library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/distributed/_tensor/experimental/test_local_map.py
|
equal_allgather_forward
|
def equal_allgather_forward(device_mesh, X, Y):
eq = torch.tensor([torch.equal(X, Y)], device=X.device)
eq_gather = funcol.all_gather_tensor(eq, 0, device_mesh)
return torch.all(eq_gather).item()
|
from functools import partial
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import (
distribute_tensor,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed._tensor.experimental import local_map
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
funcol_py = torch.ops.c10d_functional
row_wise = [Shard(0)] # row-wise sharding placements on 1-d mesh
col_wise = [Shard(1)] # col-wise sharding placements on 1-d mesh
replicate = [Replicate()] # replicate placements on 1-d mesh
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/experimental/test_local_map.py
|
mm_all_gather_forward
|
def mm_all_gather_forward(device_mesh, A, B):
local_mm_result = torch.mm(A, B)
return funcol.all_gather_tensor(local_mm_result, 0, device_mesh).wait()
|
from functools import partial
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import (
distribute_tensor,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed._tensor.experimental import local_map
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
funcol_py = torch.ops.c10d_functional
row_wise = [Shard(0)] # row-wise sharding placements on 1-d mesh
col_wise = [Shard(1)] # col-wise sharding placements on 1-d mesh
replicate = [Replicate()] # replicate placements on 1-d mesh
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/experimental/test_local_map.py
|
mm_forward
|
def mm_forward(A, B): # no device mesh needed since we don't do collective
return torch.mm(A, B)
|
from functools import partial
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import (
distribute_tensor,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed._tensor.experimental import local_map
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
funcol_py = torch.ops.c10d_functional
row_wise = [Shard(0)] # row-wise sharding placements on 1-d mesh
col_wise = [Shard(1)] # col-wise sharding placements on 1-d mesh
replicate = [Replicate()] # replicate placements on 1-d mesh
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/debug/test_comm_mode.py
|
tearDown
|
def tearDown(self):
super().tearDown()
dist.destroy_process_group()
|
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import requires_nccl
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
c10d_functional = torch.ops.c10d_functional
c10d_ops = torch.ops.c10d
class TestCommMode(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/debug/test_comm_mode.py
|
setUp
|
def setUp(self):
super().setUp()
self.world_size = 2
store = FakeStore()
dist.init_process_group(
backend="fake", rank=1, world_size=self.world_size, store=store
)
self.device_type = "cuda" if torch.cuda.is_available() else "cpu"
self.world_pg = dist.distributed_c10d._get_default_group()
|
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import requires_nccl
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
c10d_functional = torch.ops.c10d_functional
c10d_ops = torch.ops.c10d
class TestCommMode(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/debug/test_comm_mode.py
|
checksAssert
|
def checksAssert(self, comm_mode, key, expected_value, expected_total_value):
comm_counts = comm_mode.get_comm_counts()
self.assertEqual(comm_mode.get_total_counts(), expected_total_value)
self.assertEqual(comm_counts[key], expected_value)
return
|
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import requires_nccl
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
c10d_functional = torch.ops.c10d_functional
c10d_ops = torch.ops.c10d
class TestCommMode(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/debug/test_comm_mode.py
|
test_comm_mode
|
def test_comm_mode(self):
world_pg = self.world_pg
class WrapperModel(nn.Module):
def __init__(self, device):
super().__init__()
self.model = MLPModule(device=device)
def forward(self, x):
x = funcol.all_gather_tensor(x, 0, world_pg)
x = funcol.reduce_scatter_tensor(x, "sum", 0, world_pg)
out = self.model(x)
return funcol.all_reduce(out, "sum", world_pg)
model = WrapperModel(self.device_type)
comm_mode = CommDebugMode()
with comm_mode:
model(torch.randn(20, 10, device=self.device_type))
comm_counts = comm_mode.get_comm_counts()
self.assertEqual(comm_mode.get_total_counts(), 3)
self.assertEqual(comm_counts[c10d_functional.all_reduce], 1)
self.assertEqual(comm_counts[c10d_functional.all_gather_into_tensor], 1)
self.assertEqual(comm_counts[c10d_functional.reduce_scatter_tensor], 1)
|
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import requires_nccl
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
c10d_functional = torch.ops.c10d_functional
c10d_ops = torch.ops.c10d
class TestCommMode(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_shard/sharded_tensor/test_sharded_tensor.py
|
test_sub_process_group_placement_validation
|
def test_sub_process_group_placement_validation(self):
world_pg = dist.GroupMember.WORLD
self.assertIsNotNone(world_pg)
rank = dist.get_rank()
sub_group_sz = 2
sub_pg_ranks = [r for r in range(4) if r % sub_group_sz == rank % sub_group_sz]
sub_pg = dist.new_group(
sub_pg_ranks,
backend=dist.get_backend(world_pg),
use_local_synchronization=True,
)
dist.barrier(sub_pg)
for r in sub_pg_ranks:
_parse_and_validate_remote_device(
sub_pg, _remote_device(f"rank:{r}/cuda:{r % sub_group_sz}")
)
|
import copy
import io
import itertools
import math
import pickle
import sys
from typing import List
import torch
import torch.distributed as dist
from torch.distributed import distributed_c10d, rpc
from torch.distributed._shard import sharded_tensor
from torch.distributed._shard.api import (
_collect_local_shard,
_reshard_output,
_shard_tensor,
load_with_process_group,
shard_parameter,
)
from torch.distributed._shard.sharded_tensor import (
custom_sharded_op_impl,
pre_load_state_dict_hook,
Shard,
ShardedTensor,
ShardedTensorBase,
ShardedTensorMetadata,
state_dict_hook,
)
from torch.distributed._shard.sharded_tensor.api import (
_create_tensor_from_params,
TensorProperties,
)
from torch.distributed._shard.sharded_tensor.utils import (
_parse_and_validate_remote_device,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardMetadata,
)
from torch.distributed.remote_device import _remote_device
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
spawn_threads_and_init_comms,
tp_transports,
)
from torch.testing._internal.common_utils import (
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
MyShardedModel1,
)
from torch.distributed._shard.sharding_spec.api import custom_sharding_spec_op
class TestShardedTensorSubGroupInit(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_shard/sharded_tensor/test_sharded_tensor.py
|
test_non_contiguous_local_shards
|
run_tests()
|
def test_non_contiguous_local_shards(self):
st_metadata: ShardedTensorMetadata = ShardedTensorMetadata(
shards_metadata=[
ShardMetadata(
shard_offsets=[0, 0], shard_sizes=[2, 2], placement="rank:0/cpu"
),
ShardMetadata(
shard_offsets=[2, 0], shard_sizes=[2, 2], placement="rank:1/cpu"
),
],
size=torch.Size([4, 2]),
)
st_local_shards: List[Shard] = []
src = torch.randn(4, 2)
for shard_metadata in st_metadata.shards_metadata:
offsets = shard_metadata.shard_offsets
sizes = shard_metadata.shard_sizes
st_local_shards.append(
Shard(
tensor=src[
offsets[0] : offsets[0] + sizes[0],
offsets[1] : offsets[1] + sizes[1],
],
metadata=shard_metadata,
)
)
ShardedTensorBase._init_from_local_shards_and_global_metadata(
local_shards=st_local_shards,
sharded_tensor_metadata=st_metadata,
)
|
import copy
import io
import itertools
import math
import pickle
import sys
from typing import List
import torch
import torch.distributed as dist
from torch.distributed import distributed_c10d, rpc
from torch.distributed._shard import sharded_tensor
from torch.distributed._shard.api import (
_collect_local_shard,
_reshard_output,
_shard_tensor,
load_with_process_group,
shard_parameter,
)
from torch.distributed._shard.sharded_tensor import (
custom_sharded_op_impl,
pre_load_state_dict_hook,
Shard,
ShardedTensor,
ShardedTensorBase,
ShardedTensorMetadata,
state_dict_hook,
)
from torch.distributed._shard.sharded_tensor.api import (
_create_tensor_from_params,
TensorProperties,
)
from torch.distributed._shard.sharded_tensor.utils import (
_parse_and_validate_remote_device,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardMetadata,
)
from torch.distributed.remote_device import _remote_device
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
spawn_threads_and_init_comms,
tp_transports,
)
from torch.testing._internal.common_utils import (
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
MyShardedModel1,
)
from torch.distributed._shard.sharding_spec.api import custom_sharding_spec_op
class TestCreateTensorNoProcessGroupMode(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/_tensor/test_device_mesh.py
|
test_eligible_default_pg_for_mesh
|
def test_eligible_default_pg_for_mesh(self):
mesh_tensor = torch.arange(self.world_size).reshape(2, -1)
mesh = DeviceMesh(self.device_type, mesh_tensor)
|
import os
import sys
import torch
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import (
get_global_rank,
get_world_size,
is_initialized,
new_group,
ProcessGroup,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import TEST_SKIPS
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_tensor/test_device_mesh.py
|
test_ineligible_default_pg_for_mesh
|
def test_ineligible_default_pg_for_mesh(self):
device_type, backend = _get_device_type_and_backend()
# skip the test if not enough GPUs
if backend == "nccl" and torch.cuda.device_count() < self.world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
_set_env_var(world_size=self.world_size, rank=self.rank)
# missing ranks
mesh_tensor = torch.arange(self.world_size - 2).reshape(2, -1)
with self.assertRaisesRegex(RuntimeError, "DeviceMesh must include every process in WORLD"):
mesh = DeviceMesh(device_type, mesh_tensor)
# mesh ranks are not unique
mesh_tensor = torch.arange(self.world_size).reshape(2, -1)
mesh_tensor[0][1] = 2
with self.assertRaisesRegex(RuntimeError, "DeviceMesh cannot have duplicate values"):
mesh = DeviceMesh(device_type, mesh_tensor)
# mesh ranks don't start from 0
mesh_tensor = torch.arange(start=1, end=(self.world_size + 1)).reshape(2, -1)
with self.assertRaisesRegex(RuntimeError, "DeviceMesh ranks must start from 0"):
mesh = DeviceMesh(device_type, mesh_tensor)
# mesh ranks don't increment correctly
mesh_tensor = torch.arange(start=0, end=(2 * self.world_size), step=2).reshape(2, -1)
with self.assertRaisesRegex(RuntimeError, "DeviceMesh should have all ranks of WORLD"):
mesh = DeviceMesh(device_type, mesh_tensor)
|
import os
import sys
import torch
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import (
get_global_rank,
get_world_size,
is_initialized,
new_group,
ProcessGroup,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import TEST_SKIPS
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_tensor/test_device_mesh.py
|
test_device_mesh_dim_groups_error
|
def test_device_mesh_dim_groups_error(self):
# construct a two dimension subgroups
dim_groups = []
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim_group_ranks in expected_ranks_by_dim:
for subgroup_ranks in dim_group_ranks:
subgroup = new_group(ranks=subgroup_ranks)
if self.rank in subgroup_ranks:
dim_groups.append(subgroup)
if len(dim_groups) > 0:
# dim_groups is not a list
self.assertRaises(
RuntimeError,
DeviceMesh,
self.device_type,
[[0, 1], [2, 3]],
dim_groups=dim_groups[0],
)
# dim_groups is a list, but not a list of ProcessGroup
self.assertRaises(
RuntimeError,
DeviceMesh,
self.device_type,
[[0, 1], [2, 3]],
dim_groups=[dim_groups[0], "dummy"],
)
# dim_groups has incorrect length
self.assertRaises(
RuntimeError,
DeviceMesh,
self.device_type,
[[0, 1], [2, 3]],
dim_groups=[dim_groups[0]],
)
|
import os
import sys
import torch
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import (
get_global_rank,
get_world_size,
is_initialized,
new_group,
ProcessGroup,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import TEST_SKIPS
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_tensor/test_device_mesh.py
|
test_device_mesh_hash
|
def test_device_mesh_hash(self):
mesh_tensor_2d = torch.arange(8).reshape(4, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor_2d)
mesh2 = DeviceMesh(self.device_type, mesh_tensor_2d)
self.assertNotEqual(hash(mesh), hash(mesh2))
mesh_tensor_3d = torch.arange(8).reshape(2, 2, 2)
mesh3 = DeviceMesh(self.device_type, mesh_tensor_3d)
self.assertNotEqual(hash(mesh), hash(mesh3))
self.assertNotEqual(hash(mesh2), hash(mesh3))
|
import os
import sys
import torch
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import (
get_global_rank,
get_world_size,
is_initialized,
new_group,
ProcessGroup,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import TEST_SKIPS
class DeviceMeshTestNDim(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_shard/sharding_spec/test_sharding_spec.py
|
test_custom_sharding_spec_shard_tensor
|
def test_custom_sharding_spec_shard_tensor(self):
""" Test custom spec can be invoked from the
_shard_tensor callsite.
"""
ranks = [
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
]
grid_spec = GridShardingSpec(
grid_size=2,
placements=ranks
)
with self.assertRaisesRegex(NotImplementedError, 'not implemented'):
_shard_tensor(torch.randn(8, 8), grid_spec)
|
def test_custom_sharding_spec_shard_tensor(self):
"""Test custom spec can be invoked from the
_shard_tensor callsite.
"""
ranks = [
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
]
grid_spec = GridShardingSpec(grid_size=2, placements=ranks)
with self.assertRaisesRegex(NotImplementedError, "not implemented"):
_shard_tensor(torch.randn(8, 8), grid_spec)
|
from typing import List, Union
from dataclasses import dataclass
import copy
import torch
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.distributed._shard import sharded_tensor, _shard_tensor
from torch.distributed._shard.sharding_spec import (
ShardingSpec,
ChunkShardingSpec,
DevicePlacementSpec,
EnumerableShardingSpec,
ShardMetadata,
_infer_sharding_spec_from_shards_metadata,
)
from torch.distributed._shard.sharded_tensor import (
TensorProperties,
ShardedTensor,
ShardedTensorMetadata,
)
from torch.distributed._shard.sharding_spec._internals import (
check_tensor,
get_split_size,
get_chunked_dim_size,
get_chunk_sharding_params,
validate_non_overlapping_shards_metadata,
)
from torch.testing._internal.common_utils import (
run_tests,
sandcastle_skip_if,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
class TestCustomShardingSpec(ShardedTensorTestBase):
|
import copy
from dataclasses import dataclass
from typing import List, Union
import torch
from torch.distributed._shard import _shard_tensor, sharded_tensor
from torch.distributed._shard.sharded_tensor import (
ShardedTensor,
ShardedTensorMetadata,
TensorProperties,
)
from torch.distributed._shard.sharding_spec import (
_infer_sharding_spec_from_shards_metadata,
ChunkShardingSpec,
DevicePlacementSpec,
EnumerableShardingSpec,
ShardingSpec,
ShardMetadata,
)
from torch.distributed._shard.sharding_spec._internals import (
check_tensor,
get_chunk_sharding_params,
get_chunked_dim_size,
get_split_size,
validate_non_overlapping_shards_metadata,
)
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
)
class TestCustomShardingSpec(ShardedTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_shard/test_partial_tensor.py
|
test_partial_tensor_reshard_errors
|
def test_partial_tensor_reshard_errors(self):
enumerable_sharding_spec = EnumerableShardingSpec(
[
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="rank:0/cuda:0",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[5, 5],
placement="rank:1/cuda:1",
),
]
)
with self.assertRaisesRegex(
NotImplementedError, "Only ChunkShardingSpec supported for reshard."
):
self._run_partial_tensor_n_reshard(
enumerable_sharding_spec, [13, 21], 4, dist.ReduceOp.SUM
)
self._run_partial_tensor_n_reshard(
enumerable_sharding_spec, [12, 22], 4, dist.ReduceOp.MAX
)
specs = _chunk_sharding_specs_list_for_test([0], seed=7)
spec = specs[0]
with self.assertRaisesRegex(
NotImplementedError, "Only real partial tensor supported for reshard."
):
self._run_partial_tensor_n_reshard(
spec, [13, 21], 4, dist.ReduceOp.SUM, dtype=torch.cfloat
)
self._run_partial_tensor_n_reshard(
spec, [12, 22], 4, dist.ReduceOp.MAX, dtype=torch.cfloat
)
|
import sys
import torch
import torch.distributed as dist
from torch.distributed._shard.partial_tensor import (
_PartialTensor,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardMetadata,
)
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
TEST_GPU_NUM
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
)
class TestPartialTensorReshard(ShardedTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_shard/test_partial_tensor.py
|
test_cat_errors
|
def test_cat_errors(self):
with self.assertRaisesRegex(
RuntimeError, 'All inputs need to be an instance of _PartialTensor'
):
torch.cat([_PartialTensor(torch.rand(10)), torch.rand(10)])
with self.assertRaisesRegex(
RuntimeError, 'reduce_ops need to be the same'
):
torch.cat([_PartialTensor(torch.rand(10)), _PartialTensor(torch.rand(10), reduce_op=dist.ReduceOp.MAX)])
with self.assertRaisesRegex(
RuntimeError, '"out" kwarg is not supported'
):
torch.cat([_PartialTensor(torch.rand(10)), _PartialTensor(torch.rand(10))], out=torch.rand(10))
|
import sys
import torch
import torch.distributed as dist
from torch.distributed._shard.partial_tensor import (
_PartialTensor,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardMetadata,
)
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
TEST_GPU_NUM
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
)
class TestPartialTensorOps(ShardedTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_shard/sharding_plan/test_sharding_plan.py
|
test_shard_module_sub_process_group
|
def test_shard_module_sub_process_group(self):
megatron_lm = SimpleMegatronLM([[17, 12], [12, 29]], rank=self.rank)
colwise_sharding_spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:2",
"rank:1/cuda:3",
],
)
rowwise_sharding_spec = ChunkShardingSpec(
dim=1,
placements=[
"rank:0/cuda:2",
"rank:1/cuda:3",
],
)
sharding_plan = ShardingPlan(
plan={
"fc1.weight": colwise_sharding_spec,
"fc2.weight": rowwise_sharding_spec
}
)
pg = dist.new_group([2, 3])
if self.rank >= 2:
shard_module(megatron_lm, sharding_plan, process_group=pg)
|
def test_shard_module_sub_process_group(self):
megatron_lm = SimpleMegatronLM([[17, 12], [12, 29]], rank=self.rank)
colwise_sharding_spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
rowwise_sharding_spec = ChunkShardingSpec(
dim=1,
placements=[
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
sharding_plan = ShardingPlan(
plan={
"fc1.weight": colwise_sharding_spec,
"fc2.weight": rowwise_sharding_spec,
}
)
pg = dist.new_group([2, 3])
if self.rank >= 2:
shard_module(megatron_lm, sharding_plan, process_group=pg)
|
import sys
import copy
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.distributed._shard.sharded_optim import (
ShardedOptimizer,
)
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.distributed._shard import shard_module
from torch.distributed._shard.sharding_plan import ShardingPlan, ShardingPlanner
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
TEST_GPU_NUM,
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import (
generate_chunk_sharding_specs_for_test,
generate_local_weight_sharding_params_for_test,
)
from torch.testing._internal.distributed._shard.test_common import SimpleMegatronLM
class TestShardingPlan(ShardedTensorTestBase):
|
import sys
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard import shard_module
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._shard.sharding_plan import ShardingPlan, ShardingPlanner
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
TEST_GPU_NUM,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import (
generate_chunk_sharding_specs_for_test,
)
from torch.testing._internal.distributed._shard.test_common import SimpleMegatronLM
class TestShardingPlan(ShardedTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_tensor/test_api.py
|
input_fn
|
def input_fn(inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
|
def input_fn(mod, inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_tensor/test_api.py
|
output_fn
|
def output_fn(outputs, device_mesh):
assert isinstance(outputs, DTensor)
return outputs.to_local()
replica_module = distribute_module(
module_to_replicate,
device_mesh,
input_fn=input_fn,
output_fn=output_fn,
)
input_tensor = torch.randn(5, 20, device=self.device_type)
local_out = replica_module(input_tensor)
self.assertIsInstance(local_out, torch.Tensor)
self.assertNotIsInstance(local_out, DTensor)
# full replicate (even on inputs)
model = MyModel(10, 10, device=self.device_type)
|
def output_fn(mod, outputs, device_mesh):
assert isinstance(outputs, DTensor)
return outputs.to_local()
replica_module = distribute_module(
module_to_replicate,
device_mesh,
input_fn=input_fn,
output_fn=output_fn,
)
input_tensor = torch.randn(5, 20, device=self.device_type)
local_out = replica_module(input_tensor)
self.assertIsInstance(local_out, torch.Tensor)
self.assertNotIsInstance(local_out, DTensor)
# full replicate (even on inputs)
model = MyModel(10, 10, device=self.device_type)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_tensor/test_api.py
|
replicate_input_fn
|
def replicate_input_fn(inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Replicate()])
replica_model = distribute_module(
model,
device_mesh,
input_fn=replicate_input_fn,
)
input = torch.randn(10, 10, requires_grad=True)
output = replica_model(input)
output.sum().backward()
param_grad = list(replica_model.parameters())[0].grad
self.assertTrue(isinstance(param_grad, DTensor))
self.assertTrue(isinstance(param_grad.placements[0], Replicate))
|
def replicate_input_fn(mod, inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Replicate()])
replica_model = distribute_module(
model,
device_mesh,
input_fn=replicate_input_fn,
)
input = torch.randn(10, 10, requires_grad=True)
output = replica_model(input)
output.sum().backward()
param_grad = next(iter(replica_model.parameters())).grad
self.assertTrue(isinstance(param_grad, DTensor))
self.assertTrue(isinstance(param_grad.placements[0], Replicate))
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_tensor/test_api.py
|
input_fn
|
def input_fn(inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
|
def input_fn(mod, inputs, device_mesh):
return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_tensor/test_api.py
|
output_fn
|
def output_fn(outputs, device_mesh):
assert isinstance(outputs, DTensor)
return outputs.to_local()
replica_module = distribute_module(
module_to_replicate,
device_mesh,
input_fn=input_fn,
output_fn=output_fn,
)
input_tensor = torch.randn(5, 20, device=self.device_type)
local_out = replica_module(input_tensor)
self.assertIsInstance(local_out, torch.Tensor)
self.assertNotIsInstance(local_out, DTensor)
# full replicate (even on inputs)
model = MyModel(10, 10, device=self.device_type)
|
def output_fn(mod, outputs, device_mesh):
assert isinstance(outputs, DTensor)
return outputs.to_local()
replica_module = distribute_module(
module_to_replicate,
device_mesh,
input_fn=input_fn,
output_fn=output_fn,
)
input_tensor = torch.randn(5, 20, device=self.device_type)
local_out = replica_module(input_tensor)
self.assertIsInstance(local_out, torch.Tensor)
self.assertNotIsInstance(local_out, DTensor)
# full replicate (even on inputs)
model = MyModel(10, 10, device=self.device_type)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_tensor/experimental/test_tp_transform.py
|
__init__
|
def __init__(self, num_mlps=3, bias=True):
super().__init__()
self.mlps = torch.nn.ModuleList()
for _ in range(num_mlps):
self.mlps.append(
torch.nn.Sequential(
torch.nn.Linear(6, 18),
torch.nn.ReLU(),
torch.nn.Linear(18, 6, bias=bias),
)
)
|
from collections import defaultdict
from typing import Dict
import torch
from torch.distributed._tensor.experimental._tp_transform import (
tensor_parallel_transformation,
)
from torch.distributed.tensor.parallel.style import (
ColwiseParallel,
ParallelStyle,
RowwiseParallel,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
class MLPListModule(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/experimental/test_tp_transform.py
|
forward
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = torch.chunk(x, 2, dim=1)[0]
for mlp in self.mlps:
x = mlp(x)
return x + torch.ones_like(x)
|
from collections import defaultdict
from typing import Dict
import torch
from torch.distributed._tensor.experimental._tp_transform import (
tensor_parallel_transformation,
)
from torch.distributed.tensor.parallel.style import (
ColwiseParallel,
ParallelStyle,
RowwiseParallel,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
class MLPListModule(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/experimental/test_tp_transform.py
|
test_tp_transform_no_bias
|
def test_tp_transform_no_bias(self):
torch.manual_seed(0)
model = MLPListModule(1, bias=False).to(device=self.device_type)
inputs = (torch.randn((10, 12)).to(device=self.device_type),)
parallel_strategies: Dict[str, ParallelStyle] = {
"mlps.0.0": ColwiseParallel,
"mlps.0.2": RowwiseParallel,
}
with torch.inference_mode():
res = model(*inputs)
exported_program = torch.export.export(
model,
inputs,
).run_decompositions()
tp_exported_program = tensor_parallel_transformation(
exported_program,
self.rank,
self.world_size,
self.device_type,
parallel_strategies,
)
tp_model = tp_exported_program.module()
with torch.inference_mode():
tp_res = tp_model(*inputs)
self.assertEqual(res, tp_res)
self.assert_has_c10d_ops(
tp_exported_program.graph_module,
{
"_c10d_functional.all_reduce.default": 1,
"_c10d_functional.wait_tensor.default": 1,
},
)
|
from collections import defaultdict
from typing import Dict
import torch
from torch.distributed._tensor.experimental._tp_transform import (
tensor_parallel_transformation,
)
from torch.distributed.tensor.parallel.style import (
ColwiseParallel,
ParallelStyle,
RowwiseParallel,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
class TensorParallelTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_common_rules.py
|
test_reduction_rule
|
def test_reduction_rule(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
func_schema = parse_schema(
"aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor"
)
# reduction on a 2d mat
mat1 = [0, -1]
mat1_spec = DTensorSpec.from_dim_map(mesh, mat1, [], shape=torch.Size([8, 4]))
# reduction on dim 0
output_sharding_0 = reduction_rule(
OpSchema(func_schema, (mat1_spec, 0), {}),
dims=[0],
reduction_linear=True,
)
self.assertIsNotNone(output_sharding_0.output_spec)
self.assertEqual(output_sharding_0.output_spec.dim_map, [-1])
# pending sum on dim 0
self.assertEqual(output_sharding_0.output_spec.sums, [0])
self.assertEqual(output_sharding_0.output_spec.shape, torch.Size([4]))
# reduction on dim 1
output_sharding_1 = reduction_rule(
OpSchema(func_schema, (mat1_spec, 1), {}),
dims=[1],
reduction_linear=True,
)
self.assertIsNotNone(output_sharding_1.output_spec)
self.assertEqual(output_sharding_1.output_spec.dim_map, [0])
self.assertEqual(output_sharding_1.output_spec.sums, [])
self.assertEqual(output_sharding_1.output_spec.shape, torch.Size([8]))
# full reduction if not specify dim
output_sharding_all_dim = reduction_rule(
OpSchema(func_schema, (mat1_spec,), {}),
dims=[0, 1],
reduction_linear=True,
)
self.assertIsNotNone(output_sharding_all_dim.output_spec)
self.assertEqual(output_sharding_all_dim.output_spec.dim_map, [])
# pending sum on mesh
self.assertEqual(output_sharding_all_dim.output_spec.sums, [0])
self.assertEqual(output_sharding_all_dim.output_spec.shape, torch.Size([]))
|
if __name__ == "__main__":
run_tests()
|
import torch
from torch._C import parse_schema
from torch.distributed._tensor import DeviceMesh
from torch.distributed._tensor.op_schema import OpSchema
from torch.distributed._tensor.ops.common_rules import (
einop_rule,
pointwise_rule,
reduction_rule,
)
from torch.distributed._tensor.placement_types import DTensorSpec
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
class CommonRulesTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
|
torch
|
test/distributed/_tensor/test_convolution_ops.py
|
test_depthwise_convolution
|
def test_depthwise_convolution(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
shard_spec = [Shard(3)]
input_list = torch.rand(ITER_TIME, 7, 256, 128, 256)
grad_output_list = torch.rand(ITER_TIME, 7, 256, 128, 256) * 1e-3
model = nn.Conv2d(256, 256, kernel_size=7, padding=3, groups=256).to(
self.device_type
)
nn.init.ones_(model.weight)
nn.init.zeros_(model.bias)
model_gt = copy.deepcopy(model).to(self.device_type)
# training with dtensor
model = distribute_module(
model, device_mesh, _conv_fn, input_fn=None, output_fn=None
)
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
for i in range(ITER_TIME):
optimizer.zero_grad()
inp = input_list[i].to(self.device_type).requires_grad_()
inp_dtensor = distribute_tensor(inp, device_mesh, shard_spec)
output = model(inp_dtensor)
grad_output = grad_output_list[i].to(self.device_type)
grad_output_dtensor = distribute_tensor(
grad_output, device_mesh, shard_spec
)
output.backward(grad_output_dtensor)
optimizer.step()
# training with plain tensor
optimizer_gt = torch.optim.SGD(model_gt.parameters(), lr=LR)
for i in range(ITER_TIME):
optimizer_gt.zero_grad()
inp = input_list[i].to(self.device_type).requires_grad_()
output = model_gt(inp)
grad_output = grad_output_list[i].to(self.device_type)
output.backward(grad_output)
optimizer_gt.step()
weight_diff_abs = model.weight.to_local() - model_gt.weight
bias_diff_abs = model.bias.to_local() - model_gt.bias
weight_diff_rel = weight_diff_abs / (torch.abs(model_gt.weight) + 1e-8)
bias_diff_rel = bias_diff_abs / (torch.abs(model_gt.bias) + 1e-8)
weight_mse_abs = torch.mean(weight_diff_abs * weight_diff_abs).item()
bias_mse_abs = torch.mean(bias_diff_abs * bias_diff_abs).item()
weight_mse_rel = torch.mean(weight_diff_rel * weight_diff_rel).item()
bias_mse_rel = torch.mean(bias_diff_rel * bias_diff_rel).item()
self.assertTrue(
weight_mse_abs <= 1e-6,
f"Too large absolute mse for weight tensor, expected less equal 1e-6, got {weight_mse_abs}",
)
self.assertTrue(
bias_mse_abs <= 1e-6,
f"Too large absolute mse for bias tensor, expected less equal 1e-6, got {bias_mse_abs}",
)
self.assertTrue(
weight_mse_rel <= 1e-6,
f"Too large relative mse for weight tensor, expected less equal 1e-6, got {weight_mse_rel}",
)
self.assertTrue(
bias_mse_rel <= 1e-6,
f"Too large relative mse for bias tensor, expected less equal 1e-6, got {bias_mse_rel}",
)
|
import copy
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
ITER_TIME = 10
LR = 0.001
class DistConvolutionOpsTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_device_mesh.py
|
_get_device_type_and_backend
|
def _get_device_type_and_backend():
device_type = "cuda" if torch.cuda.is_available() else "cpu"
backend = "nccl" if device_type == "cuda" else "gloo"
return device_type, backend
|
import os
import sys
import torch
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import (
get_global_rank,
get_world_size,
is_initialized,
new_group,
ProcessGroup,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import TEST_SKIPS
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_tensor/test_device_mesh.py
|
_set_env_var
|
def _set_env_var(addr="localhost", port="25364", world_size=1, rank=0):
os.environ["MASTER_ADDR"] = addr
os.environ["MASTER_PORT"] = port
os.environ["WORLD_SIZE"] = f"{world_size}"
os.environ["RANK"] = f"{rank}"
class DeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 4
@with_comms
def test_eligible_default_pg_for_mesh(self):
mesh_tensor = torch.arange(self.world_size).reshape(2, -1)
mesh = DeviceMesh(self.device_type, mesh_tensor)
def test_ineligible_default_pg_for_mesh(self):
device_type, backend = _get_device_type_and_backend()
# skip the test if not enough GPUs
if backend == "nccl" and torch.cuda.device_count() < self.world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
_set_env_var(world_size=self.world_size, rank=self.rank)
# missing ranks
mesh_tensor = torch.arange(self.world_size - 2).reshape(2, -1)
with self.assertRaisesRegex(RuntimeError, "DeviceMesh must include every process in WORLD"):
mesh = DeviceMesh(device_type, mesh_tensor)
# mesh ranks are not unique
mesh_tensor = torch.arange(self.world_size).reshape(2, -1)
mesh_tensor[0][1] = 2
with self.assertRaisesRegex(RuntimeError, "DeviceMesh cannot have duplicate values"):
mesh = DeviceMesh(device_type, mesh_tensor)
# mesh ranks don't start from 0
mesh_tensor = torch.arange(start=1, end=(self.world_size + 1)).reshape(2, -1)
with self.assertRaisesRegex(RuntimeError, "DeviceMesh ranks must start from 0"):
mesh = DeviceMesh(device_type, mesh_tensor)
# mesh ranks don't increment correctly
mesh_tensor = torch.arange(start=0, end=(2 * self.world_size), step=2).reshape(2, -1)
with self.assertRaisesRegex(RuntimeError, "DeviceMesh should have all ranks of WORLD"):
mesh = DeviceMesh(device_type, mesh_tensor)
def test_init_process_group(self):
device_type, backend = _get_device_type_and_backend()
# skip the test if not enough GPUs
if backend == "nccl" and torch.cuda.device_count() < self.world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
_set_env_var(world_size=self.world_size, rank=self.rank)
mesh = DeviceMesh(device_type, mesh_tensor)
self.assertTrue(is_initialized())
self.destroy_pg()
@with_comms
def test_device_mesh_2d(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
# construct a cuda device mesh
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < 2)
dim_ranks = expected_ranks_by_dim[dim]
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
current_rank_expected_group_ranks = (
dim_ranks[0] if self.rank in dim_ranks[0] else dim_ranks[1]
)
self.assertEqual(global_ranks, current_rank_expected_group_ranks)
@with_comms
def test_device_mesh_2d_from_dim_groups(self):
# construct a two dimension subgroups
dim_groups = []
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim_group_ranks in expected_ranks_by_dim:
for subgroup_ranks in dim_group_ranks:
subgroup = new_group(ranks=subgroup_ranks)
if self.rank in subgroup_ranks:
dim_groups.append(subgroup)
# construct a device mesh from the subgroups
mesh = DeviceMesh(self.device_type, [[0, 1], [2, 3]], dim_groups=dim_groups)
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < 2)
dim_ranks = expected_ranks_by_dim[dim]
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
current_rank_expected_group_ranks = (
dim_ranks[0] if self.rank in dim_ranks[0] else dim_ranks[1]
)
self.assertEqual(global_ranks, current_rank_expected_group_ranks)
@with_comms
def test_device_mesh_dim_groups_error(self):
# construct a two dimension subgroups
dim_groups = []
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim_group_ranks in expected_ranks_by_dim:
for subgroup_ranks in dim_group_ranks:
subgroup = new_group(ranks=subgroup_ranks)
if self.rank in subgroup_ranks:
dim_groups.append(subgroup)
if len(dim_groups) > 0:
# dim_groups is not a list
self.assertRaises(
RuntimeError,
DeviceMesh,
self.device_type,
[[0, 1], [2, 3]],
dim_groups=dim_groups[0],
)
# dim_groups is a list, but not a list of ProcessGroup
self.assertRaises(
RuntimeError,
DeviceMesh,
self.device_type,
[[0, 1], [2, 3]],
dim_groups=[dim_groups[0], "dummy"],
)
# dim_groups has incorrect length
self.assertRaises(
RuntimeError,
DeviceMesh,
self.device_type,
[[0, 1], [2, 3]],
dim_groups=[dim_groups[0]],
)
class DeviceMeshTestNDim(DTensorTestBase):
@property
def world_size(self):
return 8
def test_mesh_size_requirement_error(self):
device_type, backend = _get_device_type_and_backend()
# skip the test if not enough GPUs
if backend == "nccl" and torch.cuda.device_count() < self.world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
mesh_tensor = torch.arange(4).reshape(2, 2)
_set_env_var(world_size=self.world_size, rank=self.rank)
with self.assertRaisesRegex(RuntimeError, "DeviceMesh must include every process in WORLD"):
mesh = DeviceMesh(device_type, mesh_tensor)
self.assertTrue(not is_initialized())
@with_comms
def test_device_mesh_nd(self):
# construct a cuda device mesh
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < mesh_tensor.ndim)
dim_ranks = mesh_tensor.swapdims(-1, dim).reshape(-1, 2)
# print(dim_ranks)
# dim_ranks = expected_ranks_by_dim[dim]
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
for ranks in dim_ranks:
if self.rank in ranks:
self.assertEqual(global_ranks, ranks.tolist())
@with_comms
def test_device_mesh_hash(self):
mesh_tensor_2d = torch.arange(8).reshape(4, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor_2d)
mesh2 = DeviceMesh(self.device_type, mesh_tensor_2d)
self.assertNotEqual(hash(mesh), hash(mesh2))
mesh_tensor_3d = torch.arange(8).reshape(2, 2, 2)
mesh3 = DeviceMesh(self.device_type, mesh_tensor_3d)
self.assertNotEqual(hash(mesh), hash(mesh3))
self.assertNotEqual(hash(mesh2), hash(mesh3))
class DeviceMeshCollectiveTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_all_reduce_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
mesh.all_reduce(local_tensor, mesh_dim=0)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
self.assertEqual(local_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_broadcast_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
mesh.broadcast(local_tensor, mesh_dim=0)
self.assertEqual(local_tensor, torch.zeros(3, 3))
@with_comms
def test_scatter_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
scatter_tensor_shape = [3, 3, 3]
for scatter_dim in range(len(scatter_tensor_shape)):
shard_placement = Shard(scatter_dim)
scatter_tensor_shape[scatter_dim] *= self.world_size
# make the random seed same across rank
torch.manual_seed(0)
global_tensor = torch.randn(scatter_tensor_shape, device=self.device_type)
splitted_list, _ = shard_placement._split_tensor(
global_tensor, mesh.size(), with_padding=True, contiguous=True
)
recv_tensor = torch.empty_like(splitted_list[mesh.get_rank()])
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh.scatter(recv_tensor, splitted_list, mesh_dim=0)
self.assertEqual(recv_tensor, splitted_list[mesh.get_rank()])
@with_comms
def test_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.randn(
device_mesh.size() + 3, device_mesh.size() + 1,
device=self.device_type
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = tensor_to_split.tensor_split(
device_mesh.size(), dim=shard_dim
)
padded_tensor_list, pad_idx = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
scattered_tensor = torch.empty_like(padded_tensor_list[my_rank])
device_mesh.scatter(scattered_tensor, padded_tensor_list, mesh_dim=0)
# unpad scattered_tensor
if pad_idx != 0 and my_rank >= pad_idx:
scattered_tensor = shard_placement._unpad_tensor(scattered_tensor)
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(scattered_tensor, tensor_splitted_list[my_rank])
@with_comms
def test_all_gather_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
dims_to_gather = [0, 1]
for dim in dims_to_gather:
output_size = [3, 3]
output_size[dim] *= self.world_size
# each rank have its own tensor, all_gather gives a list
local_tensor = torch.ones(3, 3, device=self.device_type)
gathered_list = []
for _ in range(self.world_size):
gathered_list.append(torch.zeros_like(local_tensor))
mesh.all_gather(gathered_list, local_tensor, mesh_dim=0)
gathered_tensor = torch.cat(gathered_list, dim=dim)
self.assertEqual(gathered_tensor, torch.ones(output_size))
@with_comms
def test_all_gather_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_padded_list, pad_idx = shard_placement._split_tensor(
tensor_to_split,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
local_tensor = tensor_padded_list[my_rank]
gathered_list = []
for _ in range(device_mesh.size()):
gathered_list.append(torch.empty_like(local_tensor))
device_mesh.all_gather(
gathered_list,
local_tensor,
mesh_dim=0,
)
if pad_idx != 0:
gathered_list = [
shard_placement._unpad_tensor(gathered_tensor)
if i >= pad_idx
else gathered_tensor
for i, gathered_tensor in enumerate(gathered_list)
]
all_gathered_tensor = torch.cat(gathered_list, dim=shard_dim)
self.assertEqual(all_gathered_tensor.size(), tensor_to_split.size())
self.assertEqual(all_gathered_tensor, tensor_to_split)
@with_comms
def test_reduce_scatter_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
dims_to_scatter = [0, 1]
for dim in dims_to_scatter:
input_size = [3, 3]
scattered_tensor = torch.empty(input_size, device=self.device_type)
input_size[dim] *= self.world_size
shard_placement = Shard(dim)
input_rs_list, _ = shard_placement._split_tensor(
torch.ones(input_size, device=self.device_type) * self.rank,
mesh.size(),
with_padding=True,
contiguous=True,
)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
mesh.reduce_scatter(scattered_tensor, input_rs_list, mesh_dim=0)
self.assertEqual(scattered_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_reduce_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = (
torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
* self.rank
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = tensor_to_split.tensor_split(
device_mesh.size(), dim=shard_dim
)
padded_tensor_list, pad_idx = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
scattered_tensor = torch.empty_like(padded_tensor_list[my_rank])
device_mesh.reduce_scatter(scattered_tensor, padded_tensor_list, mesh_dim=0)
# unpad scattered_tensor
if pad_idx != 0 and my_rank >= pad_idx:
scattered_tensor = shard_placement._unpad_tensor(scattered_tensor)
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(
scattered_tensor,
torch.ones_like(tensor_splitted_list[my_rank]) * res_num,
)
@with_comms
def test_all_gather_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
gathered_tensor_list = list(
torch.empty(
(dim_group_size * 3, 3), device=self.device_type
).tensor_split(dim_group_size, dim=0)
)
mesh.all_gather(gathered_tensor_list, local_tensor, mesh_dim=dim)
gathered_tensor = torch.cat(gathered_tensor_list)
exp_tensor = torch.ones(3 * dim_group_size, 3)
for i in range(len(global_ranks)):
exp_tensor[i * 3 : (i + 1) * 3] = torch.ones(3, 3) * global_ranks[i]
self.assertEqual(gathered_tensor, exp_tensor)
@with_comms
def test_reduce_scatter_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
input_size = [3, 3, 3]
dim_group_size = get_world_size(dim_group)
input_size[dim] *= dim_group_size
shard_placement = Shard(dim)
local_rs_list, _ = shard_placement._split_tensor(
torch.ones(input_size, device=self.device_type) * self.rank,
dim_group_size,
with_padding=True,
contiguous=True,
)
scattered_tensor = torch.empty_like(
local_rs_list[mesh.get_coordinate_on_dim(dim)],
device=self.device_type,
)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
mesh.reduce_scatter(scattered_tensor, local_rs_list, mesh_dim=dim)
res_num = torch.sum(torch.tensor(global_ranks))
self.assertEqual(scattered_tensor, torch.ones(3, 3, 3) * res_num)
@with_comms
def test_all_reduce_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
cloned_local_tensor = local_tensor.clone()
mesh.all_reduce(cloned_local_tensor, mesh_dim=dim)
res_num = sum(global_ranks)
self.assertEqual(cloned_local_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_broadcast_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
cloned_local_tensor = local_tensor.clone()
mesh.broadcast(cloned_local_tensor, mesh_dim=dim)
res_num = global_ranks[0]
self.assertEqual(cloned_local_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_scatter_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
scattered_tensors = [
torch.ones(3, 3, device=self.device_type) * global_rank
for global_rank in global_ranks
]
received_tensor = torch.empty_like(
scattered_tensors[mesh.get_coordinate_on_dim(dim)]
)
mesh.scatter(received_tensor, scattered_tensors, mesh_dim=dim)
self.assertEqual(received_tensor, torch.ones(3, 3) * self.rank)
@with_comms
def test_all_to_all_1d(self):
# transpose on a 2D tensor distributed over N nodes:
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
tensor_shape = [3, 3]
input_tensor_list = [
torch.ones(*tensor_shape, device=self.device_type)
* (rank + self.rank * self.world_size)
for rank in range(self.world_size)
]
expected_tensor_list = [
torch.ones(tensor_shape, device=self.device_type)
* (self.rank + rank * self.world_size) # i.e. transpose
for rank in range(self.world_size)
]
for scatter_dim in range(len(tensor_shape)):
output_tensor_list = [
torch.empty_like(input_tensor_list[idx])
for idx in range(len(input_tensor_list))
]
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh.all_to_all(output_tensor_list, input_tensor_list, mesh_dim=0)
output_tensor = torch.cat(output_tensor_list, dim=scatter_dim)
expected_tensor = torch.cat(expected_tensor_list, dim=scatter_dim)
self.assertEqual(output_tensor, expected_tensor)
@with_comms
def test_all_to_all_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
tensor_shape = [3, 3, 3]
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
my_coordinate = mesh.get_coordinate_on_dim(dim)
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
input_tensor_list = [
torch.ones(*tensor_shape, device=self.device_type)
* (i + self.rank * dim_group_size)
for i in range(dim_group_size)
]
expected_tensor_list = [
torch.ones(*tensor_shape, device=self.device_type)
* (my_coordinate + global_rank * dim_group_size) # i.e. transpose
for global_rank in global_ranks
]
for scatter_dim in range(len(tensor_shape)):
# input_tensor = torch.cat(input_tensor_list, dim=scatter_dim)
output_tensor_list = [
torch.empty_like(input_tensor_list[idx])
for idx in range(len(input_tensor_list))
]
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh.all_to_all(output_tensor_list, input_tensor_list, mesh_dim=dim)
output_tensor = torch.cat(output_tensor_list, dim=scatter_dim)
expected_tensor = torch.cat(expected_tensor_list, dim=scatter_dim)
self.assertEqual(output_tensor, expected_tensor)
if __name__ == "__main__":
run_tests()
|
import os
import sys
import torch
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import (
get_global_rank,
get_world_size,
is_initialized,
new_group,
ProcessGroup,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import TEST_SKIPS
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_tensor/test_api.py
|
test_distribute_module_meta
|
def test_distribute_module_meta(self):
# If the model is too big, the user may first the create entire model on the meta device and then initialize
# it on the device in the partition function.
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
# fully shard all parameters on dim 0
module_to_shard = MyModel(5 * self.world_size, 20, device="meta")
shard_spec = [Shard(0)]
def shard_fn(name, module, device_mesh):
for param_name, param in module._parameters.items():
dist_param = distribute_tensor(param, device_mesh, shard_spec)
dist_param = torch.empty_like(
dist_param, device=device_mesh.device_type
)
module.register_parameter(param_name, torch.nn.Parameter(dist_param))
sharded_module = distribute_module(module_to_shard, device_mesh, shard_fn)
for param in sharded_module.parameters():
self.assertIsInstance(param, DTensor)
self.assertFalse(param.is_meta)
self.assertTrue(param.device.type == device_mesh.device_type)
|
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
class DTensorAPITest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_device_mesh.py
|
test_all_to_all_nd
|
def test_all_to_all_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
tensor_shape = [3, 3, 3]
# check all dim groups
dim_to_subgroups = mesh.get_dim_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
my_coordinate = mesh.get_coordinate_on_dim(dim)
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
input_tensor_list = [
torch.ones(*tensor_shape, device=self.device_type)
* (i + self.rank * dim_group_size)
for i in range(dim_group_size)
]
expected_tensor_list = [
torch.ones(*tensor_shape, device=self.device_type)
* (my_coordinate + global_rank * dim_group_size) # i.e. transpose
for global_rank in global_ranks
]
for scatter_dim in range(len(tensor_shape)):
# input_tensor = torch.cat(input_tensor_list, dim=scatter_dim)
output_tensor_list = [
torch.empty_like(input_tensor_list[idx])
for idx in range(len(input_tensor_list))
]
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh.all_to_all(output_tensor_list, input_tensor_list, mesh_dim=dim)
output_tensor = torch.cat(output_tensor_list, dim=scatter_dim)
expected_tensor = torch.cat(expected_tensor_list, dim=scatter_dim)
self.assertEqual(output_tensor, expected_tensor)
|
import os
import sys
import torch
from torch.distributed._tensor.device_mesh import DeviceMesh
from torch.distributed._tensor.placement_types import Shard
from torch.distributed.distributed_c10d import (
get_global_rank,
get_world_size,
is_initialized,
new_group,
ProcessGroup,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import TEST_SKIPS
class DeviceMeshCollectiveTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_constructor_w_graph_break
|
def test_dtensor_constructor_w_graph_break(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
x = torch.randn(64, 32, requires_grad=True)
spec = DTensorSpec(
mesh,
(Replicate(), Shard(0)),
tensor_meta=TensorMeta(
shape=torch.Size([128, 32]), stride=(32, 1), dtype=x.dtype
),
)
# test passing in DTensor as inputs/outputs and run some tensor computation
def fn(x):
print("graph break!")
return DTensor(
x,
spec,
requires_grad=x.requires_grad,
)
out = fn(x)
out2 = torch.compile(fn, backend="eager")(x)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_constructor_w_dynamo_disable
|
def test_dtensor_constructor_w_dynamo_disable(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
x = torch.randn(32, requires_grad=True)
spec = DTensorSpec(
mesh,
(Replicate(),),
tensor_meta=TensorMeta(shape=torch.Size([32]), stride=(1,), dtype=x.dtype),
)
@torch._dynamo.disable(recursive=False)
def fn(x):
print("foo")
return DTensor(
x,
spec,
requires_grad=x.requires_grad,
)
out = fn(x)
out2 = torch.compile(fn, backend="eager")(x)
self.assertEqual(out, out2)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_noncontiguous_output
|
def test_dtensor_noncontiguous_output(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# test passing in DTensor as inputs/outputs and run some tensor computation
def fn(x, y, z):
x_transposed = x.permute(0, 2, 1).contiguous()
tmp = torch._C._nn.linear(x_transposed, y, z)
return tmp.permute(0, 2, 1)
x_inner = torch.randn(4, 16, 4, requires_grad=True)
y_inner = torch.randn(4, 16, requires_grad=True)
z_inner = torch.randn(4, requires_grad=True)
x = DTensor.from_local(x_inner, mesh, [Shard(1)], run_check=False)
y = DTensor.from_local(y_inner, mesh, [Shard(1)], run_check=False)
z = DTensor.from_local(z_inner, mesh, [Replicate()], run_check=False)
out = torch.compile(fn, backend="aot_eager", fullgraph=True)(x, y, z)
out.contiguous().sum().backward()
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dynamo_dtensor_from_local
|
def test_dynamo_dtensor_from_local(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# create DTensor inside fn and run some compute
def fn(x):
dt = DTensor.from_local(x, mesh, [Replicate()], run_check=False)
return dt.to_local() + 2
# below is the op approach for reference
# from torch.distributed._tensor.api import _FromTorchTensor
# def from_local_tensor(x):
# return _FromTorchTensor.apply(x, mesh, [Replicate()], False)
# _dt_lib_def = torch.library.Library("dtensor", "DEF")
# _dt_lib_def.define("from_local(Tensor self) -> Tensor")
# _dt_lib_impl = torch.library.Library("dtensor", "IMPL")
# _dt_lib_impl.impl("from_local", from_local_tensor, "Autograd")
x = torch.ones(1, requires_grad=True)
ref = fn(x)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
opt_fn = torch.compile(fn, backend=cnt, fullgraph=True)
res = opt_fn(x)
# backward should work as well
res.sum().backward()
self.assertEqual(res, ref)
self.assertEqual(cnt.frame_count, 1)
# test if user calls from_local with mesh/placements as kwargs and that should still work
def from_local_kwargs_fn(x):
dt = DTensor.from_local(
x, device_mesh=mesh, placements=[Replicate()], run_check=False
)
return dt.to_local() + 2
ref = from_local_kwargs_fn(x)
opt_kwargs_fn = torch.compile(from_local_kwargs_fn, backend=cnt, fullgraph=True)
res = opt_kwargs_fn(x)
self.assertEqual(res, ref)
self.assertEqual(cnt.frame_count, 2)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
from_local_kwargs_fn
|
def from_local_kwargs_fn(x):
dt = DTensor.from_local(
x, device_mesh=mesh, placements=[Replicate()], run_check=False
)
return dt.to_local() + 2
ref = from_local_kwargs_fn(x)
opt_kwargs_fn = torch.compile(from_local_kwargs_fn, backend=cnt, fullgraph=True)
res = opt_kwargs_fn(x)
self.assertEqual(res, ref)
self.assertEqual(cnt.frame_count, 2)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dynamo_dtensor_from_local_dynamic_shapes
|
def test_dynamo_dtensor_from_local_dynamic_shapes(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# Case 1: all dims dynamic
def fn(x):
dt = DTensor.from_local(
x,
mesh,
[Replicate()],
run_check=False,
shape=x.shape,
stride=x.stride(),
)
return dt.to_local() + 2
inp = torch.randn(4, 6, requires_grad=True)
ref = fn(inp)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
res = torch.compile(fn, backend=cnt, fullgraph=True, dynamic=True)(inp)
res.sum().backward()
self.assertEqual(res, ref)
self.assertEqual(cnt.frame_count, 1)
# Case 2: only sizes are dynamic, strides are static
def fn(x):
dt = DTensor.from_local(
x, mesh, [Replicate()], run_check=False, shape=x.shape, stride=(1,)
)
return dt.to_local() + 2
inp = torch.randn(4, requires_grad=True)
torch._dynamo.mark_dynamic(inp, 0)
ref = fn(inp)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
res = torch.compile(fn, backend=cnt, fullgraph=True)(inp)
res.sum().backward()
self.assertEqual(res, ref)
self.assertEqual(cnt.frame_count, 1)
# Case 3: both sizes and strides have a mix of dynamic and static dims
def fn(x):
dt = DTensor.from_local(
x,
mesh,
[Replicate()],
run_check=False,
shape=(x.shape[0], x.shape[1], 2),
stride=(x.stride()[0], 2, 1),
)
return dt.to_local() + 2
inp = torch.randn(4, 6, 2, requires_grad=True)
torch._dynamo.mark_dynamic(inp, 0)
torch._dynamo.mark_dynamic(inp, 1)
ref = fn(inp)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
res = torch.compile(fn, backend=cnt, fullgraph=True)(inp)
res.sum().backward()
self.assertEqual(res, ref)
self.assertEqual(cnt.frame_count, 1)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
setUp
|
def setUp(self):
super().setUp()
fake_store = FakeStore()
dist.init_process_group(
"fake", store=fake_store, rank=0, world_size=self.world_size
)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_fakify_dtensor
|
def test_fakify_dtensor(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# pass in DTensor as inputs/outputs to the function
def fn(x):
return x
x = DTensor.from_local(torch.rand(1), mesh, [Shard(0)], run_check=False)
ref = fn(x)
opt_fn = torch.compile(fn, backend="aot_eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(res, ref)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dynamo_dtensor
|
def test_dynamo_dtensor(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# test passing in DTensor as inputs/outputs and run some tensor computation
def fn(x):
return x * x + 2
x = DTensor.from_local(torch.rand(1), mesh, [Shard(0)], run_check=False)
ref = fn(x)
opt_fn = torch.compile(fn, backend="aot_eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(res, ref)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_attribute_access_on_intermediate
|
def test_dtensor_attribute_access_on_intermediate(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
def fn(x):
tmp = x * 2
if tmp.placements[0].is_shard():
return tmp._local_tensor + 2
else:
return tmp._local_tensor + 3
x = DTensor.from_local(torch.ones(4), mesh, [Shard(0)], run_check=False)
ref = fn(x)
opt_fn = torch.compile(fn, backend="aot_eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(res, ref)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dynamo_dtensor_recompile
|
def test_dynamo_dtensor_recompile(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# test passing in DTensor as inputs/outputs and run some tensor computation
def fn(x):
return torch.mul(x, x)
x = DTensor.from_local(torch.rand(2, 2), mesh, [Shard(0)], run_check=False)
x2 = DTensor.from_local(torch.rand(2, 2), mesh, [Shard(0)], run_check=False)
x3 = DTensor.from_local(torch.rand(2, 2), mesh, [Shard(1)], run_check=False)
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnt, fullgraph=True, dynamic=False)
self.assertEqual(fn(x), opt_fn(x))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(fn(x2), opt_fn(x2))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(fn(x3), opt_fn(x3))
self.assertEqual(cnt.frame_count, 2)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_contiguous_dtensor_noncontiguous_local_as_tangent
|
def test_dtensor_contiguous_dtensor_noncontiguous_local_as_tangent(self):
# Partial -> Shard on an unbalanced tensor results in:
# - A contiguous DTensor
# - where the inner _local_tensor is noncontiguous
# When this tensor is a fwd graph output,
# AOTAutograd needs to make sure we trace the backward
# with a contiguous tangent
placement = Shard(1)
def fn(x):
out = x.redistribute(mesh, [placement])
return out
# Temporarily ignore setUp(), and use rank3 graphs during tracing
dist.destroy_process_group()
fake_store = FakeStore()
dist.init_process_group("fake", store=fake_store, rank=3, world_size=2)
mesh = DeviceMesh(self.device_type, [1, 3])
x = torch.randn(10, 257, 160, requires_grad=True)
x_dt = DTensor.from_local(
x,
mesh,
[Partial()],
run_check=False,
shape=(10, 257, 160),
stride=(41120, 160, 1),
)
out_dt = torch.compile(fn)(x_dt)
# If we don't properly contiguify our traced tangents,
# this fails with an inductor stride assert
out_dt.to_local().sum().backward()
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dynamo_to_local_kwargs
|
def test_dynamo_to_local_kwargs(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
def fn(x):
return dt.to_local(grad_placements=[Shard(0)]) + 2
fn_opt = torch.compile(fn, backend="aot_eager", fullgraph=True)
x = torch.ones(4)
dt = DTensor.from_local(x, mesh, [Replicate()], run_check=False)
out_ref = fn(dt)
out_test = fn_opt(dt)
self.assertEqual(out_ref, out_test)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fw_hook
|
def fw_hook(module, inp, out):
tmp = out.to_local(grad_placements=out.placements) + 2
return DTensor.from_local(tmp, mesh, out.placements, run_check=False)
mod = torch.nn.Linear(4, 4)
mod.register_forward_hook(fw_hook)
mod = torch.nn.Linear(4, 4)
mod.register_forward_hook(fw_hook)
mod.weight = torch.nn.Parameter(
DTensor.from_local(mod.weight, mesh, [Replicate()], run_check=False)
)
mod.bias = torch.nn.Parameter(
DTensor.from_local(mod.bias, mesh, [Replicate()], run_check=False)
)
opt_mod = torch.compile(mod, backend="aot_eager", fullgraph=True)
x = torch.ones(4, 4)
dt = DTensor.from_local(x, mesh, [Replicate()], run_check=False)
out_ref = mod(dt)
out_test = opt_mod(dt)
self.assertEqual(out_ref, out_test)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_different_gradient_placement
|
def test_dtensor_different_gradient_placement(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
def fn(x, y, z):
permute = x.permute(0, 2, 1)
permute2 = permute.contiguous()
layer_norm = torch.nn.functional.layer_norm(permute2, (4,), y, z, 1e-05)
out = layer_norm.permute(0, 2, 1)
return out
x = torch.randn(4, 2, 4, requires_grad=True, device="cuda")
x_dt = DTensor.from_local(x, mesh, [Shard(1)], run_check=False)
y = torch.randn(4, requires_grad=True, device="cuda")
y_dt = DTensor.from_local(y, mesh, [Replicate()], run_check=False)
z = torch.randn(4, requires_grad=True, device="cuda")
z_dt = DTensor.from_local(z, mesh, [Replicate()], run_check=False)
opt_fn = torch.compile(fn, backend="inductor", fullgraph=True)
tmp_dt = opt_fn(x_dt, y_dt, z_dt)
out_dt = torch.matmul(tmp_dt, x_dt).permute(0, 2, 1)
out_dt.sum().backward()
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dynamo_dtensor_from_local_redistribute
|
def test_dynamo_dtensor_from_local_redistribute(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# pass in tensor as inputs/outputs, create DTensor and run redistribute
# (allgather collective) inside the fn
def fn(x):
dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
return dt.redistribute(mesh, [Replicate()]).to_local() + 2
x = torch.ones(1)
ref = fn(x)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
opt_fn = torch.compile(fn, backend=cnt, fullgraph=True)
res = opt_fn(x)
self.assertEqual(res, ref)
def redistribute_kwargs_fn(x):
dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
return (
dt.redistribute(device_mesh=mesh, placements=[Replicate()]).to_local()
+ 2
)
x = torch.ones(1)
ref = redistribute_kwargs_fn(x)
opt_kwargs_fn = torch.compile(
redistribute_kwargs_fn, backend=cnt, fullgraph=True
)
res = opt_kwargs_fn(x)
self.assertEqual(res, ref)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
redistribute_kwargs_fn
|
def redistribute_kwargs_fn(x):
dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
return (
dt.redistribute(device_mesh=mesh, placements=[Replicate()]).to_local()
+ 2
)
x = torch.ones(1)
ref = redistribute_kwargs_fn(x)
opt_kwargs_fn = torch.compile(
redistribute_kwargs_fn, backend=cnt, fullgraph=True
)
res = opt_kwargs_fn(x)
self.assertEqual(res, ref)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_dont_recompile_on_same_placement_devicemesh
|
def test_dtensor_dont_recompile_on_same_placement_devicemesh(self):
cnt = torch._dynamo.testing.CompileCounterWithBackend("inductor")
@torch.compile(backend=cnt)
def fn(x):
dt = DTensor.from_local(x, mesh, [placement], run_check=False)
x = torch.ones(4, 4, requires_grad=True)
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
placement = Shard(1)
fn(x)
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
placement = Shard(1)
# no recompile, placement is unchanged
fn(x)
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
placement = Partial()
# recompile since placement is different
fn(x)
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
placement = Partial()
# no recompile, placement is unchanged
fn(x)
# 2 total frames (one for Partial(), one for Shard())
self.assertEqual(cnt.frame_count, 2)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor.py
|
add_scalar_tensor_with_dtensor
|
def add_scalar_tensor_with_dtensor():
return ndim_0_tensor + sharded_dtensor
result = add_scalar_tensor_with_dtensor().to_local()
self.assertEqual(result, local_tensor + ndim_0_tensor)
self.assertNotWarn(
add_scalar_tensor_with_dtensor,
"Found a non-scalar tensor with numel=1 and ndim!=0",
)
# automatically turn tensor to DTensor replicate when ndim = 1 and numel = 1
numel_1_tensor = torch.tensor([1], device=self.device_type)
self.assertEqual(
(numel_1_tensor + sharded_dtensor).to_local(), numel_1_tensor + local_tensor
)
|
import os
from numpy.testing import assert_array_equal
import torch
import torch.nn.functional as F
from torch.distributed._functional_collectives import AsyncCollectiveTensor
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
init_device_mesh,
)
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.serialization import safe_globals
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.logging_utils import LoggingTestCase
c10d_functional = torch.ops.c10d_functional
import io
from torch.distributed._tensor._utils import (
compute_local_shape_and_global_offset,
)
from torch.distributed.tensor._collective_utils import unpad_tensor
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor.py
|
test_metadata_consistency_check
|
def test_metadata_consistency_check(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
placements = [Shard(0)]
# Create a local tensor with specific metadata and check dtype change
local_tensor = torch.randn(3, 3, requires_grad=True, dtype=torch.float32)
if self.rank == 0:
local_tensor = local_tensor.to(dtype=torch.float64)
with self.assertRaises(ValueError):
DTensor.from_local(local_tensor, device_mesh, placements, run_check=True)
try:
DTensor.from_local(local_tensor, device_mesh, placements, run_check=False)
except ValueError:
self.fail("Unexpected ValueError raised with run_check=False")
# Create a local tensor with specific metadata and check requires_grad change
local_tensor = torch.randn(3, 3, requires_grad=True, dtype=torch.float32)
if self.rank == 0:
local_tensor.requires_grad = False
with self.assertRaises(ValueError):
DTensor.from_local(local_tensor, device_mesh, placements, run_check=True)
try:
DTensor.from_local(local_tensor, device_mesh, placements, run_check=False)
except ValueError:
self.fail("Unexpected ValueError raised with run_check=False")
# Create a local tensor with specific metadata and check stride change
local_tensor = torch.randn(3, 4, requires_grad=True, dtype=torch.float32)
if self.rank == 0:
local_tensor = local_tensor.t() # transpose changes the stride
with self.assertRaises(ValueError):
DTensor.from_local(local_tensor, device_mesh, placements, run_check=True)
try:
DTensor.from_local(local_tensor, device_mesh, placements, run_check=False)
except ValueError:
self.fail("Unexpected ValueError raised with run_check=False")
|
import os
from numpy.testing import assert_array_equal
import torch
import torch.nn.functional as F
from torch.distributed._functional_collectives import AsyncCollectiveTensor
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
init_device_mesh,
)
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.serialization import safe_globals
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.logging_utils import LoggingTestCase
c10d_functional = torch.ops.c10d_functional
import io
class DTensorMeshTest(DTensorTestBase):
from torch.distributed._tensor._utils import (
compute_local_shape_and_global_offset,
)
from torch.distributed.tensor._collective_utils import unpad_tensor
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
__init__
|
def __init__(self, device):
super().__init__()
self.mlp_0 = MLPModule(device)
self.mlp_1 = MLPModule(device)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
class SimpleModel(nn.Module):
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
forward
|
def forward(self, input):
return self.mlp_1(self.mlp_0(input))
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
class SimpleModel(nn.Module):
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_dtensor_dynamo_device_mesh_attrs
|
def test_dtensor_dynamo_device_mesh_attrs(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# pass in tensor as inputs/outputs, create DTensor and run redistribute
# (allgather collective) inside the fn
def fn(x_dt):
if x_dt.device_mesh.device_type == "cuda":
return x_dt + 1
else:
return x_dt + 2
x = torch.ones(4, 4)
x_dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
ref = fn(x_dt)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x_dt)
self.assertEqual(ref, res)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
forward
|
def forward(self, input):
return self.mlp_1(self.mlp_0(input))
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
class SimpleModel(nn.Module):
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_tp_compile_comm_reordering
|
def test_tp_compile_comm_reordering(self):
class FakeAttention(nn.Module):
def __init__(self) -> None:
super().__init__()
self.wq = nn.Linear(16, 16)
self.wk = nn.Linear(16, 16)
self.wv = nn.Linear(16, 16)
self.wo = nn.Linear(16, 16)
def forward(self, x):
xq = self.wq(x)
xk = self.wk(x)
xv = self.wv(x)
# fake attention:
xo = xq + xk + xv
return self.wo(xo)
class FakeTransformerBlock(nn.Module):
def __init__(self) -> None:
super().__init__()
self.attn = FakeAttention()
def forward(self, x):
return self.attn(x)
class FakeTransformer(nn.Module):
def __init__(self) -> None:
super().__init__()
self.block = FakeTransformerBlock()
def forward(self, input):
return self.block(input)
model = FakeTransformer().to(self.device_type)
tp_mesh = init_device_mesh("cuda", (2,), mesh_dim_names=("tp",))
# apply sequence parallel
parallel_plan = {
"attn": PrepareModuleInput(
input_layouts=Shard(0), desired_input_layouts=Replicate()
),
"attn.wq": ColwiseParallel(),
"attn.wk": ColwiseParallel(),
"attn.wv": ColwiseParallel(),
"attn.wo": RowwiseParallel(output_layouts=Shard(0)),
}
parallelize_module(
module=model.block,
device_mesh=tp_mesh,
parallelize_plan=parallel_plan,
)
cnt = torch._dynamo.testing.CompileCounterWithBackend("inductor")
compiled_model = torch.compile(model, backend=cnt, fullgraph=True)
inp = torch.rand(20, 16).to(self.device_type)
out = compiled_model(inp)
out.sum().backward()
self.assertEqual(cnt.frame_count, 1)
code = run_and_get_triton_code(compiled_model, inp)
FileCheck().check(
"buf0 = torch.ops._c10d_functional.all_gather_into_tensor.default(primal"
).check("torch.ops._c10d_functional.wait_tensor.default(buf0").check(
"extern_kernels.mm(buf0,"
).run(
code
)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
forward
|
def forward(self, input):
return self.mlp_1(self.mlp_0(input))
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
class SimpleModel(nn.Module):
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
forward
|
def forward(self, input):
return self.mlp_1(self.mlp_0(input))
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
class SimpleModel(nn.Module):
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_bmm_2d_mesh
|
def test_bmm_2d_mesh(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh)
self.assertEqual(len(all_strats.strategies), 25)
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestEinsumStrategies(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_pointwise_1d_mesh
|
def test_pointwise_1d_mesh(self):
mesh = self.build_device_mesh()
simple_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh)
self.assertEqual(len(simple_strats.strategies), 5)
broadcast_strats = gen_einsum_strategies("bcd,abcd->abcd", mesh)
self.assertEqual(len(broadcast_strats.strategies), 5)
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestEinsumStrategies(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_linearity_1d_mesh
|
def test_linearity_1d_mesh(self):
mesh = self.build_device_mesh()
all_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh, linearity=True)
self.assertEqual(len(all_strats.strategies), 6)
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestEinsumStrategies(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_redistribute_cost_mesh_1d
|
def test_redistribute_cost_mesh_1d(self):
mesh_1d = self.build_device_mesh()
shard_placement = (Shard(0),)
replica_placement = (Replicate(),)
partial_placement = (Partial(),)
global_tensor = torch.randn(10, 10)
global_tensor_meta = self._extract_tensor_meta(global_tensor)
# shard spec
shard_spec = DTensorSpec(mesh_1d, shard_placement, global_tensor_meta)
# replica spec
replica_spec = DTensorSpec(mesh_1d, replica_placement, global_tensor_meta)
# partial spec
partial_spec = DTensorSpec(mesh_1d, partial_placement, global_tensor_meta)
# make sure reshard cost is 0 for the same spec redistribute
for spec in [shard_spec, replica_spec, partial_spec]:
cost = redistribute_cost(spec, spec)
self.assertEqual(cost, 0)
# shard -> replicate
allgather_cost = redistribute_cost(shard_spec, replica_spec)
# partial -> shard
reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
# partial -> replicate
allreduce_cost = redistribute_cost(partial_spec, replica_spec)
self.assertEqual(allgather_cost, reduce_scatter_cost)
self.assertTrue(allreduce_cost + 1 < allgather_cost + reduce_scatter_cost)
# shard to partial
cost = redistribute_cost(shard_spec, partial_spec)
self.assertEqual(cost, float("inf"))
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestCostModel(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_redistribute_cost_latency
|
def test_redistribute_cost_latency(self):
# test cost model on addmm op
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
mesh = self.build_device_mesh()
shard0_placement = (Shard(0),)
partial_placement = (Partial(),)
shard1_placement = (Shard(1),)
shard0_tensor_meta = self._extract_tensor_meta(torch.randn(8))
partial_tensor_meta = self._extract_tensor_meta(torch.randn(50, 6))
shard1_tensor_meta = self._extract_tensor_meta(torch.randn(6, 8))
# shard spec
shard0_spec = DTensorSpec(mesh, shard0_placement, shard0_tensor_meta)
# replica spec
partial_spec = DTensorSpec(mesh, partial_placement, partial_tensor_meta)
# partial spec
shard1_spec = DTensorSpec(mesh, shard1_placement, shard1_tensor_meta)
op_schema = OpSchema(
torch.ops.aten.addmm.default,
(
OpStrategy([PlacementStrategy(shard0_spec)]),
OpStrategy([PlacementStrategy(partial_spec)]),
OpStrategy([PlacementStrategy(shard1_spec)]),
),
{},
)
output_strategy = addmm_strategy(mesh, op_schema)
strategy_costs = {}
for strategy in output_strategy.strategies:
redistribute_cost = sum(chain.from_iterable(strategy.redistribute_cost))
strategy_costs[str(strategy)] = redistribute_cost
# assert that cost model counts for collective latency (i.e. multiple comm is penalized)
self.assertTrue(
strategy_costs["(S(0), R, S(1)) -> S(1)"]
< strategy_costs["(R, S(0), R) -> S(0)"]
)
# assert a single allreduce is the best one
self.assertEqual(
strategy_costs["(S(0), R, S(1)) -> S(1)"], min(strategy_costs.values())
)
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestCostModel(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_redistribute_cost_mesh_2d
|
def test_redistribute_cost_mesh_2d(self):
mesh_2d = DeviceMesh(
self.device_type, torch.arange(self.world_size).reshape(2, 2)
)
shard_placement = (Shard(0), Shard(0))
replica_placement = (Replicate(), Replicate())
partial_placement = (Partial(), Partial())
global_tensor = torch.randn(8, 8)
global_tensor_meta = self._extract_tensor_meta(global_tensor)
# shard spec
shard_spec = DTensorSpec(mesh_2d, shard_placement, global_tensor_meta)
# replica spec
replica_spec = DTensorSpec(mesh_2d, replica_placement, global_tensor_meta)
# partial spec
partial_spec = DTensorSpec(mesh_2d, partial_placement, global_tensor_meta)
# make sure reshard cost is 0 for the same spec redistribute
for spec in [shard_spec, replica_spec, partial_spec]:
cost = redistribute_cost(spec, spec)
self.assertEqual(cost, 0)
# shard -> replicate
allgather_cost = redistribute_cost(shard_spec, replica_spec)
# partial -> replicate
allreduce_cost = redistribute_cost(partial_spec, replica_spec)
# partial -> shard
reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
self.assertTrue(allreduce_cost > allgather_cost)
self.assertTrue(allreduce_cost > reduce_scatter_cost)
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestCostModel(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_mm_strategies
|
def test_mm_strategies(self):
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
mesh = self.build_device_mesh()
lhs_tensor = torch.randn(6, 8)
rhs_tensor = torch.randn(8, 12)
lhs_tensor_meta = self._extract_tensor_meta(lhs_tensor)
rhs_tensor_meta = self._extract_tensor_meta(rhs_tensor)
mm_combs = (
(Shard(0), Replicate()),
(Replicate(), Shard(1)),
(Shard(1), Shard(0)),
(Replicate(), Replicate()),
)
for lhs, rhs in mm_combs:
lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)
op_schema = OpSchema(
torch.ops.aten.mm.default,
(
OpStrategy([PlacementStrategy(lhs_spec)]),
OpStrategy([PlacementStrategy(rhs_spec)]),
),
{},
)
# test the strategy
res_strategies = mm_strategy(mesh, op_schema)
for strtgy in res_strategies.strategies:
if strtgy.input_specs == (lhs_spec, rhs_spec):
self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
break
op_schema = OpSchema(
torch.ops.aten.mm.default,
(lhs_spec, rhs_spec),
{},
)
# test sharding prop
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
op_schema
)
self.assertFalse(output_sharding.needs_redistribute)
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestCostModel(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_bmm_strategies
|
def test_bmm_strategies(self):
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
mesh = self.build_device_mesh()
lhs_tensor = torch.randn(8, 6, 8)
rhs_tensor = torch.randn(8, 8, 12)
lhs_tensor_meta = self._extract_tensor_meta(lhs_tensor)
rhs_tensor_meta = self._extract_tensor_meta(rhs_tensor)
bmm_combs = (
(Shard(0), Shard(0)),
(Shard(1), Replicate()),
(Replicate(), Shard(2)),
(Shard(2), Shard(1)),
(Replicate(), Replicate()),
)
for lhs, rhs in bmm_combs:
lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)
op_schema = OpSchema(
torch.ops.aten.bmm.default,
(
OpStrategy([PlacementStrategy(lhs_spec)]),
OpStrategy([PlacementStrategy(rhs_spec)]),
),
{},
)
# test the strategy
res_strategies = bmm_strategy(mesh, op_schema)
for strtgy in res_strategies.strategies:
if strtgy.input_specs == (lhs_spec, rhs_spec):
self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
break
op_schema = OpSchema(
torch.ops.aten.bmm.default,
(lhs_spec, rhs_spec),
{},
)
# test sharding prop
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
op_schema
)
self.assertFalse(output_sharding.needs_redistribute)
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestCostModel(DTensorOpTestBase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_optimizers.py
|
shard_fn
|
def shard_fn(name, module, device_mesh):
if isinstance(module, nn.Linear):
for name, param in module.named_parameters():
dist_param = torch.nn.Parameter(
distribute_tensor(param, device_mesh, [Shard(0)])
)
# make sure partial sum get cleared after backward()
dist_param.register_hook(
lambda grad: grad.redistribute(placements=[Shard(0)])
)
module.register_parameter(name, dist_param)
# prepare input
|
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.optim.optimizer import _foreach_supported_types
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_optimizers.py
|
input_fn
|
def input_fn(mod, inputs, device_mesh):
# split the input tensor to be sharded input
dist_inp = distribute_tensor(inputs[0], device_mesh, [Shard(0)])
return dist_inp
# prepare output to be local torch.Tensor
|
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.optim.optimizer import _foreach_supported_types
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
forward
|
def forward(self, input):
return self.mlp_1(self.mlp_0(input))
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
class SimpleModel(nn.Module):
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
world_size
|
def world_size(self) -> int:
return 2
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
class TestDTensorCompile(torch._dynamo.test_case.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
test_compile_dtensor_redistribute_backward
|
def test_compile_dtensor_redistribute_backward(self):
mesh = DeviceMesh(device_type="cuda", mesh=torch.arange(self.world_size))
def fn(x, y):
dt = DTensor.from_local(x.reshape(2, 4), mesh, [Shard(0)], run_check=False)
dt2 = DTensor.from_local(y.reshape(4, 2), mesh, [Shard(1)], run_check=False)
dt_out = torch.matmul(dt, dt2)
dt_out_redistribute = dt_out.redistribute(mesh, [Replicate()])
return dt_out_redistribute.to_local()
opt_fn = torch.compile(fn, backend=aot_eager_graph, fullgraph=True)
x_ref = torch.arange(8, requires_grad=True, dtype=torch.float32)
y_ref = torch.arange(8, requires_grad=True, dtype=torch.float32)
ref = fn(x_ref, y_ref)
x = torch.arange(8, requires_grad=True, dtype=torch.float32)
y = torch.arange(8, requires_grad=True, dtype=torch.float32)
res = opt_fn(x, y)
self.assertEqual(res, ref)
# Now run and assert the backward + gradients
ref.sum().backward()
res.sum().backward()
self.assertEqual(x_ref.grad, x.grad)
self.assertEqual(y_ref.grad, y.grad)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
@instantiate_parametrized_tests
class TestDTensorCompileE2E(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_compile.py
|
fn
|
def fn(x):
a = 0
if x.is_replicate():
a += 1
if x.is_shard():
a += 2
if x.dim < 0:
raise RuntimeError("dim < 0")
if x.is_shard(0):
a += 2
if x.is_shard(dim=0):
a += 2
if x.is_shard(dim=None):
a += 2
if x.is_partial():
a += 3
return a
compiled_fn = torch.compile(backend="aot_eager", fullgraph=True)(fn)
for x in [Shard(0), Replicate(), Partial()]:
opt_fn = fn(x)
compiled_out = compiled_fn(x)
self.assertEqual(opt_fn, compiled_out)
|
import copy
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.distributed as dist
import torch.nn as nn
from torch._C import FileCheck
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._tensor import (
DeviceMesh,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
fw_graph_cell = [None]
bw_graph_cell = [None]
fw_compiler = functools.partial(extract_graph, graph_cell=fw_graph_cell)
bw_compiler = functools.partial(extract_graph, graph_cell=bw_graph_cell)
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
aot_eager_graph = aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=min_cut_rematerialization_partition,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_dtensor_ops.py
|
skipOps
|
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db
for xfail in to_skip:
op_name, variant_name, device_type, dtypes, expected_failure = xfail
matching_opinfos = [
o
for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name
]
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
for opinfo in matching_opinfos:
decorators = list(opinfo.decorators)
if expected_failure:
decorator = DecorateInfo(
unittest.expectedFailure,
test_case_name,
base_test_name,
device_type=device_type,
dtypes=dtypes,
)
decorators.append(decorator)
else:
decorator = DecorateInfo(
unittest.skip("Skipped!"),
test_case_name,
base_test_name,
device_type=device_type,
dtypes=dtypes,
)
decorators.append(decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
# Re-generate this failed list, turn on dry_run of the below func
# check_dtensor_func(self, test, op, dry_run=True), then run sth
# like python test/distributed/_tensor/test_dtensor_ops.py > failed.expect
dtensor_fails = {
# these sometimes pass and sometimes fail
# we need to remove many of them from list once op
# get full support with varying sharding specs
xfail("__getitem__"),
xfail("__rsub__"),
xfail("_native_batch_norm_legit"),
xfail("_softmax_backward_data"),
xfail("addbmm"),
xfail("addmv"),
xfail("addr"),
xfail("all"),
xfail("allclose"),
xfail("amax"),
xfail("amin"),
xfail("aminmax"),
xfail("any"),
xfail("arange"),
xfail("argmax"),
xfail("argmin"),
xfail("argsort"),
xfail("as_strided"),
xfail("as_strided", "partial_views"),
xfail("as_strided_scatter"),
xfail("baddbmm"),
xfail("bernoulli"),
xfail("block_diag"),
xfail("broadcast_shapes"),
xfail("cauchy"),
xfail("cartesian_prod"),
xfail("cdist"),
xfail("cholesky"),
xfail("cholesky_inverse"),
xfail("cholesky_solve"),
xfail("chunk"),
xfail("clamp"),
xfail("clamp_max"),
xfail("clamp_min"),
xfail("combinations"),
xfail("complex"),
xfail("constant_pad_nd"),
xfail("corrcoef"),
xfail("count_nonzero"),
xfail("cov"),
xfail("cross"),
xfail("cummax"),
xfail("cummin"),
xfail("cumsum"),
xfail("cumulative_trapezoid"),
xfail("diag"),
xfail("diag_embed"),
xfail("diagflat"),
xfail("diagonal"),
xfail("diagonal_copy"),
xfail("diagonal_scatter"),
xfail("dist"),
xfail("dot"),
xfail("einsum"),
xfail("empty"),
xfail("empty_like"),
xfail("exponential"),
xfail("eye"),
xfail("fft.fft2"),
xfail("fft.fft"),
xfail("fft.fftn"),
xfail("fft.fftshift"),
xfail("fft.ifft2"),
xfail("fft.ifft"),
xfail("fft.ifftshift"),
xfail("fft.ihfft2"),
xfail("fft.ihfft"),
xfail("fft.ihfftn"),
xfail("fft.irfft2"),
xfail("fft.irfftn"),
xfail("fft.rfft2"),
xfail("fft.rfft"),
xfail("fft.rfftn"),
xfail("fill"),
xfail("flip"),
xfail("fliplr"),
xfail("flipud"),
xfail("floor_divide"),
xfail("fmax"),
xfail("fmin"),
xfail("frexp"),
xfail("full"),
xfail("full_like"),
xfail("gather"),
xfail("geometric"),
xfail("geqrf"),
xfail("grid_sampler_2d"),
xfail("gradient"),
xfail("heaviside"),
xfail("histc"),
xfail("histogram"),
xfail("histogramdd"),
xfail("index_add"),
xfail("index_copy"),
xfail("index_fill"),
xfail("index_put"),
xfail("index_reduce"),
xfail("index_select"),
xfail("isin"),
xfail("isinf"),
xfail("isneginf"),
xfail("isposinf"),
xfail("kthvalue"),
xfail("linalg.cholesky"),
xfail("linalg.cholesky_ex"),
xfail("linalg.cond"),
xfail("linalg.cross"),
xfail("linalg.det"),
xfail("linalg.det", "singular"),
xfail("linalg.eig"),
xfail("linalg.eigh"),
xfail("linalg.eigvals"),
xfail("linalg.eigvalsh"),
xfail("linalg.householder_product"),
xfail("linalg.inv"),
xfail("linalg.inv_ex"),
xfail("linalg.ldl_factor"),
xfail("linalg.ldl_factor_ex"),
xfail("linalg.ldl_solve"),
xfail("linalg.lstsq"),
xfail("linalg.lstsq", "grad_oriented"),
xfail("linalg.lu"),
xfail("linalg.lu_factor"),
xfail("linalg.lu_factor_ex"),
xfail("linalg.lu_solve"),
xfail("linalg.matrix_norm"),
xfail("linalg.matrix_power"),
xfail("linalg.matrix_rank"),
xfail("linalg.matrix_rank", "hermitian"),
xfail("linalg.multi_dot"),
xfail("linalg.norm"),
xfail("linalg.norm", "subgradients_at_zero"),
xfail("linalg.pinv"),
xfail("linalg.pinv", "hermitian"),
xfail("linalg.qr"),
xfail("linalg.slogdet"),
xfail("linalg.solve"),
xfail("linalg.solve_ex"),
xfail("linalg.solve_triangular"),
xfail("linalg.svd"),
xfail("linalg.svdvals"),
xfail("linalg.tensorinv"),
xfail("linalg.tensorsolve"),
xfail("linalg.vander"),
xfail("linalg.vecdot"),
xfail("linalg.vector_norm"),
xfail("linspace"),
xfail("log_normal"),
xfail("log_softmax"),
xfail("log_softmax", "with_dtype"),
xfail("logcumsumexp"),
xfail("logdet"),
xfail("logspace"),
xfail("logsumexp"),
xfail("lt"),
xfail("lu"),
xfail("lu_solve"),
xfail("lu_unpack"),
xfail("masked_fill"),
xfail("masked_scatter"),
xfail("masked_select"),
xfail("masked.amax"),
xfail("masked.amin"),
xfail("masked.argmax"),
xfail("masked.argmin"),
xfail("masked.cumprod"),
xfail("masked.cumsum"),
xfail("masked.log_softmax"),
xfail("masked.logaddexp"),
xfail("masked.logsumexp"),
xfail("masked.median"),
xfail("masked.norm"),
xfail("masked.prod"),
xfail("masked.softmin"),
xfail("masked.softmax"),
xfail("masked.sum"),
xfail("matrix_exp"),
xfail("max", "binary"),
xfail("max", "reduction_no_dim"),
xfail("max", "reduction_with_dim"),
xfail("maximum"),
xfail("median"),
xfail("min", "binary"),
xfail("min", "reduction_no_dim"),
xfail("min", "reduction_with_dim"),
xfail("minimum"),
xfail("mode"),
xfail("msort"),
xfail("multinomial"),
xfail("mv"),
xfail("max_pool2d_with_indices_backward", ""),
xfail("nanmean"),
xfail("nanmedian"),
xfail("nanquantile"),
xfail("nansum"),
xfail("native_batch_norm"),
xfail("native_dropout_backward"),
xfail("native_layer_norm"),
xfail("narrow_copy"),
xfail("ne"),
xfail("new_empty"),
xfail("new_empty_strided"),
xfail("transpose"),
xfail("nn.functional.adaptive_avg_pool1d"),
xfail("nn.functional.adaptive_avg_pool2d"),
xfail("nn.functional.adaptive_avg_pool3d"),
xfail("nn.functional.adaptive_max_pool1d"),
xfail("nn.functional.adaptive_max_pool2d"),
xfail("nn.functional.adaptive_max_pool3d"),
xfail("nn.functional.alpha_dropout"),
xfail("nn.functional.avg_pool1d"),
xfail("nn.functional.avg_pool2d"),
xfail("nn.functional.avg_pool3d"),
xfail("nn.functional.batch_norm"),
xfail("nn.functional.batch_norm", "without_cudnn"),
xfail("nn.functional.bilinear"),
xfail("nn.functional.binary_cross_entropy"),
xfail("nn.functional.binary_cross_entropy_with_logits"),
xfail("nn.functional.celu"),
xfail("nn.functional.conv1d"),
xfail("nn.functional.conv2d"),
xfail("nn.functional.conv_transpose1d"),
xfail("nn.functional.conv_transpose2d"),
xfail("nn.functional.conv_transpose3d"),
xfail("nn.functional.cosine_similarity"),
xfail("nn.functional.cross_entropy"),
xfail("nn.functional.ctc_loss"),
xfail("nn.functional.dropout"),
xfail("nn.functional.dropout2d"),
xfail("nn.functional.dropout3d"),
xfail("nn.functional.elu"),
xfail("nn.functional.fractional_max_pool2d"),
xfail("nn.functional.fractional_max_pool3d"),
xfail("nn.functional.gaussian_nll_loss"),
xfail("nn.functional.glu"),
xfail("nn.functional.grid_sample"),
xfail("nn.functional.group_norm"),
xfail("nn.functional.hardshrink"),
xfail("nn.functional.hardsigmoid"),
xfail("nn.functional.hardswish"),
xfail("nn.functional.hardtanh"),
xfail("nn.functional.huber_loss"),
xfail("nn.functional.instance_norm"),
xfail("nn.functional.interpolate", "area"),
xfail("nn.functional.interpolate", "bicubic"),
xfail("nn.functional.interpolate", "bilinear"),
xfail("nn.functional.interpolate", "linear"),
xfail("nn.functional.interpolate", "nearest"),
xfail("nn.functional.interpolate", "trilinear"),
xfail("nn.functional.layer_norm"),
xfail("nn.functional.leaky_relu"),
xfail("nn.functional.linear"),
xfail("nn.functional.local_response_norm"),
xfail("nn.functional.logsigmoid"),
xfail("nn.functional.margin_ranking_loss"),
xfail("nn.functional.max_pool1d"),
xfail("nn.functional.max_pool2d"),
xfail("nn.functional.max_pool3d"),
xfail("nn.functional.max_unpool1d"),
xfail("nn.functional.max_unpool1d", "grad"),
xfail("nn.functional.max_unpool2d"),
xfail("nn.functional.max_unpool2d", "grad"),
xfail("nn.functional.max_unpool3d"),
xfail("nn.functional.max_unpool3d", "grad"),
xfail("nn.functional.mish"),
xfail("nn.functional.mse_loss"),
xfail("nn.functional.multi_margin_loss"),
xfail("nn.functional.multilabel_margin_loss"),
xfail("nn.functional.multilabel_soft_margin_loss"),
xfail("nn.functional.nll_loss"),
xfail("nn.functional.normalize"),
xfail("nn.functional.pad", "circular"),
xfail("nn.functional.pad", "constant"),
xfail("nn.functional.pad", "reflect"),
xfail("nn.functional.pad", "replicate"),
xfail("nn.functional.pairwise_distance"),
xfail("nn.functional.pdist"),
xfail("nn.functional.pixel_shuffle"),
xfail("nn.functional.pixel_unshuffle"),
xfail("nn.functional.poisson_nll_loss"),
xfail("nn.functional.prelu"),
xfail("nn.functional.relu6"),
xfail("nn.functional.rrelu"),
xfail("nn.functional.selu"),
xfail("nn.functional.silu"),
xfail("nn.functional.smooth_l1_loss"),
xfail("nn.functional.soft_margin_loss"),
xfail("nn.functional.softplus"),
xfail("nn.functional.softshrink"),
xfail("nn.functional.threshold"),
xfail("nn.functional.triplet_margin_loss"),
xfail("nn.functional.triplet_margin_with_distance_loss"),
xfail("nn.functional.unfold"),
xfail("nn.functional.upsample_bilinear"),
xfail("nn.functional.upsample_nearest"),
xfail("nonzero"),
xfail("norm"),
xfail("norm", "fro"),
xfail("norm", "inf"),
xfail("norm", "nuc"),
xfail("normal"),
xfail("normal", "number_mean"),
xfail("ormqr"),
xfail("ones"),
xfail("pca_lowrank"),
xfail("pinverse"),
xfail("polar"),
xfail("put"),
xfail("qr"),
xfail("quantile"),
xfail("rand_like"),
xfail("randint_like"),
xfail("randint"),
xfail("randn"),
xfail("randn_like"),
xfail("renorm"),
xfail("repeat_interleave"),
xfail("resize_"),
xfail("resize_as_"),
xfail("roll"),
xfail("rot90"),
xfail("rsub"),
xfail("scalar_tensor"),
xfail("scatter_add"),
xfail("scatter"),
xfail("scatter_reduce", "amax"),
xfail("scatter_reduce", "amin"),
xfail("scatter_reduce", "mean"),
xfail("scatter_reduce", "prod"),
xfail("scatter_reduce", "sum"),
xfail("searchsorted"),
xfail("select"),
xfail("select_scatter"),
xfail("sort"),
xfail("sparse.sampled_addmm"),
xfail("sparse.mm", "reduce"),
xfail("special.airy_ai"),
xfail("special.bessel_j0"),
xfail("special.bessel_j1"),
xfail("special.bessel_y0"),
xfail("special.bessel_y1"),
xfail("special.chebyshev_polynomial_t"),
xfail("special.chebyshev_polynomial_u"),
xfail("special.entr"),
xfail("special.erfcx"),
xfail("special.hermite_polynomial_h"),
xfail("special.hermite_polynomial_he"),
xfail("special.i0e"),
xfail("special.i1"),
xfail("special.i1e"),
xfail("special.laguerre_polynomial_l"),
xfail("special.log_ndtr"),
xfail("special.modified_bessel_i0"),
xfail("special.modified_bessel_i1"),
xfail("special.modified_bessel_k0"),
xfail("special.modified_bessel_k1"),
xfail("special.ndtri"),
xfail("special.scaled_modified_bessel_k0"),
xfail("special.scaled_modified_bessel_k1"),
xfail("special.spherical_bessel_j0"),
xfail("special.xlog1py"),
xfail("special.zeta"),
xfail("squeeze", "multiple"),
xfail("signal.windows.bartlett"),
xfail("signal.windows.blackman"),
xfail("signal.windows.cosine"),
xfail("signal.windows.exponential"),
xfail("signal.windows.gaussian"),
xfail("signal.windows.general_cosine"),
xfail("signal.windows.general_hamming"),
xfail("signal.windows.hamming"),
xfail("signal.windows.hann"),
xfail("signal.windows.nuttall"),
xfail("signal.windows.kaiser"),
xfail("stack"),
xfail("std"),
xfail("std", "unbiased"),
xfail("std_mean"),
xfail("std_mean", "unbiased"),
xfail("stft"),
xfail("svd"),
xfail("svd_lowrank"),
xfail("t"),
xfail("take_along_dim"),
xfail("take"),
xfail("tensor_split"),
xfail("to_sparse"),
xfail("topk"),
xfail("trace"),
xfail("trapezoid"),
xfail("trapz"),
xfail("triangular_solve"),
xfail("tril"),
xfail("triu"),
xfail("unbind"),
xfail("unfold"),
xfail("unfold_copy"),
xfail("uniform"),
xfail("unflatten"),
xfail("unique_consecutive"),
xfail("unique"),
xfail("unsafe_split"),
xfail("var_mean"),
xfail("var_mean", "unbiased"),
xfail("vdot"),
xfail("view_copy"),
xfail("view_as_complex"),
xfail("where"),
xfail("zeros"),
# ops inside this might even fail without dtensor
# tests, as we rescale op db common test size factor (i.e. L, M, S)
# which triggered the orignal function run failures with input
# generation becomes wrong, we skip them for now but should enable later.
# TODO: need to clean this list and remove all cases
skip("argwhere"),
skip("cumprod"),
skip("__rmatmul__"),
skip("meshgrid", "list_of_tensors"),
skip("meshgrid", "variadic_tensors"),
skip("nn.functional.scaled_dot_product_attention"),
skip("nn.functional.softmin"),
skip("nn.functional.embedding"),
skip("nn.functional.embedding_bag"),
skip("nn.functional.feature_alpha_dropout", "with_train"),
skip("nn.functional.feature_alpha_dropout", "without_train"),
skip("nn.functional.hinge_embedding_loss"),
skip("nn.functional.cosine_embedding_loss"),
skip("fft.hfft"),
skip("fft.hfft2"),
skip("fft.hfft2"),
skip("fft.hfftn"),
skip("fft.ifftn"),
skip("fft.irfft"),
skip("istft"),
skip("isclose"),
skip("isreal"),
skip("matmul"),
skip("masked.mean"),
skip("masked.var"),
skip("masked.std"),
skip("masked.normalize"),
skip("prod"),
skip("_segment_reduce", "lengths"),
skip("_segment_reduce", "offsets"),
# TODO: fix the following ops
skip("squeeze"),
}
# Add a list of ops that are currently failing BW pass
skip_bw = [
None, # corresponds to the transpose ops 'H' and 'T'
"torch.bucketize",
"torch.conj_physical",
"torch.eq",
"torch.isfinite",
"torch.isnan",
]
OP_DB_WORLD_SIZE = 4
# DEVICE_TYPE = "cuda" if torch.cuda.is_available() and torch.cuda.device_count() >= OP_DB_WORLD_SIZE else "cpu"
# TODO: debug cuda illegal memory access issue and re-enable cuda tests
DEVICE_TYPE = "cpu"
class TestDTensorOps(DTensorOpTestBase):
@property
def world_size(self) -> int:
return OP_DB_WORLD_SIZE
# only allow float dytpe for now, we can relax this constraint
# when feel necessary later (i.e when adding quantization support).
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@suppress_warnings
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps("TestDTensorOps", "test_dtensor_op_db", dtensor_fails)
def test_dtensor_op_db(self, dtype, op):
self.mesh = DeviceMesh(DEVICE_TYPE, torch.arange(self.world_size))
# test each op with dist tensor inputs and normal inputs
def test():
samples = op.sample_inputs(DEVICE_TYPE, dtype, requires_grad=True)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
self.run_dtensor_crossref(op.op, args, kwargs)
# we need to figure out a way to test the out variant, out variant testing
# is tricky, as we need to pre allocate the dtensor out, some of them rely
# on sharding placements to be pre-known (i.e. mm.out)
# if isinstance(expected, torch.Tensor) and op.supports_out:
# func(*args, **kwargs, out=expected)
self.check_dtensor_func(test, op)
def assert_ref_dtensor_equal(self, dtensor_rs, rs):
flat_dtensor_rs, _ = tree_flatten(dtensor_rs)
flat_rs, _ = tree_flatten(rs)
self.assertEqual(len(flat_dtensor_rs), len(flat_rs))
for dtensor_r, r in zip(flat_dtensor_rs, flat_rs):
if not isinstance(r, torch.Tensor):
continue
self.assertIsInstance(dtensor_r, torch.Tensor)
self.assertEqualOnRank(
dtensor_r.shape,
r.shape,
f"Shape mismatch! original shape:{r.shape}, dtensor shape: {dtensor_r.shape}",
)
self.assertEqualOnRank(
dtensor_r.requires_grad,
r.requires_grad,
"op result requires_grad mismatch!"
f"original requires_grad: {r.requires_grad}, "
f"dtensor requires_grad: {dtensor_r.requires_grad}",
)
self.assertEqualOnRank(dtensor_r.to_local(), r)
def run_dtensor_crossref(self, func, args, kwargs):
to_dtensor = DTensorConverter(self.mesh, args, kwargs)
def concat_res_if_necessary(func, res: object) -> object:
# concat the result on corresponding dim for ops like
# split, so that we can call backward on a single tensor
if (
(resolve_name(func) is not None)
and ("split" in resolve_name(func))
):
dim = args[2] if len(args) == 3 else 0
return torch.cat(res, dim=dim)
else:
return res
# TODO: also handle cases where func raise an exception
rs = func(*args, **kwargs)
rs = concat_res_if_necessary(func, rs)
def to_replicate(e: object) -> object:
return (
e.redistribute(self.mesh, self.mesh.ndim * [Replicate()])
if isinstance(e, DTensor)
else e
)
try:
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# for every comb of sharding choices, we test if it works
for dtensor_args, dtensor_kwargs in to_dtensor:
# Only attempt if we managed to convert all tensors to DTensor
# (if any of them failed, we're in a mixed tensor situation and
# this is not allowed in DTensor)
if to_dtensor.successful():
# Handle special cases first if there's any
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
dtensor_rs = func(*dtensor_args, **dtensor_kwargs)
# we need to skip tests containing tensors of zero elmeents for now.
# see issue: https://github.com/pytorch/tau/issues/470
# TODO remove this once issue above fixed.
flat_args, _ = tree_flatten(dtensor_rs)
if any(
isinstance(e, torch.Tensor) and e.numel() == 0
for e in flat_args
):
continue
# redistribute/all_gather the results to compare with normal output
dtensor_rs = tree_map(to_replicate, dtensor_rs)
dtensor_rs = concat_res_if_necessary(func, dtensor_rs)
try:
if resolve_name(func) not in skip_bw:
if isinstance(dtensor_rs, DTensor):
dtensor_rs.to_local().sum().backward()
elif isinstance(dtensor_rs, tuple):
dtensor_rs[0].to_local().sum().backward()
except Exception as e:
# TODO(anj): Remove this guard exception after gaining more confidence.
if torch.distributed.get_rank() == 0:
print(
f"failed to run BW: {resolve_name(func)}, {func}, {str(e)})"
)
self.assert_ref_dtensor_equal(dtensor_rs, rs)
else:
raise RuntimeError(
f"failed to convert args to DTensor; "
f"originally (*{args}, **{kwargs})"
)
except Exception as e:
raise RuntimeError(
f"failed to run: {resolve_name(func)}, with (*{args}, **{kwargs})"
) from e
return rs
def check_dtensor_func(self, test_func, opinfo, dry_run=False):
try:
test_func()
except Exception:
if not dry_run:
raise
if dist.get_rank() == 0:
if opinfo.variant_test_name:
print(f"xfail('{opinfo.name}', '{opinfo.variant_test_name}'),")
else:
print(f"xfail('{opinfo.name}'),")
# only instantiate tests for DEVICE_TYPE alone (i.e. either CPU or GPU)
instantiate_device_type_tests(TestDTensorOps, globals(), only_for=(DEVICE_TYPE,))
if __name__ == "__main__":
run_tests()
|
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db
for xfail in to_skip:
op_name, variant_name, device_type, dtypes, expected_failure = xfail
matching_opinfos = [
o
for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name
]
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
for opinfo in matching_opinfos:
decorators = list(opinfo.decorators)
if expected_failure:
decorator = DecorateInfo(
unittest.expectedFailure,
test_case_name,
base_test_name,
device_type=device_type,
dtypes=dtypes,
)
decorators.append(decorator)
else:
decorator = DecorateInfo(
unittest.skip("Skipped!"),
test_case_name,
base_test_name,
device_type=device_type,
dtypes=dtypes,
)
decorators.append(decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
# Re-generate this failed list, turn on dry_run of the below func
# check_dtensor_func(self, test, op, dry_run=True), then run sth
# like python test/distributed/_tensor/test_dtensor_ops.py > failed.expect
dtensor_fails = {
# these sometimes pass and sometimes fail
# we need to remove many of them from list once op
# get full support with varying sharding specs
xfail("__getitem__"),
xfail("__rsub__"),
xfail("_chunk_cat"),
xfail("_native_batch_norm_legit"),
xfail("_upsample_bilinear2d_aa"),
xfail("addbmm"),
xfail("addmv"),
xfail("addr"),
xfail("all"),
xfail("allclose"),
xfail("alias_copy"),
xfail("amax"),
xfail("amin"),
xfail("aminmax"),
xfail("any"),
xfail("arange"),
xfail("argmax"),
xfail("argmin"),
xfail("argsort"),
xfail("as_strided"),
xfail("as_strided", "partial_views"),
xfail("as_strided_copy"),
xfail("as_strided_scatter"),
xfail("bernoulli"),
xfail("_batch_norm_with_update"),
xfail("block_diag"),
xfail("broadcast_shapes"),
xfail("cauchy"),
xfail("cdist"),
xfail("cholesky"),
xfail("cholesky_inverse"),
xfail("cholesky_solve"),
xfail("chunk"),
xfail("clamp"),
xfail("clamp_max"),
xfail("clamp_min"),
xfail("combinations"),
xfail("complex"),
xfail("constant_pad_nd"),
xfail("count_nonzero"),
xfail("cross"),
xfail("cummax"),
xfail("cummin"),
xfail("cumsum"),
xfail("cumulative_trapezoid"),
xfail("diagonal_scatter"),
xfail("dist"),
xfail("dot"),
xfail("empty"),
xfail("empty_strided"),
xfail("empty_like"),
xfail("empty_permuted"),
xfail("expand_copy"),
xfail("exponential"),
xfail("equal"),
xfail("eye"),
xfail("fft.fft2"),
xfail("fft.fft"),
xfail("fft.fftn"),
xfail("fft.fftshift"),
xfail("fft.ifft2"),
xfail("fft.ifft"),
xfail("fft.ifftshift"),
xfail("fft.ihfft2"),
xfail("fft.ihfft"),
xfail("fft.ihfftn"),
xfail("fft.irfft2"),
xfail("fft.irfftn"),
xfail("fft.rfft2"),
xfail("fft.rfft"),
xfail("fft.rfftn"),
xfail("fill"),
xfail("flip"),
xfail("fliplr"),
xfail("flipud"),
xfail("floor_divide"),
xfail("fmax"),
xfail("fmin"),
xfail("frexp"),
xfail("full"),
xfail("full_like"),
xfail("gather"),
xfail("geometric"),
xfail("geqrf"),
xfail("grid_sampler_2d"),
xfail("gradient"),
xfail("heaviside"),
xfail("histc"),
xfail("histogram"),
xfail("histogramdd"),
xfail("index_add"),
xfail("index_copy"),
xfail("index_fill"),
xfail("index_put"),
xfail("index_reduce", "prod"),
xfail("index_reduce", "mean"),
xfail("index_reduce", "amax"),
xfail("index_reduce", "amin"),
xfail("index_select"),
xfail("isin"),
xfail("kthvalue"),
xfail("linalg.cholesky"),
xfail("linalg.cholesky_ex"),
xfail("linalg.cross"),
xfail("linalg.det"),
xfail("linalg.det", "singular"),
xfail("linalg.eig"),
xfail("linalg.eigvals"),
xfail("linalg.householder_product"),
xfail("linalg.inv"),
xfail("linalg.inv_ex"),
xfail("linalg.ldl_factor"),
xfail("linalg.ldl_factor_ex"),
xfail("linalg.ldl_solve"),
xfail("linalg.lstsq"),
xfail("linalg.lstsq", "grad_oriented"),
xfail("linalg.lu"),
xfail("linalg.lu_factor"),
xfail("linalg.lu_factor_ex"),
xfail("linalg.lu_solve"),
xfail("linalg.matrix_norm"),
xfail("linalg.matrix_power"),
xfail("linalg.matrix_rank"),
xfail("linalg.matrix_rank", "hermitian"),
xfail("linalg.multi_dot"),
xfail("linalg.norm"),
xfail("linalg.norm", "subgradients_at_zero"),
xfail("linalg.pinv"),
xfail("linalg.pinv", "hermitian"),
xfail("linalg.slogdet"),
xfail("linalg.solve"),
xfail("linalg.solve_ex"),
xfail("linalg.solve_triangular"),
xfail("linalg.tensorinv"),
xfail("linalg.tensorsolve"),
xfail("linalg.vander"),
xfail("linalg.vecdot"),
xfail("linspace"),
xfail("linspace", "tensor_overload"),
xfail("log_normal"),
xfail("logcumsumexp"),
xfail("logdet"),
xfail("logspace"),
xfail("logspace", "tensor_overload"),
xfail("logsumexp"),
xfail("lu"),
xfail("lu_solve"),
xfail("lu_unpack"),
xfail("masked_fill"),
xfail("masked_scatter"),
xfail("masked_select"),
xfail("masked.amax"),
xfail("masked.amin"),
xfail("masked.argmax"),
xfail("masked.argmin"),
xfail("masked.cumprod"),
xfail("masked.cumsum"),
xfail("masked.logsumexp"),
xfail("masked.median"),
xfail("matrix_exp"),
xfail("max", "binary"),
xfail("max", "reduction_with_dim"),
xfail("maximum"),
xfail("median"),
xfail("min", "binary"),
xfail("min", "reduction_with_dim"),
xfail("minimum"),
xfail("mode"),
xfail("msort"),
xfail("multinomial"),
xfail("mv"),
xfail("max_pool2d_with_indices_backward", ""),
xfail("nanmean"),
xfail("nanmedian"),
xfail("nanquantile"),
xfail("nansum"),
xfail("native_batch_norm"),
xfail("native_dropout_backward"),
xfail("narrow_copy"),
xfail("ne"),
xfail("new_empty"),
xfail("new_empty_strided"),
xfail("transpose"),
xfail("nn.functional.adaptive_avg_pool1d"),
xfail("nn.functional.adaptive_avg_pool2d"),
xfail("nn.functional.adaptive_avg_pool3d"),
xfail("nn.functional.adaptive_max_pool1d"),
xfail("nn.functional.adaptive_max_pool2d"),
xfail("nn.functional.adaptive_max_pool3d"),
xfail("nn.functional.alpha_dropout"),
xfail("nn.functional.avg_pool1d"),
xfail("nn.functional.avg_pool2d"),
xfail("nn.functional.avg_pool3d"),
xfail("nn.functional.batch_norm"),
xfail("nn.functional.batch_norm", "without_cudnn"),
xfail("nn.functional.bilinear"),
xfail("nn.functional.binary_cross_entropy"),
xfail("nn.functional.binary_cross_entropy_with_logits"),
xfail("nn.functional.celu"),
xfail("nn.functional.conv1d"),
xfail("nn.functional.conv2d"),
xfail("nn.functional.conv3d"),
xfail("nn.functional.conv_transpose1d"),
xfail("nn.functional.conv_transpose2d"),
xfail("nn.functional.conv_transpose3d"),
xfail("nn.functional.cosine_similarity"),
xfail("nn.functional.ctc_loss"),
xfail("nn.functional.dropout"),
xfail("nn.functional.dropout2d"),
xfail("nn.functional.dropout3d"),
xfail("nn.functional.elu"),
xfail("nn.functional.fractional_max_pool2d"),
xfail("nn.functional.fractional_max_pool3d"),
xfail("nn.functional.glu"),
xfail("nn.functional.grid_sample"),
xfail("nn.functional.group_norm"),
xfail("nn.functional.hardshrink"),
xfail("nn.functional.hardsigmoid"),
xfail("nn.functional.hardswish"),
xfail("nn.functional.hardtanh"),
xfail("nn.functional.huber_loss"),
xfail("nn.functional.instance_norm"),
xfail("nn.functional.interpolate", "area"),
xfail("nn.functional.interpolate", "bicubic"),
xfail("nn.functional.interpolate", "bilinear"),
xfail("nn.functional.interpolate", "linear"),
xfail("nn.functional.interpolate", "nearest"),
xfail("nn.functional.interpolate", "nearest-exact"),
xfail("nn.functional.interpolate", "trilinear"),
xfail("nn.functional.leaky_relu"),
xfail("nn.functional.linear"),
xfail("nn.functional.local_response_norm"),
xfail("nn.functional.logsigmoid"),
xfail("nn.functional.margin_ranking_loss"),
xfail("nn.functional.max_pool1d"),
xfail("nn.functional.max_pool2d"),
xfail("nn.functional.max_pool3d"),
xfail("nn.functional.max_unpool1d"),
xfail("nn.functional.max_unpool1d", "grad"),
xfail("nn.functional.max_unpool2d"),
xfail("nn.functional.max_unpool2d", "grad"),
xfail("nn.functional.max_unpool3d"),
xfail("nn.functional.max_unpool3d", "grad"),
xfail("nn.functional.mish"),
xfail("nn.functional.mse_loss"),
xfail("nn.functional.multi_margin_loss"),
xfail("nn.functional.multi_head_attention_forward"),
xfail("nn.functional.multilabel_margin_loss"),
xfail("nn.functional.multilabel_soft_margin_loss"),
xfail("nn.functional.normalize"),
xfail("nn.functional.pad", "constant"),
xfail("nn.functional.pad", "reflect"),
xfail("nn.functional.pad", "replicate"),
xfail("nn.functional.pad", "replicate_negative"),
xfail("nn.functional.pairwise_distance"),
xfail("nn.functional.pdist"),
xfail("nn.functional.pixel_shuffle"),
xfail("nn.functional.pixel_unshuffle"),
xfail("nn.functional.prelu"),
xfail("nn.functional.relu6"),
xfail("nn.functional.rrelu"),
xfail("nn.functional.selu"),
xfail("nn.functional.smooth_l1_loss"),
xfail("nn.functional.soft_margin_loss"),
xfail("nn.functional.softplus"),
xfail("nn.functional.softshrink"),
xfail("nn.functional.threshold"),
xfail("nn.functional.triplet_margin_loss"),
xfail("nn.functional.triplet_margin_with_distance_loss"),
xfail("nn.functional.unfold"),
xfail("nn.functional.upsample_bilinear"),
xfail("nn.functional.upsample_nearest"),
xfail("nonzero"),
xfail("normal"),
xfail("normal", "number_mean"),
xfail("normal", "in_place"),
xfail("ormqr"),
xfail("ones"),
xfail("pca_lowrank"),
xfail("pinverse"),
xfail("polar"),
xfail("put"),
xfail("quantile"),
xfail("rand_like"),
xfail("randint_like"),
xfail("randint"),
xfail("randn"),
xfail("randn_like"),
xfail("renorm"),
xfail("repeat_interleave"),
xfail("resize_"),
xfail("resize_as_"),
xfail("roll"),
xfail("rot90"),
xfail("rsub"),
xfail("scalar_tensor"),
xfail("scatter_add"),
xfail("scatter_reduce", "amax"),
xfail("scatter_reduce", "amin"),
xfail("scatter_reduce", "mean"),
xfail("scatter_reduce", "prod"),
xfail("scatter_reduce", "sum"),
xfail("searchsorted"),
xfail("select"),
xfail("select_scatter"),
xfail("sort"),
xfail("sparse.sampled_addmm"),
xfail("sparse.mm", "reduce"),
xfail("special.airy_ai"),
xfail("special.bessel_j0"),
xfail("special.bessel_j1"),
xfail("special.bessel_y0"),
xfail("special.bessel_y1"),
xfail("special.chebyshev_polynomial_t"),
xfail("special.chebyshev_polynomial_u"),
xfail("special.entr"),
xfail("special.erfcx"),
xfail("special.hermite_polynomial_h"),
xfail("special.hermite_polynomial_he"),
xfail("special.i0e"),
xfail("special.i1"),
xfail("special.i1e"),
xfail("special.laguerre_polynomial_l"),
xfail("special.log_ndtr"),
xfail("special.modified_bessel_i0"),
xfail("special.modified_bessel_i1"),
xfail("special.modified_bessel_k0"),
xfail("special.modified_bessel_k1"),
xfail("special.ndtri"),
xfail("special.scaled_modified_bessel_k0"),
xfail("special.scaled_modified_bessel_k1"),
xfail("special.spherical_bessel_j0"),
xfail("special.xlog1py"),
xfail("special.zeta"),
xfail("squeeze", "multiple"),
xfail("signal.windows.bartlett"),
xfail("signal.windows.blackman"),
xfail("signal.windows.cosine"),
xfail("signal.windows.exponential"),
xfail("signal.windows.gaussian"),
xfail("signal.windows.general_cosine"),
xfail("signal.windows.general_hamming"),
xfail("signal.windows.hamming"),
xfail("signal.windows.hann"),
xfail("signal.windows.nuttall"),
xfail("signal.windows.kaiser"),
xfail("stack"),
xfail("std"),
xfail("std", "unbiased"),
xfail("std_mean"),
xfail("std_mean", "unbiased"),
xfail("stft"),
xfail("svd_lowrank"),
xfail("t_copy"),
xfail("take"),
xfail("tensor_split"),
xfail("to_sparse"),
xfail("trace"),
xfail("trapezoid"),
xfail("trapz"),
xfail("triangular_solve"),
xfail("unbind"),
xfail("unfold"),
xfail("unfold_copy"),
xfail("uniform"),
xfail("unflatten"),
xfail("unique_consecutive"),
xfail("unique"),
xfail("unsafe_split"),
xfail("unsafe_chunk"),
xfail("_unsafe_masked_index"),
xfail("_unsafe_masked_index_put_accumulate"),
xfail("var_mean"),
xfail("var_mean", "unbiased"),
xfail("vdot"),
xfail("view_copy"),
xfail("zeros"),
# ops inside this might even fail without dtensor
# tests, as we rescale op db common test size factor (i.e. L, M, S)
# which triggered the original function run failures with input
# generation becomes wrong, we skip them for now but should enable later.
# TODO: need to clean this list and remove all cases
skip("argwhere"),
skip("cumprod"),
skip("__rmatmul__"),
skip("meshgrid", "list_of_tensors"),
skip("meshgrid", "variadic_tensors"),
skip("nn.functional.scaled_dot_product_attention"),
skip("nn.functional.softmin"),
skip("nn.functional.embedding"),
skip("nn.functional.embedding_bag"),
skip("nn.functional.feature_alpha_dropout", "with_train"),
skip("nn.functional.feature_alpha_dropout", "without_train"),
skip("nn.functional.hinge_embedding_loss"),
skip("nn.functional.cosine_embedding_loss"),
skip("fft.hfft"),
skip("fft.hfft2"),
skip("fft.hfft2"),
skip("fft.hfftn"),
skip("fft.ifftn"),
skip("fft.irfft"),
skip("istft"),
skip("isclose"),
skip("isreal"),
skip("matmul"),
skip("masked.mean"),
skip("masked.var"),
skip("masked.std"),
skip("masked.normalize"),
skip("prod"),
skip("_segment_reduce", "lengths"),
skip("_segment_reduce", "offsets"),
# TODO: fix the following ops
skip("squeeze"),
}
# Add a list of ops that are currently failing BW pass
skip_bw = [
None, # corresponds to the transpose ops 'H' and 'T'
"torch.bucketize",
"torch.conj_physical",
"torch.eq",
"torch.isfinite",
"torch.isnan",
]
OP_DB_WORLD_SIZE = 4
# DEVICE_TYPE = "cuda" if torch.cuda.is_available() and torch.cuda.device_count() >= OP_DB_WORLD_SIZE else "cpu"
# TODO: debug cuda illegal memory access issue and re-enable cuda tests
DEVICE_TYPE = "cpu"
class TestDTensorOps(DTensorOpTestBase):
@property
def world_size(self) -> int:
return OP_DB_WORLD_SIZE
# only allow float dytpe for now, we can relax this constraint
# when feel necessary later (i.e when adding quantization support).
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@suppress_warnings
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps("TestDTensorOps", "test_dtensor_op_db", dtensor_fails)
def test_dtensor_op_db(self, dtype, op):
self.mesh = DeviceMesh(DEVICE_TYPE, torch.arange(self.world_size))
# test each op with dist tensor inputs and normal inputs
def test():
samples = op.sample_inputs(DEVICE_TYPE, dtype, requires_grad=True)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
self.run_dtensor_crossref(op.op, args, kwargs)
# we need to figure out a way to test the out variant, out variant testing
# is tricky, as we need to pre allocate the dtensor out, some of them rely
# on sharding placements to be pre-known (i.e. mm.out)
# if isinstance(expected, torch.Tensor) and op.supports_out:
# func(*args, **kwargs, out=expected)
self.check_dtensor_func(test, op)
def assert_ref_dtensor_equal(self, dtensor_rs, rs):
flat_dtensor_rs = pytree.tree_leaves(dtensor_rs)
flat_rs = pytree.tree_leaves(rs)
self.assertEqual(len(flat_dtensor_rs), len(flat_rs))
for dtensor_r, r in zip(flat_dtensor_rs, flat_rs):
if not isinstance(r, torch.Tensor):
continue
self.assertIsInstance(dtensor_r, torch.Tensor)
self.assertEqualOnRank(
dtensor_r.shape,
r.shape,
f"Shape mismatch! original shape:{r.shape}, dtensor shape: {dtensor_r.shape}",
)
self.assertEqualOnRank(
dtensor_r.requires_grad,
r.requires_grad,
"op result requires_grad mismatch!"
f"original requires_grad: {r.requires_grad}, "
f"dtensor requires_grad: {dtensor_r.requires_grad}",
)
self.assertEqualOnRank(dtensor_r, r)
def run_dtensor_crossref(self, func, args, kwargs):
to_dtensor = DTensorConverter(self.mesh, args, kwargs)
def concat_res_if_necessary(func, res: object) -> object:
# concat the result on corresponding dim for ops like
# split, so that we can call backward on a single tensor
if (resolve_name(func) is not None) and ("split" in resolve_name(func)):
dim = args[2] if len(args) == 3 else 0
return torch.cat(res, dim=dim)
else:
return res
# TODO: also handle cases where func raise an exception
rs = func(*args, **kwargs)
rs = concat_res_if_necessary(func, rs)
def to_replicate(e: object) -> object:
return e.full_tensor() if isinstance(e, DTensor) else e
try:
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# for every comb of sharding choices, we test if it works
for dtensor_args, dtensor_kwargs in to_dtensor:
# Only attempt if we managed to convert all tensors to DTensor
# (if any of them failed, we're in a mixed tensor situation and
# this is not allowed in DTensor)
if to_dtensor.successful():
# Handle special cases first if there's any
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
dtensor_rs = func(*dtensor_args, **dtensor_kwargs)
# we need to skip tests containing tensors of zero elements for now.
# see issue: https://github.com/pytorch/tau/issues/470
# TODO remove this once issue above fixed.
flat_args = pytree.tree_leaves(dtensor_rs)
if any(
isinstance(e, torch.Tensor) and e.numel() == 0
for e in flat_args
):
continue
# redistribute/all_gather the results to compare with normal output
dtensor_rs = tree_map(to_replicate, dtensor_rs)
dtensor_rs = concat_res_if_necessary(func, dtensor_rs)
try:
if resolve_name(func) not in skip_bw:
if isinstance(dtensor_rs, DTensor):
dtensor_rs.to_local().sum().backward()
elif isinstance(dtensor_rs, tuple):
dtensor_rs[0].to_local().sum().backward()
except Exception as e:
# TODO(anj): Remove this guard exception after gaining more confidence.
if torch.distributed.get_rank() == 0:
print(
f"failed to run BW: {resolve_name(func)}, {func}, {str(e)})"
)
self.assert_ref_dtensor_equal(dtensor_rs, rs)
else:
raise RuntimeError(
f"failed to convert args to DTensor; "
f"originally (*{args}, **{kwargs})"
)
except Exception as e:
raise RuntimeError(
f"failed to run: {resolve_name(func)}, with (*{args}, **{kwargs})"
) from e
return rs
def check_dtensor_func(self, test_func, opinfo, dry_run=False):
try:
test_func()
except Exception:
if not dry_run:
raise
if dist.get_rank() == 0:
if opinfo.variant_test_name:
print(f"xfail('{opinfo.name}', '{opinfo.variant_test_name}'),")
else:
print(f"xfail('{opinfo.name}'),")
# only instantiate tests for DEVICE_TYPE alone (i.e. either CPU or GPU)
instantiate_device_type_tests(TestDTensorOps, globals(), only_for=(DEVICE_TYPE,))
if __name__ == "__main__":
run_tests()
|
import unittest
import warnings
import torch
import torch.distributed as dist
import torch.testing._internal.common_methods_invocations as common_ops
from torch.distributed._tensor import DeviceMesh, DTensor, Replicate
from torch.overrides import resolve_name
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
)
from torch.testing._internal.common_methods_invocations import (
DecorateInfo,
op_db,
)
from torch.testing._internal.common_utils import (
run_tests,
suppress_warnings,
TEST_WITH_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorConverter,
DTensorOpTestBase,
)
from torch.utils._pytree import tree_flatten, tree_map
common_ops.L = 24
common_ops.M = 12
common_ops.S = 4
common_ops.XS = 2
|
import unittest
import warnings
import torch
import torch.distributed as dist
import torch.testing._internal.common_methods_invocations as common_ops
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.overrides import resolve_name
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
)
from torch.testing._internal.common_methods_invocations import DecorateInfo, op_db
from torch.testing._internal.common_utils import (
run_tests,
suppress_warnings,
TEST_WITH_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorConverter,
DTensorOpTestBase,
)
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_map
common_ops.L = 24
common_ops.M = 12
common_ops.S = 4
common_ops.XS = 2
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/_tensor/test_matrix_ops.py
|
test_scaled_dot_product_attention
|
if __name__ == "__main__":
run_tests()
|
def test_scaled_dot_product_attention(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
comm_mode = CommDebugMode()
# bsz, n_heads, slen, head_dim
query = torch.rand(
(4, 8, 8, 8),
device=self.device_type,
dtype=torch.bfloat16,
requires_grad=True,
)
key = torch.rand(
(4, 8, 8, 8),
device=self.device_type,
dtype=torch.bfloat16,
requires_grad=True,
)
value = torch.rand(
(4, 8, 8, 8),
device=self.device_type,
dtype=torch.bfloat16,
requires_grad=True,
)
dist_query = distribute_tensor(query, device_mesh, [Shard(1)])
dist_key = distribute_tensor(key, device_mesh, [Shard(1)])
dist_value = distribute_tensor(value, device_mesh, [Shard(1)])
from torch.nn.attention import sdpa_kernel, SDPBackend
available_backends = []
dropout_p = 0.0
# TODO: Add test cases where is_causal=False and an attention mask is provided.
# Gaps include missing op support for aten.masked_fill_.Scalar.
is_causal = True
enable_gqa = False
params = torch.backends.cuda.SDPAParams(
query, key, value, None, dropout_p, is_causal, enable_gqa
)
if torch.backends.cuda.can_use_flash_attention(params, debug=False):
available_backends.append(SDPBackend.FLASH_ATTENTION)
if torch.backends.cuda.can_use_efficient_attention(params, debug=False):
available_backends.append(SDPBackend.EFFICIENT_ATTENTION)
for backend in available_backends:
with sdpa_kernel(backends=[backend]):
out = F.scaled_dot_product_attention(
query, key, value, dropout_p=dropout_p, is_causal=is_causal
)
with comm_mode:
dist_out = F.scaled_dot_product_attention(
dist_query,
dist_key,
dist_value,
dropout_p=dropout_p,
is_causal=is_causal,
)
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertTrue(dist_out.placements[0].is_shard(dim=1))
self.assertEqual(dist_out.full_tensor(), out)
out.sum().backward()
with comm_mode:
dist_out.sum().backward()
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertTrue(dist_query.grad.placements[0].is_shard(dim=1))
self.assertEqual(dist_query.grad.full_tensor(), query.grad)
self.assertTrue(dist_key.grad.placements[0].is_shard(dim=1))
self.assertEqual(dist_key.grad.full_tensor(), key.grad)
self.assertTrue(dist_value.grad.placements[0].is_shard(dim=1))
self.assertEqual(dist_value.grad.full_tensor(), value.grad)
|
import itertools
from typing import cast, List, Optional
import torch
import torch.nn.functional as F
from torch.distributed._tensor import DeviceMesh, distribute_tensor
from torch.distributed._tensor.api import DTensor
from torch.distributed._tensor.placement_types import (
Partial,
Placement,
Replicate,
Shard,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_unless_torch_gpu,
with_comms,
)
class DistMatrixOpsTest(DTensorTestBase):
from torch.nn.attention import sdpa_kernel, SDPBackend
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_batch_dims
|
def test_batch_dims(self):
equation = "abc,abc->abc"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["a", "b", "c"])
self.assertEqual(edims.contracting_dims, [])
self.assertEqual(edims.lhs_out_only_dims, [])
self.assertEqual(edims.rhs_out_only_dims, [])
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestEinsumDims(TestCase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_mm_dims
|
def test_mm_dims(self):
equation = "mk,kn->mn"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, [])
self.assertEqual(edims.contracting_dims, ["k"])
self.assertEqual(edims.lhs_out_only_dims, ["m"])
self.assertEqual(edims.rhs_out_only_dims, ["n"])
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestEinsumDims(TestCase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_bmm_dims
|
def test_bmm_dims(self):
equation = "bmk,bkn->bmn"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["b"])
self.assertEqual(edims.contracting_dims, ["k"])
self.assertEqual(edims.lhs_out_only_dims, ["m"])
self.assertEqual(edims.rhs_out_only_dims, ["n"])
equation = "bcmk,bckn->bcmn"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["b", "c"])
self.assertEqual(edims.contracting_dims, ["k"])
self.assertEqual(edims.lhs_out_only_dims, ["m"])
self.assertEqual(edims.rhs_out_only_dims, ["n"])
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestEinsumDims(TestCase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/_tensor/test_op_strategy.py
|
test_free_dims
|
def test_free_dims(self):
equation = "abc,ab->abc"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["a", "b"])
self.assertEqual(edims.contracting_dims, [])
self.assertEqual(edims.lhs_out_only_dims, ["c"])
self.assertEqual(edims.rhs_out_only_dims, [])
equation = "abd,bf->abfd"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["b"])
self.assertEqual(edims.contracting_dims, [])
self.assertEqual(edims.lhs_out_only_dims, ["a", "d"])
self.assertEqual(edims.rhs_out_only_dims, ["f"])
|
from itertools import chain
import torch
from torch.distributed._tensor import DeviceMesh, DTensor
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
class TestEinsumDims(TestCase):
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.