library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/test_optim.py
test_cycle_lr_with_momentumless_optimizer
def test_cycle_lr_with_momentumless_optimizer(self): # Note [Temporarily set optimizer to Adam] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # The TestLRScheduler object carries around an SGD optimizer to avoid having to # instantiate one for every test. This gets in the way for our very specific case # in which we need to use Adam (or really any optimizer that doesn't use momentum) # in order to test that the momentum bug in CyclicLR is fixed (the bug is described # in more detail in https://github.com/pytorch/pytorch/issues/19003 ). old_opt = self.opt self.opt = optim.Adam( [ {"params": self.net.conv1.parameters()}, {"params": self.net.conv2.parameters(), "lr": 0.5}, ], lr=0.05, ) lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] lr_targets = [lr_target, lr_target] momentum_target = [None] * len(lr_target) momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR( self.opt, base_lr=1, max_lr=5, step_size_up=4, cycle_momentum=False, mode="triangular", ) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) self.opt = old_opt # set optimizer back to SGD
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
closure
def closure(): return torch.tensor([10]) res1 = opt1.step(closure) res2 = opt2.step(closure) self.assertEqual(type(res1), type(res2))
def closure(): optimizer.zero_grad() loss = (weight.mv(input) + bias).pow(2).sum() loss.backward() if optim_info.only_supports_sparse_grads: # For this test, we naively convert the Tensor layout, which we know does # NOT represent the expected use case for optims like SparseAdam! weight.grad = weight.grad.to_sparse() bias.grad = bias.grad.to_sparse() return loss initial_value = closure().item() for _ in range(20): if optim_info.step_requires_closure: loss = optimizer.step(closure) else: loss = closure() optimizer.step() for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(loss) else: scheduler.step() if optim_input.kwargs.get("maximize", False): self.assertGreater(closure().item(), initial_value) else: self.assertLess(closure().item(), initial_value)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
test_cycle_lr_cycle_momentum_fail_with_momentumless_optimizer
def test_cycle_lr_cycle_momentum_fail_with_momentumless_optimizer(self): with self.assertRaises(ValueError): adam_opt = optim.Adam(self.net.parameters()) scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=True)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_cycle_lr_removed_after_out_of_scope
def test_cycle_lr_removed_after_out_of_scope(self): import gc import weakref gc.disable() def test(): adam_opt = optim.Adam(self.net.parameters()) scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False) return weakref.ref(scheduler) ref = test() assert ref() is None gc.enable()
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test
def test(): adam_opt = optim.Adam(self.net.parameters()) scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False) return weakref.ref(scheduler) ref = test() assert ref() is None gc.enable()
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_cycle_lr_state_dict_picklable
def test_cycle_lr_state_dict_picklable(self): adam_opt = optim.Adam(self.net.parameters()) scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False) self.assertIsInstance(scheduler._scale_fn_ref, weakref.WeakMethod) state = scheduler.state_dict() self.assertNotIn("_scale_fn_ref", state) pickle.dumps(state)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_cycle_lr_scale_fn_restored_from_state_dict
def test_cycle_lr_scale_fn_restored_from_state_dict(self): adam_opt = optim.Adam(self.net.parameters()) # Case 1: Built-in mode scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, mode="triangular2") restored_scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False) restored_scheduler.load_state_dict(scheduler.state_dict()) self.assertTrue(restored_scheduler.mode == scheduler.mode == "triangular2") self.assertIsNotNone(restored_scheduler._scale_fn_ref) and self.assertIsNotNone(scheduler._scale_fn_ref) self.assertIs(restored_scheduler._scale_fn_custom, None) self.assertIs(scheduler._scale_fn_custom, None) # Case 2: Custom `scale_fn` def scale_fn(_): return 0.5 scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn) restored_scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn) restored_scheduler.load_state_dict(scheduler.state_dict()) self.assertIs(scheduler._scale_fn_custom, scale_fn) self.assertIs(restored_scheduler._scale_fn_custom, scale_fn)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
scale_fn
def scale_fn(_): return 0.5 scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn) restored_scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn) restored_scheduler.load_state_dict(scheduler.state_dict()) self.assertIs(scheduler._scale_fn_custom, scale_fn) self.assertIs(restored_scheduler._scale_fn_custom, scale_fn)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_onecycle_lr_invalid_pct_start
def test_onecycle_lr_invalid_pct_start(self): with self.assertRaises(ValueError): scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, pct_start=1.1)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_onecycle_lr_cannot_calculate_total_steps
def test_onecycle_lr_cannot_calculate_total_steps(self): with self.assertRaises(ValueError): scheduler = OneCycleLR(self.opt, max_lr=1e-3)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_onecycle_lr_linear_annealing
def test_onecycle_lr_linear_annealing(self): lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR( self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, total_steps=10, anneal_strategy="linear", ) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_onecycle_lr_linear_annealing_three_phases
def test_onecycle_lr_linear_annealing_three_phases(self): lr_target = [1, 9, 17, 25, 17, 9, 1, 0.75, 0.5, 0.25] momentum_target = [22, 15, 8, 1, 8, 15, 22, 22, 22, 22] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR( self.opt, max_lr=25, div_factor=25, base_momentum=1, max_momentum=22, total_steps=10, anneal_strategy="linear", pct_start=0.4, final_div_factor=4, three_phase=True, ) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
annealing_cos
def annealing_cos(start, end, pct): cos_out = math.cos(math.pi * pct) + 1 return end + (start - end) / 2.0 * cos_out lr_target = [ 1, 13, 25, annealing_cos(25, 0.5, 1 / 7.0), annealing_cos(25, 0.5, 2 / 7.0), annealing_cos(25, 0.5, 3 / 7.0), annealing_cos(25, 0.5, 4 / 7.0), annealing_cos(25, 0.5, 5 / 7.0), annealing_cos(25, 0.5, 6 / 7.0), 0.5, ] momentum_target = [ 22, 11.5, 1, annealing_cos(1, 22, 1 / 7.0), annealing_cos(1, 22, 2 / 7.0), annealing_cos(1, 22, 3 / 7.0), annealing_cos(1, 22, 4 / 7.0), annealing_cos(1, 22, 5 / 7.0), annealing_cos(1, 22, 6 / 7.0), 22, ] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR( self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, total_steps=10, ) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_cycle_lr_with_adam
def test_cycle_lr_with_adam(self): old_opt = self.opt self.opt = optim.Adam( [ {"params": self.net.conv1.parameters()}, {"params": self.net.conv2.parameters(), "lr": 0.5}, ], lr=0.05, ) lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR( self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, total_steps=10, anneal_strategy="linear", ) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10, use_beta1=True) self.opt = old_opt # set optimizer back to SGD
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490 # We limit our configs to CPU only, because we will be moving them to CUDA later cpu_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs( "cpu", dtype, optim_info, skip=("differentiable",) )
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_lambda_lr
def test_lambda_lr(self): epochs = 10 self.opt.param_groups[0]["lr"] = 0.05 self.opt.param_groups[1]["lr"] = 0.4 targets = [ [0.05 * (0.9**x) for x in range(epochs)], [0.4 * (0.8**x) for x in range(epochs)], ] scheduler = LambdaLR( self.opt, lr_lambda=[lambda x1: 0.9**x1, lambda x2: 0.8**x2] ) self._test(scheduler, targets, epochs)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_CosineAnnealingWarmRestarts_lr1
def test_CosineAnnealingWarmRestarts_lr1(self, T_mult): iters = 100 eta_min = 1e-10 T_i = 10 T_cur = 0 targets = [[0.05], [0.5]] scheduler = CosineAnnealingWarmRestarts( self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min ) for _ in range(1, iters, 1): T_cur += 1 if T_cur >= T_i: T_cur = T_cur - T_i T_i = int(T_mult) * T_i targets[0] += [ eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 ] targets[1] += [ eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 ] self._test(scheduler, targets, iters)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_CosineAnnealingWarmRestarts_lr2
def test_CosineAnnealingWarmRestarts_lr2(self): iters = 30 eta_min = 1e-10 T_mults = [1, 2, 4] for T_mult in T_mults: T_i = 10 T_cur = 0 targets = [[0.05], [0.5]] scheduler = CosineAnnealingWarmRestarts( self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min ) for _ in torch.arange(0.1, iters, 0.1): T_cur = round(T_cur + 0.1, 1) if T_cur >= T_i: T_cur = T_cur - T_i T_i = int(T_mult) * T_i targets[0] += [ eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 ] targets[1] += [ eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 ] self._test_CosineAnnealingWarmRestarts(scheduler, targets, iters)
# Needed for second order optims like LBFGS closure_loss = torch.rand(1, device=device, dtype=dtype)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_CosineAnnealingWarmRestarts_lr3
def test_CosineAnnealingWarmRestarts_lr3(self): epochs_for_T_mults = [ [0, 1, 2, 3, 4, 5, 12, 27, 3, 4, 5, 6, 13], [0, 1, 2, 3, 4, 5, 25, 32, 33, 34, 80, 81, 3], [0, 0.1, 0.2, 0.3, 1.3, 2.3, 17.5, 18.5, 19.5, 29.5, 30.5, 31.5, 50], ] T_curs_for_T_mults = [ [1, 2, 3, 4, 5, 2, 7, 3, 4, 5, 6, 3], [1, 2, 3, 4, 5, 15, 2, 3, 4, 10, 11, 3], [0.1, 0.2, 0.3, 1.3, 2.3, 7.5, 8.5, 9.5, 19.5, 20.5, 21.5, 10], ] T_is_for_T_mults = [ [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 20, 40, 40, 40, 80, 80, 10], [10, 10, 10, 10, 10, 30, 30, 30, 30, 30, 30, 90], ] eta_min = 1e-10 T_mults = [1, 2, 3] for epochs, T_mult, T_curs, T_is in zip( epochs_for_T_mults, T_mults, T_curs_for_T_mults, T_is_for_T_mults ): targets = [[0.05], [0.5]] scheduler = CosineAnnealingWarmRestarts( self.opt, T_0=10, T_mult=T_mult, eta_min=eta_min ) for T_cur, T_i in zip(T_curs, T_is): targets[0] += [ eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 ] targets[1] += [ eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 ] self._test_interleaved_CosineAnnealingWarmRestarts( scheduler, targets, epochs )
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
closure
def closure(): return torch.tensor([10]) res1 = opt1.step(closure) res2 = opt2.step(closure) self.assertEqual(type(res1), type(res2))
def closure(): optimizer.zero_grad() loss = (weight.mv(input) + bias).pow(2).sum() loss.backward() if optim_info.only_supports_sparse_grads: # For this test, we naively convert the Tensor layout, which we know does # NOT represent the expected use case for optims like SparseAdam! weight.grad = weight.grad.to_sparse() bias.grad = bias.grad.to_sparse() return loss initial_value = closure().item() for _ in range(20): if optim_info.step_requires_closure: loss = optimizer.step(closure) else: loss = closure() optimizer.step() for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(loss) else: scheduler.step() if optim_input.kwargs.get("maximize", False): self.assertGreater(closure().item(), initial_value) else: self.assertLess(closure().item(), initial_value)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
test_swalr_no_anneal
def test_swalr_no_anneal(self): epochs, swa_start, swa_lr = 10, 5, 0.01 initial_lrs = [group["lr"] for group in self.opt.param_groups] targets = [ [lr] * (swa_start + 1) + [swa_lr] * (epochs - swa_start - 1) for lr in initial_lrs ] swa_scheduler = SWALR(self.opt, anneal_epochs=1, swa_lr=swa_lr) self._test_swalr(swa_scheduler, None, targets, swa_start, epochs)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_swalr_cosine_anneal_after_multiplicative
def test_swalr_cosine_anneal_after_multiplicative(self): # same swa_lr for different param_groups epochs, swa_start, swa_lr, anneal_epochs = 15, 5, 0.01, 5 mult_factor = 0.9 scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs, swa_lr=swa_lr) def anneal_coef(t): if t + 1 >= anneal_epochs: return 0.0 return (1 + math.cos(math.pi * (t + 1) / anneal_epochs)) / 2 initial_lrs = [group["lr"] for group in self.opt.param_groups] targets_before_swa = [ [lr * mult_factor**i for i in range(swa_start + 1)] for lr in initial_lrs ] swa_epochs = epochs - swa_start - 1 targets = [ lrs + [ lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs) ] for lrs in targets_before_swa ] self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
anneal_coef
def anneal_coef(t): if t + 1 >= anneal_epochs: return 0.0 return (1 + math.cos(math.pi * (t + 1) / anneal_epochs)) / 2 initial_lrs = [group["lr"] for group in self.opt.param_groups] targets_before_swa = [ [lr * mult_factor**i for i in range(swa_start + 1)] for lr in initial_lrs ] swa_epochs = epochs - swa_start - 1 targets = [ lrs + [ lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs) ] for lrs in targets_before_swa ] self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs)
for optim_input in cpu_optim_inputs: if ( "fused" in optim_input.kwargs and "cuda" not in optim_info.supports_fused_on ): self.skipTest( f"cuda is not supported for fused on {optim_cls.__name__}" ) params = [ Parameter(torch.randn(2, 3, device="cpu", dtype=dtype)) for _ in range(2) ] for p in params: p.grad = torch.randn_like(p) if optim_info.only_supports_sparse_grads: # For this test, we naively convert the Tensor layout, which we know does # NOT represent the expected use case for optims like SparseAdam! p.grad = p.grad.to_sparse()
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_swalr_linear_anneal_after_multiplicative
def test_swalr_linear_anneal_after_multiplicative(self): # separate swa_lr for different param_groups epochs, swa_start, swa_lrs, anneal_epochs = 15, 5, [0.01, 0.02], 4 mult_factor = 0.9 scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) swa_scheduler = SWALR( self.opt, anneal_epochs=anneal_epochs, anneal_strategy="linear", swa_lr=swa_lrs, ) def anneal_coef(t): if t + 1 >= anneal_epochs: return 0.0 return 1 - (t + 1) / anneal_epochs initial_lrs = [group["lr"] for group in self.opt.param_groups] targets_before_swa = [ [lr * mult_factor**i for i in range(swa_start + 1)] for lr in initial_lrs ] swa_epochs = epochs - swa_start - 1 targets = [ lrs + [ lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs) ] for lrs, swa_lr in zip(targets_before_swa, swa_lrs) ] self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs)
optimizer = optim_cls(params, **optim_input.kwargs)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_test_swalr
def _test_swalr(self, swa_scheduler, scheduler, targets, swa_start, epochs): for epoch in range(epochs): for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual( target[epoch], param_group["lr"], msg="LR is wrong in epoch {}: expected {}, got {}".format( epoch, target[epoch], param_group["lr"] ), atol=1e-5, rtol=0, ) if epoch >= swa_start: self.opt.step() swa_scheduler.step() elif scheduler is not None: self.opt.step() scheduler.step()
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_swalr_hypers
def test_swalr_hypers(self): # Test that SWALR raises errors for incorrect hyper-parameters with self.assertRaisesRegex(ValueError, "anneal_strategy must"): swa_scheduler = SWALR(self.opt, anneal_strategy="exponential", swa_lr=1.0) with self.assertRaisesRegex(ValueError, "anneal_epochs must"): swa_scheduler = SWALR(self.opt, anneal_epochs=-1, swa_lr=1.0) with self.assertRaisesRegex(ValueError, "anneal_epochs must"): swa_scheduler = SWALR(self.opt, anneal_epochs=1.7, swa_lr=1.0) with self.assertRaisesRegex(ValueError, "swa_lr must"): swa_scheduler = SWALR(self.opt, swa_lr=[1.0, 0.1, 0.01])
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
post_hook
def post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]): nonlocal data data += 2 params = [torch.Tensor([1, 1])] opt = SGD(params, lr=0.001) data = 2 hook_handle = opt.register_step_post_hook(post_hook) opt.step() opt.step() # check if pre hooks were registered self.assertEqual(data, 6) # remove handles, take step and verify that hook is no longer registered hook_handle.remove() opt.step() self.assertEqual(data, 6)
def post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]): nonlocal data data += 2 params = [torch.tensor([1, 1], device=device, dtype=dtype)]
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
test_exp_step_lr_state_dict
def test_exp_step_lr_state_dict(self): self._check_scheduler_state_dict( lambda: ExponentialLR(self.opt, gamma=0.1), lambda: ExponentialLR(self.opt, gamma=0.01), )
params = [torch.tensor([1, 1], device=device, dtype=dtype)]
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_out_dtype_op.py
f
def f(x, y): return out_dtype( torch.ops.aten.mul.Scalar, torch.int32, x, y ) inp = (torch.randint(-128, 127, (5, 5), dtype=torch.int8), 3.0) compiled = torch.compile(f, backend="eager", fullgraph=True) self.assertTrue(torch.allclose(f(*inp), compiled(*inp)))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
f
def f(x, y): return out_dtype( torch.ops.aten.mul.Scalar, torch.int32, x, y ) inp = (torch.randint(-128, 127, (5, 5), dtype=torch.int8), 3.0) compiled = torch.compile(f, backend="eager", fullgraph=True) self.assertTrue(torch.allclose(f(*inp), compiled(*inp)))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
test_out_dtype_non_functional
def test_out_dtype_non_functional(self): class M(torch.nn.Module): def forward(self, x, y): return out_dtype( torch.ops.aten.add_.Tensor, torch.int32, x, y ) with self.assertRaisesRegex(ValueError, "out_dtype's first argument needs to be a functional operator"): _ = torch.export.export( M(), (torch.randint(-128, 127, (5, 5), dtype=torch.int8), torch.randint(-128, 127, (5, 5), dtype=torch.int8)), )
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version @unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't support") class TestOutDtypeOp(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
forward
def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight )
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
f
def f(x, y): return out_dtype( torch.ops.aten.mul.Scalar, torch.int32, x, y ) inp = (torch.randint(-128, 127, (5, 5), dtype=torch.int8), 3.0) compiled = torch.compile(f, backend="eager", fullgraph=True) self.assertTrue(torch.allclose(f(*inp), compiled(*inp)))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
f
def f(x, y): return out_dtype( torch.ops.aten.mul.Scalar, torch.int32, x, y ) inp = (torch.randint(-128, 127, (5, 5), dtype=torch.int8), 3.0) compiled = torch.compile(f, backend="eager", fullgraph=True) self.assertTrue(torch.allclose(f(*inp), compiled(*inp)))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
func
def func(x, w): return out_dtype(torch.ops.aten.mm.default, torch.int32, x, w) w = torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda") x = torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda") ref = torch._int_mm(x, w) test_out = func(x, w) func_comp = torch.compile(func, fullgraph=True, mode="max-autotune") test_out_c = func_comp(x, w) self.assertTrue(torch.allclose(ref, test_out)) self.assertTrue(torch.allclose(ref, test_out_c))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
func
def func(x, w): return out_dtype(torch.ops.aten.mm.default, torch.int32, x, w) w = torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda") x = torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda") ref = torch._int_mm(x, w) test_out = func(x, w) func_comp = torch.compile(func, fullgraph=True, mode="max-autotune") test_out_c = func_comp(x, w) self.assertTrue(torch.allclose(ref, test_out)) self.assertTrue(torch.allclose(ref, test_out_c))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
forward
def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight )
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
func
def func(x, w): return out_dtype(torch.ops.aten.mm.default, torch.int32, x, w) w = torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda") x = torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda") ref = torch._int_mm(x, w) test_out = func(x, w) func_comp = torch.compile(func, fullgraph=True, mode="max-autotune") test_out_c = func_comp(x, w) self.assertTrue(torch.allclose(ref, test_out)) self.assertTrue(torch.allclose(ref, test_out_c))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_optim.py
test_cosine_lr_state_dict
def test_cosine_lr_state_dict(self): epochs = 10 eta_min = 1e-10 self._check_scheduler_state_dict( lambda: CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min), lambda: CosineAnnealingLR(self.opt, T_max=epochs // 2, eta_min=eta_min / 2), epochs=epochs, )
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
dummy_closure
def dummy_closure(): return 1 closure = dummy_closure if optim_info.step_requires_closure else None all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs( device, dtype, optim_info ) for optim_input in all_optim_inputs: optim = optim_info.optim_cls(params, **optim_input.kwargs) data = 2 hook_handle = optim.register_step_post_hook(post_hook) optim.step(closure) optim.step(closure) # check if post hooks were registered self.assertEqual(data, 6) # remove handles, take step and verify that hook is no longer registered hook_handle.remove() optim.step(closure) self.assertEqual(data, 6)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_optim.py
test_reduce_lr_on_plateau_state_dict
def test_reduce_lr_on_plateau_state_dict(self): scheduler = ReduceLROnPlateau(self.opt, mode="min", factor=0.1, patience=2) for score in [1.0, 2.0, 3.0, 4.0, 3.0, 4.0, 5.0, 3.0, 2.0, 1.0]: scheduler.step(score) scheduler_copy = ReduceLROnPlateau( self.opt, mode="max", factor=0.5, patience=10 ) scheduler_copy.load_state_dict(scheduler.state_dict()) for key in scheduler.__dict__.keys(): if key not in {"optimizer", "is_better"}: self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_lambda_lr_state_dict_fn
def test_lambda_lr_state_dict_fn(self): scheduler = LambdaLR(self.opt, lr_lambda=lambda x: x) state = scheduler.state_dict() self.assertIsNone(state["lr_lambdas"][0]) scheduler_copy = LambdaLR(self.opt, lr_lambda=lambda x: x) scheduler_copy.load_state_dict(state) for key in scheduler.__dict__.keys(): if key not in {"optimizer", "lr_lambdas"}: self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_lambda_lr_state_dict_obj
def test_lambda_lr_state_dict_obj(self): scheduler = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(10)) state = scheduler.state_dict() self.assertIsNotNone(state["lr_lambdas"][0]) scheduler_copy = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(-1)) scheduler_copy.load_state_dict(state) for key in scheduler.__dict__.keys(): if key not in {"optimizer"}: self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_CosineAnnealingWarmRestarts_lr_state_dict
def test_CosineAnnealingWarmRestarts_lr_state_dict(self): self._check_scheduler_state_dict( lambda: CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=2), lambda: CosineAnnealingWarmRestarts(self.opt, T_0=100), )
closure = dummy_closure if optim_info.step_requires_closure else None
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_swa_lr_state_dict
def test_swa_lr_state_dict(self): self._check_scheduler_state_dict( lambda: SWALR(self.opt, anneal_epochs=3, swa_lr=0.5), lambda: SWALR( self.opt, anneal_epochs=10, anneal_strategy="linear", swa_lr=5.0 ), )
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs( device, dtype, optim_info ) for optim_input in all_optim_inputs: optim = optim_info.optim_cls(params, **optim_input.kwargs) data = 2 hook_handle = optim.register_step_post_hook(post_hook)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_check_scheduler_state_dict
def _check_scheduler_state_dict(self, constr, constr2, epochs=10): scheduler = constr() for _ in range(epochs): scheduler.optimizer.step() scheduler.step() scheduler_copy = constr2() scheduler_copy.load_state_dict(scheduler.state_dict()) for key in scheduler.__dict__.keys(): if key != "optimizer": self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) self.assertEqual(scheduler.get_last_lr(), scheduler_copy.get_last_lr())
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_test_get_last_lr
def _test_get_last_lr(self, schedulers, targets, epochs=10): if isinstance(schedulers, LRScheduler): schedulers = [schedulers] optimizers = {scheduler.optimizer for scheduler in schedulers} for epoch in range(epochs): result = [scheduler.get_last_lr() for scheduler in schedulers] [optimizer.step() for optimizer in optimizers] [scheduler.step() for scheduler in schedulers] target = [[t[epoch] for t in targets]] * len(schedulers) for t, r in zip(target, result): self.assertEqual( target, result, msg="LR is wrong in epoch {}: expected {}, got {}".format( epoch, t, r ), atol=1e-5, rtol=0, )
optim.step(closure) optim.step(closure) # check if post hooks were registered self.assertEqual(data, 6)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_test_with_epoch
def _test_with_epoch(self, schedulers, targets, epochs=10): if isinstance(schedulers, LRScheduler): schedulers = [schedulers] optimizers = {scheduler.optimizer for scheduler in schedulers} for epoch in range(epochs): [optimizer.step() for optimizer in optimizers] with warnings.catch_warnings(record=True) as w: [ scheduler.step(epoch) for scheduler in schedulers ] # step before assert: skip initial lr self._check_warning_is_epoch_deprecation_warning( w, num_warnings=len(schedulers) ) for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual( target[epoch], param_group["lr"], msg="LR is wrong in epoch {}: expected {}, got {}".format( epoch, target[epoch], param_group["lr"] ), atol=1e-5, rtol=0, )
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_non_empty_state
if __name__ == "__main__": run_tests()
def test_non_empty_state(self, device, dtype, optim_info): # There are internal tests that check that the state is not empty optim_cls = optim_info.optim_cls model = torch.nn.Linear(5, 5) model.to(dtype=dtype, device=device) inpt = torch.rand(2, 5, dtype=dtype, device=device) for optim_input in optim_info.optim_inputs_func(device=device): optim = optim_cls(model.parameters(), **optim_input.kwargs) optim.zero_grad() output = model(inpt) loss = output.sum() loss.backward() if optim_info.only_supports_sparse_grads: for param in model.parameters(): if param.grad is not None: param.grad = param.grad.to_sparse() if optim_info.step_requires_closure: optim.step(lambda: 1.0) else: optim.step() for state in optim.state.values(): self.assertGreater(len(state), 0)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} @markDynamoStrictTest class TestOptimRenewed(TestCase): import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
test_out_dtype_make_fx
def test_out_dtype_make_fx(self): class M(torch.nn.Module): def __init__(self, weight): super().__init__() self.weight = weight def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight ) weight = torch.randint(-128, 127, (5, 5), dtype=torch.int8) m = M(weight) x = torch.randint(-128, 127, (5, 5), dtype=torch.int8) gm = make_fx(m)(x) self.assertTrue(torch.allclose(m(x), gm(x))) gm = make_fx(torch.func.functionalize(M(weight)))(x) self.assertTrue(torch.allclose(m(x), gm(x))) FileCheck().check("torch.ops.higher_order.out_dtype").check("aten.mm.default").run(gm.code) self.assertTrue(torch.allclose(m(x), gm(x))) for node in gm.graph.nodes: if node.op == "call_function" and node.target is out_dtype: # Result of this node should be int32 self.assertTrue(node.meta["val"].dtype, torch.int32) # Argument of this node should be int8 self.assertTrue(node.args[2].meta["val"].dtype, torch.int8)
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version @unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't support") class TestOutDtypeOp(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
__init__
def __init__(self, weight): super().__init__() self.weight = weight
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
forward
def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight )
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
test_out_dtype_op_functional
def test_out_dtype_op_functional(self): class M(torch.nn.Module): def __init__(self, weight): super().__init__() self.weight = weight def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight ) weight = torch.randint(-128, 127, (5, 5), dtype=torch.int8) m = M(weight) x = torch.randint(-128, 127, (5, 5), dtype=torch.int8) ep = torch.export.export( m, (x,), ) FileCheck().check("torch.ops.higher_order.out_dtype").check("aten.mm.default").run(ep.graph_module.code) self.assertTrue(torch.allclose(m(x), ep.module()(x))) for node in ep.graph.nodes: if node.op == "call_function" and node.target is out_dtype: # Result of this node should be int32 self.assertTrue(node.meta["val"].dtype, torch.int32) # Argument of this node should be int8 self.assertTrue(node.args[2].meta["val"].dtype, torch.int8)
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version @unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't support") class TestOutDtypeOp(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
__init__
def __init__(self, weight): super().__init__() self.weight = weight
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
forward
def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight )
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
test_out_dtype_mm_numerical
def test_out_dtype_mm_numerical(self): class M(torch.nn.Module): def __init__(self, weight): super().__init__() self.weight = weight def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight ) weight = torch.randint(-128, 127, (5, 5), dtype=torch.int8) m = M(weight) x = torch.randint(-128, 127, (5, 5), dtype=torch.int8) gm = make_fx(m)(x) x_casted = x.to(torch.int32) weight_casted = weight.to(torch.int32) numerical_res = torch.ops.aten.mm.default(x_casted, weight_casted) self.assertTrue(torch.allclose(numerical_res, gm(x)))
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version @unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't support") class TestOutDtypeOp(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
__init__
def __init__(self, weight): super().__init__() self.weight = weight
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
forward
def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight )
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_optim.py
__init__
def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(1, 1, 1) self.conv2 = torch.nn.Conv2d(1, 1, 1)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class SchedulerTestNet(torch.nn.Module): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
local_post_hook
def local_post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]): nonlocal data data.append(2) params = [torch.Tensor([1, 1])] opt1 = SGD(params, lr=0.001) opt2 = Adam(params, lr=0.01) data = [] # register global hooks to both optimizers global_pre_handle = register_optimizer_step_pre_hook(global_pre_hook) global_post_handle = register_optimizer_step_post_hook(global_post_hook) # register local hooks first_pre_handle = opt1.register_step_pre_hook(local_pre_hook) first_post_handle = opt1.register_step_post_hook(local_post_hook) second_pre_handle = opt2.register_step_pre_hook(local_pre_hook) second_post_handle = opt2.register_step_post_hook(local_post_hook) opt1.step() self.assertListEqual(data, [0, 1, 2, 5]) opt2.step() self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5]) opt1.step() self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5]) # remove all hooks global_pre_handle.remove() global_post_handle.remove() first_pre_handle.remove() first_post_handle.remove() second_pre_handle.remove() second_post_handle.remove() opt1.step() opt2.step() self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5])
def local_post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]): nonlocal data data.append(2) params = [torch.tensor([1, 1], device=device, dtype=dtype)]
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
compute_preactivation
def compute_preactivation(self, x): return self.fc1(x)
params = [torch.tensor([1, 1], device=device, dtype=dtype)]
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class SWATestDNN(torch.nn.Module): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
forward
def forward(self, x): return self.conv2(F.relu(self.conv1(x)))
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class SchedulerTestNet(torch.nn.Module): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
__init__
def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(1, 1, 1) self.conv2 = torch.nn.Conv2d(1, 1, 1)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class SchedulerTestNet(torch.nn.Module): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
compute_preactivation
def compute_preactivation(self, x): return self.fc1(x)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class SWATestDNN(torch.nn.Module): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
forward
def forward(self, x): return self.conv2(F.relu(self.conv1(x)))
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class SchedulerTestNet(torch.nn.Module): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_test_averaged_model
def _test_averaged_model(self, net_device, swa_device): dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), torch.nn.BatchNorm2d(5, momentum=0.3), torch.nn.Conv2d(5, 2, kernel_size=3), torch.nn.ReLU(), torch.nn.Linear(5, 5), torch.nn.ReLU(), torch.nn.Linear(5, 10), ).to(net_device) averaged_dnn = AveragedModel(dnn, device=swa_device) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) p_avg += p.detach() / n_updates averaged_dnn.update_parameters(dnn) for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) # Check that AveragedModel is on the correct device self.assertTrue(p_swa.device == swa_device) self.assertTrue(p.device == net_device) self.assertTrue(averaged_dnn.n_averaged.device == swa_device)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_averaged_model_all_devices
def test_averaged_model_all_devices(self): cpu = torch.device("cpu") self._test_averaged_model(cpu, cpu) if torch.cuda.is_available(): cuda = torch.device(0) self._test_averaged_model(cuda, cpu) self._test_averaged_model(cpu, cuda) self._test_averaged_model(cuda, cuda)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_adamax
def test_adamax(self): self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adamax( [weight, bias], lr=1e-1, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adamax( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adamax( [weight, bias], lr=1e-1, weight_decay=1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_complex_2d(optim.Adamax) self._test_complex_2d(functools.partial(optim.Adamax, foreach=True)) with self.assertRaisesRegex( ValueError, "Invalid beta parameter at index 1: 1.0" ): optim.Adamax(None, lr=1e-2, betas=(0.0, 1.0))
for optim_input in all_optim_inputs: optimizer = optim_cls(params, **optim_input.kwargs)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_rprop
def test_rprop(self): is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability( 0 ) == (8, 6) for foreach in (False, True): self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Rprop( [weight, bias], lr=2e-4, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Rprop( self._build_params_dict(weight, bias, lr=1e-2), lr=2e-4, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, atol=4e-5 if is_cuda_sm86 else None, rtol=3e-5 if is_cuda_sm86 else None, ) self._test_complex_2d(lambda param: optim.Rprop(param, foreach=foreach)) self._test_complex_optimizer( lambda param: optim.Rprop([param], lr=0.001, foreach=foreach) ) self._test_complex_optimizer( lambda param: optim.Rprop( [param], lr=0.001, maximize=True, foreach=foreach ) ) with self.assertRaisesRegex(ValueError, "Invalid eta values: 1.0, 0.5"): optim.Rprop(None, lr=1e-2, etas=(1.0, 0.5), foreach=foreach)
self.assertEqual( getPublicAttrs(optimizer), getPublicAttrs(deepcopy(optimizer)) )
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_adamw
def test_adamw(self): self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.AdamW( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.AdamW( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.AdamW( [weight, bias], lr=1e-3, weight_decay=1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.AdamW( [weight, bias], lr=1e-3, weight_decay=1, amsgrad=True, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_complex_2d(optim.AdamW) self._test_complex_2d(functools.partial(optim.AdamW, foreach=True)) with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"): optim.AdamW(None, lr=1e-2, weight_decay=-1)
@optims( [optim for optim in optim_db if optim.step_requires_closure], dtypes=[torch.float32], ) def test_second_order_optims_return_consistent_types( self, device, dtype, optim_info ): # Motivated by #7586 optim_cls = optim_info.optim_cls params = [ torch.randn(10, 5, device=device, dtype=dtype), torch.randn(10, device=device, dtype=dtype), ]
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
closure
def closure(): return torch.tensor([10]) res1 = opt1.step(closure) res2 = opt2.step(closure) self.assertEqual(type(res1), type(res2))
def closure(): optimizer.zero_grad() loss = (weight.mv(input) + bias).pow(2).sum() loss.backward() if optim_info.only_supports_sparse_grads: # For this test, we naively convert the Tensor layout, which we know does # NOT represent the expected use case for optims like SparseAdam! weight.grad = weight.grad.to_sparse() bias.grad = bias.grad.to_sparse() return loss initial_value = closure().item() for _ in range(20): if optim_info.step_requires_closure: loss = optimizer.step(closure) else: loss = closure() optimizer.step() for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(loss) else: scheduler.step() if optim_input.kwargs.get("maximize", False): self.assertGreater(closure().item(), initial_value) else: self.assertLess(closure().item(), initial_value)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
test_nadam
def test_nadam(self): self._test_basic_cases( lambda weight, bias, foreach: optim.NAdam( [weight, bias], lr=1e-3, foreach=foreach ), constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, foreach: optim.NAdam( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, foreach=foreach ), constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, foreach: optim.NAdam( [weight, bias], lr=1e-3, weight_decay=0.1, momentum_decay=6e-3, foreach=foreach, ), constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, foreach: optim.NAdam( [weight, bias], lr=1e-3, weight_decay=0.1, momentum_decay=6e-3, foreach=foreach, ), [lambda opt: ExponentialLR(opt, gamma=0.9)], constructor_accepts_foreach=True, ) with self.assertRaisesRegex( ValueError, "Invalid beta parameter at index 0: 1.0" ): optim.NAdam(None, lr=1e-2, betas=(1.0, 0.0)) with self.assertRaisesRegex(ValueError, "Invalid momentum_decay value: -0.2"): optim.NAdam(None, lr=1e-2, momentum_decay=-0.2)
torch.manual_seed(1) model = torch.nn.Sequential( torch.nn.Linear(2, 3), torch.nn.Sigmoid(), torch.nn.Linear(3, 1), torch.nn.Sigmoid(), ) model.to(dtype=dtype, device=dev)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_bn_update_eval_momentum
def test_bn_update_eval_momentum(self): # check that update_bn preserves eval mode objects = 100 input_channels = 3 height, width = 5, 5 x = torch.rand(objects, input_channels, height, width) ds_x = torch.utils.data.TensorDataset(x) dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) dnn = SWATestCNN(input_channels=input_channels) dnn.eval() update_bn(dl_x, dnn) self.assertFalse(dnn.training) # check that momentum is preserved self.assertEqual(dnn.bn.momentum, 0.3)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_diff_fn
def _diff_fn(p, grad, opt_differentiable_state, opt_class, kwargs, *ignored): # Ignored is the list of values in `opt_differentiable_state`, we do this # for `gradcheck` to correctly track the state tensors as function inputs # because otherwise it can't unpack the values in the `opt_differentiable_state` # dict p = p.clone() p.grad = grad opt_differentiable_state = { k: v.clone() if isinstance(v, torch.Tensor) else v for k, v in opt_differentiable_state.items() } opt = opt_class([p], **kwargs) opt.state[p].update(opt_differentiable_state) opt.step() return (p,) + tuple( v for v in opt.state[p].values() if isinstance(v, torch.Tensor) and v.requires_grad ) class TestDifferentiableOptimizer(TestCase): def test_sgd(self): p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) mbuff = torch.rand(10, requires_grad=True, dtype=torch.float64) state = {"momentum_buffer": mbuff} gradcheck( _diff_fn, ( p, grad, state, torch.optim.SGD, {"lr": 0.9, "differentiable": True}, *state.values(), ), ) def test_adam(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["max_exp_avg_sq"] = torch.rand( 10, requires_grad=True, dtype=torch.float64 ) gradcheck( _diff_fn, ( p, grad, state, torch.optim.Adam, {"lr": 0.9, "differentiable": True, "amsgrad": True}, *state.values(), ), ) def test_rmsprop(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) state["step"] = 0 state["square_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["momentum_buffer"] = torch.rand( 10, requires_grad=True, dtype=torch.float64 ) # This can cause issues with large values and nan due to sqrt ops state["grad_avg"] = 1e-2 * torch.rand( 10, requires_grad=True, dtype=torch.float64 ) gradcheck( _diff_fn, ( p, grad, state, torch.optim.RMSprop, { "lr": 0.9, "maximize": True, "momentum": 0.9, "differentiable": True, "centered": True, "weight_decay": 0.1, }, *state.values(), ), ) def test_adadelta(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["square_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["acc_delta"] = torch.rand(10, requires_grad=True, dtype=torch.float64) gradcheck( _diff_fn, ( p, grad, state, torch.optim.Adadelta, {"lr": 0.9, "weight_decay": 0.1, "differentiable": True}, *state.values(), ), ) def test_adagrad(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["sum"] = torch.rand(10, requires_grad=True, dtype=torch.float64) gradcheck( _diff_fn, ( p, grad, state, torch.optim.Adagrad, {"lr": 0.9, "weight_decay": 0.1, "differentiable": True}, *state.values(), ), ) def test_adamax(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["exp_inf"] = torch.rand(10, requires_grad=True, dtype=torch.float64) gradcheck( _diff_fn, ( p, grad, state, torch.optim.Adamax, {"lr": 0.9, "weight_decay": 0.1, "differentiable": True}, *state.values(), ), ) @skipIfTorchDynamo("The inplace mu update fails with dynamo, " "since this is only happening when differentiable is enabled, skipping for now") def test_asgd(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` `eta` & `mu` are not continuous variables (even though we define them as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["eta"] = torch.tensor(0.9, requires_grad=False, dtype=torch.float64) state["mu"] = torch.tensor(1.0, requires_grad=False, dtype=torch.float64) state["ax"] = torch.rand(10, requires_grad=True, dtype=torch.float64) gradcheck( _diff_fn, ( p, grad, state, torch.optim.ASGD, {"lr": 0.9, "differentiable": True}, *state.values(), ), ) def test_rprop(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["prev"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["step_size"] = torch.rand(10, requires_grad=True, dtype=torch.float64) gradcheck( _diff_fn, ( p, grad, state, torch.optim.Rprop, {"lr": 0.9, "differentiable": True}, *state.values(), ), ) def test_adamw(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["max_exp_avg_sq"] = torch.rand( 10, requires_grad=True, dtype=torch.float64 ) gradcheck( _diff_fn, ( p, grad, state, torch.optim.AdamW, {"lr": 0.9, "differentiable": True, "amsgrad": True}, *state.values(), ), ) def test_nadam(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["mu_product"] = torch.tensor(1.0, requires_grad=True, dtype=torch.float64) gradcheck( _diff_fn, ( p, grad, state, torch.optim.NAdam, {"lr": 0.9, "differentiable": True}, *state.values(), ), ) def test_radam(self): state = {} p = torch.rand(10, requires_grad=True, dtype=torch.float64) grad = torch.rand(10, requires_grad=True, dtype=torch.float64) # `step` is not a continuous variable (even though we define it as a float) # and so it shouldn't require gradients. state["step"] = torch.tensor(10.0, requires_grad=False, dtype=torch.float64) state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64) state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64) gradcheck( _diff_fn, ( p, grad, state, torch.optim.RAdam, {"lr": 0.9, "differentiable": True}, *state.values(), ), ) @unittest.skipIf(not TEST_CUDA, "test requires CUDA") def test_defaults_changed_to_foreach(self): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad) multi_optims = ((optim.Adam, adam, "_multi_tensor_adam"), (optim.AdamW, adamw, "_multi_tensor_adamw"), (optim.NAdam, nadam, "_multi_tensor_nadam"), (optim.SGD, sgd, "_multi_tensor_sgd"), (optim.RAdam, radam, "_multi_tensor_radam"), (optim.RMSprop, rmsprop, "_multi_tensor_rmsprop"), (optim.Rprop, rprop, "_multi_tensor_rprop"), (optim.ASGD, asgd, "_multi_tensor_asgd"), (optim.Adamax, adamax, "_multi_tensor_adamax"), (optim.Adadelta, adadelta, "_multi_tensor_adadelta"), (optim.Adagrad, adagrad, "_multi_tensor_adagrad"),) model = torch.nn.Linear(5, 5) model.to(dtype=torch.float64, device="cuda") input = torch.rand(2, 5, dtype=torch.float64, device="cuda") for opt, mod, func in multi_optims: defaults = {} if opt == optim.SGD: defaults["lr"] = 1e-2 optimizer = opt(model.parameters(), **defaults) optimizer.zero_grad() output = model(input) loss = output.sum() loss.backward() with patch.object(mod, func) as mocked_foreach_impl: optimizer.step() self.assertTrue(mocked_foreach_impl.called) if __name__ == "__main__": run_tests()
optim.step(closure) self.assertListEqual(data, [0, 1, 2, 5]) optim2.step(closure) self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5]) optim.step(closure) self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5]) # remove all hooks global_pre_handle.remove() global_post_handle.remove() first_pre_handle.remove() first_post_handle.remove() second_pre_handle.remove() second_post_handle.remove()
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_sgd
def test_sgd(self): self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( self._build_params_dict_single(weight, bias, lr=1e-2), lr=1e-3, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( self._build_params_dict_single(weight, bias, lr=1e-2), maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), [lambda opt: StepLR(opt, gamma=0.9, step_size=10)], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), [ lambda opt: LinearLR( opt, start_factor=0.4, end_factor=0.8, total_iters=4 ) ], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), [lambda opt: ConstantLR(opt, factor=0.4, total_iters=4)], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), [ lambda opt: StepLR(opt, gamma=0.9, step_size=10), lambda opt: LinearLR( opt, start_factor=0.4, end_factor=0.6, total_iters=4 ), ], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), [ lambda opt: StepLR(opt, gamma=0.9, step_size=10), lambda opt: ReduceLROnPlateau(opt), ], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), [ lambda opt: StepLR(opt, gamma=0.99, step_size=10), lambda opt: ExponentialLR(opt, gamma=0.99), lambda opt: ReduceLROnPlateau(opt), ], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, momentum=0.5, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, momentum=0.5, weight_decay=1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], nesterov=True, lr=1e-3, momentum=0.5, weight_decay=1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.SGD( [weight, bias], lr=1e-3, maximize=maximize, foreach=foreach ), [lambda opt: PolynomialLR(opt, power=0.9, total_iters=4)], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) with self.assertRaisesRegex(ValueError, "Invalid momentum value: -0.5"): optim.SGD(None, lr=1e-2, momentum=-0.5)
optim.step(closure) optim2.step(closure) self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5])
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_rmsprop
def test_rmsprop(self): for foreach in (False, True): self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.RMSprop( [weight, bias], lr=1e-2, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.RMSprop( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.RMSprop( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, centered=True, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.RMSprop( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, centered=True, momentum=0.1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.RMSprop( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, momentum=0.1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.RMSprop( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, momentum=0.1, weight_decay=1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_complex_2d(lambda param: optim.RMSprop(param, foreach=foreach)) self._test_complex_2d( lambda param: optim.RMSprop(param, centered=True, foreach=foreach) ) self._test_complex_2d( lambda param: optim.RMSprop(param, momentum=0.1, foreach=foreach) ) self._test_complex_2d( lambda param: optim.RMSprop(param, maximize=True, foreach=foreach) ) self._test_complex_optimizer( lambda param: optim.RMSprop([param], foreach=foreach) ) self._test_complex_optimizer( lambda param: optim.RMSprop([param], centered=True, foreach=foreach) ) self._test_complex_optimizer( lambda param: optim.RMSprop([param], momentum=0.1, foreach=foreach) ) self._test_complex_optimizer( lambda param: optim.RMSprop([param], maximize=True, foreach=foreach) ) with self.assertRaisesRegex(ValueError, "Invalid momentum value: -1.0"): optim.RMSprop(None, lr=1e-2, momentum=-1.0, foreach=foreach)
params = [ Parameter(torch.randn(2, 3, device=device, dtype=dtype)) for _ in range(2) ] for p in params: p.grad = torch.rand_like(p) if optim_info.only_supports_sparse_grads: # For this test, we naively convert the Tensor layout, which we know does # NOT represent the expected use case for optims like SparseAdam! p.grad = p.grad.to_sparse()
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_adadelta
def test_adadelta(self): # Handles https://github.com/pytorch/pytorch/issues/69698 self.rel_tol = 4e-3 self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adadelta( [weight, bias], maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adadelta( self._build_params_dict(weight, bias, rho=0.95), maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adadelta( self._build_params_dict(weight, bias, rho=0.95), maximize=maximize, foreach=foreach, ), [ lambda opt: StepLR(opt, gamma=0.9, step_size=10), lambda opt: ReduceLROnPlateau(opt), ], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adadelta( [weight, bias], weight_decay=1, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) with self.assertRaisesRegex(ValueError, "Invalid rho value: 1.1"): optim.Adadelta(None, lr=1e-2, rho=1.1)
# Needed for second order optims like LBFGS
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
closure
def closure(): return torch.tensor([10]) res1 = opt1.step(closure) res2 = opt2.step(closure) self.assertEqual(type(res1), type(res2))
def closure(): optimizer.zero_grad() loss = (weight.mv(input) + bias).pow(2).sum() loss.backward() if optim_info.only_supports_sparse_grads: # For this test, we naively convert the Tensor layout, which we know does # NOT represent the expected use case for optims like SparseAdam! weight.grad = weight.grad.to_sparse() bias.grad = bias.grad.to_sparse() return loss initial_value = closure().item() for _ in range(20): if optim_info.step_requires_closure: loss = optimizer.step(closure) else: loss = closure() optimizer.step() for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(loss) else: scheduler.step() if optim_input.kwargs.get("maximize", False): self.assertGreater(closure().item(), initial_value) else: self.assertLess(closure().item(), initial_value)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
test_adagrad
def test_adagrad(self): self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adagrad( [weight, bias], lr=1e-1, maximize=maximize, foreach=foreach ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adagrad( [weight, bias], lr=1e-1, initial_accumulator_value=0.1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adagrad( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1, maximize=maximize, foreach=foreach, ), constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adagrad( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1, maximize=maximize, foreach=foreach, ), [lambda opt: ReduceLROnPlateau(opt)], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) self._test_basic_cases( lambda weight, bias, maximize, foreach: optim.Adagrad( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1, maximize=maximize, foreach=foreach, ), [ lambda opt: ReduceLROnPlateau(opt), lambda opt: ExponentialLR(opt, gamma=0.99), ], constructor_accepts_maximize=True, constructor_accepts_foreach=True, ) with self.assertRaisesRegex(ValueError, "Invalid lr_decay value: -0.5"): optim.Adagrad(None, lr=1e-2, lr_decay=-0.5)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests class TestOptim(TestCase): from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
getPublicAttrs
def getPublicAttrs(obj): return {k for k in obj.__dict__ if not k.startswith("_")} for optim_input in all_optim_inputs: optimizer = optim_cls(params, **optim_input.kwargs) # Make some state for _ in range(3): if optim_info.step_requires_closure: optimizer.step(closure) else: closure() optimizer.step() self.assertEqual( getPublicAttrs(optimizer), getPublicAttrs(deepcopy(optimizer)) )
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_optim.py
_test
def _test(self, schedulers, targets, epochs=10): if isinstance(schedulers, LRScheduler): schedulers = [schedulers] for epoch in range(epochs): for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual( target[epoch], param_group["lr"], msg="LR is wrong in epoch {}: expected {}, got {}".format( epoch, target[epoch], param_group["lr"] ), atol=1e-5, rtol=0, ) [scheduler.step() for scheduler in schedulers]
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_test_CosineAnnealingWarmRestarts
def _test_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs=10): for index, epoch in enumerate(torch.arange(0, epochs, 0.1)): epoch = round(epoch.item(), 1) scheduler.step(epoch) for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual( target[index], param_group["lr"], msg="LR is wrong in epoch {}: expected {}, got {}".format( epoch, target[index], param_group["lr"] ), atol=1e-5, rtol=0, )
# remove handles, take step and verify that hook is no longer registered hook_handle.remove()
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_test_interleaved_CosineAnnealingWarmRestarts
def _test_interleaved_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs): for index, epoch in enumerate(epochs): scheduler.step(epoch) for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual( target[index], param_group["lr"], msg="LR is wrong in epoch {}: expected {}, got {}".format( epoch, target[index], param_group["lr"] ), atol=1e-5, rtol=0, )
optim.step(closure) self.assertEqual(data, 6)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw class TestLRScheduler(TestCase): import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
pre_hook
def pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]): nonlocal data data += 2 params = [torch.Tensor([1, 1])] opt = SGD(params, lr=0.001) data = 5 hook_handle = opt.register_step_pre_hook(pre_hook) opt.step() opt.step() # check if pre hooks were registered self.assertEqual(data, 9) # remove handles, take step and verify that hook is no longer registered hook_handle.remove() opt.step() self.assertEqual(data, 9)
def pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]): nonlocal data data += 2 params = [torch.tensor([1, 1], device=device, dtype=dtype)]
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
dummy_closure
for param_group, lr_target, momentum_target in zip( self.opt.param_groups, lr_targets, momentum_targets ): self.assertEqual( lr_target[batch_num], param_group["lr"], msg="LR is wrong in batch_num {}: expected {}, got {}".format( batch_num, lr_target[batch_num], param_group["lr"] ), atol=1e-5, rtol=0, ) if use_beta1 and "betas" in param_group.keys(): self.assertEqual( momentum_target[batch_num], param_group["betas"][0], msg="Beta1 is wrong in batch_num {}: expected {}, got {}".format( batch_num, momentum_target[batch_num], param_group["betas"][0], ), atol=1e-5, rtol=0, ) elif "momentum" in param_group.keys(): self.assertEqual( momentum_target[batch_num], param_group["momentum"], msg="Momentum is wrong in batch_num {}: expected {}, got {}".format( batch_num, momentum_target[batch_num], param_group["momentum"], ), atol=1e-5, rtol=0, ) self.opt.step() scheduler.step()
def dummy_closure(): return 1 closure = dummy_closure if optim_info.step_requires_closure else None all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs( device, dtype, optim_info ) for optim_input in all_optim_inputs: optim = optim_info.optim_cls(params, **optim_input.kwargs) data = 2 hook_handle = optim.register_step_post_hook(post_hook) optim.step(closure) optim.step(closure) # check if post hooks were registered self.assertEqual(data, 6) # remove handles, take step and verify that hook is no longer registered hook_handle.remove() optim.step(closure) self.assertEqual(data, 6)
import functools import math import tempfile import unittest from copy import deepcopy from typing import Any, Dict, Tuple from unittest.mock import patch from optim.test_lrscheduler import TestLRScheduler # noqa: F401 from optim.test_optim import TestDifferentiableOptimizer # noqa: F401 from optim.test_swa_utils import TestSWAUtils # noqa: F401 import torch from torch.nn import Parameter from torch.optim import Optimizer, SGD from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.optim.optimizer import ( register_optimizer_step_post_hook, register_optimizer_step_pre_hook, ) from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, skipMPS, TEST_WITH_ROCM, ) from torch.testing._internal.common_dtype import floating_types_and from torch.testing._internal.common_optimizers import ( _get_device_type, _get_optim_inputs_including_global_cliquey_kwargs, optim_db, OptimizerErrorEnum, optims, TensorTracker, ) from torch.testing._internal.common_utils import ( markDynamoStrictTest, parametrize, run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4} import gc import inspect
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
forward
def forward(self, x): return out_dtype( torch.ops.aten.mm.default, torch.int32, x, self.weight )
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version class M(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
multiple_out
def multiple_out(x): return out_dtype( torch.ops.aten.topk.default, torch.int32, x, 5 ) inp = (torch.randn(10),) with self.assertRaisesRegex(ValueError, "out_dtype's can only apply to ops that return a single tensor"): multiple_out(*inp)
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_out_dtype_op.py
singleton_list_out
def singleton_list_out(x): return out_dtype( torch.ops.aten.split_copy.Tensor, torch.int32, x, 10 ) with self.assertRaisesRegex(ValueError, "out_dtype's can only apply to ops that return a single tensor"): singleton_list_out(*inp)
import unittest import torch import torch._dynamo import torch._inductor import torch._inductor.decomposition from torch._higher_order_ops.out_dtype import out_dtype from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import ( run_tests, TestCase, IS_WINDOWS, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU, TEST_CUDA ) from torch.testing._internal.common_quantization import skipIfNoDynamoSupport from torch.testing import FileCheck from torch.testing._internal.common_cuda import SM80OrLater, _get_torch_cuda_version
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_overrides.py
__repr__
def __repr__(self): return "DiagonalTensor(N={}, value={})".format(self._N, self._i)
def __repr__(self): return f"DiagonalTensor(N={self._N}, value={self._i})"
import torch import numpy as np import inspect import functools import pprint import pickle import collections import unittest from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_CROSSREF from torch.overrides import ( handle_torch_function, has_torch_function, get_overridable_functions, get_testing_overrides, is_tensor_method_or_property, TorchFunctionMode, _get_current_function_mode, _get_current_function_mode_stack, ) from torch.utils._mode_utils import all_same_mode from torch.utils._pytree import tree_map Tensor = torch.Tensor HANDLED_FUNCTIONS_DIAGONAL = {} class DiagonalTensor: from torch.testing._internal.generated.annotated_fn_args import annotated_args from torch.testing._internal.common_utils import gradcheck, gradgradcheck from torch.distributions.utils import broadcast_all
import torch import numpy as np import inspect import functools import pprint import pickle import collections import unittest import contextlib from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_CROSSREF, TEST_WITH_TORCHDYNAMO from torch.overrides import ( handle_torch_function, has_torch_function, get_ignored_functions, get_overridable_functions, get_testing_overrides, resolve_name, is_tensor_method_or_property, TorchFunctionMode, _get_current_function_mode, _get_current_function_mode_stack, BaseTorchFunctionMode ) from torch.utils._mode_utils import all_same_mode from torch.utils._pytree import tree_map Tensor = torch.Tensor HANDLED_FUNCTIONS_DIAGONAL = {} class DiagonalTensor: from torch.testing._internal.generated.annotated_fn_args import annotated_args from torch.testing._internal.common_utils import gradcheck, gradgradcheck from torch.distributions.utils import broadcast_all from torch._C import _is_torch_function_all_disabled from torch._C import _len_torch_function_stack from torch.utils._device import DeviceContext
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_overrides.py
__eq__
def __eq__(self, other): if type(other) is type(self): if self._N == other._N and self._i == other._i: return True else: return False else: return False
def __eq__(self, other): return type(other) is type(self) and self._N == other._N and self._i == other._i
import torch import numpy as np import inspect import functools import pprint import pickle import collections import unittest from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_CROSSREF from torch.overrides import ( handle_torch_function, has_torch_function, get_overridable_functions, get_testing_overrides, is_tensor_method_or_property, TorchFunctionMode, _get_current_function_mode, _get_current_function_mode_stack, ) from torch.utils._mode_utils import all_same_mode from torch.utils._pytree import tree_map Tensor = torch.Tensor HANDLED_FUNCTIONS_DIAGONAL = {} class DiagonalTensor: from torch.testing._internal.generated.annotated_fn_args import annotated_args from torch.testing._internal.common_utils import gradcheck, gradgradcheck from torch.distributions.utils import broadcast_all
import torch import numpy as np import inspect import functools import pprint import pickle import collections import unittest import contextlib from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_CROSSREF, TEST_WITH_TORCHDYNAMO from torch.overrides import ( handle_torch_function, has_torch_function, get_ignored_functions, get_overridable_functions, get_testing_overrides, resolve_name, is_tensor_method_or_property, TorchFunctionMode, _get_current_function_mode, _get_current_function_mode_stack, BaseTorchFunctionMode ) from torch.utils._mode_utils import all_same_mode from torch.utils._pytree import tree_map Tensor = torch.Tensor HANDLED_FUNCTIONS_DIAGONAL = {} class DiagonalTensor: from torch.testing._internal.generated.annotated_fn_args import annotated_args from torch.testing._internal.common_utils import gradcheck, gradgradcheck from torch.distributions.utils import broadcast_all from torch._C import _is_torch_function_all_disabled from torch._C import _len_torch_function_stack from torch.utils._device import DeviceContext
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_optim.py
test_averaged_model_mixed_device
def test_averaged_model_mixed_device(self): if not torch.cuda.is_available(): return dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.Linear(5, 10) ) dnn[0].cuda() dnn[1].cpu() averaged_dnn = AveragedModel(dnn) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) p_avg += p.detach() / n_updates averaged_dnn.update_parameters(dnn) for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) # Check that AveragedModel is on the correct device self.assertTrue(p_avg.device == p_swa.device)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_averaged_model_state_dict
def test_averaged_model_state_dict(self): dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.Linear(5, 10) ) averaged_dnn = AveragedModel(dnn) averaged_dnn2 = AveragedModel(dnn) n_updates = 10 for i in range(n_updates): for p in dnn.parameters(): p.detach().add_(torch.randn_like(p)) averaged_dnn.update_parameters(dnn) averaged_dnn2.load_state_dict(averaged_dnn.state_dict()) for p_swa, p_swa2 in zip(averaged_dnn.parameters(), averaged_dnn2.parameters()): self.assertEqual(p_swa, p_swa2) self.assertTrue(averaged_dnn.n_averaged == averaged_dnn2.n_averaged)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_averaged_model_exponential
def test_averaged_model_exponential(self): # Test AveragedModel with EMA as avg_fn dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.BatchNorm2d(5, momentum=0.3), torch.nn.Linear(5, 10), ) alpha = 0.9 def avg_fn(p_avg, p, n_avg): return alpha * p_avg + (1 - alpha) * p averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): updated_averaged_params = [] for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) if i == 0: updated_averaged_params.append(p.clone()) else: updated_averaged_params.append( (p_avg * alpha + p * (1 - alpha)).clone() ) for b in dnn.buffers(): if b.size() != torch.Size([]): b.detach_().add_(torch.randn_like(b)) averaged_dnn.update_parameters(dnn) averaged_params = updated_averaged_params for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) for b_avg, b_swa in zip(dnn.buffers(), averaged_dnn.module.buffers()): self.assertEqual(b_avg, b_swa)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
avg_fn
def avg_fn(p_avg, p, n_avg): return alpha * p_avg + (1 - alpha) * p averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): updated_averaged_params = [] for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) if i == 0: updated_averaged_params.append(p.clone()) else: updated_averaged_params.append( (p_avg * alpha + p * (1 - alpha)).clone() ) for b in dnn.buffers(): if b.size() != torch.Size([]): b.detach_().add_(torch.randn_like(b)) averaged_dnn.update_parameters(dnn) averaged_params = updated_averaged_params for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) for b_avg, b_swa in zip(dnn.buffers(), averaged_dnn.module.buffers()): self.assertEqual(b_avg, b_swa)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_averaged_model_exponential_buffers
def test_averaged_model_exponential_buffers(self): # Test AveragedModel with EMA as avg_fn and use_buffers as True. dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.BatchNorm2d(5, momentum=0.3), torch.nn.Linear(5, 10), ) alpha = 0.9 def avg_fn(p_avg, p, n_avg): return alpha * p_avg + (1 - alpha) * p averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn, use_buffers=True) dnn_params = itertools.chain(dnn.parameters(), dnn.buffers()) averaged_params = [ torch.zeros_like(param) for param in dnn_params if param.size() != torch.Size([]) ] n_updates = 10 for i in range(n_updates): updated_averaged_params = [] for p, p_avg in zip(dnn_params, averaged_params): if p.size() == torch.Size([]): continue p.detach().add_(torch.randn_like(p)) if i == 0: updated_averaged_params.append(p.clone()) else: updated_averaged_params.append( (p_avg * alpha + p * (1 - alpha)).clone() ) averaged_dnn.update_parameters(dnn) averaged_params = updated_averaged_params for p_avg, p_swa in zip( averaged_params, itertools.chain( averaged_dnn.module.parameters(), averaged_dnn.module.buffers() ), ): self.assertEqual(p_avg, p_swa)
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs( device, dtype, optim_info ) for optim_input in all_optim_inputs: optim = optim_info.optim_cls(params, **optim_input.kwargs) optim2 = SGD(params) data = []
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
avg_fn
def avg_fn(p_avg, p, n_avg): return alpha * p_avg + (1 - alpha) * p averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): updated_averaged_params = [] for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) if i == 0: updated_averaged_params.append(p.clone()) else: updated_averaged_params.append( (p_avg * alpha + p * (1 - alpha)).clone() ) for b in dnn.buffers(): if b.size() != torch.Size([]): b.detach_().add_(torch.randn_like(b)) averaged_dnn.update_parameters(dnn) averaged_params = updated_averaged_params for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) for b_avg, b_swa in zip(dnn.buffers(), averaged_dnn.module.buffers()): self.assertEqual(b_avg, b_swa)
# register global hooks to both optimizers global_pre_handle = register_optimizer_step_pre_hook(global_pre_hook) global_post_handle = register_optimizer_step_post_hook(global_post_hook) # register local hooks first_pre_handle = optim.register_step_pre_hook(local_pre_hook) first_post_handle = optim.register_step_post_hook(local_post_hook) second_pre_handle = optim2.register_step_pre_hook(local_pre_hook) second_post_handle = optim2.register_step_post_hook(local_post_hook)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_test_update_bn
def _test_update_bn(self, dnn, dl_x, dl_xy, cuda): preactivation_sum = torch.zeros(dnn.n_features) preactivation_squared_sum = torch.zeros(dnn.n_features) if cuda: preactivation_sum = preactivation_sum.cuda() preactivation_squared_sum = preactivation_squared_sum.cuda() total_num = 0 for x in dl_x: x = x[0] if cuda: x = x.cuda() dnn.forward(x) preactivations = dnn.compute_preactivation(x) if len(preactivations.shape) == 4: preactivations = preactivations.transpose(1, 3) preactivations = preactivations.contiguous().view(-1, dnn.n_features) total_num += preactivations.shape[0] preactivation_sum += torch.sum(preactivations, dim=0) preactivation_squared_sum += torch.sum(preactivations**2, dim=0) preactivation_mean = preactivation_sum / total_num preactivation_var = preactivation_squared_sum / total_num preactivation_var = preactivation_var - preactivation_mean**2 update_bn(dl_xy, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) def _reset_bn(module): if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm): module.running_mean = torch.zeros_like(module.running_mean) module.running_var = torch.ones_like(module.running_var) # reset batch norm and run update_bn again dnn.apply(_reset_bn) update_bn(dl_xy, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) # using the dl_x loader instead of dl_xy dnn.apply(_reset_bn) update_bn(dl_x, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
_reset_bn
def _reset_bn(module): if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm): module.running_mean = torch.zeros_like(module.running_mean) module.running_var = torch.ones_like(module.running_var) # reset batch norm and run update_bn again dnn.apply(_reset_bn) update_bn(dl_xy, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) # using the dl_x loader instead of dl_xy dnn.apply(_reset_bn) update_bn(dl_x, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_update_bn_dnn
def test_update_bn_dnn(self): # Test update_bn for a fully-connected network with BatchNorm1d objects, input_features = 100, 5 x = torch.rand(objects, input_features) y = torch.rand(objects) ds_x = torch.utils.data.TensorDataset(x) ds_xy = torch.utils.data.TensorDataset(x, y) dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True) dnn = SWATestDNN(input_features=input_features) dnn.train() self._test_update_bn(dnn, dl_x, dl_xy, False) if torch.cuda.is_available(): dnn = SWATestDNN(input_features=input_features) dnn.train() self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True) self.assertTrue(dnn.training)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_optim.py
test_update_bn_cnn
def test_update_bn_cnn(self): # Test update_bn for convolutional network and BatchNorm2d objects = 100 input_channels = 3 height, width = 5, 5 x = torch.rand(objects, input_channels, height, width) y = torch.rand(objects) ds_x = torch.utils.data.TensorDataset(x) ds_xy = torch.utils.data.TensorDataset(x, y) dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True) dnn = SWATestCNN(input_channels=input_channels) dnn.train() self._test_update_bn(dnn, dl_x, dl_xy, False) if torch.cuda.is_available(): dnn = SWATestCNN(input_channels=input_channels) dnn.train() self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True) self.assertTrue(dnn.training)
import warnings import math import unittest import functools import itertools import pickle from copy import deepcopy import weakref import torch import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter from torch.optim import Adam, SGD, Optimizer from torch import sparse from torch.optim.lr_scheduler import ( LambdaLR, MultiplicativeLR, SequentialLR, StepLR, MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, EPOCH_DEPRECATION_WARNING, ) from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_UBSAN, load_tests, parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm, skipIfTorchDynamo ) from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA from typing import Dict, Any, Tuple from torch.optim.optimizer import register_optimizer_step_pre_hook, register_optimizer_step_post_hook from unittest.mock import patch load_tests = load_tests from torch.optim import adam, adamw import gc import gc import weakref import types import types from torch.nn import Parameter import gc import weakref class TestSWAUtils(TestCase): from torch.optim import (adam, adamw, nadam, sgd, radam, rmsprop, rprop, asgd, adamax, adadelta, adagrad)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_overrides.py
__repr__
def __repr__(self): return "DiagonalTensor(N={}, value={})".format(self._N, self._i)
def __repr__(self): return f"DiagonalTensor(N={self._N}, value={self._i})"
import torch import numpy as np import inspect import functools import pprint import pickle import collections import unittest from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_CROSSREF from torch.overrides import ( handle_torch_function, has_torch_function, get_overridable_functions, get_testing_overrides, is_tensor_method_or_property, TorchFunctionMode, _get_current_function_mode, _get_current_function_mode_stack, ) from torch.utils._mode_utils import all_same_mode from torch.utils._pytree import tree_map Tensor = torch.Tensor HANDLED_FUNCTIONS_DIAGONAL = {} class DiagonalTensor: from torch.testing._internal.generated.annotated_fn_args import annotated_args from torch.testing._internal.common_utils import gradcheck, gradgradcheck from torch.distributions.utils import broadcast_all
import torch import numpy as np import inspect import functools import pprint import pickle import collections import unittest import contextlib from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_CROSSREF, TEST_WITH_TORCHDYNAMO from torch.overrides import ( handle_torch_function, has_torch_function, get_ignored_functions, get_overridable_functions, get_testing_overrides, resolve_name, is_tensor_method_or_property, TorchFunctionMode, _get_current_function_mode, _get_current_function_mode_stack, BaseTorchFunctionMode ) from torch.utils._mode_utils import all_same_mode from torch.utils._pytree import tree_map Tensor = torch.Tensor HANDLED_FUNCTIONS_DIAGONAL = {} class DiagonalTensor: from torch.testing._internal.generated.annotated_fn_args import annotated_args from torch.testing._internal.common_utils import gradcheck, gradgradcheck from torch.distributions.utils import broadcast_all from torch._C import _is_torch_function_all_disabled from torch._C import _len_torch_function_stack from torch.utils._device import DeviceContext
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified