File size: 6,181 Bytes
b5a72fa
 
 
de5541d
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a72fa
 
 
dcf2982
de5541d
 
 
 
dcf2982
 
 
de5541d
b5a72fa
620caaa
dcf2982
620caaa
 
 
de5541d
dcf2982
b5a72fa
dcf2982
 
b5a72fa
dcf2982
de5541d
 
dcf2982
b5a72fa
de5541d
 
 
 
 
 
 
 
 
 
 
b5a72fa
dcf2982
b5a72fa
dcf2982
b5a72fa
dcf2982
de5541d
dcf2982
de5541d
 
 
dcf2982
de5541d
 
 
dcf2982
de5541d
 
dcf2982
de5541d
 
dcf2982
de5541d
dcf2982
 
 
 
b5a72fa
 
 
 
de5541d
b5a72fa
 
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
 
b5a72fa
de5541d
 
b5a72fa
de5541d
b5a72fa
 
0bae7d4
de5541d
0bae7d4
 
dcf2982
 
de5541d
dcf2982
 
 
de5541d
dcf2982
 
 
 
 
 
 
 
de5541d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import csv
import datasets
from datasets import Audio, BuilderConfig

# BuilderConfig ni aniqlaymiz: bu yerda til qisqartmasi va asosiy data papkasi kiritiladi.
class STTConfig(BuilderConfig):
    def __init__(self, language_abbr, data_dir, **kwargs):
        """

        Args:

            language_abbr (str): Til qisqartmasi, masalan "uz".

            data_dir (str): Dataset joylashgan asosiy papka (misol: "Dataset_STT").

            **kwargs: Qolgan BuilderConfig parametrlar.

        """
        super().__init__(**kwargs)
        self.language_abbr = language_abbr
        self.data_dir = data_dir


class MySTTDataset(datasets.GeneratorBasedBuilder):
    """

    Common Voice uslubidagi minimal STT dataset yuklash skripti:

      - 3 ta tar fayl (train, test, validation) ichida .mp3 audio fayllar mavjud.

      - Har bir split uchun mos TSV fayl (train.tsv, test.tsv, validation.tsv) transkripsiyalarni o‘z ichiga oladi.

      - 'audio' ustuni Audio() tipida bo‘lib, Hugging Face Dataset Viewer’da "play" tugmasi orqali audio eshittirish imkoniyatini beradi.

    """
    VERSION = datasets.Version("1.0.0")

    # Agar bir nechta konfiguratsiya bo‘lmasa, oddiy qilib bitta config ishlatamiz.
    BUILDER_CONFIGS = [
        STTConfig(
            name="uz",
            version=datasets.Version("1.0.0"),
            description="Uzbek subset of the STT dataset",
            language_abbr="uz",
            data_dir="Dataset_STT",  # Bu yerga ma'lumotlar joylashgan asosiy papkani kiriting.
        )
    ]
    DEFAULT_CONFIG_NAME = "uz"

    def _info(self):
        """

        Datasetning xususiyatlari (features) aniqlanadi.

        Agar 'audio' ustuni Audio() tipida bo‘lsa, Dataset Viewer audio pleyerni ko‘rsatadi.

        """
        return datasets.DatasetInfo(
            description="Uzbek STT dataset: audio fayllar .tar arxivda saqlanadi, transcriptions esa .tsv faylda.",
            features=datasets.Features({
                "id": datasets.Value("string"),
                "audio": Audio(sampling_rate=None),  # sampling_rate=None degani audio fayldan olingan asl sampling rate saqlanadi.
                "sentence": datasets.Value("string"),
                "duration": datasets.Value("float"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "locale": datasets.Value("string"),
            }),
            supervised_keys=None,
            version=self.VERSION,
        )

    def _split_generators(self, dl_manager):
        """

        Har bir split uchun: tar va tsv fayllar yo‘llarini belgilab, dl_manager orqali ularni yuklab yoki extract qildik.

        """
        config = self.config  # STTConfig obyekti
        base_dir = config.data_dir  # Masalan: "Dataset_STT"
        lang = config.language_abbr   # Masalan: "uz"

        # Audio va transkript fayllarining yo‘llarini shakllantiramiz:
        train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
        train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")

        test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
        test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")

        val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
        val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")

        # Tar fayllarni extract qilamiz (agar lokal bo‘lsa, dl_manager.extract mos yo‘lni qaytaradi)
        train_tar_extracted = dl_manager.extract(train_tar)
        test_tar_extracted = dl_manager.extract(test_tar)
        val_tar_extracted = dl_manager.extract(val_tar)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive_dir": train_tar_extracted,  # Tar fayl extract qilingan papka
                    "tsv_path": train_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive_dir": test_tar_extracted,
                    "tsv_path": test_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive_dir": val_tar_extracted,
                    "tsv_path": val_tsv,
                },
            ),
        ]

    def _generate_examples(self, archive_dir, tsv_path):
        """

        TSV faylini qatorma-qator o‘qib, metadata lug‘atini yaratadi va

        extract qilingan archive papkasidan mos .mp3 faylni topadi.

        """
        # TSV faylini ochamiz va DictReader yordamida o‘qiymiz.
        with open(tsv_path, "r", encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(reader):
                # TSV faylida kutilayotgan ustunlar: id, sentence, duration, age, gender, accents, locale
                audio_id = row["id"]
                mp3_file = audio_id + ".mp3"
                mp3_path = os.path.join(archive_dir, mp3_file)

                # Agar extract qilingan papkada audio fayl mavjud bo‘lsa:
                if os.path.isfile(mp3_path):
                    yield idx, {
                        "id": audio_id,
                        "audio": mp3_path,  # Audio() tipidagi ustun avtomatik ravishda faylni o‘qiydi va dekodlaydi.
                        "sentence": row.get("sentence", ""),
                        "duration": float(row.get("duration", 0.0)),
                        "age": row.get("age", ""),
                        "gender": row.get("gender", ""),
                        "accents": row.get("accents", ""),
                        "locale": row.get("locale", ""),
                    }
                else:
                    # Agar audio fayl topilmasa, bu yozuvni o'tkazib yuboramiz yoki xatolik chiqarish mumkin.
                    continue