard try: yield finally: torch.distributed.fsdp._runtime_utils._unshard = _orig_reshard composable_order: List[UnshardReshardEvent] = [] wrapped_order: List[UnshardReshardEvent] = [] inp = torch.randn(2, 100, device="cuda") losses: List[torch.Tensor] = [] for order, model, optim in ( (composable_order, composable_module, composable_optim), (wrapped_order, fsdp_wrapped_model, fsdp_wrapped_optim), ): with patch_unshard( functools.partial(patched_unshard, order) ), patch_reshard(functools.partial(patched_reshard, order)): optim.zero_grad(set_to_none=True) out = model(inp) loss = out.sum() losses.append(loss) loss.backward() optim.step() self.assertEqual(losses[0], losses[1]) # Sanity check that the unshard/reshard events were recorded, where we # expect one unshard/reshard pair for forward, one pair for backward, # and possibly some extra unshards from backward prefetching (in this # case, we expect exactly 2 extra since there are 3 handles) self.assertGreaterEqual(len(composable_order), 2 * 2 * num_handles) self.assertGreaterEqual(len(wrapped_order), 2 * 2 * num_handles) self.assertGreaterEqual( len([e for e in composable_order if e[0] == "unshard"]), 2 * num_handles ) self.assertGreaterEqual( len([e for e in wrapped_order if e[0] == "unshard"]), 2 * num_handles ) self.assertGreaterEqual( len([e for e in composable_order if e[0] == "reshard"]), 2 * num_handles ) self.assertGreaterEqual( len([e for e in wrapped_order if e[0] == "reshard"]), 2 * num_handles ) # Check that the unshard/reshard order matches self.assertEqual(len(composable_order), len(wrapped_order)) for ( (composable_event, composable_handles_key), (wrapped_event, wrapped_handles_key), ) in zip(composable_order, wrapped_order): self.assertEqual(composable_event, wrapped_event) self._check_same_param_handles(composable_handles_key, wrapped_handles_key)
def _test_unshard_reshard_order(self, fsdp_wrap_mode: FSDPWrapMode): device = torch.device("cuda") ( composable_module, composable_optim, fsdp_wrapped_model, fsdp_wrapped_optim, ) = self._init_models_and_optims( device, fsdp_wrap_mode, ShardingStrategy.FULL_SHARD ) # Before checking the unshard/reshard order, sanity check that the # assumption about wrapper FQN being a suffix of composable FQN holds all_composable_handles = traversal_utils._get_fsdp_handles(composable_module) all_wrapped_handles = traversal_utils._get_fsdp_handles(fsdp_wrapped_model) for c_handle, w_handle in zip(all_composable_handles, all_wrapped_handles): self._check_same_param_handles(c_handle, w_handle) num_handles = len(all_composable_handles) orig_unshard = torch.distributed.fsdp._runtime_utils._unshard orig_reshard = torch.distributed.fsdp._runtime_utils._reshard UnshardReshardEvent = Tuple[str, FlatParamHandle] def patched_unshard( unshard_reshard_order: List[UnshardReshardEvent], state: _FSDPState, handle: FlatParamHandle, *args, **kwargs, ): unshard_reshard_order.append(("unshard", handle)) return orig_unshard(state, handle, *args, **kwargs) def patched_reshard( unshard_reshard_order: List[UnshardReshardEvent], state: _FSDPState, handle: FlatParamHandle, *args, **kwargs, ): unshard_reshard_order.append(("reshard", handle)) return orig_reshard(state, handle, *args, **kwargs) @contextlib.contextmanager def patch_unshard(_patched_unshard: Callable): _orig_unshard = torch.distributed.fsdp._runtime_utils._unshard torch.distributed.fsdp._runtime_utils._unshard = _patched_unshard try: yield finally: torch.distributed.fsdp._runtime_utils._unshard = _orig_unshard @contextlib.contextmanager def patch_reshard(_patched_reshard: Callable): _orig_reshard = torch.distributed.fsdp._runtime_utils._reshard torch.distributed.fsdp._runtime_utils._reshard = _patched_reshard try: yield finally: torch.distributed.fsdp._runtime_utils._unshard = _orig_reshard composable_order: List[UnshardReshardEvent] = [] wrapped_order: List[UnshardReshardEvent] = [] inp = torch.randn(2, 100, device="cuda") losses: List[torch.Tensor] = [] for order, model, optim in ( (composable_order, composable_module, composable_optim), (wrapped_order, fsdp_wrapped_model, fsdp_wrapped_optim), ): with patch_unshard( functools.partial(patched_unshard, order) ), patch_reshard(functools.partial(patched_reshard, order)): optim.zero_grad(set_to_none=True) out = model(inp) loss = out.sum() losses.append(loss) loss.backward() optim.step() self.assertEqual(losses[0], losses[1]) # Sanity check that the unshard/reshard events were recorded, where we # expect one unshard/reshard pair for forward, one pair for backward, # and possibly some extra unshards from backward prefetching (in this # case, we expect exactly 2 extra since there are 3 handles) self.assertGreaterEqual(len(composable_order), 2 * 2 * num_handles) self.assertGreaterEqual(len(wrapped_order), 2 * 2 * num_handles) self.assertGreaterEqual( len([e for e in composable_order if e[0] == "unshard"]), 2 * num_handles ) self.assertGreaterEqual( len([e for e in wrapped_order if e[0] == "unshard"]), 2 * num_handles ) self.assertGreaterEqual( len([e for e in composable_order if e[0] == "reshard"]), 2 * num_handles ) self.assertGreaterEqual( len([e for e in wrapped_order if e[0] == "reshard"]), 2 * num_handles ) # Check that the unshard/reshard order matches self.assertEqual(len(composable_order), len(wrapped_order)) for ( (composable_event, composable_handles_key), (wrapped_event, wrapped_handles_key), ) in zip(composable_order, wrapped_order): self.assertEqual(composable_event, wrapped_event) self._check_same_param_handles(composable_handles_key, wrapped_handles_key)
import contextlib import copy import functools import sys from enum import auto, Enum from typing import Callable, Iterable, List, Tuple import torch import torch.distributed as dist import torch.distributed.fsdp._traversal_utils as traversal_utils import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp._common_utils import _FSDPState from torch.distributed.fsdp.flat_param import _HandlesKey, FlatParamHandle from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestRuntime(FSDPTest):
import contextlib import copy import functools import sys from enum import auto, Enum from typing import Callable, List, Tuple import torch import torch.distributed as dist import torch.distributed.fsdp._traversal_utils as traversal_utils import torch.nn as nn from torch.distributed._composable import fully_shard from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy from torch.distributed.fsdp._common_utils import _FSDPState from torch.distributed.fsdp._flat_param import FlatParamHandle from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestRuntime(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/fully_shard/test_fully_shard_util.py
test_get_sharded_module_tree_with_module_name_to_fqns
def test_get_sharded_module_tree_with_module_name_to_fqns(self): model = CompositeModel(torch.device("cuda")) fully_shard( model, policy=ModuleWrapPolicy({UnitModule}), ) ( sharded_tree_info, sharded_module_name_to_fqns, ) = _get_sharded_module_tree_with_module_name_to_fqns(model) self.assertEqual( list(sharded_module_name_to_fqns.keys()), ["[CompositeModel]", "u1[UnitModule]", "u2[UnitModule]"], ) self.assertEqual( list(sharded_module_name_to_fqns.values()), [ ["l1.weight", "l1.bias", "l2.weight", "l2.bias"], [ "u1.l1.weight", "u1.l1.bias", "u1.seq.1.weight", "u1.seq.1.bias", "u1.l2.weight", "u1.l2.bias", ], [ "u2.l1.weight", "u2.l1.bias", "u2.seq.1.weight", "u2.seq.1.bias", "u2.l2.weight", "u2.l2.bias", ], ], ) # Test nested fully_shard new_model = CompositeModel(torch.device("cuda")) fully_shard(new_model.u1) fully_shard(new_model) ( sharded_tree_info, sharded_module_name_to_fqns, ) = _get_sharded_module_tree_with_module_name_to_fqns(new_model) self.assertEqual( list(sharded_module_name_to_fqns.keys()), ["[CompositeModel]", "u1[UnitModule]"], ) self.assertEqual( list(sharded_module_name_to_fqns.values()), [ [ "l1.weight", "l1.bias", "u2.l1.weight", "u2.l1.bias", "u2.seq.1.weight", "u2.seq.1.bias", "u2.l2.weight", "u2.l2.bias", "l2.weight", "l2.bias", ], [ "u1.l1.weight", "u1.l1.bias", "u1.seq.1.weight", "u1.seq.1.bias", "u1.l2.weight", "u1.l2.bias", ], ], )
import sys import torch import torch.distributed as dist from torch.distributed._composable import fully_shard from torch.distributed.fsdp._debug_utils import ( _get_sharded_module_tree_with_module_name_to_fqns, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import CompositeModel, UnitModule from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class TestUtils(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
test_compile_backward_only
def test_compile_backward_only(self): self._test_compile(use_gpu=True, no_sync=False, no_compile_forward=True)
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class ReplicateTest(MultiProcessInductorTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
bwd
def bwd(loss): with compiled_autograd.enable(compiler_fn()): loss.backward() for i in range(loop): loss = compiled_replicate_model(input).sum() if i != loop - 1: # Leave the last bwd for the run_and_get_triton_code. bwd(loss) code = run_and_get_triton_code(functools.partial(bwd, loss=loss)) self.assertEqual(counters["inductor"]["ddp_buckets"], 3) return code
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
test_bucketing_concat_op
def test_bucketing_concat_op(self): # Gradient is None code = self._test_bucketing() self.assertEqual(counters["inductor"]["ddp_buckets"], 3) fc = FileCheck() for i in range(3): fc.check("aten.flatten.using_ints(").check("cpp_fused_").check( "torch.ops._c10d_functional.all_reduce_.default(" ) for i in range(3): fc.check("torch.ops._c10d_functional.wait_tensor.default") fc.run(code) # Gradient is not None code = self._test_bucketing(init_process_group=False, loop=2) self.assertEqual(counters["inductor"]["ddp_buckets"], 3) fc = FileCheck() for i in range(3): fc.check("aten.flatten.using_ints(").check("cpp_fused_").check( "torch.ops._c10d_functional.all_reduce_.default(" ) for i in range(3): fc.check("torch.ops._c10d_functional.wait_tensor.default") fc.run(code)
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class ReplicateTest(MultiProcessInductorTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
setUp
def setUp(self) -> None: super().setUp() self._spawn_processes()
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class ReplicateTest(MultiProcessInductorTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
tearDown
def tearDown(self): super().tearDown() try: os.remove(self.file_name) except OSError: pass
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class ReplicateTest(MultiProcessInductorTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate_with_compiler.py
test_ddp_tp
def test_ddp_tp(self): ref_model = Net() compiled_replicate_model = deepcopy(ref_model) mesh_2d = init_device_mesh( "cuda", (2, self.world_size // 2), mesh_dim_names=("dp", "tp") ) tp_mesh = mesh_2d["tp"] dp_mesh = mesh_2d["dp"] parallelize_plan = { "fc1": ColwiseParallel(), "fc2": RowwiseParallel(), "fc3": ColwiseParallel(), "fc4": RowwiseParallel(), } ref_model = parallelize_module(ref_model, tp_mesh, parallelize_plan) ref_model = replicate(ref_model, device_mesh=dp_mesh) compiled_replicate_model = parallelize_module( compiled_replicate_model, tp_mesh, parallelize_plan ) compiled_replicate_model = replicate( compiled_replicate_model, device_mesh=dp_mesh ) compiled_replicate_model = torch.compile(compiled_replicate_model) data = torch.randn([1, DIM]) with compiled_autograd.enable(compiler_fn()): loss = compiled_replicate_model(data).sum() # TODO: We need "pre-dispatch tracing of backward graph" to make this work: # https://github.com/pytorch/pytorch/issues/127797#issuecomment-2291695474 with self.assertRaisesRegex( AssertionError, "Expected ProxyTensor, got <class 'torch.distributed._tensor.api.DTensor'>", ): loss.backward() # ref_loss = ref_model(data).sum() # ref_loss.backward() # for p1, p2 in zip( # ref_model.parameters(), compiled_replicate_model.parameters() # ): # self.assertEqual(p1.grad, p2.grad)
import contextlib import functools import os import unittest from copy import deepcopy from typing import Callable, Optional import torch import torch.distributed as dist from torch import _inductor as inductor, nn from torch._C import FileCheck from torch._dynamo import compiled_autograd from torch._dynamo.utils import counters from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_triton_code from torch.distributed._composable.replicate import replicate from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as ddp_default_hooks, ) from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import run_tests, skipIfRocm from torch.testing._internal.distributed.fake_pg import FakeStore from torch.utils._triton import has_triton from torch.utils.checkpoint import checkpoint DIM = 2000 class DDP_TP_Test(InductorTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_shard/sharded_tensor/ops/test_math_ops.py
test_sharded_bmm_errors
def test_sharded_bmm_errors(self): specs = generate_chunk_sharding_specs_for_test(0) st_lhs = sharded_tensor.rand(specs[0], (15, 5, 6)) st_rhs = sharded_tensor.rand(specs[1], (15, 5, 6)) with self.assertRaisesRegex( NotImplementedError, "Both st and st2 need to have same placements for bmm", ): torch.bmm(st_lhs, st_rhs) for spec in specs: st_lhs = sharded_tensor.rand(spec, (20, 3)) st_rhs = sharded_tensor.rand(spec, (20, 3)) with self.assertRaisesRegex( TypeError, "both st and st2 need to be a 3D ShardedTensor", ): torch.bmm(st_lhs, st_rhs) rhs = torch.rand(15, 5, 6).cuda(self.rank) with self.assertRaisesRegex( TypeError, "st2 needs to be a ShardedTensor for torch.bmm", ): torch.bmm(st_lhs, rhs) spec.dim = 1 st_lhs = sharded_tensor.rand(spec, (15, 5, 6)) st_rhs = sharded_tensor.rand(spec, (15, 5, 6)) with self.assertRaisesRegex( NotImplementedError, "Only support performing bmm on tensors sharded on dim 0 now", ): torch.bmm(st_lhs, st_rhs)
import torch from torch.distributed._shard import _shard_tensor import torch.distributed._shard.sharded_tensor as sharded_tensor import torch.distributed as dist from torch.distributed._shard.sharding_spec import ( ChunkShardingSpec, EnumerableShardingSpec, ShardMetadata, ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( gen_binary_op_func, generate_chunk_sharding_specs_for_test, ) class TestMathOps(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/ops/test_matrix_ops.py
test_sharded_tensor_softmax
def test_sharded_tensor_softmax(self): specs = _chunk_sharding_specs_list_for_test([0, 2], seed=17) for spec in specs: tensor = torch.rand(15, 27, 16).cuda(self.rank) tensor_n = torch.nn.functional.softmax(tensor, dim=1, dtype=torch.float32) st_expected = _shard_tensor(tensor_n, spec) self.assertTrue( torch.allclose( torch.nn.functional.softmax( _shard_tensor(tensor, spec), dim=1, dtype=torch.float32 ), st_expected, ) )
import copy import itertools import sys import torch from torch.distributed._shard import sharded_tensor, _shard_tensor from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( generate_enumerable_sharding_specs_for_test, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import ( _chunk_sharding_specs_list_for_test, ) class TestShardedTensorMatrixOps(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_composable/test_replicate.py
forward
def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return F.softmax(x, dim=1)
def forward(self, x): return self.fc3(self.fc2(self.fc1(x)))
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_replicate.py
test_replicate_ignore_module
def test_replicate_ignore_module(self): self._init_pg() torch.cuda.set_device(self.rank) # Seed ensures diff input and thus different local grads across ranks. torch.manual_seed(self.rank) torch.cuda.manual_seed(self.rank) model = Net().cuda() replicate(model, ignored_modules=[model.fc1]) # CPU input ensures that replicate can move input to GPU as DDP does. inp = torch.randn(5, 2, device="cuda") * (self.rank + 1) out = model(inp) * 10 out.sum().backward() # FC1 grads should not be synchronized, FC2 and 3 should be. fc1_grad = model.fc1.weight.grad tensor_list = [torch.zeros_like(fc1_grad) for _ in range(dist.get_world_size())] dist.all_gather(tensor_list, fc1_grad) grad, rest = tensor_list[0], tensor_list[1:] for g in rest: self.assertNotEqual(grad, g) for dp_grad in [model.fc2.weight.grad, model.fc3.weight.grad]: tensor_list = [ torch.zeros_like(dp_grad) for _ in range(dist.get_world_size()) ] dist.all_gather(tensor_list, dp_grad) grad, rest = tensor_list[0], tensor_list[1:] for g in rest: self.assertEqual(grad, g)
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate.py
test_replicate_multi_module
def test_replicate_multi_module(self): model = Net() replicate_model = deepcopy(model) replicate(replicate_model.fc1) replicate(replicate_model.fc2) replicate(replicate_model.fc3) self._compare_module(model, replicate_model)
def test_replicate_multi_module(self): self._init_pg() model = Net() replicate_model = deepcopy(model) replicate(replicate_model.fc1) replicate(replicate_model.fc2) replicate(replicate_model.fc3) self._compare_module(model, replicate_model)
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class ReplicateTest(MultiProcessTestCase):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_replicate.py
test_replicate_device_id
def test_replicate_device_id(self): self._init_pg() model = Net() model_cuda = deepcopy(model).cuda() model_cuda2 = deepcopy(model_cuda) replicate(model, device_id=torch.device("cpu")) # DDP instance is attached in first pre forward model(torch.randn(2, 2)) replicate_ddp_weakref = replicate.state(model)._ddp_weakref() # Should be None for CPU training self.assertEqual(None, replicate_ddp_weakref.device_ids) replicate(model_cuda, device_id=torch.device(torch.cuda.current_device())) # DDP instance is attached in first pre forward model_cuda(torch.randn(2, 2)) replicate_ddp_weakref = replicate.state(model_cuda)._ddp_weakref() self.assertEqual([0], replicate_ddp_weakref.device_ids) # Pass in int as device_id replicate(model_cuda2, device_id=int(torch.cuda.current_device())) # DDP instance is attached in first pre forward model_cuda2(torch.randn(2, 2)) replicate_ddp_weakref = replicate.state(model_cuda2)._ddp_weakref() self.assertEqual([0], replicate_ddp_weakref.device_ids)
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate.py
test_replicate_wrong_device_id_type
def test_replicate_wrong_device_id_type(self): self._init_pg() model = Net() with self.assertRaisesRegex( RuntimeError, "Expected device_id to be int or torch.device" ): replicate(model, device_id=[torch.device("cpu")])
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate.py
test_replicate_fully_shard_init
def test_replicate_fully_shard_init(self): class ToyModel(nn.Module): def __init__(self, dim: int): super().__init__() self.linears = nn.Sequential( nn.Linear(dim, dim, bias=False), nn.Linear(dim, dim, bias=False), nn.Linear(dim, dim, bias=False), ) self.proj = nn.Linear(dim, dim, bias=False) def forward(self, x: torch.Tensor): y = self.linears(x) y = self.proj(y) return y self._init_pg() torch.cuda.set_device(self.rank) dim = 3 bz = 2 model = ToyModel(dim).cuda() for linear in model.linears: fully_shard(linear) fully_shard(model.linears) replicate(model, device_id=torch.cuda.current_device()) for linear in model.linears: self.assertTrue(isinstance(linear.weight, DTensor)) inp = torch.rand(bz, dim) # trigger lazy init model(inp).sum() for linear in model.linears: self.assertTrue(isinstance(linear.weight, DTensor))
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateFullyShardInit(ReplicateTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate.py
__init__
def __init__(self): super().__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 50, bias=False) self.fc3 = nn.Linear(50, 4, bias=False) self.relu = nn.ReLU()
def __init__(self) -> None: super().__init__() self.fc1 = nn.Linear(2, 2) self.fc2 = nn.Linear(2, 2) self.fc3 = nn.Linear(2, 2)
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_replicate.py
forward
def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return F.softmax(x, dim=1)
def forward(self, x): return self.fc3(self.fc2(self.fc1(x)))
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_shard/sharded_tensor/ops/test_matrix_ops.py
test_sharded_tensor_layer_norm_error
def test_sharded_tensor_layer_norm_error(self): specs = _chunk_sharding_specs_list_for_test([2], seed=10) for spec in specs: tensor = torch.rand(16, 35, 26).cuda(self.rank) with self.assertRaisesRegex( ValueError, "normalized_shape dim must not be greater " "than the dim of the sharded tensor.", ): layer_norm = torch.nn.LayerNorm((14, 55, 35, 26)).cuda(self.rank) layer_norm(_shard_tensor(tensor, spec)) with self.assertRaisesRegex( ValueError, r"Given normalized_shape=\[35\], expected input with shape " r"\[\*, 35\], but got input of size \[16, 35, 26\].", ): layer_norm = torch.nn.LayerNorm((35)).cuda(self.rank) layer_norm(_shard_tensor(tensor, spec))
import copy import itertools import sys import torch from torch.distributed._shard import sharded_tensor, _shard_tensor from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( generate_enumerable_sharding_specs_for_test, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import ( _chunk_sharding_specs_list_for_test, ) class TestShardedTensorMatrixOps(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/ops/test_softmax.py
test_sharded_softmax_on_sharding_dim
def test_sharded_softmax_on_sharding_dim(self): self._test_sharded_softmax(1, 1) self._test_sharded_softmax(-1, 1)
import sys import torch from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.distributed._shard.sharding_spec import ChunkShardingSpec from torch.distributed._shard import _shard_tensor class TestShardedSoftmax(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_composable/test_contract.py
__init__
def __init__(self): super().__init__() self.seq1 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.seq2 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.p = nn.Parameter(torch.randn(10, 10), requires_grad=True) self.b = torch.zeros(1) # buffer
def __init__(self) -> None: super().__init__() self.seq1 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.seq2 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.p = nn.Parameter(torch.randn(10, 10), requires_grad=True) self.b = torch.zeros(1) # buffer
from copy import deepcopy from typing import Tuple import torch import torch.nn as nn from torch.distributed._composable import _get_registry, contract from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase class ToyModel(nn.Module):
from copy import deepcopy from typing import List, Tuple import torch import torch.nn as nn from torch.distributed._composable import _get_registry, contract from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase class ToyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_contract.py
test_multi_module_api
if __name__ == "__main__": run_tests()
def test_multi_module_api(self): @contract() def multi_module_api(modules: List[nn.Module]) -> nn.Module: return modules model = nn.Sequential(*[nn.Linear(3, 3) for _ in range(5)]) multi_module_api([model[0], model[1]]) multi_module_api([model[2], model[3]]) multi_module_api([model[4]]) # Check that modules have the same state and registry iff they shared # the same API call states = [multi_module_api.state(module) for module in model] self.assertEqual(states[0], states[1]) self.assertEqual(states[2], states[3]) self.assertNotEqual(states[0], states[2]) self.assertNotEqual(states[0], states[4]) self.assertNotEqual(states[2], states[4]) registries = [_get_registry(module) for module in model] self.assertEqual(registries[0], registries[1]) self.assertEqual(registries[2], registries[3]) self.assertNotEqual(registries[0], registries[2]) self.assertNotEqual(registries[0], registries[4]) self.assertNotEqual(registries[2], registries[4]) # Check that applying an API to a module multiple times errors model = nn.Sequential(*[nn.Linear(3, 3) for _ in range(5)]) multi_module_api([model[0], model[1]]) with self.assertRaisesRegex( AssertionError, "Each distinct composable distributed API can only be applied to " r"a module once. multi_module_api has already been applied to the " "following module:", ): multi_module_api([model[0], model[2]])
from copy import deepcopy from typing import List, Tuple import torch import torch.nn as nn from torch.distributed._composable import _get_registry, contract from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase class TestContract(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate.py
__init__
def __init__(self): super().__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 50, bias=False) self.fc3 = nn.Linear(50, 4, bias=False) self.relu = nn.ReLU()
def __init__(self) -> None: super().__init__() self.fc1 = nn.Linear(2, 2) self.fc2 = nn.Linear(2, 2) self.fc3 = nn.Linear(2, 2)
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_replicate.py
forward
def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return F.softmax(x, dim=1)
def forward(self, x): return self.fc3(self.fc2(self.fc1(x)))
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class Net(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_composability/test_pp_composability.py
test_manual_with_data_parallel
def test_manual_with_data_parallel(self, dp_type, ScheduleClass, use_new_runtime): device = torch.device("cuda", self.device) torch.cuda.set_device(self.device) store = torch.distributed.FileStore(self.file_name, self.world_size) torch.distributed.init_process_group( backend="nccl", store=store, rank=self.rank, world_size=self.world_size, device_id=device, ) device_mesh = init_device_mesh( "cuda", mesh_shape=(2, 2), mesh_dim_names=("dp", "pp") ) pp_group = device_mesh["pp"].get_group() dp_mesh = device_mesh["dp"] # create "entire model" total_layers = 8 dim = 10 full_model = nn.ModuleList([MLPModule(dim) for _ in range(total_layers)]) ref_model = nn.Sequential(*copy.deepcopy(full_model)) ref_model.to(self.device) # Prepare inputs num_microbatches = 8 inputs = [ torch.rand((num_microbatches, dim), device=self.device) for _ in range(dp_mesh.size()) ] input = inputs[dp_mesh.get_local_rank()] input_mb = [[input[i].reshape((1, dim))] for i in range(num_microbatches)] # dummy loss needed just to force backwards to run in schedule step def loss_fn(y, target): return y.sum() # Get stage module i from the entire model def get_stage_module(stage_idx, num_stages): # divide the model (8 layers) by the number of stages layers_per_stage = total_layers // num_stages assert layers_per_stage * num_stages == total_layers # return offset so validation code can match partial layer back to orig model offset = stage_idx * layers_per_stage partial_model = nn.Sequential( *full_model[offset : (stage_idx + 1) * layers_per_stage] ) partial_model.to(self.device) return partial_model, offset # Apply DP to stage module def apply_dp(partial_model, dp_type): if dp_type == "FSDP": # apply FSDP mp_policy = MixedPrecisionPolicy( # TODO(whc) need to fix PP + FSDP-mixed-precision # tracer for PP assumes f32 and is caught off guard when runtime FSDP interacts using bf16 inputs # param_dtype=torch.bfloat16, reduce_dtype=torch.float32 param_dtype=torch.float32, reduce_dtype=torch.float32, ) fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy} for layer in partial_model.children(): fully_shard( layer, **fsdp_config, reshard_after_forward=False, ) dp_model = fully_shard(partial_model, **fsdp_config) elif dp_type == "DDP": dp_model = DDP(partial_model, process_group=dp_mesh.get_group()) else: raise RuntimeError(f"unsupported dp type {dp_type}") return dp_model # Create pipeline stage def build_stage(stage_idx, num_stages): partial_model, offset = get_stage_module(stage_idx, num_stages) dp_model = apply_dp(partial_model, dp_type) stage = PipelineStage( dp_model, stage_idx, num_stages, self.device, group=pp_group, input_args=input_mb[0], ) return stage, offset # Attach to a schedule if issubclass(ScheduleClass, PipelineScheduleSingle): if use_new_runtime: # Can't test PipelineScheduleSingle classes using new runtime # return should still clean up this test instance correctly torch.distributed.destroy_process_group() return pipeline_stage, offset = build_stage(pp_group.rank(), pp_group.size()) partial_models = [pipeline_stage.submod] offsets = [offset] pipeline_schedule = ScheduleClass( pipeline_stage, n_microbatches=num_microbatches, loss_fn=loss_fn, ) else: n_virtual = 2 num_stages = pp_group.size() * n_virtual stages = [] offsets = [] for i in range(n_virtual): stage, offset = build_stage(pp_group.rank() + n_virtual * i, num_stages) stages.append(stage) offsets.append(offset) partial_models = [pipeline_stage.submod for pipeline_stage in stages] pipeline_schedule = ScheduleClass( stages, n_microbatches=num_microbatches, loss_fn=loss_fn, ) # Run pipeline_schedule._step_microbatches(arg_mbs=input_mb, target_mbs=input_mb) # Ref model runs on 2 different inputs, accumulating grads across them. # this ensures that we detect if the FSDP reduce becomes a no-op. # (in fsdp case, we use one of these inputs on each DP rank) (ref_model(inputs[0]).sum()).backward() (ref_model(inputs[1]).sum()).backward() # simulate the built-in averaging done by FSDP for p in ref_model.parameters(): p.grad /= dp_mesh.size() # Validate that whichever weights we have locally match that part of our local/full ref model # (we force FSDP's grads to be all-gathered (.full_tensor) to make it simpler) ref_parameters = dict(ref_model.named_parameters()) if dp_type == "FSDP": for partial_model, offset in zip(partial_models, offsets): for name, p in partial_model.named_parameters(): parts = name.split(".") parts[0] = str(int(parts[0]) + offset) name = ".".join(parts) ref_p = ref_parameters[name] self.assertTrue(isinstance(p.grad, DTensor)) torch.testing.assert_close( ref_p.grad, p.grad.full_tensor(), rtol=1e-5, atol=5e-5 ) elif dp_type == "DDP": for partial_model, offset in zip(partial_models, offsets): for name, p in partial_model.named_parameters(): parts = name.split(".")[1:] # remove the "module." prefix parts[0] = str(int(parts[0]) + offset) name = ".".join(parts) ref_p = ref_parameters[name] torch.testing.assert_close(ref_p.grad, p.grad, rtol=1e-5, atol=5e-5) torch.distributed.destroy_process_group()
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, ) class ComposabilityTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_pp_composability.py
loss_fn
def loss_fn(y, target): return y.sum() # Get stage module i from the entire model
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_pp_composability.py
get_stage_module
def get_stage_module(stage_idx, num_stages): # divide the model (8 layers) by the number of stages layers_per_stage = total_layers // num_stages assert layers_per_stage * num_stages == total_layers # return offset so validation code can match partial layer back to orig model offset = stage_idx * layers_per_stage partial_model = nn.Sequential( *full_model[offset : (stage_idx + 1) * layers_per_stage] ) partial_model.to(self.device) return partial_model, offset # Apply DP to stage module
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_pp_composability.py
apply_dp
def apply_dp(partial_model, dp_type): if dp_type == "FSDP": # apply FSDP mp_policy = MixedPrecisionPolicy( # TODO(whc) need to fix PP + FSDP-mixed-precision # tracer for PP assumes f32 and is caught off guard when runtime FSDP interacts using bf16 inputs # param_dtype=torch.bfloat16, reduce_dtype=torch.float32 param_dtype=torch.float32, reduce_dtype=torch.float32, ) fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy} for layer in partial_model.children(): fully_shard( layer, **fsdp_config, reshard_after_forward=False, ) dp_model = fully_shard(partial_model, **fsdp_config) elif dp_type == "DDP": dp_model = DDP(partial_model, process_group=dp_mesh.get_group()) else: raise RuntimeError(f"unsupported dp type {dp_type}") return dp_model # Create pipeline stage
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_composability/test_pp_composability.py
build_stage
def build_stage(stage_idx, num_stages): partial_model, offset = get_stage_module(stage_idx, num_stages) dp_model = apply_dp(partial_model, dp_type) stage = PipelineStage( dp_model, stage_idx, num_stages, self.device, group=pp_group, input_args=input_mb[0], ) return stage, offset # Attach to a schedule if issubclass(ScheduleClass, PipelineScheduleSingle): if use_new_runtime: # Can't test PipelineScheduleSingle classes using new runtime # return should still clean up this test instance correctly torch.distributed.destroy_process_group() return pipeline_stage, offset = build_stage(pp_group.rank(), pp_group.size()) partial_models = [pipeline_stage.submod] offsets = [offset] pipeline_schedule = ScheduleClass( pipeline_stage, n_microbatches=num_microbatches, loss_fn=loss_fn, ) else: n_virtual = 2 num_stages = pp_group.size() * n_virtual stages = [] offsets = [] for i in range(n_virtual): stage, offset = build_stage(pp_group.rank() + n_virtual * i, num_stages) stages.append(stage) offsets.append(offset) partial_models = [pipeline_stage.submod for pipeline_stage in stages] pipeline_schedule = ScheduleClass( stages, n_microbatches=num_microbatches, loss_fn=loss_fn, ) # Run pipeline_schedule._step_microbatches(arg_mbs=input_mb, target_mbs=input_mb) # Ref model runs on 2 different inputs, accumulating grads across them. # this ensures that we detect if the FSDP reduce becomes a no-op. # (in fsdp case, we use one of these inputs on each DP rank) (ref_model(inputs[0]).sum()).backward() (ref_model(inputs[1]).sum()).backward() # simulate the built-in averaging done by FSDP for p in ref_model.parameters(): p.grad /= dp_mesh.size() # Validate that whichever weights we have locally match that part of our local/full ref model # (we force FSDP's grads to be all-gathered (.full_tensor) to make it simpler) ref_parameters = dict(ref_model.named_parameters()) if dp_type == "FSDP": for partial_model, offset in zip(partial_models, offsets): for name, p in partial_model.named_parameters(): parts = name.split(".") parts[0] = str(int(parts[0]) + offset) name = ".".join(parts) ref_p = ref_parameters[name] self.assertTrue(isinstance(p.grad, DTensor)) torch.testing.assert_close( ref_p.grad, p.grad.full_tensor(), rtol=1e-5, atol=5e-5 ) elif dp_type == "DDP": for partial_model, offset in zip(partial_models, offsets): for name, p in partial_model.named_parameters(): parts = name.split(".")[1:] # remove the "module." prefix parts[0] = str(int(parts[0]) + offset) name = ".".join(parts) ref_p = ref_parameters[name] torch.testing.assert_close(ref_p.grad, p.grad, rtol=1e-5, atol=5e-5) torch.distributed.destroy_process_group()
import copy import os import torch import torch.nn as nn from torch.distributed._composable.fsdp.fully_shard import ( fully_shard, MixedPrecisionPolicy, ) from torch.distributed._tensor import DTensor from torch.distributed.device_mesh import init_device_mesh from torch.distributed.pipelining import PipelineStage from torch.distributed.pipelining.schedules import ( PipelineScheduleSingle, Schedule1F1B, ScheduleFlexibleInterleaved1F1B, ScheduleGPipe, ScheduleInterleaved1F1B, ScheduleInterleavedZeroBubble, ScheduleLoopedBFS, ) from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skip_but_pass_in_sandcastle_if, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_compose.py
test_wrap_same_submodule
def test_wrap_same_submodule(self, use_reentrant: bool): model = UnitModule(device=torch.device("cuda")) base_model = copy.deepcopy(model) test_model = copy.deepcopy(model) # compose checkpoint and fully_shard test_model.seq = checkpoint(test_model.seq, use_reentrant=use_reentrant) test_model.seq = fully_shard( test_model.seq, policy=ModuleWrapPolicy({nn.Linear}), ) self.run_subtests( { "base_model": [base_model], "test_model": [test_model], "inp_size": [torch.Size((2, 100))], "inp_device": [torch.device("cuda")], "grad_to_none": [True, False], "use_same_inputs_across_ranks": [True], }, self._test_parity, )
def test_wrap_same_submodule(self): model = UnitModule(device=torch.device("cuda")) base_model = copy.deepcopy(model) test_model = copy.deepcopy(model) # compose checkpoint and fully_shard test_model.seq = checkpoint(test_model.seq) test_model.seq = fully_shard( test_model.seq, policy=ModuleWrapPolicy({nn.Linear}), ) self.run_subtests( { "base_model": [base_model], "test_model": [test_model], "inp_size": [torch.Size((2, 100))], "inp_device": [torch.device("cuda")], "grad_to_none": [True, False], "use_same_inputs_across_ranks": [True], }, self._test_parity, )
import copy import sys import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import checkpoint, fully_shard, replicate from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeModel, CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TEST_WITH_DEV_DBG_ASAN, ) class TestFSDPCheckpoint(FSDPTest):
import copy import sys from typing import Dict import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import checkpoint, fully_shard, replicate from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.api import MixedPrecision, ShardingStrategy from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeModel, CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import ( SaveForwardInputsModel, skip_if_lt_x_gpu, ) from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, run_tests, TEST_WITH_DEV_DBG_ASAN, ) class TestFSDPCheckpoint(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_shard/sharded_tensor/ops/test_init.py
test_init_sharded_tensor_with_kaiming_uniform
def test_init_sharded_tensor_with_kaiming_uniform(self): """ Test torch.nn.init.kaiming_uniform_(ShardedTensor, a, mode, nonlinearit) """ spec = ChunkShardingSpec( dim=0, placements=[ "rank:0/cuda:0", "rank:1/cuda:1", "rank:2/cuda:2", "rank:3/cuda:3", ], ) h, w = 8, 2 expected_h = 2 expected_device = torch.device(f"cuda:{self.rank}") a, mode, nonlinearity = 0, 'fan_in', 'leaky_relu' seed = 1234 dtype = torch.double st = sharded_tensor.empty(spec, h, w, dtype=dtype) self.assertEqual(1, len(st.local_shards())) # Clone local tensor to ensure torch.nn.init starts from the same input local_tensor_clone = torch.clone(st.local_shards()[0].tensor) torch.manual_seed(seed) torch.nn.init.kaiming_uniform_(st, a=a, mode=mode, nonlinearity=nonlinearity) torch.manual_seed(seed) torch.nn.init.kaiming_uniform_(local_tensor_clone, a=a, mode=mode, nonlinearity=nonlinearity) self.assertEqual(local_tensor_clone, st.local_shards()[0].tensor)
def test_init_sharded_tensor_with_kaiming_uniform(self): """Test torch.nn.init.kaiming_uniform_(ShardedTensor, a, mode, nonlinearit)""" spec = ChunkShardingSpec( dim=0, placements=[ "rank:0/cuda:0", "rank:1/cuda:1", "rank:2/cuda:2", "rank:3/cuda:3", ], ) h, w = 8, 2 expected_h = 2 expected_device = torch.device(f"cuda:{self.rank}") a, mode, nonlinearity = 0, "fan_in", "leaky_relu" seed = 1234 dtype = torch.double st = sharded_tensor.empty(spec, h, w, dtype=dtype) self.assertEqual(1, len(st.local_shards())) # Clone local tensor to ensure torch.nn.init starts from the same input local_tensor_clone = torch.clone(st.local_shards()[0].tensor) torch.manual_seed(seed) torch.nn.init.kaiming_uniform_(st, a=a, mode=mode, nonlinearity=nonlinearity) torch.manual_seed(seed) torch.nn.init.kaiming_uniform_( local_tensor_clone, a=a, mode=mode, nonlinearity=nonlinearity ) self.assertEqual(local_tensor_clone, st.local_shards()[0].tensor)
import sys import torch from torch.distributed._shard import sharded_tensor from torch.distributed._shard.sharding_spec import ( ChunkShardingSpec, ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) class TestShardedTensorNNInit(ShardedTensorTestBase):
import sys import torch from torch.distributed._shard import sharded_tensor from torch.distributed._shard.sharding_spec import ChunkShardingSpec from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) class TestShardedTensorNNInit(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_shard/sharded_tensor/ops/test_linear.py
test_sharded_linear_errors
def test_sharded_linear_errors(self): for spec in generate_chunk_sharding_specs_for_test(0): fc1 = torch.nn.Linear(10, 10).cuda(self.rank) shard_parameter(fc1, "weight", spec) shard_parameter(fc1, "bias", spec) with self.assertRaisesRegex(TypeError, 'bias needs to be torch.Tensor'): fc1(torch.rand(10, 10).cuda(self.rank)) fc2 = torch.nn.Linear(10, 10).cuda(self.rank) shard_parameter(fc2, "weight", spec) with self.assertRaisesRegex(ValueError, 'Input needs to have at least 1 dim'): fc2(torch.tensor(1).cuda(self.rank)) fc3 = torch.nn.Linear(10, 10).cuda(self.rank) fc3.weight = torch.nn.Parameter(torch.rand(10, 10, 10).cuda(self.rank)) shard_parameter(fc3, "weight", spec) with self.assertRaisesRegex(ValueError, 'Weight needs to have exactly 2 dims'): fc3(torch.rand(10, 10).cuda(self.rank)) fc4 = torch.nn.Linear(10, 10).cuda(self.rank) fc4.bias = torch.nn.Parameter(torch.rand(10, 10).cuda(self.rank)) shard_parameter(fc4, "weight", spec) with self.assertRaisesRegex(ValueError, 'Bias needs to have exactly 1 dim'): fc4(torch.rand(10, 10).cuda(self.rank)) fc5 = torch.nn.Linear(7, 10).cuda(self.rank) shard_parameter(fc5, "weight", spec) with self.assertRaisesRegex(ValueError, 'Input dim: 13 does not match appropriate weight dim: 7'): fc5(torch.rand(20, 10, 13).cuda(self.rank)) fc6 = torch.nn.Linear(10, 10).cuda(self.rank) del fc6.weight enumerable_spec = EnumerableShardingSpec([ ShardMetadata( shard_offsets=[0, 0], shard_sizes=[5, 5], placement="rank:0/cuda:0", ), ShardMetadata( shard_offsets=[0, 5], shard_sizes=[5, 5], placement="rank:1/cuda:1", ), ShardMetadata( shard_offsets=[5, 0], shard_sizes=[5, 5], placement="rank:2/cuda:2", ), ShardMetadata( shard_offsets=[5, 5], shard_sizes=[5, 5], placement="rank:3/cuda:3", ) ]) fc6.weight = empty(enumerable_spec, 10, 10) # Sharded Tensor metadata has parenthesis imbalance issue when using re.compile error_msg = r"torch function 'linear', with args: (?s).* " r"and kwargs: None not supported for ShardedTensor!" with self.assertRaisesRegex(RuntimeError, error_msg): fc6(torch.rand(10, 10).cuda(self.rank)) fc7 = torch.nn.Linear(10, 80).cuda(self.rank) multiple_local_shard_spec = ChunkShardingSpec( dim=0, placements=[ "rank:0/cuda:0", "rank:0/cuda:0", "rank:1/cuda:1", "rank:1/cuda:1", "rank:2/cuda:2", "rank:2/cuda:2", "rank:3/cuda:3", "rank:3/cuda:3", ], ) del fc7.weight fc7.weight = empty(multiple_local_shard_spec, 80, 10) with self.assertRaisesRegex(ValueError, 'Only one local shard supported!'): fc7(torch.rand(10, 10).cuda(self.rank))
import copy import sys import torch import torch.distributed as dist from torch.distributed._shard.api import ( shard_parameter, _collect_local_shard, _reshard_output, ) from torch.distributed._shard.sharded_optim import ( ShardedOptimizer, ) from torch.distributed._shard.sharded_tensor import ( empty, ) from torch.distributed._shard.sharding_spec import ( ChunkShardingSpec, EnumerableShardingSpec, ShardMetadata, ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( clone_module_parameter, generate_chunk_sharding_specs_for_test, generate_local_weight_sharding_params_for_test, ) class TestShardedTensorOpsLinear(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_composable/test_replicate.py
_init_pg
def _init_pg(self): dist.init_process_group( backend="gloo", rank=self.rank, world_size=self.world_size, store=dist.FileStore(self.file_name, self.world_size), )
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateStateDictTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate.py
test_replicate_single_module_save_load
def test_replicate_single_module_save_load(self): """ Tests that replicate() on a single module state_dict matches local module state_dict. """ model = Net() replicate_model = replicate(deepcopy(model)) local_sd = model.state_dict() ddp_sd = replicate_model.state_dict() self._check_state_dict_parity(local_sd, ddp_sd)
def test_replicate_single_module_save_load(self): """ Tests that replicate() on a single module state_dict matches local module state_dict. """ self._init_pg() model = Net() replicate_model = replicate(deepcopy(model)) local_sd = model.state_dict() ddp_sd = replicate_model.state_dict() self._check_state_dict_parity(local_sd, ddp_sd)
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class ReplicateStateDictTest(MultiProcessTestCase):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateStateDictTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_replicate.py
test_replicate_non_root_multiple_save_load
def test_replicate_non_root_multiple_save_load(self): """ Tests tha replicate() on multiple submodules matches local module state_dict. """ model = Net() replicate_model = deepcopy(model) replicate(replicate_model.fc1) replicate(replicate_model.fc2) replicate(replicate_model.fc3) local_sd = model.state_dict() ddp_sd = replicate_model.state_dict() self._check_state_dict_parity(local_sd, ddp_sd)
def test_replicate_non_root_multiple_save_load(self): """ Tests tha replicate() on multiple submodules matches local module state_dict. """ self._init_pg() model = Net() replicate_model = deepcopy(model) replicate(replicate_model.fc1) replicate(replicate_model.fc2) replicate(replicate_model.fc3) local_sd = model.state_dict() ddp_sd = replicate_model.state_dict() self._check_state_dict_parity(local_sd, ddp_sd)
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class ReplicateStateDictTest(MultiProcessTestCase):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateStateDictTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_replicate.py
_init_pg
dist.init_process_group( backend="gloo", rank=self.rank, world_size=self.world_size, store=dist.FileStore(self.file_name, self.world_size), )
def _init_pg(self): dist.init_process_group( backend="gloo", rank=self.rank, world_size=self.world_size, store=dist.FileStore(self.file_name, self.world_size), )
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateStateDictTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_replicate.py
_compare_module
def _compare_module(self, mod, replicate_mod): dist.init_process_group( backend="gloo", rank=self.rank, world_size=self.world_size, store=dist.FileStore(self.file_name, self.world_size), ) local_batch_size = 1 global_batch_size = self.world_size * local_batch_size input = torch.randn(global_batch_size, 2) target = torch.randn(global_batch_size, 4) def step_model(model, input, target): model.train() output = model(input) loss = F.mse_loss(output, target.to(output.device)) loss.backward() for param in model.parameters(): with torch.no_grad(): param -= param.grad param.grad = None for iteration in range(2): step_model(mod, input, target) step_model( replicate_mod, input[ self.rank * local_batch_size : (self.rank + 1) * local_batch_size ], target[ self.rank * local_batch_size : (self.rank + 1) * local_batch_size ], ) self.assertEqual( len(list(mod.parameters())), len(list(replicate_mod.parameters())), ) for i, j in zip(mod.parameters(), replicate_mod.parameters()): self.assertEqual(i, j, rtol=1.3e-06, atol=5e-5) # Shuffle the input so that DDP input is different torch.manual_seed(iteration) input = input[torch.randperm(global_batch_size)]
def _compare_module(self, mod, replicate_mod): local_batch_size = 1 global_batch_size = self.world_size * local_batch_size input = torch.randn(global_batch_size, 2) target = torch.randn(global_batch_size, 2) def step_model(model, input, target): model.train() output = model(input) loss = F.mse_loss(output, target.to(output.device)) loss.backward() for param in model.parameters(): with torch.no_grad(): param -= param.grad param.grad = None for iteration in range(2): step_model(mod, input, target) step_model( replicate_mod, input[ self.rank * local_batch_size : (self.rank + 1) * local_batch_size ], target[ self.rank * local_batch_size : (self.rank + 1) * local_batch_size ], ) self.assertEqual( len(list(mod.parameters())), len(list(replicate_mod.parameters())), ) for i, j in zip(mod.parameters(), replicate_mod.parameters()): self.assertEqual(i, j, rtol=1.3e-06, atol=5e-5) # Shuffle the input so that DDP input is different torch.manual_seed(iteration) input = input[torch.randperm(global_batch_size)]
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.replicate import replicate from torch.testing._internal.common_distributed import MultiProcessTestCase from torch.testing._internal.common_utils import run_tests class ReplicateTest(MultiProcessTestCase):
import os from copy import deepcopy import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._composable.replicate import replicate from torch.distributed._tensor import DTensor from torch.testing._internal.common_distributed import ( MultiProcessTestCase, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests class ReplicateTest(MultiProcessTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_composable/test_compose.py
test_checkpoint_fully_shard_cast_forward_inputs
def test_checkpoint_fully_shard_cast_forward_inputs(self): self.run_subtests( { "checkpoint_strict_submodule": [False, True], }, self._test_checkpoint_fully_shard_cast_forward_inputs, )
import copy import sys from typing import Dict import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import checkpoint, fully_shard, replicate from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.api import MixedPrecision, ShardingStrategy from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeModel, CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import ( SaveForwardInputsModel, skip_if_lt_x_gpu, ) from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, run_tests, TEST_WITH_DEV_DBG_ASAN, ) class TestFSDPCheckpoint(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_compose.py
test_state_dict_fsdp_submodules
instantiate_parametrized_tests(TestFSDPCheckpoint) if __name__ == "__main__": run_tests()
def test_state_dict_fsdp_submodules(self): model = CompositeModel(device=torch.device("cuda")) full_shard_args = {"strategy": ShardingStrategy.FULL_SHARD} no_shard_args = {"strategy": ShardingStrategy.NO_SHARD} model.u1 = fully_shard(model.u1, **full_shard_args) model.u2 = fully_shard(model.u2, **no_shard_args) FSDP.set_state_dict_type( model, StateDictType.SHARDED_STATE_DICT, ) state_dict = model.state_dict() for fqn, tensor in state_dict.items(): if "u1" in fqn: self.assertIsInstance(tensor, ShardedTensor) elif "u2" in fqn: self.assertIsInstance(tensor, torch.Tensor) # Ensure that get_state_dict_type can still correctly get the settings. _ = FSDP.get_state_dict_type(model)
import copy import sys from typing import Dict import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import checkpoint, fully_shard, replicate from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.api import MixedPrecision, ShardingStrategy from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.testing._internal.common_dist_composable import ( CompositeModel, CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import ( SaveForwardInputsModel, skip_if_lt_x_gpu, ) from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, run_tests, TEST_WITH_DEV_DBG_ASAN, ) class TestFSDPCheckpoint(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_composable/test_contract.py
__init__
def __init__(self): super().__init__() self.seq1 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.seq2 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.p = nn.Parameter(torch.randn(10, 10), requires_grad=True) self.b = torch.zeros(1) # buffer
def __init__(self) -> None: super().__init__() self.seq1 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.seq2 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)]) self.p = nn.Parameter(torch.randn(10, 10), requires_grad=True) self.b = torch.zeros(1) # buffer
from copy import deepcopy from typing import Tuple import torch import torch.nn as nn from torch.distributed._composable import _get_registry, contract from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase class ToyModel(nn.Module):
from copy import deepcopy from typing import List, Tuple import torch import torch.nn as nn from torch.distributed._composable import _get_registry, contract from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase class ToyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_shard/sharded_tensor/test_logger.py
test_get_or_create_logger
def test_get_or_create_logger(self): logger = _get_or_create_logger() self.assertIsNotNone(logger) self.assertEqual(1, len(logger.handlers)) self.assertIsInstance(logger.handlers[0], logging.NullHandler)
import logging from torch.distributed._shard.sharded_tensor.logger import _get_or_create_logger from torch.testing._internal.common_utils import run_tests, TestCase class ShardingSpecLoggerTest(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_shard/sharded_tensor/test_megatron_prototype.py
assertEdistNorm
def assertEdistNorm(self, t1, t2): """ Use a normalized euclidean distance measure to validate two tensors are close since comparing each element individually is not a good measure where majority of elements are similar and maybe only a few elements are slightly off. """ dist = torch.sqrt(((t1 - t2) ** 2).sum() / t1.numel()) self.assertTrue(dist.item() <= 0.5)
import copy import sys import torch import torch.distributed as dist from torch.distributed._shard.sharded_optim import ( ShardedOptimizer, ) from torch.distributed._shard.api import ( shard_parameter, _reshard_output, _collect_local_shard ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( clone_module_parameter, generate_chunk_sharding_specs_for_test, generate_local_weight_sharding_params_for_test, ) from torch.testing._internal.distributed._shard.test_common import SimpleMegatronLM class TestShardedTensorMegatronLinear(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/test_megatron_prototype.py
_weight_override
def _weight_override(module_dst, module_src): module_dst.fc1.weight = clone_module_parameter(module_src.fc1, "weight") module_dst.fc1.bias = clone_module_parameter(module_src.fc1, "bias") module_dst.fc2.weight = clone_module_parameter(module_src.fc2, "weight") module_dst.fc2.bias = clone_module_parameter(module_src.fc2, "bias")
import copy import sys import torch import torch.distributed as dist from torch.distributed._shard.sharded_optim import ( ShardedOptimizer, ) from torch.distributed._shard.api import ( shard_parameter, _reshard_output, _collect_local_shard ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( clone_module_parameter, generate_chunk_sharding_specs_for_test, generate_local_weight_sharding_params_for_test, ) from torch.testing._internal.distributed._shard.test_common import SimpleMegatronLM
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/test_megatron_prototype.py
_shard_parameter
def _shard_parameter(module, spec): shard_parameter(module.fc1, "weight", spec[0]) shard_parameter(module.fc2, "weight", spec[1]) # Use same seed. torch.manual_seed(0) local_megatron_lm = SimpleMegatronLM(linear_size, rank=self.rank, dtype=dtype) sharded_megatron_lm = SimpleMegatronLM(linear_size, dtype=dtype) _weight_override(sharded_megatron_lm, local_megatron_lm) # Shard the parameter. First col-wise sharding and then row-wise _shard_parameter(sharded_megatron_lm, spec) # Setup resharding of output. reshard_spec = copy.deepcopy(spec[1]) reshard_spec.placements.sort(key=lambda placement: placement.rank()) reshard_spec.dim = 0 sharded_megatron_lm = _collect_local_shard( _reshard_output(sharded_megatron_lm, reshard_spec) ) torch.manual_seed(self.rank) # inputs different on each rank inp = torch.rand(*input_size, requires_grad=True, device=self.rank, dtype=dtype) # Run local computation local_output = local_megatron_lm(inp) # Compute loss and run backward pass. local_output.sum().backward() # Save and reset input grads. local_input_grad = inp.grad self.assertIsNotNone(inp.grad) inp.grad = None # Run sharded computation sharded_output = sharded_megatron_lm(inp) # Verify local and sharded results self.assertEqual(local_output, sharded_output, atol=1e-3, rtol=1e-6) sharded_output.sum().backward() sharded_input_grad = inp.grad self.assertIsNotNone(inp.grad) # Verify sharded and local grads. self.assertEqual(local_input_grad, sharded_input_grad, atol=1e-3, rtol=1e-6) ( local_weight_grad_fc1, local_weight_grad_fc2, ) = local_megatron_lm.get_weight_grads() local_bias_grad_fc1, local_bias_grad_fc2 = local_megatron_lm.get_bias_grads() # Verify that weights in both layers and biases in the sharded linear has non-None grad. ( sharded_weight_fc1, sharded_weight_fc2, ) = sharded_megatron_lm.get_weights() bias_grad_fc1, bias_grad_fc2 = sharded_megatron_lm.get_bias_grads() self.assertNotEqual(sharded_weight_fc1.grad, None) self.assertNotEqual(sharded_weight_fc2.grad, None) self.assertNotEqual(bias_grad_fc1, None) self.assertNotEqual(bias_grad_fc2, None) # Shard the local linear's weight grad so that we can compare. dist.all_reduce(local_weight_grad_fc1) dist.all_reduce(local_weight_grad_fc2) dist.all_reduce(local_bias_grad_fc1) dist.all_reduce(local_bias_grad_fc2) local_weight_fc1, local_weight_fc2 = local_megatron_lm.get_weights() ( start_pos_fc1, chunk_size_fc1, ) = generate_local_weight_sharding_params_for_test( local_weight_fc1, 0, TEST_GPU_NUM, spec[0], self.rank ) local_grad_narrowed_fc1 = local_weight_grad_fc1.narrow( 0, start_pos_fc1, chunk_size_fc1 ) ( start_pos_fc2, chunk_size_fc2, ) = generate_local_weight_sharding_params_for_test( local_weight_fc2, 1, TEST_GPU_NUM, spec[1], self.rank ) local_grad_narrowed_fc2 = local_weight_grad_fc2.narrow( 1, start_pos_fc2, chunk_size_fc2 ) # Test backward gradient calculation. self.assertEdistNorm(sharded_weight_fc1.grad, local_grad_narrowed_fc1) self.assertEdistNorm(sharded_weight_fc2.grad, local_grad_narrowed_fc2) self.assertEdistNorm(bias_grad_fc1, local_bias_grad_fc1) self.assertEdistNorm(bias_grad_fc2, local_bias_grad_fc2) # Test optimizer. bias_fc1, bias_fc2 = sharded_megatron_lm.get_biases() local_bias_fc1, local_bias_fc2 = local_megatron_lm.get_biases() self.assertEdistNorm(bias_fc1, local_bias_fc1) self.assertEdistNorm(bias_fc2, local_bias_fc2) self.assertEdistNorm(bias_fc1.grad, local_bias_fc1.grad) self.assertEdistNorm(bias_fc2.grad, local_bias_fc2.grad) previous_sharded_weight_fc1 = sharded_weight_fc1.clone() previous_sharded_weight_fc2 = sharded_weight_fc2.clone() previous_bias_fc1 = bias_fc1.clone() previous_bias_fc2 = bias_fc2.clone() optim = torch.optim.SGD(local_megatron_lm.parameters(), lr=0.1) optim.step() sharded_optim = ShardedOptimizer( dict(sharded_megatron_lm.named_parameters()), torch.optim.SGD, lr=0.1, ) sharded_optim.step() local_weight_fc1_narrowed = local_weight_fc1.narrow( 0, start_pos_fc1, chunk_size_fc1 ) local_weight_fc2_narrowed = local_weight_fc2.narrow( 1, start_pos_fc2, chunk_size_fc2 ) # Test weight value after optimizer. self.assertEqual(sharded_weight_fc1.size(), local_weight_fc1_narrowed.size()) self.assertEqual(sharded_weight_fc2.size(), local_weight_fc2_narrowed.size()) self.assertNotEqual(previous_sharded_weight_fc1, sharded_weight_fc1) self.assertNotEqual(previous_sharded_weight_fc2, sharded_weight_fc2) self.assertEdistNorm(sharded_weight_fc1, local_weight_fc1_narrowed) self.assertEdistNorm(sharded_weight_fc2, local_weight_fc2_narrowed) # Test bias value after optimizer. local_bias_fc1, local_bias_fc2 = local_megatron_lm.get_biases() self.assertNotEqual(previous_bias_fc1, bias_fc1) self.assertEdistNorm(bias_fc1, local_bias_fc1) self.assertNotEqual(previous_bias_fc2, bias_fc2) self.assertEdistNorm(bias_fc2, local_bias_fc2)
import copy import sys import torch import torch.distributed as dist from torch.distributed._shard.sharded_optim import ( ShardedOptimizer, ) from torch.distributed._shard.api import ( shard_parameter, _reshard_output, _collect_local_shard ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( clone_module_parameter, generate_chunk_sharding_specs_for_test, generate_local_weight_sharding_params_for_test, ) from torch.testing._internal.distributed._shard.test_common import SimpleMegatronLM
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/sharded_tensor/test_megatron_prototype.py
test_megatron_two_layer_prototype
def test_megatron_two_layer_prototype(self): colwise_sharding_spec = generate_chunk_sharding_specs_for_test(0) rowwise_sharding_spec = generate_chunk_sharding_specs_for_test(1) for spec in zip(colwise_sharding_spec, rowwise_sharding_spec): self._run_megatron_linear(spec, [22, 17], [[17, 12], [12, 29]], torch.float16) self._run_megatron_linear(spec, [28, 21], [[21, 11], [11, 29]], torch.float32) self._run_megatron_linear(spec, [37, 23], [[23, 13], [13, 24]], torch.float64) self._run_megatron_linear(spec, [24, 15], [[15, 14], [14, 20]], torch.float16) # Test multiple input dims self._run_megatron_linear(spec, [10, 22, 17], [[17, 12], [12, 29]], torch.float32) self._run_megatron_linear(spec, [13, 28, 21], [[21, 11], [11, 29]], torch.float16) self._run_megatron_linear(spec, [27, 37, 23], [[23, 13], [13, 24]], torch.float32) self._run_megatron_linear(spec, [100, 24, 15], [[15, 14], [14, 20]], torch.float64) # Test single input dim self._run_megatron_linear(spec, [17], [[17, 12], [12, 29]], torch.float16) self._run_megatron_linear(spec, [21], [[21, 11], [11, 29]], torch.float32) self._run_megatron_linear(spec, [23], [[23, 13], [13, 24]], torch.float64) self._run_megatron_linear(spec, [15], [[15, 14], [14, 20]], torch.float16)
import copy import sys import torch import torch.distributed as dist from torch.distributed._shard.sharded_optim import ( ShardedOptimizer, ) from torch.distributed._shard.api import ( shard_parameter, _reshard_output, _collect_local_shard ) from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( TEST_GPU_NUM, ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( clone_module_parameter, generate_chunk_sharding_specs_for_test, generate_local_weight_sharding_params_for_test, ) from torch.testing._internal.distributed._shard.test_common import SimpleMegatronLM class TestShardedTensorMegatronLinear(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_shard/test_replicated_tensor.py
test_getitem
def test_getitem(self): local_tensor = torch.rand(3, 3, device=self.rank) replicated_tensor = ReplicatedTensor(local_tensor) replicated_tensor_view = replicated_tensor[0] local_tensor_view = local_tensor[0] self.assertIsInstance(replicated_tensor_view, ReplicatedTensor) self.assertEqual(local_tensor_view, replicated_tensor_view)
import io import torch import torch.distributed._shard.sharded_tensor as sharded_tensor import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed._shard import _shard_tensor from torch.distributed._shard.replicated_tensor import ReplicatedTensor from torch.distributed._shard.sharding_spec import ChunkShardingSpec from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import ( gen_binary_op_func ) from torch.testing._internal.distributed._shard.sharded_tensor import TEST_GPU_NUM class TestReplicatedTensor(ShardedTensorTestBase): from torch.nn.parallel._replicated_tensor_ddp_utils import _ddp_replicated_tensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_tensor/debug/test_comm_mode.py
__init__
def __init__(self, device): super().__init__() self.model = MLPModule(device=device)
import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol import torch.nn as nn from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import requires_nccl from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule from torch.testing._internal.distributed.fake_pg import FakeStore c10d_functional = torch.ops.c10d_functional c10d_ops = torch.ops.c10d class WrapperModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode.py
forward
def forward(self, x): x = funcol.all_gather_tensor(x, 0, world_pg) x = funcol.reduce_scatter_tensor(x, "sum", 0, world_pg) out = self.model(x) return funcol.all_reduce(out, "sum", world_pg)
import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol import torch.nn as nn from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import requires_nccl from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule from torch.testing._internal.distributed.fake_pg import FakeStore c10d_functional = torch.ops.c10d_functional c10d_ops = torch.ops.c10d class WrapperModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode.py
test_comm_mode_coalesced
def test_comm_mode_coalesced(self): world_pg = self.world_pg class WrapperModelCoalesced(nn.Module): def __init__(self, device): super().__init__() self.model = MLPModule(device=device) def forward(self, x): x = funcol.all_gather_tensor(x, 0, world_pg) x = funcol.reduce_scatter_tensor(x, "sum", 0, world_pg) out = self.model(x) return funcol.all_reduce_coalesced([out], "sum", world_pg) model = WrapperModelCoalesced(self.device_type) comm_mode = CommDebugMode() with comm_mode: model(torch.randn(20, 10, device=self.device_type)) comm_counts = comm_mode.get_comm_counts() self.assertEqual(comm_mode.get_total_counts(), 3) self.assertEqual(comm_counts[c10d_functional.all_reduce_coalesced], 1) self.assertEqual(comm_counts[c10d_functional.all_gather_into_tensor], 1) self.assertEqual(comm_counts[c10d_functional.reduce_scatter_tensor], 1)
import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol import torch.nn as nn from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import requires_nccl from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule from torch.testing._internal.distributed.fake_pg import FakeStore c10d_functional = torch.ops.c10d_functional c10d_ops = torch.ops.c10d class TestCommMode(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode.py
__init__
def __init__(self, device): super().__init__() self.model = MLPModule(device=device)
import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol import torch.nn as nn from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import requires_nccl from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule from torch.testing._internal.distributed.fake_pg import FakeStore c10d_functional = torch.ops.c10d_functional c10d_ops = torch.ops.c10d class WrapperModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode.py
forward
def forward(self, x): x = funcol.all_gather_tensor(x, 0, world_pg) x = funcol.reduce_scatter_tensor(x, "sum", 0, world_pg) out = self.model(x) return funcol.all_reduce(out, "sum", world_pg)
import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol import torch.nn as nn from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import requires_nccl from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule from torch.testing._internal.distributed.fake_pg import FakeStore c10d_functional = torch.ops.c10d_functional c10d_ops = torch.ops.c10d class WrapperModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode.py
f
def f(x, y): return torch.mm(x, y) comm_mode = CommDebugMode() x = torch.randn(4, 8, requires_grad=True) y = torch.randn(4, 32, requires_grad=True) x_dtensor = DTensor.from_local(x, mesh, [Shard(0)], run_check=False) y_dtensor = DTensor.from_local(y, mesh, [Shard(0)], run_check=False) with comm_mode: f(x_dtensor, y_dtensor) comm_counts = comm_mode.get_comm_counts() self.assertEqual(comm_mode.get_total_counts(), 1) self.assertEqual(comm_counts[c10d_functional.all_reduce], 0) self.assertEqual(comm_counts[c10d_functional.all_gather_into_tensor], 1) self.assertEqual(comm_counts[c10d_functional.reduce_scatter_tensor], 0)
import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol import torch.nn as nn from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import requires_nccl from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule from torch.testing._internal.distributed.fake_pg import FakeStore c10d_functional = torch.ops.c10d_functional c10d_ops = torch.ops.c10d
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode.py
test_comm_mode_with_c10d
def test_comm_mode_with_c10d(self): if not torch.cuda.is_available(): return world_pg = self.world_pg inp = torch.rand(2, 8, 16).cuda() all_gather_out = inp.new_empty(self.world_size * 2, 8, 16) comm_mode = CommDebugMode() # tests c10d all_reduce tracing with comm_mode: dist.all_reduce(inp) self.checksAssert(comm_mode, c10d_ops.allreduce_, 1, 1) # tests c10d all_gather_into_tensor tracing with comm_mode: dist.all_gather_into_tensor(all_gather_out, inp) self.checksAssert(comm_mode, c10d_ops._allgather_base_, 1, 1) # tests c10d reduce_scatter tracing with comm_mode: dist.reduce_scatter_tensor(inp, all_gather_out) self.checksAssert(comm_mode, c10d_ops._reduce_scatter_base_, 1, 1) # tests c10d broadcast tracing with comm_mode: dist.broadcast(inp, 0) self.checksAssert(comm_mode, c10d_ops.broadcast_, 1, 1) # tests c10d gather tracing with comm_mode: dist.gather(inp, None, 0) self.checksAssert(comm_mode, c10d_ops.gather_, 1, 1) # tests c10d reduce tracing with comm_mode: dist.reduce(inp, 0) self.checksAssert(comm_mode, c10d_ops.reduce_, 1, 1) # tests c10d scatter tracing with comm_mode: dist.scatter(inp, None, 0) self.checksAssert(comm_mode, c10d_ops.scatter_, 1, 1) # tests c10d all_gather tracing output_list = [] with comm_mode: dist.all_gather(output_list, inp, None) self.checksAssert(comm_mode, c10d_ops.allgather_, 1, 1) # tests c10d allgather_coalesced_ tracing output_list = [] with comm_mode: dist.all_gather_coalesced(output_list, [inp], None) self.checksAssert(comm_mode, c10d_ops.allgather_coalesced_, 1, 1) # tests c10d allgather_into_tensor_coalesced_ tracing with comm_mode, dist._coalescing_manager(): dist.all_gather_into_tensor(all_gather_out, inp) self.checksAssert(comm_mode, c10d_ops.allgather_into_tensor_coalesced_, 1, 1) # tests c10d allreduce_coalesced with comm_mode: dist.all_reduce_coalesced(inp) self.checksAssert(comm_mode, c10d_ops.allreduce_coalesced_, 1, 1) # tests c10d reduce_scatter_ with comm_mode: dist.reduce_scatter(all_gather_out, [inp]) self.checksAssert(comm_mode, c10d_ops.reduce_scatter_, 1, 1) # tests c10d reduce_scatter_tensor_coalesced with comm_mode as A, dist._coalescing_manager() as B: dist.reduce_scatter_tensor(all_gather_out, inp) self.checksAssert(comm_mode, c10d_ops.reduce_scatter_tensor_coalesced_, 1, 1) # tests c10d alltoall_ with comm_mode: dist.all_to_all([inp], [inp]) self.checksAssert(comm_mode, c10d_ops.alltoall_, 1, 1) # tests c10d alltoall_base_ with comm_mode: dist.all_to_all_single(inp, inp) self.checksAssert(comm_mode, c10d_ops.alltoall_base_, 1, 1)
import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol import torch.nn as nn from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import requires_nccl from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule from torch.testing._internal.distributed.fake_pg import FakeStore c10d_functional = torch.ops.c10d_functional c10d_ops = torch.ops.c10d class TestCommMode(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode_features.py
check_same_set_of_keys
def check_same_set_of_keys(self, dict1, dict2): """ Used to ensure the comm_mode parameter/sharding dictionaries contain the same information produced by the ground truth """ dict1_keys = [] dict2_keys = [] for key in dict1: for nested_key in dict1[key]: dict1_keys.append((key, nested_key)) for key in dict2: for nested_key in dict2[key]: dict2_keys.append((key, nested_key)) self.assertEqual(len(dict1_keys), len(dict2_keys)) for i in range(len(dict1_keys)): self.assertEqual(dict1_keys[i], dict2_keys[i]) # generates the ground truth parameter and sharding info
from typing import Any, Dict import torch from torch.distributed._tensor import DeviceMesh from torch.distributed._tensor.api import distribute_tensor, DTensor from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, MLPStacked, ModelArgs, NUM_DEVICES, skip_unless_torch_gpu, Transformer, with_comms, ) c10d_functional = torch.ops.c10d_functional class TestCommModeFeatures(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/experimental/test_local_map.py
mm_allreduce_forward_decorated
def mm_allreduce_forward_decorated(device_mesh, A, B): partial_sum_tensor = torch.mm(A, B) return funcol.all_reduce(partial_sum_tensor, "sum", device_mesh).wait()
from functools import partial import torch import torch.distributed._functional_collectives as funcol from torch.distributed._tensor import ( distribute_tensor, DTensor, init_device_mesh, Replicate, Shard, ) from torch.distributed._tensor.experimental import local_map from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) funcol_py = torch.ops.c10d_functional row_wise = [Shard(0)] # row-wise sharding placements on 1-d mesh col_wise = [Shard(1)] # col-wise sharding placements on 1-d mesh replicate = [Replicate()] # replicate placements on 1-d mesh
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/experimental/test_local_map.py
mul_forward
def mul_forward(X, scalar): # no device mesh needed since we don't do collective return torch.mul(X, scalar) class TestLocalMap(DTensorTestBase): @property def world_size(self): return 2 # simple correctness check @with_comms def test_local_map_correctness(self): device_mesh = init_device_mesh( device_type=self.device_type, mesh_shape=(self.world_size,) ) comm_mode = CommDebugMode() # Y = X @ W X = torch.randn(16, 8, device=self.device_type, requires_grad=False) W = torch.randn(8, 12, device=self.device_type, requires_grad=False) Y = torch.mm(X, W) X_dt = distribute_tensor( X, device_mesh, col_wise ) # col-wisely sharded X tensor W_dt = distribute_tensor( W, device_mesh, row_wise ) # row-wisely sharded W tensor # Test 1: use the function returned from calling local_map # get the function wrapped with DTensor/Tensor convertion # mm_allreduce_forward is a function that applies to Tensors with manual collective # local_mm_allreduce_forward is the function that does the same but applies to # DTensors' `_local_tensor`. local_mm_allreduce_forward = local_map( mm_allreduce_forward, out_placements=replicate, in_placements=(None, col_wise, row_wise), device_mesh=device_mesh, ) with comm_mode: Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt) # output redistribution to Replicate self.assertEqual(comm_mode.get_total_counts(), 1) # check output placements for placement in Y_dt.placements: self.assertTrue(placement.is_replicate()) # check output value self.assertEqual(Y_dt.to_local(), Y) # Test 2: use the local_map decorator with comm_mode: Y_dt = mm_allreduce_forward_decorated(device_mesh, X_dt, W_dt) # output redistribution to Replicate self.assertEqual(comm_mode.get_total_counts(), 1) # check output placements for placement in Y_dt.placements: self.assertTrue(placement.is_replicate()) # check output value self.assertEqual(Y_dt.to_local(), Y) # check for `out_placements` @with_comms def test_local_map_out_placements(self): # Test 1: wrap out into DTensor w/ `out_placements` device_mesh = init_device_mesh( device_type=self.device_type, mesh_shape=(self.world_size,) ) comm_mode = CommDebugMode() # X.equal(Y) X = torch.randn(8, 8, device=self.device_type, requires_grad=False) Y = torch.randn(8, 8, device=self.device_type, requires_grad=False) X_dt = distribute_tensor(X, device_mesh, row_wise) Y_dt = distribute_tensor(Y, device_mesh, row_wise) local_equal_allgather_forward = local_map( equal_allgather_forward, out_placements=None, ) with comm_mode: equal_dt = local_equal_allgather_forward(device_mesh, X_dt, Y_dt) # a bool self.assertEqual(comm_mode.get_total_counts(), 1) self.assertTrue(not equal_dt) self.assertTrue(not (X.equal(Y))) # Test 2: directly return out if no argument is DTensor # matmul in DDP X = torch.randn( 4 // self.world_size, 4, device=self.device_type, requires_grad=False ) W = torch.randn(4, 4, device=self.device_type, requires_grad=False) local_mm_all_gather_forward = local_map( mm_all_gather_forward, out_placements=row_wise, in_placements=(None, row_wise, replicate), ) with comm_mode: Y = local_mm_all_gather_forward(device_mesh, X, W) self.assertEqual(comm_mode.get_total_counts(), 1) self.assertEqual( comm_mode.get_comm_counts()[funcol_py.all_gather_into_tensor], 1 ) X_replicate = funcol.all_gather_tensor(X, 0, device_mesh).wait() Y_replicate = torch.mm(X_replicate, W) self.assertEqual(Y, Y_replicate) # Y is a torch.Tensor # check for `in_placements` handling @with_comms def test_local_map_in_placements(self): device_mesh = init_device_mesh( device_type=self.device_type, mesh_shape=(self.world_size,) ) comm_mode = CommDebugMode() # Y = X @ W X = torch.randn(16, 8, device=self.device_type, requires_grad=False) W = torch.randn(8, 12, device=self.device_type, requires_grad=False) Y = torch.mm(X, W) X_dt = distribute_tensor( X, device_mesh, row_wise ) # row-wisely sharded X tensor W_dt = distribute_tensor(W, device_mesh, replicate) # replicate W tensor # Test 1: explicitly pass `in_placements` local_mm_forward = local_map( mm_forward, out_placements=row_wise, in_placements=(row_wise, replicate), device_mesh=device_mesh, ) with comm_mode: Y_dt = local_mm_forward(X_dt, W_dt) # no communication should occur in this case self.assertEqual(comm_mode.get_total_counts(), 0) for placement in Y_dt.placements: self.assertTrue(placement.is_shard(dim=0)) self.assertEqual(Y_dt.full_tensor(), Y) # Test 2: `in_placements=None` local_mm_forward = local_map( mm_forward, out_placements=row_wise, device_mesh=device_mesh, ) with comm_mode: Y_dt = local_mm_forward(X_dt, W_dt) self.assertEqual(comm_mode.get_total_counts(), 0) for placement in Y_dt.placements: self.assertTrue(placement.is_shard(dim=0)) self.assertEqual(Y_dt.full_tensor(), Y) # Test 3: `None` placements for non-Tensor input argument # Y = X * 2.0 local_mul_forward = local_map( mul_forward, in_placements=(row_wise, None), out_placements=row_wise, device_mesh=device_mesh, ) Y = torch.mul(X, 2.0) with comm_mode: Y_dt = local_mul_forward(X_dt, 2.0) self.assertEqual(comm_mode.get_total_counts(), 0) for placement in Y_dt.placements: self.assertTrue(placement.is_shard(dim=0)) self.assertEqual(Y_dt.full_tensor(), Y) # Test 4: `None` placements for Tensor input argument local_mm_forward = local_map( mm_forward, out_placements=None, in_placements=(None, None), device_mesh=device_mesh, ) with comm_mode: Y_dt_local = local_mm_forward(X_dt.to_local(), W_dt.to_local()) self.assertEqual(comm_mode.get_total_counts(), 0) self.assertEqual( DTensor.from_local(Y_dt_local, device_mesh, row_wise).full_tensor(), torch.mm(X, W), ) # Test 5: Some placements for Tensor input argument local_mm_forward = local_map( mm_forward, out_placements=None, in_placements=(replicate, row_wise), device_mesh=device_mesh, ) with comm_mode: Y_dt_local = local_mm_forward(X_dt.to_local(), W_dt.to_local()) self.assertEqual(comm_mode.get_total_counts(), 0) self.assertEqual( DTensor.from_local(Y_dt_local, device_mesh, row_wise).full_tensor(), torch.mm(X, W), ) # Test 6: expect error - `None` placements for DTensor input argument local_mm_forward = local_map( mm_forward, out_placements=row_wise, in_placements=(row_wise, None), device_mesh=device_mesh, ) with self.assertRaisesRegex(AssertionError, "expects placements"): Y_dt = local_mm_forward(X_dt, W_dt) # check for `redistribute_inputs` handling @with_comms def test_local_map_redistribute(self): device_mesh = init_device_mesh( device_type=self.device_type, mesh_shape=(self.world_size,) ) comm_mode = CommDebugMode() # Y = X @ W X = torch.randn(16, 8, device=self.device_type, requires_grad=False) W = torch.randn(8, 12, device=self.device_type, requires_grad=False) Y = torch.mm(X, W) X_dt = distribute_tensor( X, device_mesh, row_wise ) # row-wisely sharded X tensor which will be redistributed W_dt = distribute_tensor( W, device_mesh, col_wise ) # col-wisely sharded W tensor which will be redistributed # Test 1: allow input redistribution local_mm_allreduce_forward = local_map( mm_allreduce_forward, out_placements=replicate, in_placements=(None, col_wise, row_wise), device_mesh=device_mesh, redistribute_inputs=True, ) with comm_mode: Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt) # 2 for input redistribution and 1 for output self.assertEqual(comm_mode.get_total_counts(), 3) for placement in Y_dt.placements: self.assertTrue(placement.is_replicate()) self.assertEqual(Y_dt.to_local(), Y) # Test 2: no input redistribution is allowed local_mm_allreduce_forward = local_map( mm_allreduce_forward, out_placements=replicate, in_placements=(None, col_wise, row_wise), device_mesh=device_mesh, redistribute_inputs=False, ) with self.assertRaisesRegex(ValueError, "set redistribute_inputs=True"): Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt) if __name__ == "__main__": run_tests()
from functools import partial import torch import torch.distributed._functional_collectives as funcol from torch.distributed._tensor import ( distribute_tensor, DTensor, init_device_mesh, Replicate, Shard, ) from torch.distributed._tensor.experimental import local_map from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) funcol_py = torch.ops.c10d_functional row_wise = [Shard(0)] # row-wise sharding placements on 1-d mesh col_wise = [Shard(1)] # col-wise sharding placements on 1-d mesh replicate = [Replicate()] # replicate placements on 1-d mesh
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/experimental/test_local_map.py
test_local_map_redistribute
def test_local_map_redistribute(self): device_mesh = init_device_mesh( device_type=self.device_type, mesh_shape=(self.world_size,) ) comm_mode = CommDebugMode() # Y = X @ W X = torch.randn(16, 8, device=self.device_type, requires_grad=False) W = torch.randn(8, 12, device=self.device_type, requires_grad=False) Y = torch.mm(X, W) X_dt = distribute_tensor( X, device_mesh, row_wise ) # row-wisely sharded X tensor which will be redistributed W_dt = distribute_tensor( W, device_mesh, col_wise ) # col-wisely sharded W tensor which will be redistributed # Test 1: allow input redistribution local_mm_allreduce_forward = local_map( mm_allreduce_forward, out_placements=replicate, in_placements=(None, col_wise, row_wise), device_mesh=device_mesh, redistribute_inputs=True, ) with comm_mode: Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt) # 2 for input redistribution and 1 for output self.assertEqual(comm_mode.get_total_counts(), 3) for placement in Y_dt.placements: self.assertTrue(placement.is_replicate()) self.assertEqual(Y_dt.to_local(), Y) # Test 2: no input redistribution is allowed local_mm_allreduce_forward = local_map( mm_allreduce_forward, out_placements=replicate, in_placements=(None, col_wise, row_wise), device_mesh=device_mesh, redistribute_inputs=False, ) with self.assertRaisesRegex(ValueError, "set redistribute_inputs=True"): Y_dt = local_mm_allreduce_forward(device_mesh, X_dt, W_dt)
from functools import partial import torch import torch.distributed._functional_collectives as funcol from torch.distributed._tensor import ( distribute_tensor, DTensor, init_device_mesh, Replicate, Shard, ) from torch.distributed._tensor.experimental import local_map from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) funcol_py = torch.ops.c10d_functional row_wise = [Shard(0)] # row-wise sharding placements on 1-d mesh col_wise = [Shard(1)] # col-wise sharding placements on 1-d mesh replicate = [Replicate()] # replicate placements on 1-d mesh class TestLocalMap(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/experimental/test_register_sharding.py
test_argmax
def test_argmax(self): @register_sharding(aten.argmax.default) def custom_argmax_sharding(x, dim, keepdim): acceptable_shardings = [] all_replicate = ([Replicate()], [Replicate(), None, None]) acceptable_shardings.append(all_replicate) if keepdim: for sharding_dim in range(x.ndim): if sharding_dim != dim: all_sharded = ( [Shard(sharding_dim)], [Shard(sharding_dim), None, None], ) acceptable_shardings.append(all_sharded) return acceptable_shardings # check if the RuntimeSchemaInfo is derived correctly # when the first int arg is optional schema_info = DTensor._op_dispatcher.sharding_propagator.op_to_schema_info[ aten.argmax.default ] self.assertEqual(schema_info.static_argnum, 1) device_mesh = self.build_device_mesh() x = torch.rand(8, 12, device=self.device_type) dist_x = distribute_tensor(x, device_mesh, [Shard(0)]) local_y = torch.argmax(x, dim=1, keepdim=True) dist_y = torch.argmax(dist_x, dim=1, keepdim=True) self.assertTrue(dist_y.placements[0].is_shard(dim=0)) self.assertEqual(dist_y.full_tensor(), local_y)
import itertools import torch from torch.distributed._tensor import distribute_tensor, DTensor, Replicate, Shard from torch.distributed._tensor.experimental import register_sharding from torch.distributed._tensor.placement_types import DTensorSpec from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) aten = torch.ops.aten class TestRegisterSharding(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/experimental/test_register_sharding.py
custom_argmax_sharding
def custom_argmax_sharding(x, dim, keepdim): acceptable_shardings = [] all_replicate = ([Replicate()], [Replicate(), None, None]) acceptable_shardings.append(all_replicate) if keepdim: for sharding_dim in range(x.ndim): if sharding_dim != dim: all_sharded = ( [Shard(sharding_dim)], [Shard(sharding_dim), None, None], ) acceptable_shardings.append(all_sharded) return acceptable_shardings # check if the RuntimeSchemaInfo is derived correctly # when the first int arg is optional schema_info = DTensor._op_dispatcher.sharding_propagator.op_to_schema_info[ aten.argmax.default ] self.assertEqual(schema_info.static_argnum, 1) device_mesh = self.build_device_mesh() x = torch.rand(8, 12, device=self.device_type) dist_x = distribute_tensor(x, device_mesh, [Shard(0)]) local_y = torch.argmax(x, dim=1, keepdim=True) dist_y = torch.argmax(dist_x, dim=1, keepdim=True) self.assertTrue(dist_y.placements[0].is_shard(dim=0)) self.assertEqual(dist_y.full_tensor(), local_y)
import itertools import torch from torch.distributed._tensor import distribute_tensor, DTensor, Replicate, Shard from torch.distributed._tensor.experimental import register_sharding from torch.distributed._tensor.placement_types import DTensorSpec from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) aten = torch.ops.aten
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_comm_mode_features.py
test_transformer_module_tracing
def test_transformer_module_tracing(self, is_seq_parallel=False): """ tests module-level tracing for more complicated transformer module and ensures that comm_module depth and tracing dictionaries correctly reset """ device_mesh = DeviceMesh( self.device_type, torch.arange(0, NUM_DEVICES), ) inp_size = [8, 10] torch.manual_seed(0) inp = torch.rand(*inp_size, device=self.device_type) model = MLPModule(self.device_type) parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), } model = parallelize_module(model, device_mesh, parallelize_plan) comm_mode = CommDebugMode() with comm_mode: self.assertEqual( len(comm_mode.advanced_module_tracker.module_helper_dict), 1 ) self.assertEqual( comm_mode.comm_module_counts, {"Global": {"forward": {}, "backward": {}}}, ) output_tp = model(inp) model_args = ModelArgs(dropout_p=0.0) model2 = Transformer(model_args).to(device=self.device_type) model2 = Transformer.parallelize(model2, device_mesh, is_seq_parallel) inp_size = [8, 8] inp = torch.randint(model_args.vocab_size, inp_size, device=self.device_type) inp = distribute_tensor(inp, device_mesh=device_mesh) comm_mode = CommDebugMode() with comm_mode: output = model2(inp) # checks to see if all collectives were correctly traced at the module-level self.assertEqual( comm_mode.comm_module_counts["Global"]["forward"][ c10d_functional.all_reduce ], 6, ) self.assertEqual( comm_mode.comm_module_counts["Global"]["forward"][ c10d_functional.all_gather_into_tensor ], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer"]["forward"][ c10d_functional.all_reduce ], 6, ) self.assertEqual( comm_mode.comm_module_counts["Transformer"]["forward"][ c10d_functional.all_gather_into_tensor ], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.tok_embeddings"]["forward"][ c10d_functional.all_reduce ], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.pos_embeddings"]["forward"][ c10d_functional.all_reduce ], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.0"]["forward"][ c10d_functional.all_reduce ], 2, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.0.attention"]["forward"][ c10d_functional.all_reduce ], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.0.attention.wo"][ "forward" ][c10d_functional.all_reduce], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.0.feed_forward"][ "forward" ][c10d_functional.all_reduce], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.0.feed_forward.w2"][ "forward" ][c10d_functional.all_reduce], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.1"]["forward"][ c10d_functional.all_reduce ], 2, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.1.attention"]["forward"][ c10d_functional.all_reduce ], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.1.attention.wo"][ "forward" ][c10d_functional.all_reduce], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.1.feed_forward"][ "forward" ][c10d_functional.all_reduce], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.layers.1.feed_forward.w2"][ "forward" ][c10d_functional.all_reduce], 1, ) self.assertEqual( comm_mode.comm_module_counts["Transformer.output"]["forward"][ c10d_functional.all_gather_into_tensor ], 1, )
from typing import Any, Dict import torch from torch.distributed._tensor import DeviceMesh from torch.distributed._tensor.api import distribute_tensor, DTensor from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, MLPStacked, ModelArgs, NUM_DEVICES, skip_unless_torch_gpu, Transformer, with_comms, ) c10d_functional = torch.ops.c10d_functional class TestCommModeFeatures(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_op_coverage.py
forward
def forward(self, x): return torch.sigmoid(self.net2(self.relu(self.net1(x))))
import torch import torch.nn as nn from torch.distributed.tensor.debug._op_coverage import get_inductor_decomp_graphs from torch.testing._internal.common_utils import run_tests, TestCase class SimpleMLP(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/debug/test_op_coverage.py
test_trace_with_inductor_decomp
def test_trace_with_inductor_decomp(self): model = SimpleMLP() args = (torch.randn(8, 50),) kwargs = {} graphs = get_inductor_decomp_graphs(model, args, kwargs) assert len(graphs) == 2, "Expect fwd + bwd graphs" self.assertIsInstance(graphs[0], torch.fx.GraphModule) self.assertIsInstance(graphs[1], torch.fx.GraphModule)
import torch import torch.nn as nn from torch.distributed.tensor.debug._op_coverage import get_inductor_decomp_graphs from torch.testing._internal.common_utils import run_tests, TestCase class TestOpCoverage(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added