entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
GatedResUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/va/cvasqctjzjefeflnuotcxa2mrhanju6357ukdrxur3i4qmmnupq4.py # Topologically Sorted Source Nodes: [h, conv2d_1, g, h1], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # g => sigmoid # h => convolution # h1 => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(in_out_ptr1 + (x3), tmp5, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fw/cfwyzalciavhzqbgdliew5gcmomnbat4salq3w4w3tsiib6y2pws.py # Topologically Sorted Source Nodes: [h_1, conv2d_3, g_1, h2, add], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # conv2d_3 => convolution_3 # g_1 => sigmoid_1 # h2 => mul_1 # h_1 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, %sigmoid_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_add_convolution_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tmp9 = tmp7 + tmp8 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(in_out_ptr1 + (x3), tmp5, xmask) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h, conv2d_1, g, h1], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, buf3, primals_2, primals_5, buf4, 256, grid=grid(256), stream=stream0) del primals_2 del primals_5 # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf6 = buf5; del buf5 # reuse buf8 = buf7; del buf7 # reuse buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1, conv2d_3, g_1, h2, add], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.add] triton_poi_fused_add_convolution_mul_sigmoid_1.run(buf6, buf8, primals_7, primals_9, primals_3, buf9, 256, grid=grid(256), stream=stream0) del primals_7 del primals_9 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf4, buf6, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class GatedConv2d(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super(GatedConv2d, self).__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, x): if self.activation is None: h = self.h(x) else: h = self.activation(self.h(x)) g = self.sigmoid(self.g(x)) return h * g class GatedResUnit(nn.Module): def __init__(self, input_channels, activation=None): super(GatedResUnit, self).__init__() self.activation = activation self.conv1 = GatedConv2d(input_channels, input_channels, 3, 1, 1, 1, activation=activation) self.conv2 = GatedConv2d(input_channels, input_channels, 3, 1, 1, 1, activation=activation) def forward(self, x): h1 = self.conv1(x) h2 = self.conv2(h1) return h2 + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tmp9 = tmp7 + tmp8 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(256)](buf1, buf3, primals_2, primals_5, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_5 buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf6 = buf5 del buf5 buf8 = buf7 del buf7 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_mul_sigmoid_1[grid(256)](buf6, buf8, primals_7, primals_9, primals_3, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 del primals_9 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf4, buf6, buf8) class GatedConv2d(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super(GatedConv2d, self).__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, x): if self.activation is None: h = self.h(x) else: h = self.activation(self.h(x)) g = self.sigmoid(self.g(x)) return h * g class GatedResUnitNew(nn.Module): def __init__(self, input_channels, activation=None): super(GatedResUnitNew, self).__init__() self.activation = activation self.conv1 = GatedConv2d(input_channels, input_channels, 3, 1, 1, 1, activation=activation) self.conv2 = GatedConv2d(input_channels, input_channels, 3, 1, 1, 1, activation=activation) def forward(self, input_0): primals_1 = self.conv1.h.weight primals_2 = self.conv1.h.bias primals_4 = self.conv1.g.weight primals_5 = self.conv1.g.bias primals_6 = self.conv2.h.weight primals_7 = self.conv2.h.bias primals_8 = self.conv2.g.weight primals_9 = self.conv2.g.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
sanghiad/vae_vampprior
GatedResUnit
false
16,364
[ "MIT" ]
218
d24bc0c8781b7ee7b9570c2d560e43bceff50da4
https://github.com/sanghiad/vae_vampprior/tree/d24bc0c8781b7ee7b9570c2d560e43bceff50da4
GaussianLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xo/cxobgsd77zen2bgj6dyyb7jt6nnnvsqf7diciywdc7qeuwoug2zo.py # Topologically Sorted Source Nodes: [log, term1, sub, pow_1, mul, term2, add, mean_1], Original ATen: [aten.log, aten.div, aten.sub, aten.pow, aten.mul, aten.add, aten.mean] # Source node to ATen node mapping: # add => add # log => log # mean_1 => mean # mul => mul # pow_1 => pow_1 # sub => sub # term1 => div # term2 => div_1 # Graph fragment: # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%slice_4,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %slice_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_4, 2), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_1, %mul), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add,), kwargs = {}) triton_per_fused_add_div_log_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_div_log_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_log_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 32 r1 = (rindex // 32) r2 = rindex tmp0 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp4 = tl.load(in_ptr1 + (r2), None) tmp5 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl_math.log(tmp0) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = 2.0 tmp9 = tmp0 * tmp8 tmp10 = tmp7 / tmp9 tmp11 = tmp3 + tmp10 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 128.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 2, 4, 4), (32, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [log, term1, sub, pow_1, mul, term2, add, mean_1], Original ATen: [aten.log, aten.div, aten.sub, aten.pow, aten.mul, aten.add, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_div_log_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, 1, 128, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 2, 4, 4), (32, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class GaussianLoss(torch.nn.Module): """ Gaussian log-likelihood loss. It assumes targets `y` with n rows and d columns, but estimates `yhat` with n rows and 2d columns. The columns 0:d of `yhat` contain estimated means, the columns d:2*d of `yhat` contain estimated variances. This module assumes that the estimated variances are positive---for numerical stability, it is recommended that the minimum estimated variance is greater than a small number (1e-3). """ def __init__(self): super(GaussianLoss, self).__init__() def forward(self, yhat, y): dim = yhat.size(1) // 2 mean = yhat[:, :dim] variance = yhat[:, dim:] term1 = variance.log().div(2) term2 = (y - mean).pow(2).div(variance.mul(2)) return (term1 + term2).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 2, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_log_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 32 r1 = rindex // 32 r2 = rindex tmp0 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp4 = tl.load(in_ptr1 + r2, None) tmp5 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl_math.log(tmp0) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = 2.0 tmp9 = tmp0 * tmp8 tmp10 = tmp7 / tmp9 tmp11 = tmp3 + tmp10 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 128.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 2, 4, 4), (32, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_log_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 128, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class GaussianLossNew(torch.nn.Module): """ Gaussian log-likelihood loss. It assumes targets `y` with n rows and d columns, but estimates `yhat` with n rows and 2d columns. The columns 0:d of `yhat` contain estimated means, the columns d:2*d of `yhat` contain estimated variances. This module assumes that the estimated variances are positive---for numerical stability, it is recommended that the minimum estimated variance is greater than a small number (1e-3). """ def __init__(self): super(GaussianLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
scottgigante-immunai/CPA
GaussianLoss
false
16,365
[ "MIT" ]
132
9338ede503d36c6163a521bee904aa93d896ef92
https://github.com/scottgigante-immunai/CPA/tree/9338ede503d36c6163a521bee904aa93d896ef92
FeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gm/cgmflgdlpeeb52xctoa47uvw47ycyf7ahlj5wdscxdatpbwcboco.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b5/cb5kfengtwtso2cktophcv2j56lrz4uz52si4koheb5liewfkvtt.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %view_3), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf7, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf6, primals_3, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf6, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_6, buf7, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.cuda import torch.distributed class FeedForward(torch.nn.Module): def __init__(self, input_size, hidden_size, dropout): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, input_size) self.dropout = torch.nn.Dropout(dropout) self.norm = torch.nn.LayerNorm(input_size) def forward(self, src): ret = self.linear1(self.norm(src)) ret = self.linear2(self.dropout(torch.nn.functional.relu(ret))) return src + self.dropout(ret) def update_dropout(self, dropout): self.dropout.p = dropout def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf4, primals_5, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_add_3[grid(256)](buf6, primals_3, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return buf6, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf4, (64, 4), (4, 1), 0 ), primals_6, buf7, primals_4 class FeedForwardNew(torch.nn.Module): def __init__(self, input_size, hidden_size, dropout): super().__init__() self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear2 = torch.nn.Linear(hidden_size, input_size) self.dropout = torch.nn.Dropout(dropout) self.norm = torch.nn.LayerNorm(input_size) def update_dropout(self, dropout): self.dropout.p = dropout def forward(self, input_0): primals_4 = self.linear1.weight primals_1 = self.linear1.bias primals_6 = self.linear2.weight primals_2 = self.linear2.bias primals_5 = self.norm.weight primals_7 = self.norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
sakrnference/data-to-text-hierarchical
FeedForward
false
16,366
[ "Apache-2.0" ]
82
09b8fa8bf85385f25348378a30e830d425c93db3
https://github.com/sakrnference/data-to-text-hierarchical/tree/09b8fa8bf85385f25348378a30e830d425c93db3
NBLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/p3/cp3hqebbduk3x6luzssht64cs2nkmq4l7ssi2r54szgrylodxxc5.py # Topologically Sorted Source Nodes: [add, lgamma, add_1, lgamma_1, add_2, add_3, add_4, lgamma_2, t1, add_5, add_6, truediv, add_7, log, mul, add_8, log_1, add_9, log_2, sub_1, mul_1, t2, final, isnan, add_12, final_1, mean], Original ATen: [aten.add, aten.lgamma, aten.sub, aten.div, aten.log, aten.mul, aten.isnan, aten.where, aten.mean] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_12 => full_default # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # add_6 => add_6 # add_7 => add_7 # add_8 => add_8 # add_9 => add_9 # final => add_11 # final_1 => where # isnan => isnan # lgamma => lgamma # lgamma_1 => lgamma_1 # lgamma_2 => lgamma_2 # log => log # log_1 => log_1 # log_2 => log_2 # mean => mean # mul => mul # mul_1 => mul_1 # sub_1 => sub_1 # t1 => sub # t2 => add_10 # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, 1e-08), kwargs = {}) # %lgamma : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1.0), kwargs = {}) # %lgamma_1 : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%lgamma, %lgamma_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %slice_4), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, 1e-08), kwargs = {}) # %lgamma_2 : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%add_4,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %lgamma_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %arg1_1), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, 1e-08), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_2, %add_6), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1.0), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_7,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, %log), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, 1e-08), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_8,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, 1e-08), kwargs = {}) # %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_9,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log_1, %log_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub_1), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %add_10), kwargs = {}) # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%add_11,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 2, 4, 4], inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default, %add_11), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 32 r1 = (rindex // 32) r2 = rindex tmp0 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp4 = tl.load(in_ptr1 + (r2), None) tmp14 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = 1e-08 tmp2 = tmp0 + tmp1 tmp3 = libdevice.lgamma(tmp2) tmp5 = 1.0 tmp6 = tmp4 + tmp5 tmp7 = libdevice.lgamma(tmp6) tmp8 = tmp3 + tmp7 tmp9 = tmp4 + tmp0 tmp10 = tmp9 + tmp1 tmp11 = libdevice.lgamma(tmp10) tmp12 = tmp8 - tmp11 tmp13 = tmp0 + tmp4 tmp15 = tmp14 / tmp2 tmp16 = tmp15 + tmp5 tmp17 = tl_math.log(tmp16) tmp18 = tmp13 * tmp17 tmp19 = tl_math.log(tmp2) tmp20 = tmp14 + tmp1 tmp21 = tl_math.log(tmp20) tmp22 = tmp19 - tmp21 tmp23 = tmp4 * tmp22 tmp24 = tmp18 + tmp23 tmp25 = tmp12 + tmp24 tmp26 = libdevice.isnan(tmp25).to(tl.int1) tmp27 = float("inf") tmp28 = tl.where(tmp26, tmp27, tmp25) tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = 128.0 tmp33 = tmp31 / tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp33, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 2, 4, 4), (32, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, lgamma, add_1, lgamma_1, add_2, add_3, add_4, lgamma_2, t1, add_5, add_6, truediv, add_7, log, mul, add_8, log_1, add_9, log_2, sub_1, mul_1, t2, final, isnan, add_12, final_1, mean], Original ATen: [aten.add, aten.lgamma, aten.sub, aten.div, aten.log, aten.mul, aten.isnan, aten.where, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 128, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 2, 4, 4), (32, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np def _nan2inf(x): return torch.where(torch.isnan(x), torch.zeros_like(x) + np.inf, x) class NBLoss(torch.nn.Module): def __init__(self): super(NBLoss, self).__init__() def forward(self, yhat, y, eps=1e-08): """Negative binomial log-likelihood loss. It assumes targets `y` with n rows and d columns, but estimates `yhat` with n rows and 2d columns. The columns 0:d of `yhat` contain estimated means, the columns d:2*d of `yhat` contain estimated variances. This module assumes that the estimated mean and inverse dispersion are positive---for numerical stability, it is recommended that the minimum estimated variance is greater than a small number (1e-3). Parameters ---------- yhat: Tensor Torch Tensor of reeconstructed data. y: Tensor Torch Tensor of ground truth data. eps: Float numerical stability constant. """ dim = yhat.size(1) // 2 mu = yhat[:, :dim] theta = yhat[:, dim:] if theta.ndimension() == 1: theta = theta.view(1, theta.size(0)) t1 = torch.lgamma(theta + eps) + torch.lgamma(y + 1.0) - torch.lgamma( y + theta + eps) t2 = (theta + y) * torch.log(1.0 + mu / (theta + eps)) + y * (torch .log(theta + eps) - torch.log(mu + eps)) final = t1 + t2 final = _nan2inf(final) return torch.mean(final) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 2, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 32 r1 = rindex // 32 r2 = rindex tmp0 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp4 = tl.load(in_ptr1 + r2, None) tmp14 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = 1e-08 tmp2 = tmp0 + tmp1 tmp3 = libdevice.lgamma(tmp2) tmp5 = 1.0 tmp6 = tmp4 + tmp5 tmp7 = libdevice.lgamma(tmp6) tmp8 = tmp3 + tmp7 tmp9 = tmp4 + tmp0 tmp10 = tmp9 + tmp1 tmp11 = libdevice.lgamma(tmp10) tmp12 = tmp8 - tmp11 tmp13 = tmp0 + tmp4 tmp15 = tmp14 / tmp2 tmp16 = tmp15 + tmp5 tmp17 = tl_math.log(tmp16) tmp18 = tmp13 * tmp17 tmp19 = tl_math.log(tmp2) tmp20 = tmp14 + tmp1 tmp21 = tl_math.log(tmp20) tmp22 = tmp19 - tmp21 tmp23 = tmp4 * tmp22 tmp24 = tmp18 + tmp23 tmp25 = tmp12 + tmp24 tmp26 = libdevice.isnan(tmp25).to(tl.int1) tmp27 = float('inf') tmp28 = tl.where(tmp26, tmp27, tmp25) tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = 128.0 tmp33 = tmp31 / tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp33, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 2, 4, 4), (32, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_isnan_lgamma_log_mean_mul_sub_where_0[grid(1) ](buf1, arg0_1, arg1_1, 1, 128, XBLOCK=1, num_warps=2, num_stages=1 ) del arg0_1 del arg1_1 return buf1, def _nan2inf(x): return torch.where(torch.isnan(x), torch.zeros_like(x) + np.inf, x) class NBLossNew(torch.nn.Module): def __init__(self): super(NBLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
scottgigante-immunai/CPA
NBLoss
false
16,367
[ "MIT" ]
132
9338ede503d36c6163a521bee904aa93d896ef92
https://github.com/scottgigante-immunai/CPA/tree/9338ede503d36c6163a521bee904aa93d896ef92
VGG_16
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/f7/cf7tayhctr3m6ezk7xezotpdlc5h4drokdkbz4vy2pfkbdxnmn4q.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xq/cxq75w43anllid5ys7ss3yyizuoeph3vvaqlvm5lo434hrywtyle.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32xiwptfqtyhbnde262mvq5tzywzo6zquurttkv7sztqnze6yni.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jj/cjjz4tpbucpuc3faa2ky32crfwhb5fbnssd6o2yfkgdcjg2acfmo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tg/ctgdsxjd3rciejxtjvi3y2w5fmmggh5lm3mivuygvkdzeb3zulmc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/e7/ce7jqsdrj5poslb2hpufqd2wdux5xiab5n2auqal3ztzvkzrmnzl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ks/ckso6iiq5yfqfxmx7ilr6ufrmz6mlkiy75pexzhyf3ierq4pu3zl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_8 = async_compile.triton('triton_poi_fused_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rv/crv3uzu52jbc4u62gio2klk6cj5xhjt7yazr75tq67kvtteddsn5.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ku/ckuscrbyawdttbdara4zmhmq3lgm6lvxmizlt7j4v446lfogr7ah.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_10 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ws/cwssgzseoqxwmttgkoxdmvdzcrtg4ars5flpnsa2at2qixzwygfj.py # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/a5/ca5aycvivtwycqu7yn2xzgnljbqetxezkymwgte32n4b4c3doezm.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 16 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (256*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4224 + x0 + (256*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c3/cc36sjgk3au3ve2witr7srumjy6npsyym5bconvmq65prldokmso.py # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x_6 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/l4/cl4n5dxp5ry2ji6m3g5uyniuwrai22ts6qhsulpbeng2mhu4ibj7.py # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_9 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_14 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_14(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 8 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bo/cbory36nvcjc37vmkyigprzjn5qrg2tdk4ivdkunxl3icdtgur5z.py # Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # x_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_relu_15 = async_compile.triton('triton_poi_fused_convolution_relu_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mf/cmfur3mmxa6x6i4nd7emjcnrjpgjj6myhwsch4rls3kx4vdzsyc5.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_13 => getitem_6, getitem_7 # Graph fragment: # %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_16 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_16(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) % 4 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (1024*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + (1024*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (1024*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4608 + x0 + (1024*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/if/cifuazosgglhb63vtzrpxidmty7j5hpnqulfi4w5cefgewy4woma.py # Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # x_14 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_17 = async_compile.triton('triton_poi_fused_convolution_relu_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/q3/cq3pdtgopvnf6ycuq4bs4t7mjppryujt3u3atlffj7p4pjkfne3u.py # Topologically Sorted Source Nodes: [conv2d_12, x_16], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_12 => convolution_12 # x_16 => relu_12 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_11, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_12,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_12, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = (yindex // 512) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (8192*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (512*x2) + (8192*y1)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512, ), (1, )) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512, ), (1, )) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512, ), (1, )) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 192, 9, grid=grid(192, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_10 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_12, buf6, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_12 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_14, buf7, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_14 buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_7.run(primals_16, buf8, 131072, 9, grid=grid(131072, 9), stream=stream0) del primals_16 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_18, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_18 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_20, buf10, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_20 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_22, buf11, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_22 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_24, buf12, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_24 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_26, buf13, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_26 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf15, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf17, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf18 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_10.run(buf17, buf18, buf19, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf18, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf21, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf23, primals_9, 524288, grid=grid(524288), stream=stream0) del primals_9 buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_12.run(buf23, buf24, buf25, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf24, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf27, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf29, primals_13, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf31, primals_15, 262144, grid=grid(262144), stream=stream0) del primals_15 buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_14.run(buf31, buf32, buf33, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf34 = extern_kernels.convolution(buf32, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf35 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf35, primals_17, 131072, grid=grid(131072), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf37 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf37, primals_19, 131072, grid=grid(131072), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf39 = buf38; del buf38 # reuse # Topologically Sorted Source Nodes: [conv2d_9, x_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf39, primals_21, 131072, grid=grid(131072), stream=stream0) del primals_21 buf40 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf41 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_16.run(buf39, buf40, buf41, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf42 = extern_kernels.convolution(buf40, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf43 = buf42; del buf42 # reuse # Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_17.run(buf43, primals_23, 32768, grid=grid(32768), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf44 = extern_kernels.convolution(buf43, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf45 = buf44; del buf44 # reuse # Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_17.run(buf45, primals_25, 32768, grid=grid(32768), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf46 = extern_kernels.convolution(buf45, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf47 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32) buf48 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.bool) # Topologically Sorted Source Nodes: [conv2d_12, x_16], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_18.run(buf46, primals_27, buf47, buf48, 2048, 16, grid=grid(2048, 16), stream=stream0) del buf46 del primals_27 return (buf47, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf24, buf25, buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40, buf41, buf43, buf45, buf48, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class VGG_16(nn.Module): """ VGG-16 without pooling layer before fc layer """ def __init__(self): super(VGG_16, self).__init__() self.convolution1_1 = nn.Conv2d(3, 64, 3, padding=1) self.convolution1_2 = nn.Conv2d(64, 64, 3, padding=1) self.pooling1 = nn.MaxPool2d(2, stride=2) self.convolution2_1 = nn.Conv2d(64, 128, 3, padding=1) self.convolution2_2 = nn.Conv2d(128, 128, 3, padding=1) self.pooling2 = nn.MaxPool2d(2, stride=2) self.convolution3_1 = nn.Conv2d(128, 256, 3, padding=1) self.convolution3_2 = nn.Conv2d(256, 256, 3, padding=1) self.convolution3_3 = nn.Conv2d(256, 256, 3, padding=1) self.pooling3 = nn.MaxPool2d(2, stride=2) self.convolution4_1 = nn.Conv2d(256, 512, 3, padding=1) self.convolution4_2 = nn.Conv2d(512, 512, 3, padding=1) self.convolution4_3 = nn.Conv2d(512, 512, 3, padding=1) self.pooling4 = nn.MaxPool2d(2, stride=2) self.convolution5_1 = nn.Conv2d(512, 512, 3, padding=1) self.convolution5_2 = nn.Conv2d(512, 512, 3, padding=1) self.convolution5_3 = nn.Conv2d(512, 512, 3, padding=1) def forward(self, x): x = F.relu(self.convolution1_1(x), inplace=True) x = F.relu(self.convolution1_2(x), inplace=True) x = self.pooling1(x) x = F.relu(self.convolution2_1(x), inplace=True) x = F.relu(self.convolution2_2(x), inplace=True) x = self.pooling2(x) x = F.relu(self.convolution3_1(x), inplace=True) x = F.relu(self.convolution3_2(x), inplace=True) x = F.relu(self.convolution3_3(x), inplace=True) x = self.pooling3(x) x = F.relu(self.convolution4_1(x), inplace=True) x = F.relu(self.convolution4_2(x), inplace=True) x = F.relu(self.convolution4_3(x), inplace=True) x = self.pooling4(x) x = F.relu(self.convolution5_1(x), inplace=True) x = F.relu(self.convolution5_2(x), inplace=True) x = F.relu(self.convolution5_3(x), inplace=True) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 16 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4224 + x0 + 256 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_14(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 8 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_16(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 % 4 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + 1024 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 1024 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4608 + x0 + 1024 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = yindex // 512 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 8192 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 512 * x2 + 8192 * y1), tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512,), (1,)) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(192, 9)](primals_1, buf0, 192, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_2[grid(4096, 9)](primals_4, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_4[grid(16384, 9)](primals_8, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_5[grid(32768, 9)](primals_10, buf5, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_12, buf6, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_14, buf7, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_7[grid(131072, 9)](primals_16, buf8, 131072, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_16 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_18, buf9, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_18 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_20, buf10, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_20 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_22, buf11, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_22 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_24, buf12, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_24 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_26, buf13, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_26 buf14 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_9[grid(1048576)](buf15, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf16 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_9[grid(1048576)](buf17, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf18 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_10[grid(262144)](buf17, buf18, buf19, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf20 = extern_kernels.convolution(buf18, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf21 = buf20 del buf20 triton_poi_fused_convolution_relu_11[grid(524288)](buf21, primals_7, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_11[grid(524288)](buf23, primals_9, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_12[grid(131072)](buf23, buf24, buf25, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf26 = extern_kernels.convolution(buf24, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf27 = buf26 del buf26 triton_poi_fused_convolution_relu_13[grid(262144)](buf27, primals_11, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf28 = extern_kernels.convolution(buf27, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_13[grid(262144)](buf29, primals_13, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf30 = extern_kernels.convolution(buf29, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf31 = buf30 del buf30 triton_poi_fused_convolution_relu_13[grid(262144)](buf31, primals_15, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_14[grid(65536)](buf31, buf32, buf33, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf34 = extern_kernels.convolution(buf32, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf35 = buf34 del buf34 triton_poi_fused_convolution_relu_15[grid(131072)](buf35, primals_17, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf36 = extern_kernels.convolution(buf35, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_15[grid(131072)](buf37, primals_19, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf38 = extern_kernels.convolution(buf37, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf39 = buf38 del buf38 triton_poi_fused_convolution_relu_15[grid(131072)](buf39, primals_21, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_21 buf40 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf41 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_16[grid(32768)](buf39, buf40, buf41, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf42 = extern_kernels.convolution(buf40, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf43 = buf42 del buf42 triton_poi_fused_convolution_relu_17[grid(32768)](buf43, primals_23, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf44 = extern_kernels.convolution(buf43, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf45 = buf44 del buf44 triton_poi_fused_convolution_relu_17[grid(32768)](buf45, primals_25, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 buf46 = extern_kernels.convolution(buf45, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf47 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch. float32) buf48 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_18[grid(2048, 16) ](buf46, primals_27, buf47, buf48, 2048, 16, XBLOCK=16, YBLOCK= 64, num_warps=4, num_stages=1) del buf46 del primals_27 return (buf47, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf24, buf25, buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40, buf41, buf43, buf45, buf48) class VGG_16New(nn.Module): """ VGG-16 without pooling layer before fc layer """ def __init__(self): super(VGG_16New, self).__init__() self.convolution1_1 = nn.Conv2d(3, 64, 3, padding=1) self.convolution1_2 = nn.Conv2d(64, 64, 3, padding=1) self.pooling1 = nn.MaxPool2d(2, stride=2) self.convolution2_1 = nn.Conv2d(64, 128, 3, padding=1) self.convolution2_2 = nn.Conv2d(128, 128, 3, padding=1) self.pooling2 = nn.MaxPool2d(2, stride=2) self.convolution3_1 = nn.Conv2d(128, 256, 3, padding=1) self.convolution3_2 = nn.Conv2d(256, 256, 3, padding=1) self.convolution3_3 = nn.Conv2d(256, 256, 3, padding=1) self.pooling3 = nn.MaxPool2d(2, stride=2) self.convolution4_1 = nn.Conv2d(256, 512, 3, padding=1) self.convolution4_2 = nn.Conv2d(512, 512, 3, padding=1) self.convolution4_3 = nn.Conv2d(512, 512, 3, padding=1) self.pooling4 = nn.MaxPool2d(2, stride=2) self.convolution5_1 = nn.Conv2d(512, 512, 3, padding=1) self.convolution5_2 = nn.Conv2d(512, 512, 3, padding=1) self.convolution5_3 = nn.Conv2d(512, 512, 3, padding=1) def forward(self, input_0): primals_1 = self.convolution1_1.weight primals_2 = self.convolution1_1.bias primals_4 = self.convolution1_2.weight primals_5 = self.convolution1_2.bias primals_6 = self.convolution2_1.weight primals_7 = self.convolution2_1.bias primals_8 = self.convolution2_2.weight primals_9 = self.convolution2_2.bias primals_10 = self.convolution3_1.weight primals_11 = self.convolution3_1.bias primals_12 = self.convolution3_2.weight primals_13 = self.convolution3_2.bias primals_14 = self.convolution3_3.weight primals_15 = self.convolution3_3.bias primals_16 = self.convolution4_1.weight primals_17 = self.convolution4_1.bias primals_18 = self.convolution4_2.weight primals_19 = self.convolution4_2.bias primals_20 = self.convolution4_3.weight primals_21 = self.convolution4_3.bias primals_22 = self.convolution5_1.weight primals_23 = self.convolution5_1.bias primals_24 = self.convolution5_2.weight primals_25 = self.convolution5_2.bias primals_26 = self.convolution5_3.weight primals_27 = self.convolution5_3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
qiu9yu/Lets_OCR
VGG_16
false
16,368
[ "MIT" ]
671
62d68b044250d02a9d5ac8c4fbd08cec83faa0d1
https://github.com/qiu9yu/Lets_OCR/tree/62d68b044250d02a9d5ac8c4fbd08cec83faa0d1
CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ln/cln6qydwyqg4qnxsbkqnv3hx3efw2a7vyiqfft6cddbhbrgdvyyu.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (36*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5q/c5qrspwskvpybawg5gxji2xsvpkstvwbi7pblvjxn3j2hjj6m6iu.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (3200*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yi/cyiu7hnvvrrmu6u67tnrnbvu5ggcchabkpbfczcoqyl3b43asnnh.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 3249 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (3249*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + (64*x2) + (207936*y1)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/q7/cq7oayogltflabzshimf6ms35y47yn42ipnie3be27awgypmq6d7.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 346112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fa/cfag6r4g25pz77g4rixrcv76giwwqdy3x3c4qlvexfleqbf3dic7.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 512], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 484 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = (yindex // 128) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (128*x2) + (61952*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (484*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + (128*x2) + (61952*y1)), tmp6, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (64, 1, 8, 8), (64, 64, 8, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 6, 6), (2304, 36, 6, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (128, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 2048), (2048, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (10, 128), (128, 1)) assert_size_stride(primals_11, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((128, 64, 6, 6), (2304, 1, 384, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 8192, 36, grid=grid(8192, 36), stream=stream0) del primals_4 buf1 = empty_strided_cuda((128, 128, 5, 5), (3200, 1, 640, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 16384, 25, grid=grid(16384, 25), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 57, 57), (207936, 3249, 57, 1)) buf3 = empty_strided_cuda((4, 64, 57, 57), (207936, 1, 3648, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf2, primals_2, buf3, 256, 3249, grid=grid(256, 3249), stream=stream0) del buf2 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 26, 26), (86528, 1, 3328, 128)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf5, primals_5, 346112, grid=grid(346112), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 22, 22), (61952, 1, 2816, 128)) buf7 = empty_strided_cuda((4, 128, 22, 22), (61952, 484, 22, 1), torch.float32) buf10 = empty_strided_cuda((4, 128, 22, 22), (61952, 1, 2816, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_4.run(buf6, primals_7, buf7, buf10, 512, 484, grid=grid(512, 484), stream=stream0) del buf6 del primals_7 buf8 = empty_strided_cuda((121, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf7, (121, 2048), (2048, 1), 0), reinterpret_tensor(primals_8, (2048, 128), (1, 2048), 0), alpha=1, beta=1, out=buf8) del primals_9 buf9 = empty_strided_cuda((121, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf8, reinterpret_tensor(primals_10, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf9) del primals_11 return (buf9, primals_1, primals_3, buf0, buf1, buf3, buf5, reinterpret_tensor(buf7, (121, 2048), (2048, 1), 0), buf8, primals_10, primals_8, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 1, 8, 8), (64, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64, 6, 6), (2304, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 128, 5, 5), (3200, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class CNN(torch.nn.Module): """Basic CNN architecture.""" def __init__(self, in_channels=1): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels, 64, 8, 1) self.conv2 = nn.Conv2d(64, 128, 6, 2) self.conv3 = nn.Conv2d(128, 128, 5, 1) self.fc1 = nn.Linear(128 * 4 * 4, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = x.view(-1, 128 * 4 * 4) x = self.fc1(x) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 36 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 3200 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 256 xnumel = 3249 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 3249 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + 64 * x2 + 207936 * y1), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 512 xnumel = 484 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 61952 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 484 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 128 * x2 + 61952 * y1), tmp6, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (64, 1, 8, 8), (64, 64, 8, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 6, 6), (2304, 36, 6, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (128, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 2048), (2048, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (10, 128), (128, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((128, 64, 6, 6), (2304, 1, 384, 64), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(8192, 36)](primals_4, buf0, 8192, 36, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((128, 128, 5, 5), (3200, 1, 640, 128), torch.float32) triton_poi_fused_1[grid(16384, 25)](primals_6, buf1, 16384, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_6 buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 57, 57), (207936, 3249, 57, 1)) buf3 = empty_strided_cuda((4, 64, 57, 57), (207936, 1, 3648, 64), torch.float32) triton_poi_fused_convolution_relu_2[grid(256, 3249)](buf2, primals_2, buf3, 256, 3249, XBLOCK=256, YBLOCK=16, num_warps=8, num_stages=1) del buf2 del primals_2 buf4 = extern_kernels.convolution(buf3, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 26, 26), (86528, 1, 3328, 128)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_3[grid(346112)](buf5, primals_5, 346112, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 22, 22), (61952, 1, 2816, 128)) buf7 = empty_strided_cuda((4, 128, 22, 22), (61952, 484, 22, 1), torch.float32) buf10 = empty_strided_cuda((4, 128, 22, 22), (61952, 1, 2816, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_4[grid(512, 484)]( buf6, primals_7, buf7, buf10, 512, 484, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf6 del primals_7 buf8 = empty_strided_cuda((121, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf7, (121, 2048 ), (2048, 1), 0), reinterpret_tensor(primals_8, (2048, 128), (1, 2048), 0), alpha=1, beta=1, out=buf8) del primals_9 buf9 = empty_strided_cuda((121, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf8, reinterpret_tensor( primals_10, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf9) del primals_11 return (buf9, primals_1, primals_3, buf0, buf1, buf3, buf5, reinterpret_tensor(buf7, (121, 2048), (2048, 1), 0), buf8, primals_10, primals_8, buf10) class CNNNew(torch.nn.Module): """Basic CNN architecture.""" def __init__(self, in_channels=1): super(CNNNew, self).__init__() self.conv1 = nn.Conv2d(in_channels, 64, 8, 1) self.conv2 = nn.Conv2d(64, 128, 6, 2) self.conv3 = nn.Conv2d(128, 128, 5, 1) self.fc1 = nn.Linear(128 * 4 * 4, 128) self.fc2 = nn.Linear(128, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc1.weight primals_9 = self.fc1.bias primals_10 = self.fc2.weight primals_11 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
saumya0303/cleverhans
CNN
false
16,369
[ "MIT" ]
4,333
03f3ee254c2a1c4ebd91728263b66ff29e8b4f78
https://github.com/saumya0303/cleverhans/tree/03f3ee254c2a1c4ebd91728263b66ff29e8b4f78
DeConv2dBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yb/cybpjmzbifjzzgcvo732lai5metqpn6lv5qgv2usa3v2ykeb3mq7.py # Topologically Sorted Source Nodes: [x, x_2], Original ATen: [aten.convolution, aten.silu] # Source node to ATen node mapping: # x => convolution # x_2 => mul, sigmoid # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {}) triton_poi_fused_convolution_silu_0 = async_compile.triton('triton_poi_fused_convolution_silu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_silu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_silu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 36) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4f/c4f4mu3fy43wvkdpljn3idkt2qjt7pkweg7fpd4ialsrbzpnr46o.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.silu] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => mul_1, sigmoid_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], True, [1, 1], 1), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %sigmoid_1), kwargs = {}) triton_poi_fused_convolution_silu_1 = async_compile.triton('triton_poi_fused_convolution_silu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_silu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_silu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 144) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 6, 6), (144, 36, 6, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_2], Original ATen: [aten.convolution, aten.silu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_silu_0.run(buf1, primals_2, buf2, 576, grid=grid(576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 12, 12), (576, 144, 12, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.silu] triton_poi_fused_convolution_silu_1.run(buf4, primals_5, buf5, 2304, grid=grid(2304), stream=stream0) del primals_5 return (buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class DeConv2dBlock(nn.Module): """ Similar to a LeNet block 4x upsampling, dimension hard-coded """ def __init__(self, in_dim: 'int', hidden_dim: 'int', out_dim: 'int', stride: 'int'=2, kernel_size: 'int'=3, padding: 'int'=2, output_padding: 'int'=1, dropout=0.1, activation_type='silu', debug =False): super(DeConv2dBlock, self).__init__() padding1 = padding // 2 if padding // 2 >= 1 else 1 self.deconv0 = nn.ConvTranspose2d(in_channels=in_dim, out_channels= hidden_dim, kernel_size=kernel_size, stride=stride, output_padding=output_padding, padding=padding) self.deconv1 = nn.ConvTranspose2d(in_channels=hidden_dim, out_channels=out_dim, kernel_size=kernel_size, stride=stride, output_padding=output_padding, padding=padding1) self.activation = nn.SiLU() if activation_type == 'silu' else nn.ReLU() self.dropout = nn.Dropout(dropout) self.debug = debug def forward(self, x): x = self.deconv0(x) x = self.dropout(x) x = self.activation(x) x = self.deconv1(x) x = self.activation(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'hidden_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_silu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 36 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_silu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 144 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 6, 6), (144, 36, 6, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_silu_0[grid(576)](buf1, primals_2, buf2, 576, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 12, 12), (576, 144, 12, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch. float32) triton_poi_fused_convolution_silu_1[grid(2304)](buf4, primals_5, buf5, 2304, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4 class DeConv2dBlockNew(nn.Module): """ Similar to a LeNet block 4x upsampling, dimension hard-coded """ def __init__(self, in_dim: 'int', hidden_dim: 'int', out_dim: 'int', stride: 'int'=2, kernel_size: 'int'=3, padding: 'int'=2, output_padding: 'int'=1, dropout=0.1, activation_type='silu', debug =False): super(DeConv2dBlockNew, self).__init__() padding1 = padding // 2 if padding // 2 >= 1 else 1 self.deconv0 = nn.ConvTranspose2d(in_channels=in_dim, out_channels= hidden_dim, kernel_size=kernel_size, stride=stride, output_padding=output_padding, padding=padding) self.deconv1 = nn.ConvTranspose2d(in_channels=hidden_dim, out_channels=out_dim, kernel_size=kernel_size, stride=stride, output_padding=output_padding, padding=padding1) self.activation = nn.SiLU() if activation_type == 'silu' else nn.ReLU() self.dropout = nn.Dropout(dropout) self.debug = debug def forward(self, input_0): primals_1 = self.deconv0.weight primals_2 = self.deconv0.bias primals_4 = self.deconv1.weight primals_5 = self.deconv1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
scaomath/galerkin-transformer
DeConv2dBlock
false
16,370
[ "MIT" ]
106
a9c2dc4427bfaba051d7e0154f110e460050c1df
https://github.com/scaomath/galerkin-transformer/tree/a9c2dc4427bfaba051d7e0154f110e460050c1df
Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [3, 3], [1, 1], False, [0, 0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/up/cup7k6lckdxdeumc5wkgvvawwr2i7omafeixxhsjlwoqypnernlr.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add, clone, rsqrt, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr1 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vl/cvl5znscfya2vyloz4woz3qs3yhrnlmrhqdjrm2ups76tnqugnij.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y3), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/z6/cz63vnafhvqvexb6jef6mkdhstxrrarf4q5x6w7vrrn5dk6hodcl.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.gelu] # Source node to ATen node mapping: # x_4 => add_2, erf, mul_2, mul_3, mul_4 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_3,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %add_2), kwargs = {}) triton_poi_fused_gelu_3 = async_compile.triton('triton_poi_fused_gelu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rb/crbbxy4r73vzsuemoueepohmvczbngc44c526mksdnqkvidq3k2g.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.add] # Source node to ATen node mapping: # x_8 => add_3 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %permute_3), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 7, 7), (49, 49, 7, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (4, 16), (16, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_4, primals_5, buf4, 64, 4, grid=grid(64, 4), stream=stream0) del buf2 del buf3 del primals_5 buf5 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.gelu] triton_poi_fused_gelu_3.run(buf5, buf6, 1024, grid=grid(1024), stream=stream0) buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf6, (64, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf7) del primals_9 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.add] triton_poi_fused_add_4.run(primals_1, primals_10, buf7, buf8, 16, 16, grid=grid(16, 16), stream=stream0) return (buf8, primals_1, primals_2, primals_4, primals_10, buf1, reinterpret_tensor(buf4, (64, 4), (4, 1), 0), buf5, reinterpret_tensor(buf6, (64, 16), (16, 1), 0), buf7, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 7, 7), (49, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LayerNorm(nn.Module): """LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-06, data_format='channels_last' ): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ['channels_last', 'channels_first']: raise NotImplementedError self.normalized_shape = normalized_shape, def forward(self, x): if self.data_format == 'channels_last': return F.layer_norm(x, self.normalized_shape, self.weight, self .bias, self.eps) elif self.data_format == 'channels_first': u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class Block(nn.Module): """ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) self.norm = LayerNorm(dim, eps=1e-06) self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) x = input + self.drop_path(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr1 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask) @triton.jit def triton_poi_fused_gelu_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 7, 7), (49, 49, 7, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (4, 16), (16, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_2[grid(64, 4)](buf1, buf2, buf3, primals_4, primals_5, buf4, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del buf2 del buf3 del primals_5 buf5 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf4, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch. float32) triton_poi_fused_gelu_3[grid(1024)](buf5, buf6, 1024, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf6, (64, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf7) del primals_9 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_4[grid(16, 16)](primals_1, primals_10, buf7, buf8, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) return (buf8, primals_1, primals_2, primals_4, primals_10, buf1, reinterpret_tensor(buf4, (64, 4), (4, 1), 0), buf5, reinterpret_tensor(buf6, (64, 16), (16, 1), 0), buf7, primals_8, primals_6) class LayerNorm(nn.Module): """LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-06, data_format='channels_last' ): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ['channels_last', 'channels_first']: raise NotImplementedError self.normalized_shape = normalized_shape, def forward(self, x): if self.data_format == 'channels_last': return F.layer_norm(x, self.normalized_shape, self.weight, self .bias, self.eps) elif self.data_format == 'channels_first': u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class BlockNew(nn.Module): """ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) self.norm = LayerNorm(dim, eps=1e-06) self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() def forward(self, input_0): primals_3 = self.gamma primals_2 = self.dwconv.weight primals_4 = self.dwconv.bias primals_5 = self.norm.weight primals_9 = self.norm.bias primals_6 = self.pwconv1.weight primals_7 = self.pwconv1.bias primals_8 = self.pwconv2.weight primals_10 = self.pwconv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
sayakpaul/ConvNeXt-TF
Block
false
16,371
[ "Apache-2.0" ]
68
bf610810558b4248cd969aa7db42fadff1fdf57a
https://github.com/sayakpaul/ConvNeXt-TF/tree/bf610810558b4248cd969aa7db42fadff1fdf57a
ResizeConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # h => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qm/cqm7mt4kwh3jd6llmoode3c6bmw47aaliqeicit6kfmkic7nsyrl.py # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # h_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_2, %primals_3, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 169) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 13, 13), (676, 169, 13, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 2704, grid=grid(2704), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class ResizeConv2d(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, scale_factor=2, activation=None): super(ResizeConv2d, self).__init__() self.activation = activation self.upsamplingNN = nn.Upsample(scale_factor=scale_factor) self.conv = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, x): h = self.upsamplingNN(x) h = self.conv(h) if self.activation is None: out = h else: out = self.activation(h) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'output_channels': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 2704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 169 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 13, 13), (676, 169, 13, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(2704)](buf2, primals_3, 2704, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 class ResizeConv2dNew(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, scale_factor=2, activation=None): super(ResizeConv2dNew, self).__init__() self.activation = activation self.upsamplingNN = nn.Upsample(scale_factor=scale_factor) self.conv = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, input_0): primals_1 = self.conv.weight primals_3 = self.conv.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sanghiad/vae_vampprior
ResizeConv2d
false
16,372
[ "MIT" ]
218
d24bc0c8781b7ee7b9570c2d560e43bceff50da4
https://github.com/sanghiad/vae_vampprior/tree/d24bc0c8781b7ee7b9570c2d560e43bceff50da4
MarginMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7w/c7wzkxjlezwpig65b2vlh6vgbopagjzn2sss6qfwgr2257fqgbtu.py # Topologically Sorted Source Nodes: [sub, sub_1, sub_2, pow_1, loss], Original ATen: [aten.sub, aten.pow, aten.mean] # Source node to ATen node mapping: # loss => mean # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %arg3_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %sub_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) triton_per_fused_mean_pow_sub_0 = async_compile.triton('triton_per_fused_mean_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp3 = tl.load(in_ptr2 + (r0), None) tmp4 = tl.load(in_ptr3 + (r0), None) tmp2 = tmp0 - tmp1 tmp5 = tmp3 - tmp4 tmp6 = tmp2 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, sub_1, sub_2, pow_1, loss], Original ATen: [aten.sub, aten.pow, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_pow_sub_0.run(buf1, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MarginMSELoss(nn.Module): def __init__(self): super(MarginMSELoss, self).__init__() def forward(self, scores_pos, scores_neg, label_pos, label_neg): """ A Margin-MSE loss, receiving 2 scores and 2 labels and it computes the MSE of the respective margins. All inputs should be tensors of equal size """ loss = torch.mean(torch.pow(scores_pos - scores_neg - (label_pos - label_neg), 2)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp3 = tl.load(in_ptr2 + r0, None) tmp4 = tl.load(in_ptr3 + r0, None) tmp2 = tmp0 - tmp1 tmp5 = tmp3 - tmp4 tmp6 = tmp2 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf1, class MarginMSELossNew(nn.Module): def __init__(self): super(MarginMSELossNew, self).__init__() def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
sebastian-hofstaetter/neural-ranking-kd
MarginMSELoss
false
16,373
[ "Apache-2.0" ]
51
aafcc73d6b78ee9849c3d8f5ccf084051fcae2e9
https://github.com/sebastian-hofstaetter/neural-ranking-kd/tree/aafcc73d6b78ee9849c3d8f5ccf084051fcae2e9
GMoF_unscaled
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nw/cnwdsq3abo7fe6mxpotwfwzs6o5r6xx66xxpdvq3cncsk4wtutgy.py # Topologically Sorted Source Nodes: [squared_res, add, dist], Original ATen: [aten.pow, aten.add, aten.div] # Source node to ATen node mapping: # add => add # dist => div # squared_res => pow_1 # Graph fragment: # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_1, %add), kwargs = {}) triton_poi_fused_add_div_pow_0 = async_compile.triton('triton_poi_fused_add_div_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tmp1 / tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [squared_res, add, dist], Original ATen: [aten.pow, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GMoF_unscaled(nn.Module): def __init__(self, rho=1): super(GMoF_unscaled, self).__init__() self.rho = rho def extra_repr(self): return 'rho = {}'.format(self.rho) def forward(self, residual): squared_res = residual ** 2 dist = torch.div(squared_res, squared_res + self.rho ** 2) return dist def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tmp1 / tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GMoF_unscaledNew(nn.Module): def __init__(self, rho=1): super(GMoF_unscaledNew, self).__init__() self.rho = rho def extra_repr(self): return 'rho = {}'.format(self.rho) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
sanweiliti/HMP
GMoF_unscaled
false
16,374
[ "MIT" ]
92
3d1a96ec86a72396349daa9f8dde9b2e5a3fc578
https://github.com/sanweiliti/HMP/tree/3d1a96ec86a72396349daa9f8dde9b2e5a3fc578
ChannelNorm2D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/k2/ck2ahiysbz5am2kdqgxfcalsms7yveiz5dvoxtgdx6inzxd62dti.py # Topologically Sorted Source Nodes: [mu, var, sub, add, rsqrt, x_normed, mul_1, x_normed_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.rsqrt, aten.mul] # Source node to ATen node mapping: # add => add # mu => mean # mul_1 => mul_1 # rsqrt => rsqrt # sub => sub # var => var # x_normed => mul # x_normed_1 => add_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1]), kwargs = {correction: 1, keepdim: True}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 0.001), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %mul), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_add_mean_mul_rsqrt_sub_var_0 = async_compile.triton('triton_poi_fused_add_mean_mul_rsqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_rsqrt_sub_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_sub_var_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = 0.001 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tmp28 = tmp11 * tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x3), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu, var, sub, add, rsqrt, x_normed, mul_1, x_normed_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.rsqrt, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_sub_var_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ChannelNorm2D(nn.Module): """ Similar to default Torch instanceNorm2D but calculates moments over channel dimension instead of spatial dims. Expects input_dim in format (B,C,H,W) """ def __init__(self, input_channels, momentum=0.1, eps=0.001, affine=True, **kwargs): super(ChannelNorm2D, self).__init__() self.momentum = momentum self.eps = eps self.affine = affine if affine is True: self.gamma = nn.Parameter(torch.ones(1, input_channels, 1, 1)) self.beta = nn.Parameter(torch.zeros(1, input_channels, 1, 1)) def forward(self, x): """ Calculate moments over channel dim, normalize. x: Image tensor, shape (B,C,H,W) """ mu, var = torch.mean(x, dim=1, keepdim=True), torch.var(x, dim=1, keepdim=True) x_normed = (x - mu) * torch.rsqrt(var + self.eps) if self.affine is True: x_normed = self.gamma * x_normed + self.beta return x_normed def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_sub_var_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = 0.001 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tmp28 = tmp11 * tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x3, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_sub_var_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class ChannelNorm2DNew(nn.Module): """ Similar to default Torch instanceNorm2D but calculates moments over channel dimension instead of spatial dims. Expects input_dim in format (B,C,H,W) """ def __init__(self, input_channels, momentum=0.1, eps=0.001, affine=True, **kwargs): super(ChannelNorm2DNew, self).__init__() self.momentum = momentum self.eps = eps self.affine = affine if affine is True: self.gamma = nn.Parameter(torch.ones(1, input_channels, 1, 1)) self.beta = nn.Parameter(torch.zeros(1, input_channels, 1, 1)) def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sedrickkeh/high-fidelity-dual-image
ChannelNorm2D
false
16,375
[ "Apache-2.0" ]
266
9cefd378467826b91596653df38666e469bb23e0
https://github.com/sedrickkeh/high-fidelity-dual-image/tree/9cefd378467826b91596653df38666e469bb23e0
Cnn
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oh/cohhzozgklcdr3g2cpdmnac2zvbvmk53smneafef4zekz5p2kieu.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5z/c5z4ugnz2tz6etzq5gfjssvgajfzqbzizudkvgjbmhjkyjb3kwgl.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/se/csedlwuxzhprkb3ecn6kgrmxlmezbyqcrjpioj4gtemlvmwagg6r.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4c/c4cz34smoctu7b33jzz7en4rchi4apm2gtczdgg6hlizghqknrib.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c3/cc37wvituo2asffgdbn2cnuhsr4nuj5pzt75pvxxxx4t7tdtdkqj.py # Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # relu_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ec/cecfzmb7lcmubnp7axcg34e5wnqbt6562ckr2vzbwja7yvxfo3xj.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uy/cuyg775h5n6l7uvtibxdz6ehlnkmaz5fxgmjvhswthhapsgvtqpl.py # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2s/c2sw6qculg7ddjsrvcztrmpih5wsdfzftykdv4ritiictnovolze.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_5 => relu_4 # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_11), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_7 = async_compile.triton('triton_poi_fused_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kx/ckxnhe4wnaqnkpf7dldzrgo4ne6c6ejtomnv6hgrwgx5bufq4xk3.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_6 => relu_5 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_13), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 40 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ds/cds7svddy7rwct3dmzyzl3nhnvmmlzugi2jujmhplve3tximlbdo.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_7 => relu_6 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_15), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_9(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 3 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (8, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (12, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (16, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (100, 2048), (2048, 1)) assert_size_stride(primals_11, (100, ), (1, )) assert_size_stride(primals_12, (10, 100), (100, 1)) assert_size_stride(primals_13, (10, ), (1, )) assert_size_stride(primals_14, (3, 10), (10, 1)) assert_size_stride(primals_15, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 131072, grid=grid(131072), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.float32) buf3 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 12, 32, 32), (12288, 1024, 32, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 49152, grid=grid(49152), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 12, 16, 16), (3072, 256, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 12, 16, 16), (3072, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 12288, grid=grid(12288), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 16, 16), (4096, 256, 16, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 16384, grid=grid(16384), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.float32) buf11 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 4096, grid=grid(4096), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 8, 8), (2048, 64, 8, 1)) buf13 = buf12; del buf12 # reuse buf21 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf13, primals_9, buf21, 8192, grid=grid(8192), stream=stream0) del primals_9 buf14 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf13, (4, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 100), (1, 2048), 0), out=buf14) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] triton_poi_fused_relu_7.run(buf15, primals_11, 400, grid=grid(400), stream=stream0) del primals_11 buf16 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf15, reinterpret_tensor(primals_12, (100, 10), (1, 100), 0), out=buf16) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu] triton_poi_fused_relu_8.run(buf17, primals_13, 40, grid=grid(40), stream=stream0) del primals_13 buf18 = empty_strided_cuda((4, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf17, reinterpret_tensor(primals_14, (10, 3), (1, 10), 0), out=buf18) buf19 = buf18; del buf18 # reuse buf20 = empty_strided_cuda((4, 3), (3, 1), torch.bool) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_9.run(buf19, primals_15, buf20, 12, grid=grid(12), stream=stream0) del primals_15 return (buf19, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, reinterpret_tensor(buf13, (4, 2048), (2048, 1), 0), buf15, buf17, buf20, primals_14, primals_12, primals_10, buf21, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 12, 3, 3), (108, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((100, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((10, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((3, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Cnn(nn.Module): def __init__(self): super(Cnn, self).__init__() None self.maxpool = nn.MaxPool2d(2) self.conv1 = nn.Conv2d(3, 8, 3, padding=1) self.conv2 = nn.Conv2d(8, 12, 3, padding=1) self.conv3 = nn.Conv2d(12, 16, 3, padding=1) self.conv4 = nn.Conv2d(16, 32, 3, padding=1) self.fc1 = nn.Linear(2048, 100) self.fc2 = nn.Linear(100, 10) self.fc3 = nn.Linear(10, 3) def forward(self, x): x = self.maxpool(F.relu(self.conv1(x))) x = self.maxpool(F.relu(self.conv2(x))) x = self.maxpool(F.relu(self.conv3(x))) x = F.relu(self.conv4(x)) x = x.view(-1, 2048) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 8 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 12 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 40 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_9(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 3 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (8, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (12, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (16, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (100, 2048), (2048, 1)) assert_size_stride(primals_11, (100,), (1,)) assert_size_stride(primals_12, (10, 100), (100, 1)) assert_size_stride(primals_13, (10,), (1,)) assert_size_stride(primals_14, (3, 10), (10, 1)) assert_size_stride(primals_15, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(131072)](buf1, primals_2, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.float32) buf3 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(32768)](buf1, buf2, buf3, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 12, 32, 32), (12288, 1024, 32, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(49152)](buf5, primals_5, 49152, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 12, 16, 16), (3072, 256, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 12, 16, 16), (3072, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(12288)](buf5, buf6, buf7, 12288, XBLOCK=256, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 16, 16), (4096, 256, 16, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(16384)](buf9, primals_7, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch. float32) buf11 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_5[grid(4096)](buf9, buf10, buf11, 4096, XBLOCK=128, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 8, 8), (2048, 64, 8, 1)) buf13 = buf12 del buf12 buf21 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(8192)]( buf13, primals_9, buf21, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf14 = empty_strided_cuda((4, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf13, (4, 2048), (2048, 1), 0 ), reinterpret_tensor(primals_10, (2048, 100), (1, 2048), 0), out=buf14) buf15 = buf14 del buf14 triton_poi_fused_relu_7[grid(400)](buf15, primals_11, 400, XBLOCK= 256, num_warps=4, num_stages=1) del primals_11 buf16 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.mm(buf15, reinterpret_tensor(primals_12, (100, 10), (1, 100), 0), out=buf16) buf17 = buf16 del buf16 triton_poi_fused_relu_8[grid(40)](buf17, primals_13, 40, XBLOCK=64, num_warps=1, num_stages=1) del primals_13 buf18 = empty_strided_cuda((4, 3), (3, 1), torch.float32) extern_kernels.mm(buf17, reinterpret_tensor(primals_14, (10, 3), (1, 10), 0), out=buf18) buf19 = buf18 del buf18 buf20 = empty_strided_cuda((4, 3), (3, 1), torch.bool) triton_poi_fused_relu_threshold_backward_9[grid(12)](buf19, primals_15, buf20, 12, XBLOCK=16, num_warps=1, num_stages=1) del primals_15 return (buf19, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, reinterpret_tensor(buf13, (4, 2048), (2048, 1), 0), buf15, buf17, buf20, primals_14, primals_12, primals_10, buf21) class CnnNew(nn.Module): def __init__(self): super(CnnNew, self).__init__() None self.maxpool = nn.MaxPool2d(2) self.conv1 = nn.Conv2d(3, 8, 3, padding=1) self.conv2 = nn.Conv2d(8, 12, 3, padding=1) self.conv3 = nn.Conv2d(12, 16, 3, padding=1) self.conv4 = nn.Conv2d(16, 32, 3, padding=1) self.fc1 = nn.Linear(2048, 100) self.fc2 = nn.Linear(100, 10) self.fc3 = nn.Linear(10, 3) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.fc1.weight primals_11 = self.fc1.bias primals_12 = self.fc2.weight primals_13 = self.fc2.bias primals_14 = self.fc3.weight primals_15 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
satinder147/DeepWay.v2
Cnn
false
16,376
[ "BSD-2-Clause" ]
57
c8fca77783ea39f3d17066600d89baf8d0d19a52
https://github.com/satinder147/DeepWay.v2/tree/c8fca77783ea39f3d17066600d89baf8d0d19a52
ConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ra/crac4pwlmyctghcm4ewambrd5ocipynb73tkugxbnkqavf5y4xsk.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2, 2], [2, 2, 2], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 32768) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jn/cjnnrz6o7wjzdnedat4ufm63jrcyri6sr64uvbtbz4mtgv55tz2h.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vd/cvdb2pqvjvzobqaw4di5vynhhmn7qfo4zlm5dqfxpafrkpcmtc75.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_4 => convolution_2 # x_5 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 512) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3s/c3s6dmarsodkcv3xpuv4tcxco6fx4hzevhmhxf6z7wpvxzp2beex.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_8 => add, add_1, convert_element_type, convert_element_type_1, iota, mul, mul_1 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (10,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.8), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_3 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 10 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.8 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zd/czdla3bssm4ppmd2ry2xwsijcoucbuz4xtgxugmpdrh25wi7idoj.py # Topologically Sorted Source Nodes: [x_6, x_7, x_8], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] # Source node to ATen node mapping: # x_6 => convolution_3 # x_7 => relu_3 # x_8 => _unsafe_index # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_3, [None, None, %unsqueeze_1, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_relu_4 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 100) % 10 x1 = (xindex // 10) % 10 x0 = xindex % 10 x6 = (xindex // 1000) x3 = (xindex // 1000) % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (x3), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp10 = tmp9 + tmp1 tmp11 = tmp9 < 0 tmp12 = tl.where(tmp11, tmp10, tmp9) tmp13 = tl.load(in_ptr1 + (tmp12 + (8*tmp8) + (64*tmp4) + (512*x6)), None, eviction_policy='evict_last') tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tl.store(out_ptr0 + (x7), tmp17, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sw/cswfp3azebghgh53gjwvnbssfuznqfspischguu6lu3v7atlc4nv.py # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_11 => add_6, add_7, convert_element_type_6, convert_element_type_7, iota_3, mul_6, mul_7 # Graph fragment: # %iota_3 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (20,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_3, 1), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, 0), kwargs = {}) # %convert_element_type_6 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_6, torch.float32), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_6, 0.0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, 0.5), kwargs = {}) # %convert_element_type_7 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_7, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hx/chxxo3cghpi54n767oewdamufk2s6wpv3jh7snzelq7obw5l53kg.py # Topologically Sorted Source Nodes: [x_9, x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] # Source node to ATen node mapping: # x_10 => relu_4 # x_11 => _unsafe_index_1 # x_9 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_10, %primals_11, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %unsqueeze_4, %unsqueeze_3, %convert_element_type_7]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_relu_6 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 400) % 20 x1 = (xindex // 20) % 20 x0 = xindex % 20 x6 = (xindex // 8000) x3 = (xindex // 8000) % 32 x7 = xindex tmp0 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (x3), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 10, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp10 = tmp9 + tmp1 tmp11 = tmp9 < 0 tmp12 = tl.where(tmp11, tmp10, tmp9) tmp13 = tl.load(in_ptr1 + (tmp12 + (10*tmp8) + (100*tmp4) + (1000*x6)), None, eviction_policy='evict_last') tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tl.store(out_ptr0 + (x7), tmp17, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/r4/cr4z2vzhu4vchn2hh46fwgg6zruj4o443kjmojgydps62udnaqgt.py # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_14 => add_12, add_13, convert_element_type_12, convert_element_type_13, iota_6, mul_12, mul_13 # Graph fragment: # %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (40,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_6, 1), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, 0), kwargs = {}) # %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_12, torch.float32), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.0), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, 0.5), kwargs = {}) # %convert_element_type_13 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_13, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 40 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uc/cucsjeqyo7srusbz2guvnq5xc3boibj4cqgj5djhdhgysyh6blmt.py # Topologically Sorted Source Nodes: [x_12, x_13, x_14], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] # Source node to ATen node mapping: # x_12 => convolution_5 # x_13 => relu_5 # x_14 => _unsafe_index_2 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_12, %primals_13, [1, 1, 1], [2, 2, 2], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index_2 : [num_users=4] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %unsqueeze_7, %unsqueeze_6, %convert_element_type_13]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_relu_8 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1600) % 40 x1 = (xindex // 40) % 40 x0 = xindex % 40 x6 = (xindex // 64000) x3 = (xindex // 64000) % 16 x7 = xindex tmp0 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (x3), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 20, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp10 = tmp9 + tmp1 tmp11 = tmp9 < 0 tmp12 = tl.where(tmp11, tmp10, tmp9) tmp13 = tl.load(in_ptr1 + (tmp12 + (20*tmp8) + (400*tmp4) + (8000*x6)), None, eviction_policy='evict_last') tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tl.store(out_ptr0 + (x7), tmp17, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/x6/cx652tuogq2gk4cwkkzwedh5h56tjkb22jq6dxjr2z2xzfan2aup.py # Topologically Sorted Source Nodes: [conv3d_6, qual_out], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv3d_6 => convolution_6 # qual_out => sigmoid # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_2, %primals_14, %primals_15, [1, 1, 1], [2, 2, 2], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_sigmoid_9 = async_compile.triton('triton_poi_fused_convolution_sigmoid_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jv/cjvetez4z6cireprc6rd6yh2vdznng7s7zgshvahb5vcnuku7tew.py # Topologically Sorted Source Nodes: [conv3d_7], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv3d_7 => convolution_7 # Graph fragment: # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_2, %primals_16, %primals_17, [1, 1, 1], [2, 2, 2], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_10 = async_compile.triton('triton_poi_fused_convolution_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64000) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vl/cvl7dyani3kht747br6sxbgmejlia3rk3soiq2db6qqrkww6rfs5.py # Topologically Sorted Source Nodes: [rot_out], Original ATen: [aten.div] # Source node to ATen node mapping: # rot_out => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution_7, %expand), kwargs = {}) triton_poi_fused_div_11 = async_compile.triton('triton_poi_fused_div_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64000 x2 = (xindex // 256000) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x0 + (256000*x2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64000 + x0 + (256000*x2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (128000 + x0 + (256000*x2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (192000 + x0 + (256000*x2)), None, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zm/czmcfy6sbb3qcyk2mmt3h7tjzkgupjsmg3wbrf2jv5kx6lbt7wfx.py # Topologically Sorted Source Nodes: [width_out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # width_out => convolution_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_2, %primals_18, %primals_19, [1, 1, 1], [2, 2, 2], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_12 = async_compile.triton('triton_poi_fused_convolution_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qa/cqao2iv4w2wixgu2o42nbp6ne4lvvfxd5vm74qycfroavtbv4wrk.py # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_12 => convolution_5 # x_13 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_12, %primals_13, [1, 1, 1], [2, 2, 2], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_13 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 8000) % 16 x0 = xindex % 8000 x4 = (xindex // 8000) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + (8064*x4)), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jr/cjrtd5bpfe3olttbxch2upzstlithlunidfqh4sdjwgvtjoatxlg.py # Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_10 => relu_4 # x_9 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_10, %primals_11, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_14 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 1000) % 32 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/z7/cz7jqhxg3cfgb3yrls57nyewlnoa6llc25b3loswiwb2f3y6zqtd.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_6 => convolution_3 # x_7 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_15 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 512) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args args.clear() assert_size_stride(primals_1, (16, 1, 5, 5, 5), (125, 125, 25, 5, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1)) assert_size_stride(primals_4, (32, 16, 3, 3, 3), (432, 27, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3, 3), (864, 27, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3, 3), (1728, 27, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (32, 64, 3, 3, 3), (1728, 27, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (16, 32, 5, 5, 5), (4000, 125, 25, 5, 1)) assert_size_stride(primals_13, (16, ), (1, )) assert_size_stride(primals_14, (1, 16, 5, 5, 5), (2000, 125, 25, 5, 1)) assert_size_stride(primals_15, (1, ), (1, )) assert_size_stride(primals_16, (4, 16, 5, 5, 5), (2000, 125, 25, 5, 1)) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (1, 16, 5, 5, 5), (2000, 125, 25, 5, 1)) assert_size_stride(primals_19, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2, 2), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 32, 32, 32), (524288, 32768, 1024, 32, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 2097152, grid=grid(2097152), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 16, 16, 16), (131072, 4096, 256, 16, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 524288, grid=grid(524288), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 8, 8, 8), (32768, 512, 64, 8, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 131072, grid=grid(131072), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 8, 8, 8), (32768, 512, 64, 8, 1)) buf7 = empty_strided_cuda((10, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_3.run(buf7, 10, grid=grid(10), stream=stream0) buf8 = empty_strided_cuda((4, 64, 10, 10, 10), (64000, 1000, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6, x_7, x_8], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_relu_4.run(buf7, buf6, primals_9, buf8, 256000, grid=grid(256000), stream=stream0) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_10, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 10, 10, 10), (32000, 1000, 100, 10, 1)) buf10 = empty_strided_cuda((20, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_5.run(buf10, 20, grid=grid(20), stream=stream0) buf11 = empty_strided_cuda((4, 32, 20, 20, 20), (256000, 8000, 400, 20, 1), torch.float32) # Topologically Sorted Source Nodes: [x_9, x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_relu_6.run(buf10, buf9, primals_11, buf11, 1024000, grid=grid(1024000), stream=stream0) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_12, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 20, 20, 20), (128000, 8000, 400, 20, 1)) buf13 = empty_strided_cuda((40, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_7.run(buf13, 40, grid=grid(40), stream=stream0) buf14 = empty_strided_cuda((4, 16, 40, 40, 40), (1024000, 64000, 1600, 40, 1), torch.float32) # Topologically Sorted Source Nodes: [x_12, x_13, x_14], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_relu_8.run(buf13, buf12, primals_13, buf14, 4096000, grid=grid(4096000), stream=stream0) # Topologically Sorted Source Nodes: [conv3d_6], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 1, 40, 40, 40), (64000, 64000, 1600, 40, 1)) buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [conv3d_6, qual_out], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_9.run(buf16, primals_15, 256000, grid=grid(256000), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv3d_7], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf14, primals_16, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 4, 40, 40, 40), (256000, 64000, 1600, 40, 1)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [conv3d_7], Original ATen: [aten.convolution] triton_poi_fused_convolution_10.run(buf18, primals_17, 1024000, grid=grid(1024000), stream=stream0) del primals_17 buf19 = empty_strided_cuda((4, 4, 40, 40, 40), (256000, 64000, 1600, 40, 1), torch.float32) # Topologically Sorted Source Nodes: [rot_out], Original ATen: [aten.div] triton_poi_fused_div_11.run(buf18, buf19, 1024000, grid=grid(1024000), stream=stream0) # Topologically Sorted Source Nodes: [width_out], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf14, primals_18, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 1, 40, 40, 40), (64000, 64000, 1600, 40, 1)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [width_out], Original ATen: [aten.convolution] triton_poi_fused_convolution_12.run(buf21, primals_19, 256000, grid=grid(256000), stream=stream0) del primals_19 buf22 = empty_strided_cuda((4, 16, 20, 20, 20), (129024, 8064, 400, 20, 1), torch.bool) # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_13.run(buf12, primals_13, buf22, 512000, grid=grid(512000), stream=stream0) del buf12 del primals_13 buf23 = empty_strided_cuda((4, 32, 10, 10, 10), (32000, 1000, 100, 10, 1), torch.bool) # Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_14.run(buf9, primals_11, buf23, 128000, grid=grid(128000), stream=stream0) del buf9 del primals_11 buf24 = empty_strided_cuda((4, 64, 8, 8, 8), (32768, 512, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf6, primals_9, buf24, 131072, grid=grid(131072), stream=stream0) del buf6 del primals_9 return (buf16, buf19, buf21, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf1, buf3, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf18, buf22, buf23, buf24, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 1, 5, 5, 5), (125, 125, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 16, 3, 3, 3), (432, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3, 3), (864, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3, 3), (1728, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 64, 3, 3, 3), (1728, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, 32, 5, 5, 5), (4000, 125, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, 16, 5, 5, 5), (2000, 125, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 16, 5, 5, 5), (2000, 125, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((1, 16, 5, 5, 5), (2000, 125, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.utils.data import torch.nn as nn def conv(in_channels, out_channels, kernel_size): return nn.Conv3d(in_channels, out_channels, kernel_size, padding= kernel_size // 2) def conv_stride(in_channels, out_channels, kernel_size): return nn.Conv3d(in_channels, out_channels, kernel_size, stride=2, padding=kernel_size // 2) class Decoder(nn.Module): def __init__(self, in_channels, filters, kernels): super().__init__() self.conv1 = conv(in_channels, filters[0], kernels[0]) self.conv2 = conv(filters[0], filters[1], kernels[1]) self.conv3 = conv(filters[1], filters[2], kernels[2]) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.interpolate(x, 10) x = self.conv2(x) x = F.relu(x) x = F.interpolate(x, 20) x = self.conv3(x) x = F.relu(x) x = F.interpolate(x, 40) return x class Encoder(nn.Module): def __init__(self, in_channels, filters, kernels): super().__init__() self.conv1 = conv_stride(in_channels, filters[0], kernels[0]) self.conv2 = conv_stride(filters[0], filters[1], kernels[1]) self.conv3 = conv_stride(filters[1], filters[2], kernels[2]) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x class ConvNet(nn.Module): def __init__(self): super().__init__() self.encoder = Encoder(1, [16, 32, 64], [5, 3, 3]) self.decoder = Decoder(64, [64, 32, 16], [3, 3, 5]) self.conv_qual = conv(16, 1, 5) self.conv_rot = conv(16, 4, 5) self.conv_width = conv(16, 1, 5) def forward(self, x): x = self.encoder(x) x = self.decoder(x) qual_out = torch.sigmoid(self.conv_qual(x)) rot_out = F.normalize(self.conv_rot(x), dim=1) width_out = self.conv_width(x) return qual_out, rot_out, width_out def get_inputs(): return [torch.rand([4, 1, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.functional as F import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 32768 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 512 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 10 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.8 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 100 % 10 x1 = xindex // 10 % 10 x0 = xindex % 10 x6 = xindex // 1000 x3 = xindex // 1000 % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + x3, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp10 = tmp9 + tmp1 tmp11 = tmp9 < 0 tmp12 = tl.where(tmp11, tmp10, tmp9) tmp13 = tl.load(in_ptr1 + (tmp12 + 8 * tmp8 + 64 * tmp4 + 512 * x6), None, eviction_policy='evict_last') tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tl.store(out_ptr0 + x7, tmp17, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 400 % 20 x1 = xindex // 20 % 20 x0 = xindex % 20 x6 = xindex // 8000 x3 = xindex // 8000 % 32 x7 = xindex tmp0 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + x3, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 10, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp10 = tmp9 + tmp1 tmp11 = tmp9 < 0 tmp12 = tl.where(tmp11, tmp10, tmp9) tmp13 = tl.load(in_ptr1 + (tmp12 + 10 * tmp8 + 100 * tmp4 + 1000 * x6), None, eviction_policy='evict_last') tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tl.store(out_ptr0 + x7, tmp17, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 40 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1600 % 40 x1 = xindex // 40 % 40 x0 = xindex % 40 x6 = xindex // 64000 x3 = xindex // 64000 % 16 x7 = xindex tmp0 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + x3, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 20, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp10 = tmp9 + tmp1 tmp11 = tmp9 < 0 tmp12 = tl.where(tmp11, tmp10, tmp9) tmp13 = tl.load(in_ptr1 + (tmp12 + 20 * tmp8 + 400 * tmp4 + 8000 * x6), None, eviction_policy='evict_last') tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tl.store(out_ptr0 + x7, tmp17, None) @triton.jit def triton_poi_fused_convolution_sigmoid_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, None) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64000 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_div_11(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64000 x2 = xindex // 256000 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + (x0 + 256000 * x2), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (64000 + x0 + 256000 * x2), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (128000 + x0 + 256000 * x2), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (192000 + x0 + 256000 * x2), None, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_convolution_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 8000 % 16 x0 = xindex % 8000 x4 = xindex // 8000 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + 8064 * x4), tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 1000 % 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 512 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19) = args args.clear() assert_size_stride(primals_1, (16, 1, 5, 5, 5), (125, 125, 25, 5, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1)) assert_size_stride(primals_4, (32, 16, 3, 3, 3), (432, 27, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3, 3), (864, 27, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3, 3), (1728, 27, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (32, 64, 3, 3, 3), (1728, 27, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (16, 32, 5, 5, 5), (4000, 125, 25, 5, 1)) assert_size_stride(primals_13, (16,), (1,)) assert_size_stride(primals_14, (1, 16, 5, 5, 5), (2000, 125, 25, 5, 1)) assert_size_stride(primals_15, (1,), (1,)) assert_size_stride(primals_16, (4, 16, 5, 5, 5), (2000, 125, 25, 5, 1)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (1, 16, 5, 5, 5), (2000, 125, 25, 5, 1)) assert_size_stride(primals_19, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2, 2), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 32, 32, 32), (524288, 32768, 1024, 32, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(2097152)](buf1, primals_2, 2097152, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 16, 16, 16), (131072, 4096, 256, 16, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(524288)](buf3, primals_5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 8, 8, 8), (32768, 512, 64, 8, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_7, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 8, 8, 8), (32768, 512, 64, 8, 1)) buf7 = empty_strided_cuda((10,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_3[grid(10)](buf7, 10, XBLOCK=16, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 64, 10, 10, 10), (64000, 1000, 100, 10, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_relu_4[grid(256000)](buf7, buf6, primals_9, buf8, 256000, XBLOCK=512, num_warps=8, num_stages=1) buf9 = extern_kernels.convolution(buf8, primals_10, stride=(1, 1, 1 ), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 10, 10, 10), (32000, 1000, 100, 10, 1) ) buf10 = empty_strided_cuda((20,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_5[grid(20)](buf10, 20, XBLOCK=32, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 32, 20, 20, 20), (256000, 8000, 400, 20, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_relu_6[grid(1024000)](buf10, buf9, primals_11, buf11, 1024000, XBLOCK=1024, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf11, primals_12, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 20, 20, 20), (128000, 8000, 400, 20, 1)) buf13 = empty_strided_cuda((40,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_7[grid(40)](buf13, 40, XBLOCK=64, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 16, 40, 40, 40), (1024000, 64000, 1600, 40, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_relu_8[grid(4096000)](buf13, buf12, primals_13, buf14, 4096000, XBLOCK=1024, num_warps=4, num_stages=1) buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 1, 40, 40, 40), (64000, 64000, 1600, 40, 1)) buf16 = buf15 del buf15 triton_poi_fused_convolution_sigmoid_9[grid(256000)](buf16, primals_15, 256000, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf17 = extern_kernels.convolution(buf14, primals_16, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 4, 40, 40, 40), (256000, 64000, 1600, 40, 1)) buf18 = buf17 del buf17 triton_poi_fused_convolution_10[grid(1024000)](buf18, primals_17, 1024000, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf19 = empty_strided_cuda((4, 4, 40, 40, 40), (256000, 64000, 1600, 40, 1), torch.float32) triton_poi_fused_div_11[grid(1024000)](buf18, buf19, 1024000, XBLOCK=512, num_warps=8, num_stages=1) buf20 = extern_kernels.convolution(buf14, primals_18, stride=(1, 1, 1), padding=(2, 2, 2), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 1, 40, 40, 40), (64000, 64000, 1600, 40, 1)) buf21 = buf20 del buf20 triton_poi_fused_convolution_12[grid(256000)](buf21, primals_19, 256000, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf22 = empty_strided_cuda((4, 16, 20, 20, 20), (129024, 8064, 400, 20, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_13[grid(512000)]( buf12, primals_13, buf22, 512000, XBLOCK=512, num_warps=8, num_stages=1) del buf12 del primals_13 buf23 = empty_strided_cuda((4, 32, 10, 10, 10), (32000, 1000, 100, 10, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_14[grid(128000)]( buf9, primals_11, buf23, 128000, XBLOCK=1024, num_warps=4, num_stages=1) del buf9 del primals_11 buf24 = empty_strided_cuda((4, 64, 8, 8, 8), (32768, 512, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_15[grid(131072)]( buf6, primals_9, buf24, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf6 del primals_9 return (buf16, buf19, buf21, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf1, buf3, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf18, buf22, buf23, buf24) def conv(in_channels, out_channels, kernel_size): return nn.Conv3d(in_channels, out_channels, kernel_size, padding= kernel_size // 2) def conv_stride(in_channels, out_channels, kernel_size): return nn.Conv3d(in_channels, out_channels, kernel_size, stride=2, padding=kernel_size // 2) class Decoder(nn.Module): def __init__(self, in_channels, filters, kernels): super().__init__() self.conv1 = conv(in_channels, filters[0], kernels[0]) self.conv2 = conv(filters[0], filters[1], kernels[1]) self.conv3 = conv(filters[1], filters[2], kernels[2]) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.interpolate(x, 10) x = self.conv2(x) x = F.relu(x) x = F.interpolate(x, 20) x = self.conv3(x) x = F.relu(x) x = F.interpolate(x, 40) return x class Encoder(nn.Module): def __init__(self, in_channels, filters, kernels): super().__init__() self.conv1 = conv_stride(in_channels, filters[0], kernels[0]) self.conv2 = conv_stride(filters[0], filters[1], kernels[1]) self.conv3 = conv_stride(filters[1], filters[2], kernels[2]) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x class ConvNetNew(nn.Module): def __init__(self): super().__init__() self.encoder = Encoder(1, [16, 32, 64], [5, 3, 3]) self.decoder = Decoder(64, [64, 32, 16], [3, 3, 5]) self.conv_qual = conv(16, 1, 5) self.conv_rot = conv(16, 4, 5) self.conv_width = conv(16, 1, 5) def forward(self, input_0): primals_1 = self.encoder.conv1.weight primals_2 = self.encoder.conv1.bias primals_4 = self.encoder.conv2.weight primals_5 = self.encoder.conv2.bias primals_6 = self.encoder.conv3.weight primals_7 = self.encoder.conv3.bias primals_8 = self.decoder.conv1.weight primals_9 = self.decoder.conv1.bias primals_10 = self.decoder.conv2.weight primals_11 = self.decoder.conv2.bias primals_12 = self.decoder.conv3.weight primals_13 = self.decoder.conv3.bias primals_14 = self.conv_qual.weight primals_15 = self.conv_qual.bias primals_16 = self.conv_rot.weight primals_17 = self.conv_rot.bias primals_18 = self.conv_width.weight primals_19 = self.conv_width.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return output[0], output[1], output[2]
runeg96/vgn
ConvNet
false
16,377
[ "BSD-3-Clause" ]
92
24278b80935f2a9cd51d20c9e2c5bfe6da4ce53a
https://github.com/runeg96/vgn/tree/24278b80935f2a9cd51d20c9e2c5bfe6da4ce53a
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rl/crl46i56eoov7z55pyaubuvfdftw6jjpujz5bzjjfjrrm66em5i2.py # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add_2, sum_2, sum_3, add, union, truediv, loss, loss_1], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean] # Source node to ATen node mapping: # add => add # add_2 => add_2 # intersection => sum_1 # loss => sub # loss_1 => mean # mul => mul # mul_1 => mul_1 # sum_2 => sum_2 # sum_3 => sum_3 # truediv => div # union => add_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 0.001), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [1]), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 0.001), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 0.001 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = 1.0 tmp20 = tmp19 - tmp18 tmp21 = tmp20 / tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, ), (1, ), torch.float32) buf3 = reinterpret_tensor(buf0, (), (), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add_2, sum_2, sum_3, add, union, truediv, loss, loss_1], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.hub def soft_dice_loss(outputs, targets, per_image=False, reduce=True, ohpm= False, ohpm_pixels=256 * 256): batch_size = outputs.size()[0] eps = 0.001 if not per_image: batch_size = 1 if ohpm: dice_target = targets.contiguous().view(-1).float() dice_output = outputs.contiguous().view(-1) loss_b = torch.abs(dice_target - dice_output) _, indc = loss_b.topk(ohpm_pixels) dice_target = dice_target[indc] dice_output = dice_output[indc] intersection = torch.sum(dice_output * dice_target) union = torch.sum(dice_output) + torch.sum(dice_target) + eps loss = 1 - (2 * intersection + eps) / union loss = loss.mean() else: dice_target = targets.contiguous().view(batch_size, -1).float() dice_output = outputs.contiguous().view(batch_size, -1) intersection = torch.sum(dice_output * dice_target, dim=1) union = torch.sum(dice_output, dim=1) + torch.sum(dice_target, dim=1 ) + eps loss = 1 - (2 * intersection + eps) / union if reduce: loss = loss.mean() return loss class DiceLoss(nn.Module): def __init__(self, weight=None, size_average=True, per_image=False, ohpm=False, ohpm_pixels=256 * 256): super().__init__() self.size_average = size_average self.register_buffer('weight', weight) self.per_image = per_image self.ohpm = ohpm self.ohpm_pixels = ohpm_pixels def forward(self, input, target): return soft_dice_loss(input, target, per_image=self.per_image, ohpm =self.ohpm, ohpm_pixels=self.ohpm_pixels) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.hub assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 0.001 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = 1.0 tmp20 = tmp19 - tmp18 tmp21 = tmp20 / tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1,), (1,), torch.float32) buf3 = reinterpret_tensor(buf0, (), (), 0) del buf0 get_raw_stream(0) triton_per_fused_add_div_mean_mul_rsub_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, def soft_dice_loss(outputs, targets, per_image=False, reduce=True, ohpm= False, ohpm_pixels=256 * 256): batch_size = outputs.size()[0] eps = 0.001 if not per_image: batch_size = 1 if ohpm: dice_target = targets.contiguous().view(-1).float() dice_output = outputs.contiguous().view(-1) loss_b = torch.abs(dice_target - dice_output) _, indc = loss_b.topk(ohpm_pixels) dice_target = dice_target[indc] dice_output = dice_output[indc] intersection = torch.sum(dice_output * dice_target) union = torch.sum(dice_output) + torch.sum(dice_target) + eps loss = 1 - (2 * intersection + eps) / union loss = loss.mean() else: dice_target = targets.contiguous().view(batch_size, -1).float() dice_output = outputs.contiguous().view(batch_size, -1) intersection = torch.sum(dice_output * dice_target, dim=1) union = torch.sum(dice_output, dim=1) + torch.sum(dice_target, dim=1 ) + eps loss = 1 - (2 * intersection + eps) / union if reduce: loss = loss.mean() return loss class DiceLossNew(nn.Module): def __init__(self, weight=None, size_average=True, per_image=False, ohpm=False, ohpm_pixels=256 * 256): super().__init__() self.size_average = size_average self.register_buffer('weight', weight) self.per_image = per_image self.ohpm = ohpm self.ohpm_pixels = ohpm_pixels def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
selimsef/xview2_solution
DiceLoss
false
16,378
[ "Apache-2.0" ]
57
5d0caba9c7a9c2707565a189f1a091c86d26b546
https://github.com/selimsef/xview2_solution/tree/5d0caba9c7a9c2707565a189f1a091c86d26b546
RNNCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3l/c3lo77c7wjxasxrhtr6wesb72ods2d2rxnxhbfieun7j2wukm3wn.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ey/cey6dsgmzj2byupf73e6nwt5fetf5ne2sa57kzcmy7ejvaqhqb72.py # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 128, grid=grid(128), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_4, buf3, 64, grid=grid(64), stream=stream0) del primals_4 return (buf2, reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class RNNCell(nn.Module): def __init__(self, embed_dim, hidden_size, vocab_dim): super().__init__() self.hidden_size = hidden_size self.input2hidden = nn.Linear(embed_dim + hidden_size, hidden_size) def forward(self, inputs, hidden): combined = torch.cat((inputs, hidden), 2) hidden = torch.relu(self.input2hidden(combined)) return hidden def init_hidden(self, batch_size): return torch.zeros(1, batch_size, self.hidden_size) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4, 'hidden_size': 4, 'vocab_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf2, primals_4, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 return buf2, reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf3 class RNNCellNew(nn.Module): def __init__(self, embed_dim, hidden_size, vocab_dim): super().__init__() self.hidden_size = hidden_size self.input2hidden = nn.Linear(embed_dim + hidden_size, hidden_size) def init_hidden(self, batch_size): return torch.zeros(1, batch_size, self.hidden_size) def forward(self, input_0, input_1): primals_3 = self.input2hidden.weight primals_4 = self.input2hidden.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
sdhnshu/HandsOnDeepLearningWithPytorch
RNNCell
false
16,379
[ "MIT" ]
87
2292a952a4cb112b03d5db4048c78bc503eb858d
https://github.com/sdhnshu/HandsOnDeepLearningWithPytorch/tree/2292a952a4cb112b03d5db4048c78bc503eb858d
Connection_Combination
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wx/cwxwvlntewdrqi2r4caciy5ht4jdvafnhtiqncr4lo4aegcb4imz.py # Topologically Sorted Source Nodes: [betas], Original ATen: [aten._softmax] # Source node to ATen node mapping: # betas => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fj/cfjl47pvhwbpfbvh6rfehwy5ijxc5p3zgkld2lwf3mw5bl6pbkak.py # Topologically Sorted Source Nodes: [betas], Original ATen: [aten._softmax] # Source node to ATen node mapping: # betas => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcfsl4emgabshl7qx3ofgi7bses2jat5idvqnfbf22vjn5vbsum.py # Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, mul_5, mix, mix_1], Original ATen: [aten.mul, aten.add, aten.relu] # Source node to ATen node mapping: # add => add # mix => add_1 # mix_1 => relu # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg1_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, 3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg2_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, 3), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %arg3_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_5), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_mul_relu_2 = async_compile.triton('triton_poi_fused_add_mul_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp5 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x2), xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x2), xmask) tmp1 = 3.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 * tmp1 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [betas], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [betas], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, mul_5, mix, mix_1], Original ATen: [aten.mul, aten.add, aten.relu] triton_poi_fused_add_mul_relu_2.run(buf1, arg1_1, arg2_1, arg3_1, buf2, 256, grid=grid(256), stream=stream0) del arg1_1 del arg2_1 del arg3_1 del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed import torch.nn.parallel import torch.utils.data import torch.utils.data.distributed class Connection_Combination(nn.Module): """combine 3 types of connection method by 'beta' weights to become an input node """ def __init__(self): super(Connection_Combination, self).__init__() def forward(self, prev_parallel, prev_above, prev_below, betas): betas = F.softmax(betas, dim=-1) mix = 3 * betas[0] * prev_parallel + 3 * betas[1 ] * prev_above + 3 * betas[2] * prev_below mix = F.relu(mix) return mix def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.distributed import torch.nn.parallel import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_mul_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + x2, xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x2, xmask) tmp1 = 3.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 * tmp1 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + x2, tmp16, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused_add_mul_relu_2[grid(256)](buf1, arg1_1, arg2_1, arg3_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 del arg2_1 del arg3_1 del buf1 return buf2, class Connection_CombinationNew(nn.Module): """combine 3 types of connection method by 'beta' weights to become an input node """ def __init__(self): super(Connection_CombinationNew, self).__init__() def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
senyang-ml/PoseNFS
Connection_Combination
false
16,380
[ "MIT" ]
53
1229abb69917dab1e57def3de0e3fe9a8a3164cd
https://github.com/senyang-ml/PoseNFS/tree/1229abb69917dab1e57def3de0e3fe9a8a3164cd
FinalConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wt/cwtjehqlpgsottzm6ypzegm4s3jeoie6y6l4z5tnv4psexwmszst.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gh/cgh6bfy2bihruxswmk3lelq27ifjcz4y2cqp5igddznjqqf2443f.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ui/cuis2tm475qjfv4oluq6cwaimye7xuh2oqrvlj26snvou655eypg.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + (x0), tmp11, xmask) tl.store(out_ptr1 + (x0), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/62/c62kwlma2i4xddbarybouwfb3qsi45s55qat3qfrimxfo3wnty5s.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 4), (0, 4, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf7, 16, grid=grid(16), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(buf2, (1, 4, 4), (0, 4, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 4), (16, 4, 1)) buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, primals_5, buf4, buf5, 4, grid=grid(4), stream=stream0) buf6 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, primals_5, buf4, buf5, 16, grid=grid(16), stream=stream0) del buf4 del buf5 del primals_5 return (buf6, primals_2, primals_4, reinterpret_tensor(buf0, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 4), (16, 4, 1), 0), buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class FinalConv(torch.nn.Module): def __init__(self, channels): super().__init__() self.conv1 = torch.nn.Conv1d(channels, channels, 1) self.conv2 = torch.nn.Conv1d(channels, channels, 1) self.relu = torch.nn.ReLU() self.softmax = torch.nn.Softmax(dim=1) def forward(self, x): x = self.relu(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) return self.softmax(x) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask) tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + x0, tmp11, xmask) tl.store(out_ptr1 + x0, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 4 ), (0, 4, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0) del buf1 buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16)](buf2, primals_3, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(reinterpret_tensor(buf2, (1, 4, 4 ), (0, 4, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 4), (16, 4, 1)) buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_2[grid(4)](buf3, primals_5, buf4, buf5, 4, XBLOCK=4, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0) del buf3 triton_poi_fused__softmax_3[grid(16)](buf6, primals_5, buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 del buf5 del primals_5 return buf6, primals_2, primals_4, reinterpret_tensor(buf0, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 4), (16, 4, 1), 0 ), buf6, buf7 class FinalConvNew(torch.nn.Module): def __init__(self, channels): super().__init__() self.conv1 = torch.nn.Conv1d(channels, channels, 1) self.conv2 = torch.nn.Conv1d(channels, channels, 1) self.relu = torch.nn.ReLU() self.softmax = torch.nn.Softmax(dim=1) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sdhnshu/HandsOnDeepLearningWithPytorch
FinalConv
false
16,381
[ "MIT" ]
87
2292a952a4cb112b03d5db4048c78bc503eb858d
https://github.com/sdhnshu/HandsOnDeepLearningWithPytorch/tree/2292a952a4cb112b03d5db4048c78bc503eb858d
Scale_B
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wh/cwhiqmxs6jarebbowg7sybonilbiobgdiwbw3bqoqnzgcchqkxol.py # Topologically Sorted Source Nodes: [result], Original ATen: [aten.mul] # Source node to ATen node mapping: # result => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [result], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Scale_B(nn.Module): """ Learned per-channel scale factor, used to scale the noise """ def __init__(self, n_channel): super().__init__() self.weight = nn.Parameter(torch.zeros((1, n_channel, 1, 1))) def forward(self, noise): result = noise * self.weight return result def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_channel': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class Scale_BNew(nn.Module): """ Learned per-channel scale factor, used to scale the noise """ def __init__(self, n_channel): super().__init__() self.weight = nn.Parameter(torch.zeros((1, n_channel, 1, 1))) def forward(self, input_0): primals_1 = self.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
sergkuzn148/stg
Scale_B
false
16,382
[ "MIT" ]
96
84d9f53ae3665c423836a4d0176dc3b22de62b19
https://github.com/sergkuzn148/stg/tree/84d9f53ae3665c423836a4d0176dc3b22de62b19
SConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mr/cmrzofxtfa5fe3ax4o3n5qvgpvhbgcrspjauzarmp4t443npav4h.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.1767766952966369), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %mul, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (buf2, buf0, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SConv2d(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = quick_scale(conv) def forward(self, x): return self.conv(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(primals_3, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf2, buf0, primals_3, buf0 def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SConv2dNew(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = quick_scale(conv) def forward(self, input_0): primals_2 = self.conv.bias primals_1 = self.conv.weight_orig primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sergkuzn148/stg
SConv2d
false
16,383
[ "MIT" ]
96
84d9f53ae3665c423836a4d0176dc3b22de62b19
https://github.com/sergkuzn148/stg/tree/84d9f53ae3665c423836a4d0176dc3b22de62b19
IntegrationModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/73/c73p32b23m4qxtuudtdayyjsgn5jjignb6di3ocugzndghffcrdx.py # Topologically Sorted Source Nodes: [mul_2, mul_3, sub_2], Original ATen: [aten.mul, aten.sub] # Source node to ATen node mapping: # mul_2 => mul_2 # mul_3 => mul_3 # sub_2 => sub_2 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %unsqueeze_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %unsqueeze_5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_3), kwargs = {}) triton_poi_fused_mul_sub_0 = async_compile.triton('triton_poi_fused_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex % 256 x4 = (xindex // 64) x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + (x3), None, eviction_policy='evict_last') tmp2 = 0.2 tmp3 = tmp1 - tmp2 tmp4 = 1.25 tmp5 = tmp3 * tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 1.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = tmp9 * tmp8 tmp11 = tmp0 * tmp10 tmp13 = tmp12 * tmp10 tmp14 = tmp11 - tmp13 tl.store(out_ptr0 + (x5), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4, 4, 4), (4096, 1024, 256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, mul_3, sub_2], Original ATen: [aten.mul, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mul_sub_0.run(arg1_1, arg0_1, arg2_1, buf0, 16384, grid=grid(16384), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class IntegrationModule(nn.Module): def __init__(self, min_iou=0.2, enhance_weight_max=1.0, reduce_weight_max=1.0): super(IntegrationModule, self).__init__() self.min_iou = min_iou self.enhance_weight_max = enhance_weight_max self.reduce_weight_max = reduce_weight_max def forward(self, enhance_feature, reduce_feature, overlaps): enhance_weight = self.compute_weight(overlaps, self. enhance_weight_max, self.min_iou) reduce_weight = self.compute_weight(overlaps, self. reduce_weight_max, self.min_iou) return enhance_feature * enhance_weight.unsqueeze(-1).unsqueeze(-1 ).unsqueeze(-1) - reduce_feature * reduce_weight.unsqueeze(-1 ).unsqueeze(-1).unsqueeze(-1) def compute_weight(self, ious, weight_max, iou_min): weight = weight_max * torch.min(torch.max((ious - iou_min) / (1.0 - iou_min), torch.zeros_like(ious)), torch.ones_like(ious)) return weight def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex % 256 x4 = xindex // 64 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + x3, None, eviction_policy='evict_last') tmp2 = 0.2 tmp3 = tmp1 - tmp2 tmp4 = 1.25 tmp5 = tmp3 * tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 1.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = tmp9 * tmp8 tmp11 = tmp0 * tmp10 tmp13 = tmp12 * tmp10 tmp14 = tmp11 - tmp13 tl.store(out_ptr0 + x5, tmp14, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4, 4, 4), (4096, 1024, 256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sub_0[grid(16384)](arg1_1, arg0_1, arg2_1, buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class IntegrationModuleNew(nn.Module): def __init__(self, min_iou=0.2, enhance_weight_max=1.0, reduce_weight_max=1.0): super(IntegrationModuleNew, self).__init__() self.min_iou = min_iou self.enhance_weight_max = enhance_weight_max self.reduce_weight_max = reduce_weight_max def compute_weight(self, ious, weight_max, iou_min): weight = weight_max * torch.min(torch.max((ious - iou_min) / (1.0 - iou_min), torch.zeros_like(ious)), torch.ones_like(ious)) return weight def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
sguo2908/TADAM
IntegrationModule
false
16,384
[ "MIT" ]
47
abd0b7422c3582e36c928778894cee8a159f896e
https://github.com/sguo2908/TADAM/tree/abd0b7422c3582e36c928778894cee8a159f896e
FC_A
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/52/c526p7iwll7vx7gobeuv6q3lym4ek7lbhopuykpcibc57bou263i.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 32, grid=grid(32), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 return (reinterpret_tensor(buf1, (4, 4, 1, 1, 4, 8), (128, 32, 32, 32, 8, 1), 0), buf0, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SLinear(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() linear = nn.Linear(dim_in, dim_out) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = quick_scale(linear) def forward(self, x): return self.linear(x) class FC_A(nn.Module): """ Learned affine transform A, this module is used to transform midiate vector w into a style vector """ def __init__(self, dim_latent, n_channel): super().__init__() self.transform = SLinear(dim_latent, n_channel * 2) self.transform.linear.bias.data[:n_channel] = 1 self.transform.linear.bias.data[n_channel:] = 0 def forward(self, w): style = self.transform(w).unsqueeze(2).unsqueeze(3) return style def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_latent': 4, 'n_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(32)](primals_1, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 return reinterpret_tensor(buf1, (4, 4, 1, 1, 4, 8), (128, 32, 32, 32, 8, 1), 0), buf0, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SLinear(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() linear = nn.Linear(dim_in, dim_out) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = quick_scale(linear) def forward(self, x): return self.linear(x) class FC_ANew(nn.Module): """ Learned affine transform A, this module is used to transform midiate vector w into a style vector """ def __init__(self, dim_latent, n_channel): super().__init__() self.transform = SLinear(dim_latent, n_channel * 2) self.transform.linear.bias.data[:n_channel] = 1 self.transform.linear.bias.data[n_channel:] = 0 def forward(self, input_0): primals_2 = self.transform.linear.bias primals_1 = self.transform.linear.weight_orig primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sergkuzn148/stg
FC_A
false
16,385
[ "MIT" ]
96
84d9f53ae3665c423836a4d0176dc3b22de62b19
https://github.com/sergkuzn148/stg/tree/84d9f53ae3665c423836a4d0176dc3b22de62b19
SLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oy/coy4v6ev22tv33nc6asaz3obrskaw2f3vho4q3aj4yqpth7c2y2m.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf0, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SLinear(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() linear = nn.Linear(dim_in, dim_out) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = quick_scale(linear) def forward(self, x): return self.linear(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf0, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SLinearNew(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() linear = nn.Linear(dim_in, dim_out) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = quick_scale(linear) def forward(self, input_0): primals_2 = self.linear.bias primals_1 = self.linear.weight_orig primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sergkuzn148/stg
SLinear
false
16,386
[ "MIT" ]
96
84d9f53ae3665c423836a4d0176dc3b22de62b19
https://github.com/sergkuzn148/stg/tree/84d9f53ae3665c423836a4d0176dc3b22de62b19
Sinkhorn_Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sf/csf7rcpf2nmlcgbtaotve4ywrouvruwuzvecg4aeyywsga23hgpe.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (256, 1), (1, 1), 0), reinterpret_tensor(primals_2, (1, 4), (1, 1), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 1024, grid=grid(1024), stream=stream0) del primals_3 buf2 = empty_strided_cuda((256, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (256, 1), (1, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.cuda import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class Features(nn.Module): def __init__(self, latent_dim, output_dim, dropout_prob): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. This Feature extractor class takes an input and constructs a feature vector. It can be applied independently to all elements of the input sequence in_flattened_vector: input flattened vector latent_dim: number of neurons in latent layer output_dim: dimension of log alpha square matrix """ super().__init__() self.linear1 = nn.Linear(1, latent_dim) self.relu1 = nn.ReLU() self.d1 = nn.Dropout(p=dropout_prob) self.linear2 = nn.Linear(latent_dim, output_dim) self.d2 = nn.Dropout(p=dropout_prob) def forward(self, x): """ In the forward function we accept a Variable of input data and we must return a Variable of output data. We can use Modules defined in the constructor as well as arbitrary operators on Variables. x: Tensor of shape (batch_size, 1) """ x = self.d1(self.relu1(self.linear1(x))) x = self.d2(self.linear2(x)) return x class Sinkhorn_Net(nn.Module): def __init__(self, latent_dim, output_dim, dropout_prob): super().__init__() self.output_dim = output_dim self.features = Features(latent_dim, output_dim, dropout_prob) def forward(self, x): """ x: Tensor of length (batch, sequence_length) Note that output_dim should correspond to the intended sequence length """ x = x.view(-1, 1) x = self.features(x) x = x.reshape(-1, self.output_dim, self.output_dim) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_dim': 4, 'output_dim': 4, 'dropout_prob': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.cuda import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (256, 1), (1, 1), 0 ), reinterpret_tensor(primals_2, (1, 4), (1, 1), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(1024)](buf1, primals_3, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((256, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (256, 1), (1, 1), 0), buf1, primals_4 class Features(nn.Module): def __init__(self, latent_dim, output_dim, dropout_prob): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. This Feature extractor class takes an input and constructs a feature vector. It can be applied independently to all elements of the input sequence in_flattened_vector: input flattened vector latent_dim: number of neurons in latent layer output_dim: dimension of log alpha square matrix """ super().__init__() self.linear1 = nn.Linear(1, latent_dim) self.relu1 = nn.ReLU() self.d1 = nn.Dropout(p=dropout_prob) self.linear2 = nn.Linear(latent_dim, output_dim) self.d2 = nn.Dropout(p=dropout_prob) def forward(self, x): """ In the forward function we accept a Variable of input data and we must return a Variable of output data. We can use Modules defined in the constructor as well as arbitrary operators on Variables. x: Tensor of shape (batch_size, 1) """ x = self.d1(self.relu1(self.linear1(x))) x = self.d2(self.linear2(x)) return x class Sinkhorn_NetNew(nn.Module): def __init__(self, latent_dim, output_dim, dropout_prob): super().__init__() self.output_dim = output_dim self.features = Features(latent_dim, output_dim, dropout_prob) def forward(self, input_0): primals_2 = self.features.linear1.weight primals_3 = self.features.linear1.bias primals_4 = self.features.linear2.weight primals_5 = self.features.linear2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sfox14/butterfly
Sinkhorn_Net
false
16,387
[ "Apache-2.0" ]
52
13cc15cee5bdb7adaf376219aaf20fab0459e9ef
https://github.com/sfox14/butterfly/tree/13cc15cee5bdb7adaf376219aaf20fab0459e9ef
LowRankConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rz/crzkuzagx7fu4niiz56iqwfhlsterez4gyzrhx7mj3sxap33xxbi.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %view, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %view, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (16, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (16, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(primals_1, primals_2, out=buf0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf0, buf1, 16, 16, grid=grid(16, 16), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_4, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) del buf1 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf3, primals_4, reinterpret_tensor(buf0, (4, 4, 4, 4), (4, 1, 64, 16), 0), reinterpret_tensor(primals_1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(primals_2, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn import torch.nn.functional as F import torch.cuda import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class LowRankConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True, rank=1): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size , int) else kernel_size self.stride = (stride, stride) if isinstance(stride, int) else stride self.padding = (padding, padding) if isinstance(padding, int ) else padding self.dilation = (dilation, dilation) if isinstance(dilation, int ) else dilation self.rank = rank self.G = nn.Parameter(torch.Tensor(self.kernel_size[0] * self. kernel_size[1], self.rank, self.in_channels)) self.H = nn.Parameter(torch.Tensor(self.kernel_size[0] * self. kernel_size[1], self.out_channels, self.rank)) if bias: self.bias = nn.Parameter(torch.Tensor(self.out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): fan_in, _fan_out = self.in_channels, self.out_channels nn.init.uniform_(self.G, -1 / math.sqrt(fan_in), 1 / math.sqrt(fan_in)) nn.init.uniform_(self.H, -1 / math.sqrt(self.rank), 1 / math.sqrt( self.rank)) if self.bias is not None: bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def forward(self, x): M = torch.bmm(self.H, self.G).permute(1, 2, 0).reshape(self. out_channels, self.in_channels, *self.kernel_size) return F.conv2d(x, M, self.bias, self.stride, self.padding, self. dilation) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math from torch import nn import torch.cuda import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (16, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (16, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_1, primals_2, out=buf0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 16)](buf0, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf2 = extern_kernels.convolution(primals_4, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) del buf1 buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf3, primals_4, reinterpret_tensor(buf0, (4, 4, 4, 4), (4, 1, 64, 16), 0), reinterpret_tensor(primals_1, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(primals_2, (16, 4, 1), (4, 1, 4), 0) class LowRankConv2dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True, rank=1): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size , int) else kernel_size self.stride = (stride, stride) if isinstance(stride, int) else stride self.padding = (padding, padding) if isinstance(padding, int ) else padding self.dilation = (dilation, dilation) if isinstance(dilation, int ) else dilation self.rank = rank self.G = nn.Parameter(torch.Tensor(self.kernel_size[0] * self. kernel_size[1], self.rank, self.in_channels)) self.H = nn.Parameter(torch.Tensor(self.kernel_size[0] * self. kernel_size[1], self.out_channels, self.rank)) if bias: self.bias = nn.Parameter(torch.Tensor(self.out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): fan_in, _fan_out = self.in_channels, self.out_channels nn.init.uniform_(self.G, -1 / math.sqrt(fan_in), 1 / math.sqrt(fan_in)) nn.init.uniform_(self.H, -1 / math.sqrt(self.rank), 1 / math.sqrt( self.rank)) if self.bias is not None: bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def forward(self, input_0): primals_2 = self.G primals_1 = self.H primals_3 = self.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
sfox14/butterfly
LowRankConv2d
false
16,388
[ "Apache-2.0" ]
52
13cc15cee5bdb7adaf376219aaf20fab0459e9ef
https://github.com/sfox14/butterfly/tree/13cc15cee5bdb7adaf376219aaf20fab0459e9ef
MSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/po/cpo32gb5lvcyrurzwgtqq3rv7yd534imnt5i3lvf2d2xfpunysix.py # Topologically Sorted Source Nodes: [mul, sub, pow_1, mean, mean_1, losses, mean_2, back_loss], Original ATen: [aten.mul, aten.sub, aten.pow, aten.mean] # Source node to ATen node mapping: # back_loss => mean_3 # losses => mul_1 # mean => mean # mean_1 => mean_1 # mean_2 => mean_2 # mul => mul # pow_1 => pow_1 # sub => sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [3]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %mean_1), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [1]), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_2, [0]), kwargs = {}) triton_poi_fused_mean_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 48, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (16*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr1 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp42 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr1 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp46 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp52 = tl.load(in_ptr1 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr1 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp63 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr1 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp67 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp68 = tl.load(in_ptr1 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp72 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp73 = tl.load(in_ptr1 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp77 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp78 = tl.load(in_ptr1 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr2 + (x0), xmask) tmp89 = tl.load(in_ptr2 + (16 + x0), xmask) tmp93 = tl.load(in_ptr2 + (32 + x0), xmask) tmp97 = tl.load(in_ptr2 + (48 + x0), xmask) tmp102 = tl.load(in_ptr2 + (64 + x0), xmask) tmp105 = tl.load(in_ptr2 + (80 + x0), xmask) tmp109 = tl.load(in_ptr2 + (96 + x0), xmask) tmp113 = tl.load(in_ptr2 + (112 + x0), xmask) tmp119 = tl.load(in_ptr2 + (128 + x0), xmask) tmp122 = tl.load(in_ptr2 + (144 + x0), xmask) tmp126 = tl.load(in_ptr2 + (160 + x0), xmask) tmp130 = tl.load(in_ptr2 + (176 + x0), xmask) tmp136 = tl.load(in_ptr2 + (192 + x0), xmask) tmp139 = tl.load(in_ptr2 + (208 + x0), xmask) tmp143 = tl.load(in_ptr2 + (224 + x0), xmask) tmp147 = tl.load(in_ptr2 + (240 + x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = 4.0 tmp20 = tmp18 / tmp19 tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp27 = tmp25 - tmp26 tmp28 = tmp27 * tmp27 tmp29 = tmp24 + tmp28 tmp32 = tmp30 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp29 + tmp33 tmp37 = tmp35 - tmp36 tmp38 = tmp37 * tmp37 tmp39 = tmp34 + tmp38 tmp40 = tmp39 / tmp19 tmp41 = tmp20 + tmp40 tmp44 = tmp42 - tmp43 tmp45 = tmp44 * tmp44 tmp48 = tmp46 - tmp47 tmp49 = tmp48 * tmp48 tmp50 = tmp45 + tmp49 tmp53 = tmp51 - tmp52 tmp54 = tmp53 * tmp53 tmp55 = tmp50 + tmp54 tmp58 = tmp56 - tmp57 tmp59 = tmp58 * tmp58 tmp60 = tmp55 + tmp59 tmp61 = tmp60 / tmp19 tmp62 = tmp41 + tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp69 = tmp67 - tmp68 tmp70 = tmp69 * tmp69 tmp71 = tmp66 + tmp70 tmp74 = tmp72 - tmp73 tmp75 = tmp74 * tmp74 tmp76 = tmp71 + tmp75 tmp79 = tmp77 - tmp78 tmp80 = tmp79 * tmp79 tmp81 = tmp76 + tmp80 tmp82 = tmp81 / tmp19 tmp83 = tmp62 + tmp82 tmp84 = tmp83 / tmp19 tmp86 = 0.5 tmp87 = tmp85 * tmp86 tmp88 = tmp87 * tmp84 tmp90 = tmp89 * tmp86 tmp91 = tmp90 * tmp84 tmp92 = tmp88 + tmp91 tmp94 = tmp93 * tmp86 tmp95 = tmp94 * tmp84 tmp96 = tmp92 + tmp95 tmp98 = tmp97 * tmp86 tmp99 = tmp98 * tmp84 tmp100 = tmp96 + tmp99 tmp101 = tmp100 / tmp19 tmp103 = tmp102 * tmp86 tmp104 = tmp103 * tmp84 tmp106 = tmp105 * tmp86 tmp107 = tmp106 * tmp84 tmp108 = tmp104 + tmp107 tmp110 = tmp109 * tmp86 tmp111 = tmp110 * tmp84 tmp112 = tmp108 + tmp111 tmp114 = tmp113 * tmp86 tmp115 = tmp114 * tmp84 tmp116 = tmp112 + tmp115 tmp117 = tmp116 / tmp19 tmp118 = tmp101 + tmp117 tmp120 = tmp119 * tmp86 tmp121 = tmp120 * tmp84 tmp123 = tmp122 * tmp86 tmp124 = tmp123 * tmp84 tmp125 = tmp121 + tmp124 tmp127 = tmp126 * tmp86 tmp128 = tmp127 * tmp84 tmp129 = tmp125 + tmp128 tmp131 = tmp130 * tmp86 tmp132 = tmp131 * tmp84 tmp133 = tmp129 + tmp132 tmp134 = tmp133 / tmp19 tmp135 = tmp118 + tmp134 tmp137 = tmp136 * tmp86 tmp138 = tmp137 * tmp84 tmp140 = tmp139 * tmp86 tmp141 = tmp140 * tmp84 tmp142 = tmp138 + tmp141 tmp144 = tmp143 * tmp86 tmp145 = tmp144 * tmp84 tmp146 = tmp142 + tmp145 tmp148 = tmp147 * tmp86 tmp149 = tmp148 * tmp84 tmp150 = tmp146 + tmp149 tmp151 = tmp150 / tmp19 tmp152 = tmp135 + tmp151 tmp153 = tmp152 / tmp19 tl.store(in_out_ptr0 + (x0), tmp153, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, sub, pow_1, mean, mean_1, losses, mean_2, back_loss], Original ATen: [aten.mul, aten.sub, aten.pow, aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_mul_pow_sub_0.run(buf1, arg1_1, arg2_1, arg0_1, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.distributed import torch.nn.parallel import torch.utils.data import torch.utils.data.distributed class MSELoss(torch.nn.Module): def __init__(self): super(MSELoss, self).__init__() def forward(self, preds, heatmap_gt, weight): losses = 0.5 * weight * ((preds - heatmap_gt) ** 2).mean(dim=3).mean( dim=2) back_loss = losses.mean(dim=1).mean(dim=0) return back_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.distributed import torch.nn.parallel import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 16 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr1 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr1 + (2 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr1 + (4 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr1 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr1 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp35 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp36 = tl.load(in_ptr1 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp42 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp43 = tl.load(in_ptr1 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp46 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp47 = tl.load(in_ptr1 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp51 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp52 = tl.load(in_ptr1 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp56 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp57 = tl.load(in_ptr1 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp63 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp64 = tl.load(in_ptr1 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp67 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp68 = tl.load(in_ptr1 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp72 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp73 = tl.load(in_ptr1 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp77 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp78 = tl.load(in_ptr1 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp85 = tl.load(in_ptr2 + x0, xmask) tmp89 = tl.load(in_ptr2 + (16 + x0), xmask) tmp93 = tl.load(in_ptr2 + (32 + x0), xmask) tmp97 = tl.load(in_ptr2 + (48 + x0), xmask) tmp102 = tl.load(in_ptr2 + (64 + x0), xmask) tmp105 = tl.load(in_ptr2 + (80 + x0), xmask) tmp109 = tl.load(in_ptr2 + (96 + x0), xmask) tmp113 = tl.load(in_ptr2 + (112 + x0), xmask) tmp119 = tl.load(in_ptr2 + (128 + x0), xmask) tmp122 = tl.load(in_ptr2 + (144 + x0), xmask) tmp126 = tl.load(in_ptr2 + (160 + x0), xmask) tmp130 = tl.load(in_ptr2 + (176 + x0), xmask) tmp136 = tl.load(in_ptr2 + (192 + x0), xmask) tmp139 = tl.load(in_ptr2 + (208 + x0), xmask) tmp143 = tl.load(in_ptr2 + (224 + x0), xmask) tmp147 = tl.load(in_ptr2 + (240 + x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = 4.0 tmp20 = tmp18 / tmp19 tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp27 = tmp25 - tmp26 tmp28 = tmp27 * tmp27 tmp29 = tmp24 + tmp28 tmp32 = tmp30 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp29 + tmp33 tmp37 = tmp35 - tmp36 tmp38 = tmp37 * tmp37 tmp39 = tmp34 + tmp38 tmp40 = tmp39 / tmp19 tmp41 = tmp20 + tmp40 tmp44 = tmp42 - tmp43 tmp45 = tmp44 * tmp44 tmp48 = tmp46 - tmp47 tmp49 = tmp48 * tmp48 tmp50 = tmp45 + tmp49 tmp53 = tmp51 - tmp52 tmp54 = tmp53 * tmp53 tmp55 = tmp50 + tmp54 tmp58 = tmp56 - tmp57 tmp59 = tmp58 * tmp58 tmp60 = tmp55 + tmp59 tmp61 = tmp60 / tmp19 tmp62 = tmp41 + tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp69 = tmp67 - tmp68 tmp70 = tmp69 * tmp69 tmp71 = tmp66 + tmp70 tmp74 = tmp72 - tmp73 tmp75 = tmp74 * tmp74 tmp76 = tmp71 + tmp75 tmp79 = tmp77 - tmp78 tmp80 = tmp79 * tmp79 tmp81 = tmp76 + tmp80 tmp82 = tmp81 / tmp19 tmp83 = tmp62 + tmp82 tmp84 = tmp83 / tmp19 tmp86 = 0.5 tmp87 = tmp85 * tmp86 tmp88 = tmp87 * tmp84 tmp90 = tmp89 * tmp86 tmp91 = tmp90 * tmp84 tmp92 = tmp88 + tmp91 tmp94 = tmp93 * tmp86 tmp95 = tmp94 * tmp84 tmp96 = tmp92 + tmp95 tmp98 = tmp97 * tmp86 tmp99 = tmp98 * tmp84 tmp100 = tmp96 + tmp99 tmp101 = tmp100 / tmp19 tmp103 = tmp102 * tmp86 tmp104 = tmp103 * tmp84 tmp106 = tmp105 * tmp86 tmp107 = tmp106 * tmp84 tmp108 = tmp104 + tmp107 tmp110 = tmp109 * tmp86 tmp111 = tmp110 * tmp84 tmp112 = tmp108 + tmp111 tmp114 = tmp113 * tmp86 tmp115 = tmp114 * tmp84 tmp116 = tmp112 + tmp115 tmp117 = tmp116 / tmp19 tmp118 = tmp101 + tmp117 tmp120 = tmp119 * tmp86 tmp121 = tmp120 * tmp84 tmp123 = tmp122 * tmp86 tmp124 = tmp123 * tmp84 tmp125 = tmp121 + tmp124 tmp127 = tmp126 * tmp86 tmp128 = tmp127 * tmp84 tmp129 = tmp125 + tmp128 tmp131 = tmp130 * tmp86 tmp132 = tmp131 * tmp84 tmp133 = tmp129 + tmp132 tmp134 = tmp133 / tmp19 tmp135 = tmp118 + tmp134 tmp137 = tmp136 * tmp86 tmp138 = tmp137 * tmp84 tmp140 = tmp139 * tmp86 tmp141 = tmp140 * tmp84 tmp142 = tmp138 + tmp141 tmp144 = tmp143 * tmp86 tmp145 = tmp144 * tmp84 tmp146 = tmp142 + tmp145 tmp148 = tmp147 * tmp86 tmp149 = tmp148 * tmp84 tmp150 = tmp146 + tmp149 tmp151 = tmp150 / tmp19 tmp152 = tmp135 + tmp151 tmp153 = tmp152 / tmp19 tl.store(in_out_ptr0 + x0, tmp153, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_mean_mul_pow_sub_0[grid(16)](buf1, arg1_1, arg2_1, arg0_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class MSELossNew(torch.nn.Module): def __init__(self): super(MSELossNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
senyang-ml/PoseNFS
MSELoss
false
16,389
[ "MIT" ]
53
1229abb69917dab1e57def3de0e3fe9a8a3164cd
https://github.com/senyang-ml/PoseNFS/tree/1229abb69917dab1e57def3de0e3fe9a8a3164cd
BilinearAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py # Topologically Sorted Source Nodes: [final], Original ATen: [aten.clone] # Source node to ATen node mapping: # final => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6f/c6fzxsthxjpbsz53dpcunjzrud7xu5rsvlujaybaii5bqgmtcuss.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%squeeze, %primals_4), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [intermediate], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4, 4), (0, 4, 1), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 1, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [final], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_3, buf1, 256, grid=grid(256), stream=stream0) del primals_3 buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [final], Original ATen: [aten.bmm] extern_kernels.bmm(buf0, reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2) del buf0 buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf3, primals_4, 256, grid=grid(256), stream=stream0) del primals_4 return (buf3, reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BilinearAttention(nn.Module): """ Computes attention between two matrices using a bilinear attention function. This function has a matrix of weights ``W`` and a bias ``b``, and the similarity between the two matrices ``X`` and ``Y`` is computed as ``X W Y^T + b``. Input: - mat1: ``(batch_size, num_rows_1, mat1_dim)`` - mat2: ``(batch_size, num_rows_2, mat2_dim)`` Output: - ``(batch_size, num_rows_1, num_rows_2)`` """ def __init__(self, mat1_dim: 'int', mat2_dim: 'int', use_input_biases: 'bool'=False) ->None: super().__init__() if use_input_biases: mat1_dim += 1 mat2_dim += 1 self.weight = nn.Parameter(torch.zeros(1, mat1_dim, mat2_dim)) self.bias = nn.Parameter(torch.zeros(1)) self._use_input_biases = use_input_biases self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight) self.bias.data.fill_(0) def forward(self, mat1: 'torch.Tensor', mat2: 'torch.Tensor' ) ->torch.Tensor: if self._use_input_biases: bias1 = mat1.new_ones(mat1.size()[:-1] + (1,)) bias2 = mat2.new_ones(mat2.size()[:-1] + (1,)) mat1 = torch.cat([mat1, bias1], -1) mat2 = torch.cat([mat2, bias2], -1) intermediate = torch.matmul(mat1.unsqueeze(1), self.weight) final = torch.matmul(intermediate, mat2.unsqueeze(1).transpose(2, 3)) return final.squeeze(1) + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'mat1_dim': 4, 'mat2_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4, 4), (0, 4, 1), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 1, 16, 4, 1), torch .float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](primals_3, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf0, reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2) del buf0 buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_add_1[grid(256)](buf3, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 return buf3, reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0) class BilinearAttentionNew(nn.Module): """ Computes attention between two matrices using a bilinear attention function. This function has a matrix of weights ``W`` and a bias ``b``, and the similarity between the two matrices ``X`` and ``Y`` is computed as ``X W Y^T + b``. Input: - mat1: ``(batch_size, num_rows_1, mat1_dim)`` - mat2: ``(batch_size, num_rows_2, mat2_dim)`` Output: - ``(batch_size, num_rows_1, num_rows_2)`` """ def __init__(self, mat1_dim: 'int', mat2_dim: 'int', use_input_biases: 'bool'=False) ->None: super().__init__() if use_input_biases: mat1_dim += 1 mat2_dim += 1 self.weight = nn.Parameter(torch.zeros(1, mat1_dim, mat2_dim)) self.bias = nn.Parameter(torch.zeros(1)) self._use_input_biases = use_input_biases self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight) self.bias.data.fill_(0) def forward(self, input_0, input_1): primals_2 = self.weight primals_4 = self.bias primals_1 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
shabnam-b/crosslingual-nlp
BilinearAttention
false
16,390
[ "MIT" ]
64
ccd91baaea23004eab9c4d871910945ca3e61ab7
https://github.com/shabnam-b/crosslingual-nlp/tree/ccd91baaea23004eab9c4d871910945ca3e61ab7
CRF
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/gr/cgrgn26uqtxgimenfvgz62m5dl5gx5oswcchih2g7tov6jmseilw.py # Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add] # Source node to ATen node mapping: # crf_scores => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %unsqueeze_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf0, primals_3, primals_4, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_3 del primals_4 return (buf1, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.init class CRF(nn.Module): """ Conditional Random Field. """ def __init__(self, hidden_dim, tagset_size): """ :param hidden_dim: size of word RNN/BLSTM's output :param tagset_size: number of tags """ super(CRF, self).__init__() self.tagset_size = tagset_size self.emission = nn.Linear(hidden_dim, self.tagset_size) self.transition = nn.Parameter(torch.Tensor(self.tagset_size, self. tagset_size)) self.transition.data.zero_() def forward(self, feats): """ Forward propagation. :param feats: output of word RNN/BLSTM, a tensor of dimensions (batch_size, timesteps, hidden_dim) :return: CRF scores, a tensor of dimensions (batch_size, timesteps, tagset_size, tagset_size) """ self.batch_size = feats.size(0) self.timesteps = feats.size(1) emission_scores = self.emission(feats) emission_scores = emission_scores.unsqueeze(2).expand(self. batch_size, self.timesteps, self.tagset_size, self.tagset_size) crf_scores = emission_scores + self.transition.unsqueeze(0).unsqueeze(0 ) return crf_scores def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'hidden_dim': 4, 'tagset_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf0, primals_3, primals_4, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_3 del primals_4 return buf1, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0) class CRFNew(nn.Module): """ Conditional Random Field. """ def __init__(self, hidden_dim, tagset_size): """ :param hidden_dim: size of word RNN/BLSTM's output :param tagset_size: number of tags """ super(CRFNew, self).__init__() self.tagset_size = tagset_size self.emission = nn.Linear(hidden_dim, self.tagset_size) self.transition = nn.Parameter(torch.Tensor(self.tagset_size, self. tagset_size)) self.transition.data.zero_() def forward(self, input_0): primals_2 = self.transition primals_4 = self.emission.weight primals_3 = self.emission.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling
CRF
false
16,391
[ "MIT" ]
334
ee3f34b45a6e24dd748a144bfc25b1adf9e1f077
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling/tree/ee3f34b45a6e24dd748a144bfc25b1adf9e1f077
ShiftBias
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/cv/ccvi3ckdyrvch4kf3zzpqqwrhax36nayxpvpfea7ljbfv6u6hcjf.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 4), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 4.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ShiftBias(nn.Module): def __init__(self, bias): super(ShiftBias, self).__init__() self.bias = bias def forward(self, x): return x + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'bias': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class ShiftBiasNew(nn.Module): def __init__(self, bias): super(ShiftBiasNew, self).__init__() self.bias = bias def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shaun95/StarGANv2-VC
ShiftBias
false
16,392
[ "MIT" ]
116
ed20538971a03d699351a349a3631767333baeb7
https://github.com/shaun95/StarGANv2-VC/tree/ed20538971a03d699351a349a3631767333baeb7
BabyUnet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rv/crvxjxabnh2k3i3u5bskna5q423guwirdsncuzca3mliii57nbni.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 17424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x2 = (xindex // 4356) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ou/coud3mxcuxt5tt46lbpcehqytxiysa7ehg4q3hwg5crnt3z7rk5l.py # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_1 => convolution # x_2 => gt, mul, where # x_3 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x4 = (xindex // 4356) x2 = (xindex // 4356) % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/42/c42f4wzw6bn43zmeqhhe3kyiyobw5hxhgmabu4todkgydw4uxe72.py # Topologically Sorted Source Nodes: [x_4, iadd, x_5], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # iadd => add # x_4 => convolution_1 # x_5 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %primals_1), kwargs = {}) # %slice_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor, %add, 3, 0, 9223372036854775807), kwargs = {}) # %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_1, %slice_scatter_default, 1, 0, 1), kwargs = {}) # %slice_scatter_default_2 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %slice_12, 1, 0, 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%slice_scatter_default_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_scatter_default_2, 0.01), kwargs = {}) # %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %slice_scatter_default_2, %mul_1), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 16 x3 = xindex x0 = xindex % 4096 x2 = (xindex // 65536) tmp21 = tl.load(in_out_ptr0 + (x3), None) tmp22 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1], 1, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tmp2 & tmp2 tmp4 = tl.load(in_out_ptr0 + (x3), tmp3, other=0.0) tmp5 = tl.load(in_ptr0 + (x1), tmp3, eviction_policy='evict_last', other=0.0) tmp6 = tmp4 + tmp5 tmp7 = tl.load(in_ptr1 + (x0 + (4096*x2)), tmp3, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp3, tmp8, tmp9) tmp11 = tl.load(in_out_ptr0 + (x3), tmp2, other=0.0) tmp12 = tl.load(in_ptr0 + (x1), tmp2, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.where(tmp2, tmp10, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp2, tmp14, tmp15) tmp17 = tl.load(in_ptr1 + (x0 + (4096*x2)), tmp2, eviction_policy='evict_last', other=0.0) tmp18 = tmp13 + tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp2, tmp18, tmp19) tmp23 = tmp21 + tmp22 tmp24 = tl.where(tmp2, tmp20, tmp23) tmp25 = tl.where(tmp2, tmp16, tmp24) tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 0.01 tmp29 = tmp25 * tmp28 tmp30 = tl.where(tmp27, tmp25, tmp29) tl.store(in_out_ptr0 + (x3), tmp30, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zx/czxzdjkxda63ieps2a23pq7rypwh2ugcinnvqay7npz2a7xo77og.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] # Source node to ATen node mapping: # x_6 => avg_pool2d # x_7 => _unsafe_index_4, _unsafe_index_5 # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [2, 2], [2, 2]), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_avg_pool2d_reflection_pad2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_reflection_pad2d_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_reflection_pad2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x2 = (xindex // 1156) x3 = xindex tmp0 = tl.load(in_ptr0 + (4030 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4031 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4094 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4095 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ym/cymu2siein6tccpla7olwuus2kqc6kdtxbejtk762fcm2rvhyiql.py # Topologically Sorted Source Nodes: [x_8, x_9, x_10], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_10 => _unsafe_index_6, _unsafe_index_7 # x_8 => convolution_2 # x_9 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.01), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_2, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hi/chiomcjctwfp4zynmktvcxw3qizq2dwglofxmyjeisiqpodj2nvz.py # Topologically Sorted Source Nodes: [x_6, x_11, iadd_1, x_12], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # iadd_1 => add_1 # x_11 => convolution_3 # x_12 => gt_3, mul_3, where_3 # x_6 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [2, 2], [2, 2]), kwargs = {}) # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_39, %avg_pool2d), kwargs = {}) # %slice_scatter_default_3 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor_1, %add_1, 3, 0, 9223372036854775807), kwargs = {}) # %slice_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_3, %slice_scatter_default_3, 1, 0, 16), kwargs = {}) # %slice_scatter_default_5 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %slice_49, 1, 0, 16), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%slice_scatter_default_5, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_scatter_default_5, 0.01), kwargs = {}) # %where_3 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %slice_scatter_default_5, %mul_3), kwargs = {}) triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1024) % 32 x5 = xindex x0 = xindex % 32 x3 = (xindex // 32768) x6 = (xindex // 32) % 1024 tmp18 = tl.load(in_out_ptr0 + (x5), None) tmp19 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 16, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + (x5), tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + (x2), tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + ((2*x0) + (128*x6) + (65536*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + (2*x0) + (128*x6) + (65536*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (64 + (2*x0) + (128*x6) + (65536*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (65 + (2*x0) + (128*x6) + (65536*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (x5), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/py/cpyb6kasamnoqmeqoid4mdunurissqjbh7cpra62xp5au3l6ep4j.py # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_20 => iota_12 # Graph fragment: # %iota_12 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_6 = async_compile.triton('triton_poi_fused_arange_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_6(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/td/ctdrp5ezackwofdeuxqvqz32izlgnkvqm7rnuz2nzwh4uzhxiowl.py # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_20 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) triton_poi_fused__to_copy_7 = async_compile.triton('triton_poi_fused__to_copy_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fc/cfcabq2vqzy3iz7bxnnbm7sq7lldaoyihnc4gimded2qojurbycz.py # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_20 => add_4, clamp_max # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_4, 15), kwargs = {}) triton_poi_fused_add_clamp_8 = async_compile.triton('triton_poi_fused_add_clamp_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_8(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2q/c2q5w2pc2czu7x3qqpsah6ii7gqp6klrdlbtgd6yswh3ud6gn3ec.py # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_20 => add_3, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, mul_6, sub_24, sub_26 # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_12, torch.float32), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 0.5), kwargs = {}) # %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_24, 0.0), kwargs = {}) # %sub_26 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_26, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_clamp_mul_sub_9 = async_compile.triton('triton_poi_fused__to_copy_add_clamp_mul_sub_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_clamp_mul_sub_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_9(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vu/cvuxfktapawpqedowl27msedtzbcjv6brvygxkddei3yw5eh2glk.py # Topologically Sorted Source Nodes: [x_13, x_20], Original ATen: [aten.avg_pool2d, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # x_13 => avg_pool2d_1 # x_20 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_7, add_8, mul_8, mul_9, sub_27, sub_28, sub_30 # Graph fragment: # %avg_pool2d_1 : [num_users=4] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [2, 2], [2, 2]), kwargs = {}) # %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_27 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %clamp_max_2), kwargs = {}) # %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_8), kwargs = {}) # %sub_28 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_28, %clamp_max_2), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_9), kwargs = {}) # %sub_30 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %add_7), kwargs = {}) triton_poi_fused__unsafe_index_add_avg_pool2d_mul_sub_10 = async_compile.triton('triton_poi_fused__unsafe_index_add_avg_pool2d_mul_sub_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*i64', 4: '*fp32', 5: '*i64', 6: '*i64', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_avg_pool2d_mul_sub_10', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_avg_pool2d_mul_sub_10(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 32 x0 = xindex % 32 x2 = (xindex // 1024) x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr3 + (x1), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + ((2*tmp8) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (1 + (2*tmp8) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp11 = tmp10 + tmp9 tmp12 = tl.load(in_ptr2 + (32 + (2*tmp8) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp13 = tmp12 + tmp11 tmp14 = tl.load(in_ptr2 + (33 + (2*tmp8) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp15 = tmp14 + tmp13 tmp16 = 0.25 tmp17 = tmp15 * tmp16 tmp19 = tmp18 + tmp1 tmp20 = tmp18 < 0 tmp21 = tl.where(tmp20, tmp19, tmp18) tmp22 = tl.load(in_ptr2 + ((2*tmp8) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (1 + (2*tmp8) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp24 = tmp23 + tmp22 tmp25 = tl.load(in_ptr2 + (32 + (2*tmp8) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp26 = tmp25 + tmp24 tmp27 = tl.load(in_ptr2 + (33 + (2*tmp8) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp28 = tmp27 + tmp26 tmp29 = tmp28 * tmp16 tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + ((2*tmp33) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr2 + (1 + (2*tmp33) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp36 = tmp35 + tmp34 tmp37 = tl.load(in_ptr2 + (32 + (2*tmp33) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp38 = tmp37 + tmp36 tmp39 = tl.load(in_ptr2 + (33 + (2*tmp33) + (64*tmp21) + (1024*x2)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp38 tmp41 = tmp40 * tmp16 tmp42 = tmp41 - tmp29 tmp44 = tmp42 * tmp43 tmp45 = tmp29 + tmp44 tmp46 = tl.load(in_ptr2 + ((2*tmp33) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr2 + (1 + (2*tmp33) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp48 = tmp47 + tmp46 tmp49 = tl.load(in_ptr2 + (32 + (2*tmp33) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp50 = tmp49 + tmp48 tmp51 = tl.load(in_ptr2 + (33 + (2*tmp33) + (64*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp52 = tmp51 + tmp50 tmp53 = tmp52 * tmp16 tmp54 = tmp53 - tmp17 tmp55 = tmp54 * tmp43 tmp56 = tmp17 + tmp55 tmp57 = tmp56 - tmp45 tl.store(in_out_ptr0 + (x4), tmp45, None) tl.store(in_out_ptr1 + (x4), tmp57, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/aj/cajrwo2ocb7g7beyrotyiorx2c75nu4zqmhxllbnz6uua7c3gcib.py # Topologically Sorted Source Nodes: [x_21, x_22], Original ATen: [aten.cat, aten.reflection_pad2d] # Source node to ATen node mapping: # x_21 => cat # x_22 => _unsafe_index_16, _unsafe_index_17 # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_9, %where_3], 1), kwargs = {}) # %_unsafe_index_16 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%cat, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_17 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_16, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_cat_reflection_pad2d_11 = async_compile.triton('triton_poi_fused_cat_reflection_pad2d_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_reflection_pad2d_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_reflection_pad2d_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 1156) % 64 x0 = xindex % 34 x1 = (xindex // 34) % 34 x3 = (xindex // 73984) x5 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x2) + (32768*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x2) + (32768*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tmp5 + tmp8 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 64, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr3 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*((-32) + x2)) + (32768*x3)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x5), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zv/czv5yfgeudn3p5axnn6atcnxq4xfjccfzuo3ekpa3nffxiuj7pok.py # Topologically Sorted Source Nodes: [x_26, iadd_3, x_27], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # iadd_3 => add_10 # x_26 => convolution_7 # x_27 => gt_7, mul_12, where_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_10 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_7, %slice_107), kwargs = {}) # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_10, 0), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_10, 0.01), kwargs = {}) # %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %add_10, %mul_12), kwargs = {}) # %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_7, 0), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_12 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*i1', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_12(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x4 = xindex x2 = (xindex // 1024) % 32 x3 = (xindex // 32768) x5 = xindex % 1024 x1 = (xindex // 32) % 32 tmp0 = tl.load(in_out_ptr0 + (x4), None) tmp1 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = x2 tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = tl.full([1], 32, tl.int64) tmp7 = tmp3 < tmp6 tmp8 = tl.load(in_ptr1 + (x5 + (1024*x2) + (32768*x3)), tmp7, other=0.0) tmp9 = tl.load(in_ptr2 + (x5 + (1024*x2) + (32768*x3)), tmp7, other=0.0) tmp10 = tl.load(in_ptr3 + (x1), tmp7, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 * tmp10 tmp12 = tmp8 + tmp11 tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp7, tmp12, tmp13) tmp15 = tmp3 >= tmp6 tmp16 = tl.full([1], 64, tl.int64) tmp17 = tmp3 < tmp16 tmp18 = tl.load(in_ptr4 + (x5 + (1024*((-32) + x2)) + (32768*x3)), tmp15, other=0.0) tmp19 = tl.where(tmp7, tmp14, tmp18) tmp20 = tmp2 + tmp19 tmp21 = 0.0 tmp22 = tmp20 > tmp21 tmp23 = 0.01 tmp24 = tmp20 * tmp23 tmp25 = tl.where(tmp22, tmp20, tmp24) tmp26 = tmp25 > tmp21 tl.store(in_out_ptr0 + (x4), tmp20, None) tl.store(out_ptr0 + (x4), tmp26, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/op/coppgslneiay6uepaw7mnyzu2ecyywgg6qnnmsakzwfm4lga4lyn.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_28 => iota_18 # Graph fragment: # %iota_18 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_13 = async_compile.triton('triton_poi_fused_arange_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_13(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/65/c65inofqcew3p3jufahbpodugxpqwl7kptzkuw5m2wzzolofmbzu.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_28 => convert_element_type_5 # Graph fragment: # %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {}) triton_poi_fused__to_copy_14 = async_compile.triton('triton_poi_fused__to_copy_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5p/c5pvjuy43sbz42gq7ordank2dnieh6ki4badokc3fz77mixwt544.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_28 => add_12, clamp_max_4 # Graph fragment: # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_12, 31), kwargs = {}) triton_poi_fused_add_clamp_15 = async_compile.triton('triton_poi_fused_add_clamp_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/z2/cz2n7s7eoycgi3cgx4ggoegquhzxfnvx33jpcc2b43avdulr2egk.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_28 => add_11, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, mul_13, sub_39, sub_41 # Graph fragment: # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_18, torch.float32), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_11, 0.5), kwargs = {}) # %sub_39 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_13, 0.5), kwargs = {}) # %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_39, 0.0), kwargs = {}) # %sub_41 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_41, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_clamp_mul_sub_16 = async_compile.triton('triton_poi_fused__to_copy_add_clamp_mul_sub_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_clamp_mul_sub_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ch/cchmph6nmawzap7etsr2cslvq4mm3xqr2oq4jmuepxgog4ay2vmx.py # Topologically Sorted Source Nodes: [x_27, x_28], Original ATen: [aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # x_27 => gt_7, mul_12, where_7 # x_28 => _unsafe_index_20, _unsafe_index_21, add_15, mul_15, sub_42 # Graph fragment: # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_10, 0), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_10, 0.01), kwargs = {}) # %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %add_10, %mul_12), kwargs = {}) # %_unsafe_index_20 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_21 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %sub_42 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_21, %_unsafe_index_20), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_42, %clamp_max_6), kwargs = {}) # %add_15 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_20, %mul_15), kwargs = {}) triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_17 = async_compile.triton('triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*i64', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x2 = (xindex // 4096) x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp10 = 0.0 tmp11 = tmp9 > tmp10 tmp12 = 0.01 tmp13 = tmp9 * tmp12 tmp14 = tl.where(tmp11, tmp9, tmp13) tmp16 = tmp15 + tmp1 tmp17 = tmp15 < 0 tmp18 = tl.where(tmp17, tmp16, tmp15) tmp19 = tl.load(in_ptr2 + (tmp18 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last') tmp20 = tmp19 > tmp10 tmp21 = tmp19 * tmp12 tmp22 = tl.where(tmp20, tmp19, tmp21) tmp23 = tmp22 - tmp14 tmp25 = tmp23 * tmp24 tmp26 = tmp14 + tmp25 tl.store(out_ptr0 + (x4), tmp26, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jr/cjrdhr5vczebwsxptggru3pet36lp56ln42slzq4osnsyiqlebxa.py # Topologically Sorted Source Nodes: [x_29], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_29 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_17, %where_1], 1), kwargs = {}) triton_poi_fused_cat_18 = async_compile.triton('triton_poi_fused_cat_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 786432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 4096) % 48 x3 = (xindex // 196608) x4 = xindex % 4096 x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + (4096*x2) + (131072*x3)), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([XBLOCK], 32, tl.int32) tmp8 = tmp6 + tmp7 tmp9 = tmp6 < 0 tmp10 = tl.where(tmp9, tmp8, tmp6) tmp11 = tl.load(in_ptr2 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tmp15 = tl.load(in_ptr3 + (tmp14 + (32*tmp10) + (1024*x2) + (32768*x3)), tmp4, eviction_policy='evict_last', other=0.0) tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.01 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.load(in_ptr4 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 + tmp7 tmp23 = tmp21 < 0 tmp24 = tl.where(tmp23, tmp22, tmp21) tmp25 = tl.load(in_ptr3 + (tmp24 + (32*tmp10) + (1024*x2) + (32768*x3)), tmp4, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp16 tmp27 = tmp25 * tmp18 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tmp28 - tmp20 tmp30 = tl.load(in_ptr5 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 * tmp30 tmp32 = tmp20 + tmp31 tmp33 = tmp32 - tmp5 tmp34 = tl.load(in_ptr6 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp35 = tmp33 * tmp34 tmp36 = tmp5 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tmp40 = tl.full([1], 48, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr7 + (x4 + (4096*((-32) + x2)) + (65536*x3)), tmp39, other=0.0) tmp43 = tl.where(tmp4, tmp38, tmp42) tl.store(out_ptr0 + (x5), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5e/c5epkxuqcyqhybbd7uerkumkhz2oldheytu6smleihsfca3bdgfm.py # Topologically Sorted Source Nodes: [x_30], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x_30 => _unsafe_index_24, _unsafe_index_25 # Graph fragment: # %_unsafe_index_24 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%cat_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_25 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_24, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_19 = async_compile.triton('triton_poi_fused_reflection_pad2d_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_19(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 836352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x2 = (xindex // 4356) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2x/c2xyvxy4dlxxxs7grcilk2p2nhcolq5w6ep2kl6up5amlhp4dcn3.py # Topologically Sorted Source Nodes: [x_34, iadd_4, x_35], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # iadd_4 => add_18 # x_34 => convolution_9 # x_35 => gt_9, mul_19, where_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_18 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_9, %slice_136), kwargs = {}) # %gt_9 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_18, 0), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_18, 0.01), kwargs = {}) # %where_9 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %add_18, %mul_19), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_20 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_20', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_20(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 16 x2 = (xindex // 65536) x4 = xindex % 65536 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x4 + (196608*x2)), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.01 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(in_out_ptr0 + (x3), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qz/cqz4jj5cdhpzmf5i34l4ip2tryju5qinbsnirbvafkdea243px5y.py # Topologically Sorted Source Nodes: [x_36], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_36 => convolution_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_9, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_21 = async_compile.triton('triton_poi_fused_convolution_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_21', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fe/cfesq3jlbhy3hzv3kthghm5lbmmlvjzz2himhtovql3rnxshuu2w.py # Topologically Sorted Source Nodes: [x_31, x_32], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_31 => convolution_8 # x_32 => gt_8, mul_18, where_8 # Graph fragment: # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_25, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_8 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.01), kwargs = {}) # %where_8 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %convolution_8, %mul_18), kwargs = {}) # %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_8, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 16 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f7/cf7dolczljdur2sm7lb4q4kbgvgsrqjhwtuydwjnp7py6cnwawlw.py # Topologically Sorted Source Nodes: [x_23, x_24], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_23 => convolution_6 # x_24 => gt_6, mul_11, where_6 # Graph fragment: # %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.01), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_6, %mul_11), kwargs = {}) # %gt_13 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_6, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args args.clear() assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_2, (16, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32, ), (1, )) assert_size_stride(primals_14, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (32, ), (1, )) assert_size_stride(primals_16, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_17, (32, ), (1, )) assert_size_stride(primals_18, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_19, (16, ), (1, )) assert_size_stride(primals_20, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_21, (16, ), (1, )) assert_size_stride(primals_22, (1, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_23, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 17424, grid=grid(17424), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf2 = empty_strided_cuda((4, 16, 66, 66), (69696, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1.run(buf1, primals_3, buf2, 278784, grid=grid(278784), stream=stream0) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_4, iadd, x_5], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_convolution_leaky_relu_2.run(buf4, primals_5, primals_1, 262144, grid=grid(262144), stream=stream0) del primals_1 del primals_5 buf5 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] triton_poi_fused_avg_pool2d_reflection_pad2d_3.run(buf4, buf5, 73984, grid=grid(73984), stream=stream0) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf7 = empty_strided_cuda((4, 32, 34, 34), (36992, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_8, x_9, x_10], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4.run(buf6, primals_7, buf7, 147968, grid=grid(147968), stream=stream0) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf9 = buf8; del buf8 # reuse buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [x_6, x_11, iadd_1, x_12], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5.run(buf10, primals_9, buf4, 131072, grid=grid(131072), stream=stream0) del primals_9 buf11 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.arange] triton_poi_fused_arange_6.run(buf11, 32, grid=grid(32), stream=stream0) buf12 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_7.run(buf12, 32, grid=grid(32), stream=stream0) buf13 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_8.run(buf13, 32, grid=grid(32), stream=stream0) buf14 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_7.run(buf14, 32, grid=grid(32), stream=stream0) buf15 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_8.run(buf15, 32, grid=grid(32), stream=stream0) buf18 = empty_strided_cuda((32, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_9.run(buf18, 32, grid=grid(32), stream=stream0) buf17 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) buf16 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) buf19 = buf16; del buf16 # reuse buf21 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [x_13, x_20], Original ATen: [aten.avg_pool2d, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_avg_pool2d_mul_sub_10.run(buf19, buf21, buf13, buf14, buf10, buf12, buf15, buf18, 131072, grid=grid(131072), stream=stream0) buf20 = empty_strided_cuda((32, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_9.run(buf20, 32, grid=grid(32), stream=stream0) buf22 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_21, x_22], Original ATen: [aten.cat, aten.reflection_pad2d] triton_poi_fused_cat_reflection_pad2d_11.run(buf19, buf21, buf20, buf10, buf22, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [x_23], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf24 = empty_strided_cuda((4, 32, 34, 34), (36992, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_23, x_24, x_25], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4.run(buf23, primals_15, buf24, 147968, grid=grid(147968), stream=stream0) # Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf24, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf26 = buf25; del buf25 # reuse buf44 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_26, iadd_3, x_27], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_12.run(buf26, primals_17, buf19, buf21, buf20, buf10, buf44, 131072, grid=grid(131072), stream=stream0) del buf19 del buf21 del primals_17 buf27 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange] triton_poi_fused_arange_13.run(buf27, 64, grid=grid(64), stream=stream0) buf28 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_14.run(buf28, 64, grid=grid(64), stream=stream0) buf29 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_15.run(buf29, 64, grid=grid(64), stream=stream0) buf30 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_14.run(buf30, 64, grid=grid(64), stream=stream0) buf31 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_15.run(buf31, 64, grid=grid(64), stream=stream0) buf32 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_16.run(buf32, 64, grid=grid(64), stream=stream0) buf33 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_27, x_28], Original ATen: [aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_17.run(buf28, buf30, buf26, buf31, buf32, buf33, 524288, grid=grid(524288), stream=stream0) buf34 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_16.run(buf34, 64, grid=grid(64), stream=stream0) buf35 = empty_strided_cuda((4, 48, 64, 64), (196608, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_29], Original ATen: [aten.cat] triton_poi_fused_cat_18.run(buf33, buf29, buf30, buf26, buf31, buf32, buf34, buf4, buf35, 786432, grid=grid(786432), stream=stream0) del buf26 del buf33 buf36 = empty_strided_cuda((4, 48, 66, 66), (209088, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_30], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_19.run(buf35, buf36, 836352, grid=grid(836352), stream=stream0) # Topologically Sorted Source Nodes: [x_31], Original ATen: [aten.convolution] buf37 = extern_kernels.convolution(buf36, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf38 = empty_strided_cuda((4, 16, 66, 66), (69696, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_31, x_32, x_33], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1.run(buf37, primals_19, buf38, 278784, grid=grid(278784), stream=stream0) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.convolution] buf39 = extern_kernels.convolution(buf38, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf40 = buf39; del buf39 # reuse # Topologically Sorted Source Nodes: [x_34, iadd_4, x_35], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_convolution_leaky_relu_20.run(buf40, primals_21, buf35, 262144, grid=grid(262144), stream=stream0) del buf35 del primals_21 # Topologically Sorted Source Nodes: [x_36], Original ATen: [aten.convolution] buf41 = extern_kernels.convolution(buf40, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf42 = buf41; del buf41 # reuse # Topologically Sorted Source Nodes: [x_36], Original ATen: [aten.convolution] triton_poi_fused_convolution_21.run(buf42, primals_23, 16384, grid=grid(16384), stream=stream0) del primals_23 buf43 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_31, x_32], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22.run(buf37, primals_19, buf43, 262144, grid=grid(262144), stream=stream0) del buf37 del primals_19 buf45 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_23, x_24], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23.run(buf23, primals_15, buf45, 131072, grid=grid(131072), stream=stream0) del buf23 del primals_15 buf46 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23.run(buf6, primals_7, buf46, 131072, grid=grid(131072), stream=stream0) del buf6 del primals_7 buf47 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22.run(buf1, primals_3, buf47, 262144, grid=grid(262144), stream=stream0) del buf1 del primals_3 return (buf42, primals_2, primals_4, primals_6, primals_8, primals_14, primals_16, primals_18, primals_20, primals_22, buf0, buf2, buf4, buf5, buf7, buf10, buf11, buf12, buf13, buf14, buf15, buf18, buf20, buf22, buf24, buf27, buf28, buf29, buf30, buf31, buf32, buf34, buf36, buf38, buf40, buf43, buf44, buf45, buf46, buf47, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((16, 48, 3, 3), (432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((1, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, dropout=False, norm=None, residual=True, activation='leakyrelu', in_place_activation=True, transpose=False, reflectpad=True): super(ConvBlock, self).__init__() self.dropout = dropout self.residual = residual self.activation = activation self.transpose = transpose self.reflectpad = reflectpad if self.dropout: self.dropout1 = nn.Dropout2d(p=0.05) self.dropout2 = nn.Dropout2d(p=0.05) self.norm1 = None self.norm2 = None if norm is not None: if norm == 'batch': self.norm1 = nn.BatchNorm2d(out_channels) self.norm2 = nn.BatchNorm2d(out_channels) elif norm == 'instance': self.norm1 = nn.InstanceNorm2d(out_channels, affine=True) self.norm2 = nn.InstanceNorm2d(out_channels, affine=True) if self.transpose: self.conv1 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) else: self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size= 3, padding=0 if self.reflectpad else 1) if self.activation == 'relu': self.actfun1 = nn.ReLU(inplace=in_place_activation) self.actfun2 = nn.ReLU(inplace=in_place_activation) elif self.activation == 'leakyrelu': self.actfun1 = nn.LeakyReLU(inplace=in_place_activation) self.actfun2 = nn.LeakyReLU(inplace=in_place_activation) elif self.activation == 'elu': self.actfun1 = nn.ELU(inplace=in_place_activation) self.actfun2 = nn.ELU(inplace=in_place_activation) elif self.activation == 'selu': self.actfun1 = nn.SELU(inplace=in_place_activation) self.actfun2 = nn.SELU(inplace=in_place_activation) if self.reflectpad: self.rpad1 = nn.ReflectionPad2d(1) self.rpad2 = nn.ReflectionPad2d(1) def forward(self, x): ox = x if self.reflectpad: x = self.rpad1(x) x = self.conv1(x) if self.dropout: x = self.dropout1(x) x = self.actfun1(x) if self.norm1: x = self.norm1(x) if self.reflectpad: x = self.rpad2(x) x = self.conv2(x) if self.dropout: x = self.dropout2(x) if self.residual: x[:, 0:min(ox.shape[1], x.shape[1]), :, :] += ox[:, 0:min(ox. shape[1], x.shape[1]), :, :] x = self.actfun2(x) if self.norm2: x = self.norm2(x) return x class BabyUnet(nn.Module): def __init__(self, n_channel_in=1, n_channel_out=1): super(BabyUnet, self).__init__() self.pool1 = nn.AvgPool2d(kernel_size=2) self.pool2 = nn.AvgPool2d(kernel_size=2) self.up1 = lambda x: F.interpolate(x, mode='bilinear', scale_factor=2) self.up2 = lambda x: F.interpolate(x, mode='bilinear', scale_factor=2) self.conv1 = ConvBlock(n_channel_in, 16) self.conv2 = ConvBlock(16, 32) self.conv3 = ConvBlock(32, 32) self.conv4 = ConvBlock(64, 32) self.conv5 = ConvBlock(48, 16) self.conv6 = nn.Conv2d(16, n_channel_out, 1) def forward(self, x): c1 = self.conv1(x) x = self.pool1(c1) c2 = self.conv2(x) x = self.pool2(c2) self.conv3(x) x = self.up1(x) x = torch.cat([x, c2], 1) x = self.conv4(x) x = self.up2(x) x = torch.cat([x, c1], 1) x = self.conv5(x) x = self.conv6(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 17424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x2 = xindex // 4356 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x4 = xindex // 4356 x2 = xindex // 4356 % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 16 x3 = xindex x0 = xindex % 4096 x2 = xindex // 65536 tmp21 = tl.load(in_out_ptr0 + x3, None) tmp22 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1], 1, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tmp2 & tmp2 tmp4 = tl.load(in_out_ptr0 + x3, tmp3, other=0.0) tmp5 = tl.load(in_ptr0 + x1, tmp3, eviction_policy='evict_last', other=0.0) tmp6 = tmp4 + tmp5 tmp7 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp3, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp3, tmp8, tmp9) tmp11 = tl.load(in_out_ptr0 + x3, tmp2, other=0.0) tmp12 = tl.load(in_ptr0 + x1, tmp2, eviction_policy='evict_last', other=0.0 ) tmp13 = tmp11 + tmp12 tmp14 = tl.where(tmp2, tmp10, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp2, tmp14, tmp15) tmp17 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp2, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp13 + tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp2, tmp18, tmp19) tmp23 = tmp21 + tmp22 tmp24 = tl.where(tmp2, tmp20, tmp23) tmp25 = tl.where(tmp2, tmp16, tmp24) tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 0.01 tmp29 = tmp25 * tmp28 tmp30 = tl.where(tmp27, tmp25, tmp29) tl.store(in_out_ptr0 + x3, tmp30, None) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x2 = xindex // 1156 x3 = xindex tmp0 = tl.load(in_ptr0 + (4030 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4031 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4094 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4095 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1024 % 32 x5 = xindex x0 = xindex % 32 x3 = xindex // 32768 x6 = xindex // 32 % 1024 tmp18 = tl.load(in_out_ptr0 + x5, None) tmp19 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 16, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + x5, tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + x2, tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + (2 * x0 + 128 * x6 + 65536 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + 2 * x0 + 128 * x6 + 65536 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (64 + 2 * x0 + 128 * x6 + 65536 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (65 + 2 * x0 + 128 * x6 + 65536 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + x5, tmp27, None) @triton.jit def triton_poi_fused_arange_6(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_7(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_8(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_9(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_avg_pool2d_mul_sub_10(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x2 = xindex // 1024 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr3 + x1, None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (2 * tmp8 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (1 + 2 * tmp8 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp11 = tmp10 + tmp9 tmp12 = tl.load(in_ptr2 + (32 + 2 * tmp8 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp13 = tmp12 + tmp11 tmp14 = tl.load(in_ptr2 + (33 + 2 * tmp8 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp15 = tmp14 + tmp13 tmp16 = 0.25 tmp17 = tmp15 * tmp16 tmp19 = tmp18 + tmp1 tmp20 = tmp18 < 0 tmp21 = tl.where(tmp20, tmp19, tmp18) tmp22 = tl.load(in_ptr2 + (2 * tmp8 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (1 + 2 * tmp8 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp24 = tmp23 + tmp22 tmp25 = tl.load(in_ptr2 + (32 + 2 * tmp8 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp26 = tmp25 + tmp24 tmp27 = tl.load(in_ptr2 + (33 + 2 * tmp8 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp28 = tmp27 + tmp26 tmp29 = tmp28 * tmp16 tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (2 * tmp33 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr2 + (1 + 2 * tmp33 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp36 = tmp35 + tmp34 tmp37 = tl.load(in_ptr2 + (32 + 2 * tmp33 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp38 = tmp37 + tmp36 tmp39 = tl.load(in_ptr2 + (33 + 2 * tmp33 + 64 * tmp21 + 1024 * x2), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp38 tmp41 = tmp40 * tmp16 tmp42 = tmp41 - tmp29 tmp44 = tmp42 * tmp43 tmp45 = tmp29 + tmp44 tmp46 = tl.load(in_ptr2 + (2 * tmp33 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr2 + (1 + 2 * tmp33 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp48 = tmp47 + tmp46 tmp49 = tl.load(in_ptr2 + (32 + 2 * tmp33 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp50 = tmp49 + tmp48 tmp51 = tl.load(in_ptr2 + (33 + 2 * tmp33 + 64 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp52 = tmp51 + tmp50 tmp53 = tmp52 * tmp16 tmp54 = tmp53 - tmp17 tmp55 = tmp54 * tmp43 tmp56 = tmp17 + tmp55 tmp57 = tmp56 - tmp45 tl.store(in_out_ptr0 + x4, tmp45, None) tl.store(in_out_ptr1 + x4, tmp57, None) @triton.jit def triton_poi_fused_cat_reflection_pad2d_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 1156 % 64 x0 = xindex % 34 x1 = xindex // 34 % 34 x3 = xindex // 73984 x5 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x2 + 32768 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x2 + 32768 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tmp5 + tmp8 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 64, tl.int64) tmp15 = tl.load(in_ptr3 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * (-32 + x2) + 32768 * x3), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x5, tmp16, xmask) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_12( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x4 = xindex x2 = xindex // 1024 % 32 x3 = xindex // 32768 x5 = xindex % 1024 x1 = xindex // 32 % 32 tmp0 = tl.load(in_out_ptr0 + x4, None) tmp1 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = x2 tl.full([1], 0, tl.int64) tmp6 = tl.full([1], 32, tl.int64) tmp7 = tmp3 < tmp6 tmp8 = tl.load(in_ptr1 + (x5 + 1024 * x2 + 32768 * x3), tmp7, other=0.0) tmp9 = tl.load(in_ptr2 + (x5 + 1024 * x2 + 32768 * x3), tmp7, other=0.0) tmp10 = tl.load(in_ptr3 + x1, tmp7, eviction_policy='evict_last', other=0.0 ) tmp11 = tmp9 * tmp10 tmp12 = tmp8 + tmp11 tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp7, tmp12, tmp13) tmp15 = tmp3 >= tmp6 tl.full([1], 64, tl.int64) tmp18 = tl.load(in_ptr4 + (x5 + 1024 * (-32 + x2) + 32768 * x3), tmp15, other=0.0) tmp19 = tl.where(tmp7, tmp14, tmp18) tmp20 = tmp2 + tmp19 tmp21 = 0.0 tmp22 = tmp20 > tmp21 tmp23 = 0.01 tmp24 = tmp20 * tmp23 tmp25 = tl.where(tmp22, tmp20, tmp24) tmp26 = tmp25 > tmp21 tl.store(in_out_ptr0 + x4, tmp20, None) tl.store(out_ptr0 + x4, tmp26, None) @triton.jit def triton_poi_fused_arange_13(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x2 = xindex // 4096 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp10 = 0.0 tmp11 = tmp9 > tmp10 tmp12 = 0.01 tmp13 = tmp9 * tmp12 tmp14 = tl.where(tmp11, tmp9, tmp13) tmp16 = tmp15 + tmp1 tmp17 = tmp15 < 0 tmp18 = tl.where(tmp17, tmp16, tmp15) tmp19 = tl.load(in_ptr2 + (tmp18 + 32 * tmp4 + 1024 * x2), None, eviction_policy='evict_last') tmp20 = tmp19 > tmp10 tmp21 = tmp19 * tmp12 tmp22 = tl.where(tmp20, tmp19, tmp21) tmp23 = tmp22 - tmp14 tmp25 = tmp23 * tmp24 tmp26 = tmp14 + tmp25 tl.store(out_ptr0 + x4, tmp26, None) @triton.jit def triton_poi_fused_cat_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 4096 % 48 x3 = xindex // 196608 x4 = xindex % 4096 x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + 4096 * x2 + 131072 * x3), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([XBLOCK], 32, tl.int32) tmp8 = tmp6 + tmp7 tmp9 = tmp6 < 0 tmp10 = tl.where(tmp9, tmp8, tmp6) tmp11 = tl.load(in_ptr2 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp12 = tmp11 + tmp7 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tmp15 = tl.load(in_ptr3 + (tmp14 + 32 * tmp10 + 1024 * x2 + 32768 * x3), tmp4, eviction_policy='evict_last', other=0.0) tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.01 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.load(in_ptr4 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp22 = tmp21 + tmp7 tmp23 = tmp21 < 0 tmp24 = tl.where(tmp23, tmp22, tmp21) tmp25 = tl.load(in_ptr3 + (tmp24 + 32 * tmp10 + 1024 * x2 + 32768 * x3), tmp4, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp16 tmp27 = tmp25 * tmp18 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tmp28 - tmp20 tmp30 = tl.load(in_ptr5 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp31 = tmp29 * tmp30 tmp32 = tmp20 + tmp31 tmp33 = tmp32 - tmp5 tmp34 = tl.load(in_ptr6 + x1, tmp4, eviction_policy='evict_last', other=0.0 ) tmp35 = tmp33 * tmp34 tmp36 = tmp5 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tl.full([1], 48, tl.int64) tmp42 = tl.load(in_ptr7 + (x4 + 4096 * (-32 + x2) + 65536 * x3), tmp39, other=0.0) tmp43 = tl.where(tmp4, tmp38, tmp42) tl.store(out_ptr0 + x5, tmp43, None) @triton.jit def triton_poi_fused_reflection_pad2d_19(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 836352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x2 = xindex // 4356 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_20(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 16 x2 = xindex // 65536 x4 = xindex % 65536 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x4 + 196608 * x2), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.01 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(in_out_ptr0 + x3, tmp9, None) @triton.jit def triton_poi_fused_convolution_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 16 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 ) = args args.clear() assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_2, (16, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32,), (1,)) assert_size_stride(primals_14, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (32,), (1,)) assert_size_stride(primals_16, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_17, (32,), (1,)) assert_size_stride(primals_18, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_19, (16,), (1,)) assert_size_stride(primals_20, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_21, (16,), (1,)) assert_size_stride(primals_22, (1, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_23, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(17424)](primals_1, buf0, 17424, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf2 = empty_strided_cuda((4, 16, 66, 66), (69696, 4356, 66, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1[grid(278784) ](buf1, primals_3, buf2, 278784, XBLOCK=1024, num_warps=4, num_stages=1) buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf4 = buf3 del buf3 triton_poi_fused_add_convolution_leaky_relu_2[grid(262144)](buf4, primals_5, primals_1, 262144, XBLOCK=512, num_warps=8, num_stages=1 ) del primals_1 del primals_5 buf5 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) triton_poi_fused_avg_pool2d_reflection_pad2d_3[grid(73984)](buf4, buf5, 73984, XBLOCK=1024, num_warps=4, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf7 = empty_strided_cuda((4, 32, 34, 34), (36992, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4[grid(147968) ](buf6, primals_7, buf7, 147968, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf9 = buf8 del buf8 buf10 = buf9 del buf9 triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5[grid(131072)]( buf10, primals_9, buf4, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf11 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_arange_6[grid(32)](buf11, 32, XBLOCK=32, num_warps =1, num_stages=1) buf12 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_7[grid(32)](buf12, 32, XBLOCK=32, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_8[grid(32)](buf13, 32, XBLOCK=32, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_7[grid(32)](buf14, 32, XBLOCK=32, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_add_clamp_8[grid(32)](buf15, 32, XBLOCK=32, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((32,), (1,), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_9[grid(32)](buf18, 32, XBLOCK=32, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) buf16 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) buf19 = buf16 del buf16 buf21 = buf17 del buf17 triton_poi_fused__unsafe_index_add_avg_pool2d_mul_sub_10[grid(131072)]( buf19, buf21, buf13, buf14, buf10, buf12, buf15, buf18, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf20 = empty_strided_cuda((32, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_9[grid(32)](buf20, 32, XBLOCK=32, num_warps=1, num_stages=1) buf22 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) triton_poi_fused_cat_reflection_pad2d_11[grid(295936)](buf19, buf21, buf20, buf10, buf22, 295936, XBLOCK=1024, num_warps=4, num_stages=1 ) buf23 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf24 = empty_strided_cuda((4, 32, 34, 34), (36992, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4[grid(147968) ](buf23, primals_15, buf24, 147968, XBLOCK=512, num_warps=8, num_stages=1) buf25 = extern_kernels.convolution(buf24, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf26 = buf25 del buf25 buf44 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_12[grid (131072)](buf26, primals_17, buf19, buf21, buf20, buf10, buf44, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf19 del buf21 del primals_17 buf27 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_arange_13[grid(64)](buf27, 64, XBLOCK=64, num_warps=1, num_stages=1) buf28 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_14[grid(64)](buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) buf29 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_15[grid(64)](buf29, 64, XBLOCK=64, num_warps=1, num_stages=1) buf30 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_14[grid(64)](buf30, 64, XBLOCK=64, num_warps=1, num_stages=1) buf31 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_add_clamp_15[grid(64)](buf31, 64, XBLOCK=64, num_warps=1, num_stages=1) buf32 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_16[grid(64)](buf32, 64, XBLOCK=64, num_warps=1, num_stages=1) buf33 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_17[grid(524288)]( buf28, buf30, buf26, buf31, buf32, buf33, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf34 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_16[grid(64)](buf34, 64, XBLOCK=64, num_warps=1, num_stages=1) buf35 = empty_strided_cuda((4, 48, 64, 64), (196608, 4096, 64, 1), torch.float32) triton_poi_fused_cat_18[grid(786432)](buf33, buf29, buf30, buf26, buf31, buf32, buf34, buf4, buf35, 786432, XBLOCK=512, num_warps =8, num_stages=1) del buf26 del buf33 buf36 = empty_strided_cuda((4, 48, 66, 66), (209088, 4356, 66, 1), torch.float32) triton_poi_fused_reflection_pad2d_19[grid(836352)](buf35, buf36, 836352, XBLOCK=1024, num_warps=4, num_stages=1) buf37 = extern_kernels.convolution(buf36, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf38 = empty_strided_cuda((4, 16, 66, 66), (69696, 4356, 66, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1[grid(278784) ](buf37, primals_19, buf38, 278784, XBLOCK=1024, num_warps=4, num_stages=1) buf39 = extern_kernels.convolution(buf38, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf40 = buf39 del buf39 triton_poi_fused_add_convolution_leaky_relu_20[grid(262144)](buf40, primals_21, buf35, 262144, XBLOCK=512, num_warps=8, num_stages=1) del buf35 del primals_21 buf41 = extern_kernels.convolution(buf40, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf42 = buf41 del buf41 triton_poi_fused_convolution_21[grid(16384)](buf42, primals_23, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf43 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22[grid (262144)](buf37, primals_19, buf43, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf37 del primals_19 buf45 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23[grid (131072)](buf23, primals_15, buf45, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf23 del primals_15 buf46 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_23[grid (131072)](buf6, primals_7, buf46, 131072, XBLOCK=512, num_warps =8, num_stages=1) del buf6 del primals_7 buf47 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_22[grid (262144)](buf1, primals_3, buf47, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf1 del primals_3 return (buf42, primals_2, primals_4, primals_6, primals_8, primals_14, primals_16, primals_18, primals_20, primals_22, buf0, buf2, buf4, buf5, buf7, buf10, buf11, buf12, buf13, buf14, buf15, buf18, buf20, buf22, buf24, buf27, buf28, buf29, buf30, buf31, buf32, buf34, buf36, buf38, buf40, buf43, buf44, buf45, buf46, buf47) class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, dropout=False, norm=None, residual=True, activation='leakyrelu', in_place_activation=True, transpose=False, reflectpad=True): super(ConvBlock, self).__init__() self.dropout = dropout self.residual = residual self.activation = activation self.transpose = transpose self.reflectpad = reflectpad if self.dropout: self.dropout1 = nn.Dropout2d(p=0.05) self.dropout2 = nn.Dropout2d(p=0.05) self.norm1 = None self.norm2 = None if norm is not None: if norm == 'batch': self.norm1 = nn.BatchNorm2d(out_channels) self.norm2 = nn.BatchNorm2d(out_channels) elif norm == 'instance': self.norm1 = nn.InstanceNorm2d(out_channels, affine=True) self.norm2 = nn.InstanceNorm2d(out_channels, affine=True) if self.transpose: self.conv1 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) else: self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size= 3, padding=0 if self.reflectpad else 1) if self.activation == 'relu': self.actfun1 = nn.ReLU(inplace=in_place_activation) self.actfun2 = nn.ReLU(inplace=in_place_activation) elif self.activation == 'leakyrelu': self.actfun1 = nn.LeakyReLU(inplace=in_place_activation) self.actfun2 = nn.LeakyReLU(inplace=in_place_activation) elif self.activation == 'elu': self.actfun1 = nn.ELU(inplace=in_place_activation) self.actfun2 = nn.ELU(inplace=in_place_activation) elif self.activation == 'selu': self.actfun1 = nn.SELU(inplace=in_place_activation) self.actfun2 = nn.SELU(inplace=in_place_activation) if self.reflectpad: self.rpad1 = nn.ReflectionPad2d(1) self.rpad2 = nn.ReflectionPad2d(1) def forward(self, x): ox = x if self.reflectpad: x = self.rpad1(x) x = self.conv1(x) if self.dropout: x = self.dropout1(x) x = self.actfun1(x) if self.norm1: x = self.norm1(x) if self.reflectpad: x = self.rpad2(x) x = self.conv2(x) if self.dropout: x = self.dropout2(x) if self.residual: x[:, 0:min(ox.shape[1], x.shape[1]), :, :] += ox[:, 0:min(ox. shape[1], x.shape[1]), :, :] x = self.actfun2(x) if self.norm2: x = self.norm2(x) return x class BabyUnetNew(nn.Module): def __init__(self, n_channel_in=1, n_channel_out=1): super(BabyUnetNew, self).__init__() self.pool1 = nn.AvgPool2d(kernel_size=2) self.pool2 = nn.AvgPool2d(kernel_size=2) self.up1 = lambda x: F.interpolate(x, mode='bilinear', scale_factor=2) self.up2 = lambda x: F.interpolate(x, mode='bilinear', scale_factor=2) self.conv1 = ConvBlock(n_channel_in, 16) self.conv2 = ConvBlock(16, 32) self.conv3 = ConvBlock(32, 32) self.conv4 = ConvBlock(64, 32) self.conv5 = ConvBlock(48, 16) self.conv6 = nn.Conv2d(16, n_channel_out, 1) def forward(self, input_0): primals_2 = self.conv1.conv1.weight primals_3 = self.conv1.conv1.bias primals_4 = self.conv1.conv2.weight primals_5 = self.conv1.conv2.bias primals_6 = self.conv2.conv1.weight primals_7 = self.conv2.conv1.bias primals_8 = self.conv2.conv2.weight primals_9 = self.conv2.conv2.bias primals_10 = self.conv3.conv1.weight primals_11 = self.conv3.conv1.bias primals_12 = self.conv3.conv2.weight primals_13 = self.conv3.conv2.bias primals_14 = self.conv4.conv1.weight primals_15 = self.conv4.conv1.bias primals_16 = self.conv4.conv2.weight primals_17 = self.conv4.conv2.bias primals_18 = self.conv5.conv1.weight primals_19 = self.conv5.conv1.bias primals_20 = self.conv5.conv2.weight primals_21 = self.conv5.conv2.bias primals_22 = self.conv6.weight primals_23 = self.conv6.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return output[0]
royerloic/aydin
BabyUnet
false
16,393
[ "BSD-3-Clause" ]
78
f9c61a24030891d008c318b250da5faec69fcd7d
https://github.com/royerloic/aydin/tree/f9c61a24030891d008c318b250da5faec69fcd7d
CausualConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/h5/ch52rh7o72g4gghg7x35d7a6gpapvkodjbo4j7nhkutmfi7ktvp5.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [2], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 8) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 8), (32, 8, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 4, 6), (32, 8, 1), 0), primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class CausualConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None): super(CausualConv, self).__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) * 2 else: self.padding = padding * 2 self.conv = nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, stride=stride, padding=self.padding, dilation= dilation, bias=bias) torch.nn.init.xavier_uniform_(self.conv.weight, gain=torch.nn.init. calculate_gain(w_init_gain, param=param)) def forward(self, x): x = self.conv(x) x = x[:, :, :-self.padding] return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 8 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 8), (32, 8, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 4, 6), (32, 8, 1), 0 ), primals_1, primals_3 class CausualConvNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None): super(CausualConvNew, self).__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) * 2 else: self.padding = padding * 2 self.conv = nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, stride=stride, padding=self.padding, dilation= dilation, bias=bias) torch.nn.init.xavier_uniform_(self.conv.weight, gain=torch.nn.init. calculate_gain(w_init_gain, param=param)) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shaun95/StarGANv2-VC
CausualConv
false
16,394
[ "MIT" ]
116
ed20538971a03d699351a349a3631767333baeb7
https://github.com/shaun95/StarGANv2-VC/tree/ed20538971a03d699351a349a3631767333baeb7
PatchEmbedding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PatchEmbedding(nn.Module): def __init__(self, image_size, patch_size, embed_dim, channels): super().__init__() self.image_size = image_size if image_size[0] % patch_size != 0 or image_size[1] % patch_size != 0: raise ValueError( 'image dimensions must be divisible by the patch size') self.grid_size = image_size[0] // patch_size, image_size[1 ] // patch_size self.num_patches = self.grid_size[0] * self.grid_size[1] self.patch_size = patch_size self.proj = nn.Conv2d(channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, im): _B, _C, _H, _W = im.shape x = self.proj(im).flatten(2).transpose(1, 2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'image_size': [4, 4], 'patch_size': 4, 'embed_dim': 4, 'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0 ), primals_1, primals_2 class PatchEmbeddingNew(nn.Module): def __init__(self, image_size, patch_size, embed_dim, channels): super().__init__() self.image_size = image_size if image_size[0] % patch_size != 0 or image_size[1] % patch_size != 0: raise ValueError( 'image dimensions must be divisible by the patch size') self.grid_size = image_size[0] // patch_size, image_size[1 ] // patch_size self.num_patches = self.grid_size[0] * self.grid_size[1] self.patch_size = patch_size self.proj = nn.Conv2d(channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, input_0): primals_1 = self.proj.weight primals_3 = self.proj.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shampooma/segmenter
PatchEmbedding
false
16,395
[ "MIT" ]
418
b08fd481da6758e37d108ba28676229b62f757aa
https://github.com/shampooma/segmenter/tree/b08fd481da6758e37d108ba28676229b62f757aa
PositionWiseFCNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [sequences], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # sequences => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [sequences], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # sequences => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gm/cgmflgdlpeeb52xctoa47uvw47ycyf7ahlj5wdscxdatpbwcboco.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5q/c5qmnkuxezgezseizmolw3mx24fyy6xp3cfoz3egpqwcprxgwjre.py # Topologically Sorted Source Nodes: [sequences_3], Original ATen: [aten.add] # Source node to ATen node mapping: # sequences_3 => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [sequences], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sequences], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_2 del primals_3 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf7, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [sequences_3], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf6, primals_7, primals_1, 256, grid=grid(256), stream=stream0) del primals_7 return (buf6, primals_1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_6, buf7, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.optim import torch.utils.data class PositionWiseFCNetwork(nn.Module): """ The Position-Wise Feed Forward Network sublayer. """ def __init__(self, d_model, d_inner, dropout): """ :param d_model: size of vectors throughout the transformer model, i.e. input and output sizes for this sublayer :param d_inner: an intermediate size :param dropout: dropout probability """ super(PositionWiseFCNetwork, self).__init__() self.d_model = d_model self.d_inner = d_inner self.layer_norm = nn.LayerNorm(d_model) self.fc1 = nn.Linear(d_model, d_inner) self.relu = nn.ReLU() self.fc2 = nn.Linear(d_inner, d_model) self.apply_dropout = nn.Dropout(dropout) def forward(self, sequences): """ Forward prop. :param sequences: input sequences, a tensor of size (N, pad_length, d_model) :return: transformed output sequences, a tensor of size (N, pad_length, d_model) """ input_to_add = sequences.clone() sequences = self.layer_norm(sequences) sequences = self.apply_dropout(self.relu(self.fc1(sequences))) sequences = self.fc2(sequences) sequences = self.apply_dropout(sequences) + input_to_add return sequences def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_inner': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del primals_2 del primals_3 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf4, primals_5, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_add_3[grid(256)](buf6, primals_7, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return buf6, primals_1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf4, (64, 4), (4, 1), 0 ), primals_6, buf7, primals_4 class PositionWiseFCNetworkNew(nn.Module): """ The Position-Wise Feed Forward Network sublayer. """ def __init__(self, d_model, d_inner, dropout): """ :param d_model: size of vectors throughout the transformer model, i.e. input and output sizes for this sublayer :param d_inner: an intermediate size :param dropout: dropout probability """ super(PositionWiseFCNetworkNew, self).__init__() self.d_model = d_model self.d_inner = d_inner self.layer_norm = nn.LayerNorm(d_model) self.fc1 = nn.Linear(d_model, d_inner) self.relu = nn.ReLU() self.fc2 = nn.Linear(d_inner, d_model) self.apply_dropout = nn.Dropout(dropout) def forward(self, input_0): primals_2 = self.layer_norm.weight primals_3 = self.layer_norm.bias primals_4 = self.fc1.weight primals_5 = self.fc1.bias primals_6 = self.fc2.weight primals_7 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
sgrvinod/a-PyTorch-Tutorial-to-Machine-Translation
PositionWiseFCNetwork
false
16,396
[ "MIT" ]
59
a4dd7bc5554d11ac80355241f603dcaa24bc70ae
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Machine-Translation/tree/a4dd7bc5554d11ac80355241f603dcaa24bc70ae
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uu/cuupb7yo7ai64qlwi4lpnlvdf3gw6jlp543potvhemy2bbjwrt5a.py # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1073741824], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1073741824 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16777216 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16777216, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 16777216), (268435456, 67108864, 16777216, 1)) assert_size_stride(primals_3, (16777216, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 16777216), (268435456, 67108864, 16777216, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, primals_1, primals_3, buf0, 1073741824, grid=grid(1073741824), stream=stream0) return (buf0, primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16777216, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 16777216), (268435456, 67108864, 16777216, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16777216, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional from torch.nn.parameter import Parameter from torch.nn.modules import Module import torch.utils.data import torch.utils.data.distributed import torch.nn.parallel import torch.optim from torch.nn import Parameter from torch.nn import Module class Model(Module): def __init__(self): super(Model, self).__init__() self.a = Parameter(torch.FloatTensor(4096 * 4096).fill_(1.0)) self.b = Parameter(torch.FloatTensor(4096 * 4096).fill_(2.0)) def forward(self, input): return input * self.a * self.b def get_inputs(): return [torch.rand([4, 4, 4, 16777216])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import torch.nn.functional from torch.nn.parameter import Parameter from torch.nn.modules import Module import torch.utils.data import torch.utils.data.distributed import torch.nn.parallel import torch.optim from torch.nn import Parameter from torch.nn import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16777216 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x2, tmp4, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16777216,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 16777216), (268435456, 67108864, 16777216, 1)) assert_size_stride(primals_3, (16777216,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 16777216), (268435456, 67108864, 16777216, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(1073741824)](primals_2, primals_1, primals_3, buf0, 1073741824, XBLOCK=1024, num_warps=4, num_stages=1 ) return buf0, primals_1, primals_2, primals_3 class ModelNew(Module): def __init__(self): super(ModelNew, self).__init__() self.a = Parameter(torch.FloatTensor(4096 * 4096).fill_(1.0)) self.b = Parameter(torch.FloatTensor(4096 * 4096).fill_(2.0)) def forward(self, input_0): primals_1 = self.a primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Cubbee/apex
Model
false
16,397
[ "BSD-3-Clause" ]
268
0a991543846966d5f586540dc2441e512139e9fc
https://github.com/Cubbee/apex/tree/0a991543846966d5f586540dc2441e512139e9fc
ChainCRF
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uf/cufgro6ei5psr3fmvzjefledxxmwhzbvakxsxv3fntxzh2x3djaj.py # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.add, aten.mul] # Source node to ATen node mapping: # output => add # output_1 => mul # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %unsqueeze), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %unsqueeze_2), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 25 x0 = xindex % 5 x2 = (xindex // 25) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + (5*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp6 * tmp7 tl.store(in_out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (5, 4), (4, 1)) assert_size_stride(primals_3, (5, ), (1, )) assert_size_stride(primals_4, (25, 4), (4, 1)) assert_size_stride(primals_5, (25, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 5), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 25), (25, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 25), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf1, (4, 4, 5, 5), (100, 25, 5, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.add, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(buf2, primals_5, buf0, primals_3, primals_6, 400, grid=grid(400), stream=stream0) del buf0 del primals_3 del primals_5 return (buf2, primals_6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((25, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((25, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.parameter import Parameter def logsumexp(x, dim=None): """ Args: x: A pytorch tensor (any dimension will do) dim: int or None, over which to perform the summation. `None`, the default, performs over all axes. Returns: The result of the log(sum(exp(...))) operation. """ if dim is None: xmax = x.max() xmax_ = x.max() return xmax_ + torch.log(torch.exp(x - xmax).sum()) else: xmax, _ = x.max(dim, keepdim=True) xmax_, _ = x.max(dim) return xmax_ + torch.log(torch.exp(x - xmax).sum(dim)) class ChainCRF(nn.Module): def __init__(self, input_size, num_labels, bigram=True): """ Args: input_size: int the dimension of the input. num_labels: int the number of labels of the crf layer bigram: bool if apply bi-gram parameter. """ super(ChainCRF, self).__init__() self.input_size = input_size self.num_labels = num_labels + 1 self.pad_label_id = num_labels self.bigram = bigram self.state_nn = nn.Linear(input_size, self.num_labels) if bigram: self.trans_nn = nn.Linear(input_size, self.num_labels * self. num_labels) self.register_parameter('trans_matrix', None) else: self.trans_nn = None self.trans_matrix = Parameter(torch.Tensor(self.num_labels, self.num_labels)) self.reset_parameters() def reset_parameters(self): nn.init.constant_(self.state_nn.bias, 0.0) if self.bigram: nn.init.xavier_uniform_(self.trans_nn.weight) nn.init.constant_(self.trans_nn.bias, 0.0) else: nn.init.normal_(self.trans_matrix) def forward(self, input, mask): """ Args: input: Tensor the input tensor with shape = [batch, length, input_size] mask: Tensor the mask tensor with shape = [batch, length] Returns: Tensor the energy tensor with shape = [batch, length, num_label, num_label] """ batch, length, _ = input.size() out_s = self.state_nn(input).unsqueeze(2) if self.bigram: out_t = self.trans_nn(input).view(batch, length, self. num_labels, self.num_labels) output = out_t + out_s else: output = self.trans_matrix + out_s output = output * mask.unsqueeze(2).unsqueeze(3) return output def loss(self, energy, target, mask): """ Args: energy: Tensor the energy tensor with shape = [batch, length, num_label, num_label] target: Tensor the tensor of target labels with shape [batch, length] mask:Tensor the mask tensor with shape = [batch, length] Returns: Tensor A 1D tensor for minus log likelihood loss """ batch, length = target.size() energy_transpose = energy.transpose(0, 1) target_transpose = target.transpose(0, 1) mask_transpose = mask.unsqueeze(2).transpose(0, 1) partition = None batch_index = torch.arange(0, batch, dtype=torch.long, device= target.device) prev_label = torch.zeros(batch, dtype=torch.long, device=target.device) prev_label = prev_label.fill_(self.num_labels - 1) tgt_energy = torch.zeros(batch, device=target.device) for t in range(length): curr_energy = energy_transpose[t] mask_t = mask_transpose[t] if t == 0: partition = curr_energy[:, -1, :] else: partition_new = logsumexp(curr_energy + partition.unsqueeze (2), dim=1) partition = partition + (partition_new - partition) * mask_t tgt_energy += curr_energy[batch_index, prev_label, target_transpose[t].data] prev_label_new = target_transpose[t].data prev_label = prev_label + (prev_label_new - prev_label ) * mask_t.squeeze(1).long() return (logsumexp(partition, dim=1) - tgt_energy).mean() def decode(self, energy, mask): """ Args: energy: Tensor the energy tensor with shape = [batch, length, num_label, num_label] mask: Tensor the mask tensor with shape = [batch, length] Returns: Tensor decoding results in shape [batch, length] """ energy_transpose = energy.transpose(0, 1) mask_transpose = mask.unsqueeze(2).transpose(0, 1).long() energy_transpose = energy_transpose[:, :, :-1, :-1] length, batch_size, num_label, _ = energy_transpose.size() batch_index = torch.arange(0, batch_size, dtype=torch.long, device= energy.device) pi = torch.zeros([length, batch_size, num_label, 1], device=energy. device) pointer = torch.zeros([length, batch_size, num_label], dtype=torch. long, device=energy.device) dummy_pointer = torch.arange(self.num_labels - 1, device=energy.device) back_pointer = torch.zeros([length, batch_size], dtype=torch.long, device=energy.device) pi[0] = energy[:, 0, -1, :-1].unsqueeze(2) pointer[0] = -1 for t in range(1, length): pi_prev = pi[t - 1] mask_t = mask_transpose[t] pi_t, pointer_t = torch.max(energy_transpose[t] + pi_prev, dim=1) pointer[t] = pointer_t * mask_t + dummy_pointer * (1 - mask_t) pi[t] = (pi_t * mask_t).unsqueeze(2) + pi[t - 1] * (1 - mask_t. unsqueeze(2)) _, back_pointer[-1] = torch.max(pi[-1].squeeze(2), dim=1) for t in reversed(range(length - 1)): pointer_last = pointer[t + 1] back_pointer[t] = pointer_last[batch_index, back_pointer[t + 1]] return back_pointer.transpose(0, 1) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'num_labels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 25 x0 = xindex % 5 x2 = xindex // 25 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + 5 * x2), xmask, eviction_policy='evict_last' ) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp6 * tmp7 tl.store(in_out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (5, 4), (4, 1)) assert_size_stride(primals_3, (5,), (1,)) assert_size_stride(primals_4, (25, 4), (4, 1)) assert_size_stride(primals_5, (25,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 5), (5, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 5), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 25), (25, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 25), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf1, (4, 4, 5, 5), (100, 25, 5, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_add_mul_0[grid(400)](buf2, primals_5, buf0, primals_3, primals_6, 400, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_3 del primals_5 return buf2, primals_6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0) def logsumexp(x, dim=None): """ Args: x: A pytorch tensor (any dimension will do) dim: int or None, over which to perform the summation. `None`, the default, performs over all axes. Returns: The result of the log(sum(exp(...))) operation. """ if dim is None: xmax = x.max() xmax_ = x.max() return xmax_ + torch.log(torch.exp(x - xmax).sum()) else: xmax, _ = x.max(dim, keepdim=True) xmax_, _ = x.max(dim) return xmax_ + torch.log(torch.exp(x - xmax).sum(dim)) class ChainCRFNew(nn.Module): def __init__(self, input_size, num_labels, bigram=True): """ Args: input_size: int the dimension of the input. num_labels: int the number of labels of the crf layer bigram: bool if apply bi-gram parameter. """ super(ChainCRFNew, self).__init__() self.input_size = input_size self.num_labels = num_labels + 1 self.pad_label_id = num_labels self.bigram = bigram self.state_nn = nn.Linear(input_size, self.num_labels) if bigram: self.trans_nn = nn.Linear(input_size, self.num_labels * self. num_labels) self.register_parameter('trans_matrix', None) else: self.trans_nn = None self.trans_matrix = Parameter(torch.Tensor(self.num_labels, self.num_labels)) self.reset_parameters() def reset_parameters(self): nn.init.constant_(self.state_nn.bias, 0.0) if self.bigram: nn.init.xavier_uniform_(self.trans_nn.weight) nn.init.constant_(self.trans_nn.bias, 0.0) else: nn.init.normal_(self.trans_matrix) def loss(self, energy, target, mask): """ Args: energy: Tensor the energy tensor with shape = [batch, length, num_label, num_label] target: Tensor the tensor of target labels with shape [batch, length] mask:Tensor the mask tensor with shape = [batch, length] Returns: Tensor A 1D tensor for minus log likelihood loss """ batch, length = target.size() energy_transpose = energy.transpose(0, 1) target_transpose = target.transpose(0, 1) mask_transpose = mask.unsqueeze(2).transpose(0, 1) partition = None batch_index = torch.arange(0, batch, dtype=torch.long, device= target.device) prev_label = torch.zeros(batch, dtype=torch.long, device=target.device) prev_label = prev_label.fill_(self.num_labels - 1) tgt_energy = torch.zeros(batch, device=target.device) for t in range(length): curr_energy = energy_transpose[t] mask_t = mask_transpose[t] if t == 0: partition = curr_energy[:, -1, :] else: partition_new = logsumexp(curr_energy + partition.unsqueeze (2), dim=1) partition = partition + (partition_new - partition) * mask_t tgt_energy += curr_energy[batch_index, prev_label, target_transpose[t].data] prev_label_new = target_transpose[t].data prev_label = prev_label + (prev_label_new - prev_label ) * mask_t.squeeze(1).long() return (logsumexp(partition, dim=1) - tgt_energy).mean() def decode(self, energy, mask): """ Args: energy: Tensor the energy tensor with shape = [batch, length, num_label, num_label] mask: Tensor the mask tensor with shape = [batch, length] Returns: Tensor decoding results in shape [batch, length] """ energy_transpose = energy.transpose(0, 1) mask_transpose = mask.unsqueeze(2).transpose(0, 1).long() energy_transpose = energy_transpose[:, :, :-1, :-1] length, batch_size, num_label, _ = energy_transpose.size() batch_index = torch.arange(0, batch_size, dtype=torch.long, device= energy.device) pi = torch.zeros([length, batch_size, num_label, 1], device=energy. device) pointer = torch.zeros([length, batch_size, num_label], dtype=torch. long, device=energy.device) dummy_pointer = torch.arange(self.num_labels - 1, device=energy.device) back_pointer = torch.zeros([length, batch_size], dtype=torch.long, device=energy.device) pi[0] = energy[:, 0, -1, :-1].unsqueeze(2) pointer[0] = -1 for t in range(1, length): pi_prev = pi[t - 1] mask_t = mask_transpose[t] pi_t, pointer_t = torch.max(energy_transpose[t] + pi_prev, dim=1) pointer[t] = pointer_t * mask_t + dummy_pointer * (1 - mask_t) pi[t] = (pi_t * mask_t).unsqueeze(2) + pi[t - 1] * (1 - mask_t. unsqueeze(2)) _, back_pointer[-1] = torch.max(pi[-1].squeeze(2), dim=1) for t in reversed(range(length - 1)): pointer_last = pointer[t + 1] back_pointer[t] = pointer_last[batch_index, back_pointer[t + 1]] return back_pointer.transpose(0, 1) def forward(self, input_0, input_1): primals_2 = self.state_nn.weight primals_3 = self.state_nn.bias primals_4 = self.trans_nn.weight primals_5 = self.trans_nn.bias primals_1 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
shabnam-b/crosslingual-nlp
ChainCRF
false
16,398
[ "MIT" ]
64
ccd91baaea23004eab9c4d871910945ca3e61ab7
https://github.com/shabnam-b/crosslingual-nlp/tree/ccd91baaea23004eab9c4d871910945ca3e61ab7
SoftAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vf/cvfa3cofzrcnaun6ejxtaivamsfl7ovqh6u4hauzn6irdxuskl6i.py # Topologically Sorted Source Nodes: [e], Original ATen: [aten.mv] # Source node to ATen node mapping: # e => mul, sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mv_0 = async_compile.triton('triton_poi_fused_mv_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2)) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3)) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp1 = libdevice.tanh(tmp0) tmp4 = tmp1 * tmp3 tmp6 = libdevice.tanh(tmp5) tmp9 = tmp6 * tmp8 tmp10 = tmp4 + tmp9 tmp12 = libdevice.tanh(tmp11) tmp15 = tmp12 * tmp14 tmp16 = tmp10 + tmp15 tmp18 = libdevice.tanh(tmp17) tmp21 = tmp18 * tmp20 tmp22 = tmp16 + tmp21 tl.store(out_ptr0 + (x0), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => div, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uc/cucxlvpmdnkvrjowwgishm572wj6r3vegfneh3wrtn5kchw2jp55.py # Topologically Sorted Source Nodes: [weighted, sum_1, representations], Original ATen: [aten.mul, aten.sum, aten.squeeze] # Source node to ATen node mapping: # representations => squeeze_1 # sum_1 => sum_3 # weighted => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_1, %expand), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2]), kwargs = {}) # %squeeze_1 : [num_users=1] = call_function[target=torch.ops.aten.squeeze.default](args = (%sum_3,), kwargs = {}) triton_poi_fused_mul_squeeze_sum_3 = async_compile.triton('triton_poi_fused_mul_squeeze_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_squeeze_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_squeeze_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (64*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (32 + x3 + (64*x2)), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask) tmp12 = tl.load(in_ptr1 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weights], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [e], Original ATen: [aten.mv] stream0 = get_raw_stream(0) triton_poi_fused_mv_0.run(buf0, primals_4, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [weighted, sum_1, representations], Original ATen: [aten.mul, aten.sum, aten.squeeze] triton_poi_fused_mul_squeeze_sum_3.run(primals_1, buf3, buf4, 64, grid=grid(64), stream=stream0) del buf3 return (buf4, primals_1, primals_4, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class SoftAttention(nn.Module): """ https://arxiv.org/abs/1803.10916 """ def __init__(self, emb_dim, attn_dim): super().__init__() self.attn_dim = attn_dim self.emb_dim = emb_dim self.W = torch.nn.Linear(self.emb_dim, self.attn_dim) self.v = nn.Parameter(torch.Tensor(self.attn_dim), requires_grad=True) stdv = 1.0 / np.sqrt(self.attn_dim) for weight in self.v: nn.init.uniform_(weight, -stdv, stdv) def forward(self, values): attention_weights = self._get_weights(values) values = values.transpose(1, 2) weighted = torch.mul(values, attention_weights.unsqueeze(1). expand_as(values)) representations = weighted.sum(2).squeeze() return representations def _get_weights(self, values): values.size(0) weights = self.W(values) weights = torch.tanh(weights) e = weights @ self.v attention_weights = torch.softmax(e.squeeze(1), dim=-1) return attention_weights def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'emb_dim': 4, 'attn_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + 1) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + 2) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + 3) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp1 = libdevice.tanh(tmp0) tmp4 = tmp1 * tmp3 tmp6 = libdevice.tanh(tmp5) tmp9 = tmp6 * tmp8 tmp10 = tmp4 + tmp9 tmp12 = libdevice.tanh(tmp11) tmp15 = tmp12 * tmp14 tmp16 = tmp10 + tmp15 tmp18 = libdevice.tanh(tmp17) tmp21 = tmp18 * tmp20 tmp22 = tmp16 + tmp21 tl.store(out_ptr0 + x0, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_squeeze_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 64 * x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (32 + x3 + 64 * x2), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask) tmp12 = tl.load(in_ptr1 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x4, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((64,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_mv_0[grid(64)](buf0, primals_4, buf1, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused_mul_squeeze_sum_3[grid(64)](primals_1, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 return buf4, primals_1, primals_4, buf0 class SoftAttentionNew(nn.Module): """ https://arxiv.org/abs/1803.10916 """ def __init__(self, emb_dim, attn_dim): super().__init__() self.attn_dim = attn_dim self.emb_dim = emb_dim self.W = torch.nn.Linear(self.emb_dim, self.attn_dim) self.v = nn.Parameter(torch.Tensor(self.attn_dim), requires_grad=True) stdv = 1.0 / np.sqrt(self.attn_dim) for weight in self.v: nn.init.uniform_(weight, -stdv, stdv) def _get_weights(self, values): values.size(0) weights = self.W(values) weights = torch.tanh(weights) e = weights @ self.v attention_weights = torch.softmax(e.squeeze(1), dim=-1) return attention_weights def forward(self, input_0): primals_3 = self.v primals_2 = self.W.weight primals_4 = self.W.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
shangeth/wavencoder
SoftAttention
false
16,399
[ "MIT" ]
56
cd1a277c2cc44075c9f4506e344b3a725ad5b9fe
https://github.com/shangeth/wavencoder/tree/cd1a277c2cc44075c9f4506e344b3a725ad5b9fe
TimeStrech
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/z2/cz24gi4s7xzyox5sbvrpri4ak7fy6xgopry5wbciybyk7nkbnbwl.py # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] # Source node to ATen node mapping: # interpolate => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_4, add_5, add_6, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6 # Graph fragment: # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 3, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tmp14 = x0 tmp15 = tmp14.to(tl.float32) tmp16 = tmp15 + tmp2 tmp17 = tmp16 * tmp4 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp7) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp10 tmp22 = triton_helpers.minimum(tmp21, tmp12) tmp23 = tl.load(in_ptr0 + (tmp22 + (4*tmp13) + (16*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (tmp20 + (4*tmp13) + (16*x2)), xmask, eviction_policy='evict_last') tmp25 = tmp23 - tmp24 tmp26 = tmp20.to(tl.float32) tmp27 = tmp19 - tmp26 tmp28 = triton_helpers.maximum(tmp27, tmp7) tmp29 = triton_helpers.minimum(tmp28, tmp4) tmp30 = tmp25 * tmp29 tmp31 = tmp24 + tmp30 tmp32 = tl.load(in_ptr0 + (tmp20 + (4*tmp9) + (16*x2)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp22 + (4*tmp9) + (16*x2)), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp29 tmp36 = tmp32 + tmp35 tmp37 = tmp31 - tmp36 tmp38 = tmp9.to(tl.float32) tmp39 = tmp8 - tmp38 tmp40 = triton_helpers.maximum(tmp39, tmp7) tmp41 = triton_helpers.minimum(tmp40, tmp4) tmp42 = tmp37 * tmp41 tmp43 = tmp36 + tmp42 tl.store(in_out_ptr0 + (x4), tmp43, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf2, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 return (reinterpret_tensor(buf2, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import random import torch from torch import nn import torch.nn.functional as F class TimeStrech(nn.Module): def __init__(self, scale): super(TimeStrech, self).__init__() self.scale = scale def forward(self, x): mel_size = x.size(-1) x = F.interpolate(x, scale_factor=(1, self.scale), align_corners= False, recompute_scale_factor=True, mode='bilinear').squeeze() if x.size(-1) < mel_size: noise_length = mel_size - x.size(-1) random_pos = random.randint(0, x.size(-1)) - noise_length if random_pos < 0: random_pos = 0 noise = x[..., random_pos:random_pos + noise_length] x = torch.cat([x, noise], dim=-1) else: x = x[..., :mel_size] return x.unsqueeze(1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0( in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 3, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tmp14 = x0 tmp15 = tmp14.to(tl.float32) tmp16 = tmp15 + tmp2 tmp17 = tmp16 * tmp4 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp7) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp10 tmp22 = triton_helpers.minimum(tmp21, tmp12) tmp23 = tl.load(in_ptr0 + (tmp22 + 4 * tmp13 + 16 * x2), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (tmp20 + 4 * tmp13 + 16 * x2), xmask, eviction_policy='evict_last') tmp25 = tmp23 - tmp24 tmp26 = tmp20.to(tl.float32) tmp27 = tmp19 - tmp26 tmp28 = triton_helpers.maximum(tmp27, tmp7) tmp29 = triton_helpers.minimum(tmp28, tmp4) tmp30 = tmp25 * tmp29 tmp31 = tmp24 + tmp30 tmp32 = tl.load(in_ptr0 + (tmp20 + 4 * tmp9 + 16 * x2), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp22 + 4 * tmp9 + 16 * x2), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp29 tmp36 = tmp32 + tmp35 tmp37 = tmp31 - tmp36 tmp38 = tmp9.to(tl.float32) tmp39 = tmp8 - tmp38 tmp40 = triton_helpers.maximum(tmp39, tmp7) tmp41 = triton_helpers.minimum(tmp40, tmp4) tmp42 = tmp37 * tmp41 tmp43 = tmp36 + tmp42 tl.store(in_out_ptr0 + x4, tmp43, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (256)](buf2, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf2, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1), 0), class TimeStrechNew(nn.Module): def __init__(self, scale): super(TimeStrechNew, self).__init__() self.scale = scale def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shaun95/StarGANv2-VC
TimeStrech
false
16,400
[ "MIT" ]
116
ed20538971a03d699351a349a3631767333baeb7
https://github.com/shaun95/StarGANv2-VC/tree/ed20538971a03d699351a349a3631767333baeb7
ConvEncoder3D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/y3/cy3fg3twnrknr5mjnhabp7jbyk2kjbnvec345wejszxzqi4gvbvq.py # Topologically Sorted Source Nodes: [net], Original ATen: [aten.convolution] # Source node to ATen node mapping: # net => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 147456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4096 x1 = (xindex // 4096) % 3 x2 = (xindex // 12288) % 3 x3 = (xindex // 36864) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4096*x2) + (12288*x1) + (36864*x3)), None) tl.store(out_ptr0 + (x4), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/u7/cu7vt3m5gl7iwemaheqiu5hdhl5wgokkvgjbhid6dwe27cawif7w.py # Topologically Sorted Source Nodes: [net, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 393216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3072) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vd/cvdb2pqvjvzobqaw4di5vynhhmn7qfo4zlm5dqfxpafrkpcmtc75.py # Topologically Sorted Source Nodes: [net_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 512) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qs/cqsksyy2erxzg3k5ruat4wgc76uug7ofwwxv2xyxhqvqldlzczak.py # Topologically Sorted Source Nodes: [net_2, relu_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net_2 => convolution_2 # relu_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 128) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ey/ceydargzeq5vvn7j3vkhdrse7fnvywlyuntcacdesojmdop2xve7.py # Topologically Sorted Source Nodes: [net_3, relu_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net_3 => convolution_3 # relu_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/u7/cu7l3awf5agkqaopycpbxf2vaafkaocqm557toaofw3pq6mefb2o.py # Topologically Sorted Source Nodes: [net_4, relu_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net_4 => convolution_4 # relu_4 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7i/c7itdndukfgx3t4ude4otmaulm5pppgvhj3fy2s6svsn6bivzwr7.py # Topologically Sorted Source Nodes: [net_6, relu_5], Original ATen: [aten.mean, aten.relu] # Source node to ATen node mapping: # net_6 => mean # relu_5 => relu_5 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mean,), kwargs = {}) triton_poi_fused_mean_relu_6 = async_compile.triton('triton_poi_fused_mean_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 / tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 3, 3, 64, 64), (36864, 12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 3, 3, 3), (81, 27, 9, 3, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32, 3, 3, 3), (864, 27, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3, 3), (1728, 27, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (256, 128, 3, 3, 3), (3456, 27, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (512, 256, 3, 3, 3), (6912, 27, 9, 3, 1)) assert_size_stride(primals_11, (512, ), (1, )) assert_size_stride(primals_12, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1)) assert_size_stride(primals_13, (512, ), (1, )) assert_size_stride(primals_14, (128, 512), (512, 1)) assert_size_stride(primals_15, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 3, 64, 64), (36864, 12288, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [net], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 147456, grid=grid(147456), stream=stream0) # Topologically Sorted Source Nodes: [net], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 3, 32, 32), (98304, 3072, 1024, 32, 1)) del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [net, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 393216, grid=grid(393216), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [net_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 2, 16, 16), (32768, 512, 256, 16, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [net_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 131072, grid=grid(131072), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [net_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 128, 2, 8, 8), (16384, 128, 64, 8, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [net_2, relu_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf6, primals_7, 65536, grid=grid(65536), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [net_3], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_8, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 256, 1, 4, 4), (4096, 16, 16, 4, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [net_3, relu_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf8, primals_9, 16384, grid=grid(16384), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [net_4], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_10, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 1, 2, 2), (2048, 4, 4, 2, 1)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [net_4, relu_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf10, primals_11, 8192, grid=grid(8192), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [net_5], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_12, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 512, 1, 1, 1), (512, 1, 1, 1, 1)) buf12 = reinterpret_tensor(buf11, (4, 512), (512, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [net_6, relu_5], Original ATen: [aten.mean, aten.relu] triton_poi_fused_mean_relu_6.run(buf12, primals_13, 2048, grid=grid(2048), stream=stream0) del primals_13 buf13 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, buf12, reinterpret_tensor(primals_14, (512, 128), (1, 512), 0), alpha=1, beta=1, out=buf13) del primals_15 return (buf13, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, reinterpret_tensor(primals_1, (4, 3, 3, 64, 64), (36864, 4096, 12288, 64, 1), 0), buf2, buf4, buf6, buf8, buf10, buf12, primals_14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 3, 64, 64), (36864, 12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3, 3), (864, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3, 3), (1728, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 128, 3, 3, 3), (3456, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((512, 256, 3, 3, 3), (6912, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((512, 512, 3, 3, 3), (13824, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from matplotlib import cm as cm import torch.nn as nn class ConvEncoder3D(nn.Module): """ Simple convolutional conditioning network. It consists of 6 convolutional layers, each downsampling the input by a factor of 2, and a final fully-connected layer projecting the output to c_dim dimensions. """ def __init__(self, c_dim=128, hidden_dim=32, **kwargs): """ Initialisation. Args: c_dim (int): output dimension of the latent embedding """ super().__init__() self.conv0 = nn.Conv3d(3, hidden_dim, 3, stride=(1, 2, 2), padding=1) self.conv1 = nn.Conv3d(hidden_dim, hidden_dim * 2, 3, stride=(2, 2, 2), padding=1) self.conv2 = nn.Conv3d(hidden_dim * 2, hidden_dim * 4, 3, stride=(1, 2, 2), padding=1) self.conv3 = nn.Conv3d(hidden_dim * 4, hidden_dim * 8, 3, stride=(2, 2, 2), padding=1) self.conv4 = nn.Conv3d(hidden_dim * 8, hidden_dim * 16, 3, stride=( 2, 2, 2), padding=1) self.conv5 = nn.Conv3d(hidden_dim * 16, hidden_dim * 16, 3, stride= (2, 2, 2), padding=1) self.fc_out = nn.Linear(hidden_dim * 16, c_dim) self.actvn = nn.ReLU() def forward(self, x): x = x.transpose(1, 2) batch_size = x.size(0) net = self.conv0(x) net = self.conv1(self.actvn(net)) net = self.conv2(self.actvn(net)) net = self.conv3(self.actvn(net)) net = self.conv4(self.actvn(net)) net = self.conv5(self.actvn(net)) final_dim = net.shape[1] net = net.view(batch_size, final_dim, -1).mean(2) out = self.fc_out(self.actvn(net)) return out def get_inputs(): return [torch.rand([4, 3, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from matplotlib import cm as cm import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4096 x1 = xindex // 4096 % 3 x2 = xindex // 12288 % 3 x3 = xindex // 36864 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4096 * x2 + 12288 * x1 + 36864 * x3), None) tl.store(out_ptr0 + x4, tmp0, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3072 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 512 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 128 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_mean_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 / tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 3, 3, 64, 64), (36864, 12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 3, 3, 3), (81, 27, 9, 3, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32, 3, 3, 3), (864, 27, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3, 3), (1728, 27, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (256, 128, 3, 3, 3), (3456, 27, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (512, 256, 3, 3, 3), (6912, 27, 9, 3, 1)) assert_size_stride(primals_11, (512,), (1,)) assert_size_stride(primals_12, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1)) assert_size_stride(primals_13, (512,), (1,)) assert_size_stride(primals_14, (128, 512), (512, 1)) assert_size_stride(primals_15, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 3, 64, 64), (36864, 12288, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(147456)](primals_1, buf0, 147456, XBLOCK=1024, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 3, 32, 32), (98304, 3072, 1024, 32, 1) ) del buf0 buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(393216)](buf2, primals_3, 393216, XBLOCK=512, num_warps=8, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 2, 16, 16), (32768, 512, 256, 16, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_2[grid(131072)](buf4, primals_5, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 128, 2, 8, 8), (16384, 128, 64, 8, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_3[grid(65536)](buf6, primals_7, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf7 = extern_kernels.convolution(buf6, primals_8, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 256, 1, 4, 4), (4096, 16, 16, 4, 1)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_4[grid(16384)](buf8, primals_9, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf9 = extern_kernels.convolution(buf8, primals_10, stride=(2, 2, 2 ), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 1, 2, 2), (2048, 4, 4, 2, 1)) buf10 = buf9 del buf9 triton_poi_fused_convolution_relu_5[grid(8192)](buf10, primals_11, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf11 = extern_kernels.convolution(buf10, primals_12, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 512, 1, 1, 1), (512, 1, 1, 1, 1)) buf12 = reinterpret_tensor(buf11, (4, 512), (512, 1), 0) del buf11 triton_poi_fused_mean_relu_6[grid(2048)](buf12, primals_13, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf13 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_15, buf12, reinterpret_tensor( primals_14, (512, 128), (1, 512), 0), alpha=1, beta=1, out=buf13) del primals_15 return (buf13, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, reinterpret_tensor(primals_1, (4, 3, 3, 64, 64), (36864, 4096, 12288, 64, 1), 0), buf2, buf4, buf6, buf8, buf10, buf12, primals_14) class ConvEncoder3DNew(nn.Module): """ Simple convolutional conditioning network. It consists of 6 convolutional layers, each downsampling the input by a factor of 2, and a final fully-connected layer projecting the output to c_dim dimensions. """ def __init__(self, c_dim=128, hidden_dim=32, **kwargs): """ Initialisation. Args: c_dim (int): output dimension of the latent embedding """ super().__init__() self.conv0 = nn.Conv3d(3, hidden_dim, 3, stride=(1, 2, 2), padding=1) self.conv1 = nn.Conv3d(hidden_dim, hidden_dim * 2, 3, stride=(2, 2, 2), padding=1) self.conv2 = nn.Conv3d(hidden_dim * 2, hidden_dim * 4, 3, stride=(1, 2, 2), padding=1) self.conv3 = nn.Conv3d(hidden_dim * 4, hidden_dim * 8, 3, stride=(2, 2, 2), padding=1) self.conv4 = nn.Conv3d(hidden_dim * 8, hidden_dim * 16, 3, stride=( 2, 2, 2), padding=1) self.conv5 = nn.Conv3d(hidden_dim * 16, hidden_dim * 16, 3, stride= (2, 2, 2), padding=1) self.fc_out = nn.Linear(hidden_dim * 16, c_dim) self.actvn = nn.ReLU() def forward(self, input_0): primals_2 = self.conv0.weight primals_3 = self.conv0.bias primals_4 = self.conv1.weight primals_5 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_8 = self.conv3.weight primals_9 = self.conv3.bias primals_10 = self.conv4.weight primals_11 = self.conv4.bias primals_12 = self.conv5.weight primals_13 = self.conv5.bias primals_14 = self.fc_out.weight primals_15 = self.fc_out.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
ray8828/occupancy_flow
ConvEncoder3D
false
16,401
[ "MIT" ]
146
09c172262bb151895d450eb323e2383a5c88841c
https://github.com/ray8828/occupancy_flow/tree/09c172262bb151895d450eb323e2383a5c88841c
PitchShift
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hs/chsm3xxgp6i2y2r5exj6x4olna3lp6zaw2xkhnoilz6r64o5gs4l.py # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] # Source node to ATen node mapping: # interpolate => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_4, add_5, add_6, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6 # Graph fragment: # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = x0 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 + tmp2 tmp16 = 1.0 tmp17 = tmp15 * tmp16 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp6) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp9 tmp22 = triton_helpers.minimum(tmp21, tmp11) tmp23 = tl.load(in_ptr0 + (tmp22 + (4*tmp12) + (16*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (tmp20 + (4*tmp12) + (16*x2)), xmask, eviction_policy='evict_last') tmp25 = tmp23 - tmp24 tmp26 = tmp20.to(tl.float32) tmp27 = tmp19 - tmp26 tmp28 = triton_helpers.maximum(tmp27, tmp6) tmp29 = triton_helpers.minimum(tmp28, tmp16) tmp30 = tmp25 * tmp29 tmp31 = tmp24 + tmp30 tmp32 = tl.load(in_ptr0 + (tmp20 + (4*tmp8) + (16*x2)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp22 + (4*tmp8) + (16*x2)), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp29 tmp36 = tmp32 + tmp35 tmp37 = tmp31 - tmp36 tmp38 = tmp8.to(tl.float32) tmp39 = tmp7 - tmp38 tmp40 = triton_helpers.maximum(tmp39, tmp6) tmp41 = triton_helpers.minimum(tmp40, tmp16) tmp42 = tmp37 * tmp41 tmp43 = tmp36 + tmp42 tl.store(in_out_ptr0 + (x4), tmp43, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 8, 4), (32, 128, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse buf2 = reinterpret_tensor(buf1, (4, 1, 8, 4), (32, 32, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf2, arg0_1, 128, grid=grid(128), stream=stream0) del arg0_1 return (reinterpret_tensor(buf2, (4, 1, 4, 4), (32, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class PitchShift(nn.Module): def __init__(self, shift): super(PitchShift, self).__init__() self.shift = shift def forward(self, x): if len(x.shape) == 2: x = x.unsqueeze(0) x = x.squeeze() mel_size = x.shape[1] shift_scale = (mel_size + self.shift) / mel_size x = F.interpolate(x.unsqueeze(1), scale_factor=(shift_scale, 1.0), align_corners=False, recompute_scale_factor=True, mode='bilinear' ).squeeze(1) x = x[:, :mel_size] if x.size(1) < mel_size: pad_size = mel_size - x.size(1) x = torch.cat([x, torch.zeros(x.size(0), pad_size, x.size(2))], dim=1) x = x.squeeze() return x.unsqueeze(1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'shift': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0( in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = x0 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 + tmp2 tmp16 = 1.0 tmp17 = tmp15 * tmp16 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp6) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp9 tmp22 = triton_helpers.minimum(tmp21, tmp11) tmp23 = tl.load(in_ptr0 + (tmp22 + 4 * tmp12 + 16 * x2), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (tmp20 + 4 * tmp12 + 16 * x2), xmask, eviction_policy='evict_last') tmp25 = tmp23 - tmp24 tmp26 = tmp20.to(tl.float32) tmp27 = tmp19 - tmp26 tmp28 = triton_helpers.maximum(tmp27, tmp6) tmp29 = triton_helpers.minimum(tmp28, tmp16) tmp30 = tmp25 * tmp29 tmp31 = tmp24 + tmp30 tmp32 = tl.load(in_ptr0 + (tmp20 + 4 * tmp8 + 16 * x2), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp22 + 4 * tmp8 + 16 * x2), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp29 tmp36 = tmp32 + tmp35 tmp37 = tmp31 - tmp36 tmp38 = tmp8.to(tl.float32) tmp39 = tmp7 - tmp38 tmp40 = triton_helpers.maximum(tmp39, tmp6) tmp41 = triton_helpers.minimum(tmp40, tmp16) tmp42 = tmp37 * tmp41 tmp43 = tmp36 + tmp42 tl.store(in_out_ptr0 + x4, tmp43, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 8, 4), (32, 128, 4, 1), torch.float32) buf1 = buf0 del buf0 buf2 = reinterpret_tensor(buf1, (4, 1, 8, 4), (32, 32, 4, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (128)](buf2, arg0_1, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf2, (4, 1, 4, 4), (32, 16, 4, 1), 0), class PitchShiftNew(nn.Module): def __init__(self, shift): super(PitchShiftNew, self).__init__() self.shift = shift def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shaun95/StarGANv2-VC
PitchShift
false
16,402
[ "MIT" ]
116
ed20538971a03d699351a349a3631767333baeb7
https://github.com/shaun95/StarGANv2-VC/tree/ed20538971a03d699351a349a3631767333baeb7
InjectNoise
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hy/chy2gdvcdlpxio6r2ezu76sbqj6jaum4snkq6izi5zxkdqh3u2yj.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %randn), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [noise], Original ATen: [aten.randn] buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_1, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn class InjectNoise(nn.Module): def __init__(self, channels): super().__init__() self.weight = nn.Parameter(torch.zeros(1, channels, 1, 1)) def forward(self, x): noise = torch.randn((x.shape[0], 1, x.shape[2], x.shape[3]), device =x.device) return x + self.weight * noise def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], device=device( type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf2, buf1 class InjectNoiseNew(nn.Module): def __init__(self, channels): super().__init__() self.weight = nn.Parameter(torch.zeros(1, channels, 1, 1)) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
shimon-c/Machine-Learning-Collection
InjectNoise
false
16,403
[ "MIT" ]
3,094
ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
https://github.com/shimon-c/Machine-Learning-Collection/tree/ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
ResBlk
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wo/cwo5hzyj7r5kfs5qkbujhau55erj2h3367t3krgxxma4ysrszby7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vo/cvo56aotw4yuhuax6oyrf43t5ssqhzuwodjmjfylt42bqssid7vq.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => gt_1, mul_1, where_1 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/iz/ciznb73q5a3l5esh4sw5ejdw3d2b6uuntjcpgiok5w7sbiizunre.py # Topologically Sorted Source Nodes: [x_3, x_4, truediv], Original ATen: [aten.convolution, aten.add, aten.div] # Source node to ATen node mapping: # truediv => div # x_3 => convolution_1 # x_4 => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 1.4142135623730951), kwargs = {}) triton_poi_fused_add_convolution_div_2 = async_compile.triton('triton_poi_fused_add_convolution_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.7071067811865475 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, buf3, 256, grid=grid(256), stream=stream0) del buf1 del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3, x_4, truediv], Original ATen: [aten.convolution, aten.add, aten.div] triton_poi_fused_add_convolution_div_2.run(buf5, primals_1, primals_5, 256, grid=grid(256), stream=stream0) del primals_1 del primals_5 return (buf5, primals_2, primals_4, buf0, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn import torch.nn.functional as F class DownSample(nn.Module): def __init__(self, layer_type): super().__init__() self.layer_type = layer_type def forward(self, x): if self.layer_type == 'none': return x elif self.layer_type == 'timepreserve': return F.avg_pool2d(x, (2, 1)) elif self.layer_type == 'half': return F.avg_pool2d(x, 2) else: raise RuntimeError( 'Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) class ResBlk(nn.Module): def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), normalize= False, downsample='none'): super().__init__() self.actv = actv self.normalize = normalize self.downsample = DownSample(downsample) self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out) def _build_weights(self, dim_in, dim_out): self.conv1 = nn.Conv2d(dim_in, dim_in, 3, 1, 1) self.conv2 = nn.Conv2d(dim_in, dim_out, 3, 1, 1) if self.normalize: self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) if self.learned_sc: self.conv1x1 = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False) def _shortcut(self, x): if self.learned_sc: x = self.conv1x1(x) if self.downsample: x = self.downsample(x) return x def _residual(self, x): if self.normalize: x = self.norm1(x) x = self.actv(x) x = self.conv1(x) x = self.downsample(x) if self.normalize: x = self.norm2(x) x = self.actv(x) x = self.conv2(x) return x def forward(self, x): x = self._shortcut(x) + self._residual(x) return x / math.sqrt(2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_div_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.7071067811865475 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_1[grid(256)](buf1, primals_3, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_add_convolution_div_2[grid(256)](buf5, primals_1, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_5 return buf5, primals_2, primals_4, buf0, buf2, buf3 class DownSample(nn.Module): def __init__(self, layer_type): super().__init__() self.layer_type = layer_type def forward(self, x): if self.layer_type == 'none': return x elif self.layer_type == 'timepreserve': return F.avg_pool2d(x, (2, 1)) elif self.layer_type == 'half': return F.avg_pool2d(x, 2) else: raise RuntimeError( 'Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) class ResBlkNew(nn.Module): def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), normalize= False, downsample='none'): super().__init__() self.actv = actv self.normalize = normalize self.downsample = DownSample(downsample) self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out) def _build_weights(self, dim_in, dim_out): self.conv1 = nn.Conv2d(dim_in, dim_in, 3, 1, 1) self.conv2 = nn.Conv2d(dim_in, dim_out, 3, 1, 1) if self.normalize: self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) if self.learned_sc: self.conv1x1 = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False) def _shortcut(self, x): if self.learned_sc: x = self.conv1x1(x) if self.downsample: x = self.downsample(x) return x def _residual(self, x): if self.normalize: x = self.norm1(x) x = self.actv(x) x = self.conv1(x) x = self.downsample(x) if self.normalize: x = self.norm2(x) x = self.actv(x) x = self.conv2(x) return x def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
shaun95/StarGANv2-VC
ResBlk
false
16,404
[ "MIT" ]
116
ed20538971a03d699351a349a3631767333baeb7
https://github.com/shaun95/StarGANv2-VC/tree/ed20538971a03d699351a349a3631767333baeb7
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dg/cdgw6x7nju4bzp2wyuwgeanbco7zcjis6yiusovvnpz6zw3yjd3l.py # Topologically Sorted Source Nodes: [mean, sub], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # mean => mean # sub => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lu/cluxtxibe7l27s4qhwuk23gbd42mibotfwkx6ewkc3w23drlzgks.py # Topologically Sorted Source Nodes: [pow_1, s, add, rsqrt, x, mul_1, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul_1 => mul_1 # pow_1 => pow_1 # rsqrt => rsqrt # s => mean_1 # x => mul # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %mul), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_add_mean_mul_pow_rsqrt_1 = async_compile.triton('triton_poi_fused_add_mean_mul_pow_rsqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_pow_rsqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.rsqrt(tmp16) tmp18 = tmp1 * tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sub], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s, add, rsqrt, x, mul_1, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul] triton_poi_fused_add_mean_mul_pow_rsqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm(nn.Module): """Norm to 0-mean 1-std , then do a learned diagonal affine transform.""" def __init__(self, features, eps=1e-05): super(LayerNorm, self).__init__() self.scale = nn.Parameter(torch.ones(features)) self.shift = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) s = (x - mean).pow(2).mean(-1, keepdim=True) x = (x - mean) * torch.rsqrt(s + self.eps) return self.scale * x + self.shift def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.rsqrt(tmp16) tmp18 = tmp1 * tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mean_mul_pow_rsqrt_1[grid(256)](primals_2, buf0, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class LayerNormNew(nn.Module): """Norm to 0-mean 1-std , then do a learned diagonal affine transform.""" def __init__(self, features, eps=1e-05): super(LayerNormNew, self).__init__() self.scale = nn.Parameter(torch.ones(features)) self.shift = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, input_0): primals_2 = self.scale primals_3 = self.shift primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shenyunlong/naru
LayerNorm
false
16,405
[ "Apache-2.0" ]
70
264cf4e9c96c9e34422f9eebc455a714aeef0b57
https://github.com/shenyunlong/naru/tree/264cf4e9c96c9e34422f9eebc455a714aeef0b57
AdaIN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qe/cqeosomkjl2wyhgautbj64zvn2r6slesq4xiplyeynuljwzp4fnz.py # Topologically Sorted Source Nodes: [add, instance_norm, mul, add_1], Original ATen: [aten.add, aten._native_batch_norm_legit, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_2 # instance_norm => add_1, rsqrt, var_mean # mul => mul_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %view_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %getitem_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_mul_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = 1.0 tmp26 = tmp24 + tmp25 tmp27 = tmp0 - tmp10 tmp28 = tmp27 * tmp21 tmp29 = tmp26 * tmp28 tmp32 = tmp30 + tmp31 tmp33 = tmp29 + tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (16*x0)), tmp33, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf4 = reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, instance_norm, mul, add_1], Original ATen: [aten.add, aten._native_batch_norm_legit, aten.mul] stream0 = get_raw_stream(0) triton_per_fused__native_batch_norm_legit_add_mul_0.run(buf4, primals_4, buf0, primals_2, buf1, buf5, 16, 16, grid=grid(16), stream=stream0) del buf0 del primals_2 return (buf5, primals_3, primals_4, buf1, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class AdaIN(nn.Module): def __init__(self, style_dim, num_features): super().__init__() self.norm = nn.InstanceNorm2d(num_features, affine=False) self.fc = nn.Linear(style_dim, num_features * 2) def forward(self, x, s): h = self.fc(s) h = h.view(h.size(0), h.size(1), 1, 1) gamma, beta = torch.chunk(h, chunks=2, dim=1) return (1 + gamma) * self.norm(x) + beta def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'style_dim': 4, 'num_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = 1.0 tmp26 = tmp24 + tmp25 tmp27 = tmp0 - tmp10 tmp28 = tmp27 * tmp21 tmp29 = tmp26 * tmp28 tmp32 = tmp30 + tmp31 tmp33 = tmp29 + tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp33, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf4 = reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused__native_batch_norm_legit_add_mul_0[grid(16)](buf4, primals_4, buf0, primals_2, buf1, buf5, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf0 del primals_2 return buf5, primals_3, primals_4, buf1, buf4 class AdaINNew(nn.Module): def __init__(self, style_dim, num_features): super().__init__() self.norm = nn.InstanceNorm2d(num_features, affine=False) self.fc = nn.Linear(style_dim, num_features * 2) def forward(self, input_0, input_1): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
shaun95/StarGANv2-VC
AdaIN
false
16,406
[ "MIT" ]
116
ed20538971a03d699351a349a3631767333baeb7
https://github.com/shaun95/StarGANv2-VC/tree/ed20538971a03d699351a349a3631767333baeb7
WSConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/of/cofwklo5nuhcnwyox2iqrwvifqkquaz5nm5gngbpzzb6xu4usmqd.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.23570226039551584), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.23570226039551584 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/at/catyivxdqgliwunkrygqmudtr3fumc4lgfzxwaogch2z5s2rnn7a.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %view), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn class WSConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, gain=2): super(WSConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.scale = (gain / (in_channels * kernel_size ** 2)) ** 0.5 self.bias = self.conv.bias self.conv.bias = None nn.init.normal_(self.conv.weight) nn.init.zeros_(self.bias) def forward(self, x): return self.conv(x * self.scale) + self.bias.view(1, self.bias. shape[0], 1, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.23570226039551584 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_add_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 class WSConv2dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, gain=2): super(WSConv2dNew, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.scale = (gain / (in_channels * kernel_size ** 2)) ** 0.5 self.bias = self.conv.bias self.conv.bias = None nn.init.normal_(self.conv.weight) nn.init.zeros_(self.bias) def forward(self, input_0): primals_3 = self.bias primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shimon-c/Machine-Learning-Collection
WSConv2d
false
16,407
[ "MIT" ]
3,094
ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
https://github.com/shimon-c/Machine-Learning-Collection/tree/ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
WSLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fw/cfwvbe4gstgcn6dzjodlg3ivy5emtb773ndnmu54q3hlno3avnrq.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t6/ct6f57cdvyh3ahq6iwyawuy7577bar2ftumjxqllolmn4c4lh7ph.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn class WSLinear(nn.Module): def __init__(self, in_features, out_features, gain=2): super(WSLinear, self).__init__() self.linear = nn.Linear(in_features, out_features) self.scale = (gain / in_features) ** 0.5 self.bias = self.linear.bias self.linear.bias = None nn.init.normal_(self.linear.weight) nn.init.zeros_(self.bias) def forward(self, x): return self.linear(x * self.scale) + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0) class WSLinearNew(nn.Module): def __init__(self, in_features, out_features, gain=2): super(WSLinearNew, self).__init__() self.linear = nn.Linear(in_features, out_features) self.scale = (gain / in_features) ** 0.5 self.bias = self.linear.bias self.linear.bias = None nn.init.normal_(self.linear.weight) nn.init.zeros_(self.bias) def forward(self, input_0): primals_3 = self.bias primals_2 = self.linear.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shimon-c/Machine-Learning-Collection
WSLinear
false
16,408
[ "MIT" ]
3,094
ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
https://github.com/shimon-c/Machine-Learning-Collection/tree/ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
WSConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/kz/ckzysfnmjdhibj6542hl4gprkyaefndj5yyitfjms33ia7bbwcst.py # Topologically Sorted Source Nodes: [weight, mul, weight_1], Original ATen: [aten.native_layer_norm, aten.mul] # Source node to ATen node mapping: # mul => mul_1 # weight => add, mul, rsqrt, sub, var_mean # weight_1 => mul_2 # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0000000000000002e-10), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 0.125), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %mul), kwargs = {}) triton_per_fused_mul_native_layer_norm_0 = async_compile.triton('triton_per_fused_mul_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 64.0 tmp18 = tmp16 / tmp17 tmp19 = 1.0000000000000002e-10 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp23 = 0.125 tmp24 = tmp22 * tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (64*x0)), tmp27, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %mul_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight, mul, weight_1], Original ATen: [aten.native_layer_norm, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_mul_native_layer_norm_0.run(buf3, primals_1, primals_2, buf0, buf4, 4, 64, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(primals_4, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf6, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf6, primals_1, primals_2, primals_4, buf0, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F from torch import nn from torch.nn import functional as F class WSConv2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, eps=1e-05): super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.gain = nn.Parameter(torch.ones(out_channels)) self.eps = eps ** 2 fan_in = torch.numel(self.weight[0]) self.scale = fan_in ** -0.5 nn.init.kaiming_normal_(self.weight, nonlinearity='linear') def forward(self, input): weight = F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps) gain = self.gain.view([-1] + [1] * (weight.ndim - 1)) weight = gain * self.scale * weight return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mul_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 64.0 tmp18 = tmp16 / tmp17 tmp19 = 1.0000000000000002e-10 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp23 = 0.125 tmp24 = tmp22 * tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 64 * x0), tmp27, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_mul_native_layer_norm_0[grid(4)](buf3, primals_1, primals_2, buf0, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf5 = extern_kernels.convolution(primals_4, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_1[grid(16)](buf6, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf6, primals_1, primals_2, primals_4, buf0, buf3, buf4 class WSConv2dNew(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, eps=1e-05): super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.gain = nn.Parameter(torch.ones(out_channels)) self.eps = eps ** 2 fan_in = torch.numel(self.weight[0]) self.scale = fan_in ** -0.5 nn.init.kaiming_normal_(self.weight, nonlinearity='linear') def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = self.gain primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
rosinality/vision-transformers-pytorch
WSConv2d
false
16,409
[ "MIT" ]
77
b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
https://github.com/rosinality/vision-transformers-pytorch/tree/b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
DQN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ky/cky64l574tkwxzjewzevqyhty73x4t3q4p6d2tu2humfvstjwiaa.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 32), (32, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 2048, grid=grid(2048), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import random import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class DQN(nn.Module): def __init__(self, state_dim, out_dim, capacity, bsz, epsilon): super().__init__() self.steps_done = 0 self.position = 0 self.pool = [] self.capacity = capacity self.bsz = bsz self.epsilon = epsilon self.fc1 = nn.Linear(state_dim, 32) self.fc2 = nn.Linear(32, out_dim) self.fc1.weight.data.uniform_(-0.1, 0.1) self.fc2.weight.data.uniform_(-0.1, 0.1) def forward(self, x): x = F.relu(self.fc1(x)) return self.fc2(x) def action(self, state): self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000 if random.random() > self.epsilon: return self(Variable(state, volatile=True)).data.max(1)[1].view( 1, 1) else: return longTensor([[random.randrange(2)]]) def push(self, *args): if len(self) < self.capacity: self.pool.append(None) self.pool[self.position] = Transition(*args) self.position = (self.position + 1) % self.capacity def sample(self): return random.sample(self.pool, self.bsz) def __len__(self): return len(self.pool) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'out_dim': 4, 'capacity': 4, 'bsz': 4, 'epsilon': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import random import torch.nn as nn from torch.autograd import Variable assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 32), (32, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf1, primals_2, buf3, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), primals_4, buf3 class DQNNew(nn.Module): def __init__(self, state_dim, out_dim, capacity, bsz, epsilon): super().__init__() self.steps_done = 0 self.position = 0 self.pool = [] self.capacity = capacity self.bsz = bsz self.epsilon = epsilon self.fc1 = nn.Linear(state_dim, 32) self.fc2 = nn.Linear(32, out_dim) self.fc1.weight.data.uniform_(-0.1, 0.1) self.fc2.weight.data.uniform_(-0.1, 0.1) def action(self, state): self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000 if random.random() > self.epsilon: return self(Variable(state, volatile=True)).data.max(1)[1].view( 1, 1) else: return longTensor([[random.randrange(2)]]) def push(self, *args): if len(self) < self.capacity: self.pool.append(None) self.pool[self.position] = Transition(*args) self.position = (self.position + 1) % self.capacity def sample(self): return random.sample(self.pool, self.bsz) def __len__(self): return len(self.pool) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
shinoyuki222/torch-light
DQN
false
16,410
[ "MIT" ]
310
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rm/crmjcbrhesyjltwjwo2gy5ktnw7trv24ctlurkfme6ykhtfquq32.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rb/crbncgepp7pchewiviz2ecap4hkql77bxprjbw2ciuujmpu57s6c.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4 + y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pq/cpqnfrogm4dnzim2vyszfmugd6fc43gfnmxicoezmiidejzudrdz.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bb/cbby6op7dmkjsypxm4o3urasth73g6q5oi4ddo6uk6dsuv6off2v.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (8 + y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/we/cwe54p4p4jvwbdktkpj3wy2coheu6f3r3dgvi7ozm7xjfk4mgbwx.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_9,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/36/c36mdvdlmkr4g6rcquwj2pbp2ke2mrvmhx3r7akoexvrkzzfhdye.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add] # Source node to ATen node mapping: # x_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_5), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf1, 16, 4, grid=grid(16, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, primals_3, buf2, 16, 4, grid=grid(16, 4), stream=stream0) buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf2, (16, 1, 4), (4, 0, 1), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0) del buf4 buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf0, primals_3, buf6, 16, 4, grid=grid(16, 4), stream=stream0) del buf0 del primals_3 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf7, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf10, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 return (buf10, buf5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf5, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Attention(nn.Module): def __init__(self, dim, heads, dropout): super().__init__() self.heads = heads head_dim = dim // heads self.scale = head_dim ** -0.5 self.attn = None self.qkv = nn.Linear(dim, dim * 3) self.attn_drop = nn.Dropout(dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(dropout) @property def unwrapped(self): return self def forward(self, x, mask=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.heads, C // self.heads ).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'heads': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4 + y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (8 + y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf1, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf0, primals_3, buf2, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf2, (16, 1, 4), (4, 0, 1), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf4 buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf0, primals_3, buf6, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf0 del primals_3 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(16, 4)](buf7, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0) del buf9 triton_poi_fused_add_6[grid(64)](buf10, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return buf10, buf5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf5, reinterpret_tensor(buf8, (16, 4), (4, 1), 0 ), primals_4, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 4), 0) class AttentionNew(nn.Module): def __init__(self, dim, heads, dropout): super().__init__() self.heads = heads head_dim = dim // heads self.scale = head_dim ** -0.5 self.attn = None self.qkv = nn.Linear(dim, dim * 3) self.attn_drop = nn.Dropout(dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(dropout) @property def unwrapped(self): return self def forward(self, input_0): primals_2 = self.qkv.weight primals_3 = self.qkv.bias primals_4 = self.proj.weight primals_5 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
shampooma/segmenter
Attention
false
16,411
[ "MIT" ]
418
b08fd481da6758e37d108ba28676229b62f757aa
https://github.com/shampooma/segmenter/tree/b08fd481da6758e37d108ba28676229b62f757aa
Early_StyleConv_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6s/c6ssu7mmw5kesdtj3v7fv2fbx7eau2sv54jqhqb3ztgib5cqvqu2.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/d7/cd72qbtermy7xtw64je5kvlvqx52hkdpatbfqpqnz2opkmresvsx.py # Topologically Sorted Source Nodes: [weight_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight_1 => mul_2 # Graph fragment: # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rj/crjnce6eymavdflord56pzehm7rgev4dzvdgiuz65hgovoo7oj7e.py # Topologically Sorted Source Nodes: [result, result_3, mul_3, result_4, result_5], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.mul, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # mul_3 => mul_4 # result => repeat # result_3 => add_1, rsqrt, var_mean # result_4 => add_2 # result_5 => gt, mul_5, where # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [4, 1, 1, 1]), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %getitem), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %getitem_1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_2, 0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_2, %mul_5), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_leaky_relu_mul_repeat_2 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_leaky_relu_mul_repeat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_leaky_relu_mul_repeat_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_leaky_relu_mul_repeat_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4 x3 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r2 + (16*x0)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r2), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x3 % 4), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr3 + (x0 + (8*x1)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr3 + (4 + x0 + (8*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.full([XBLOCK, 1], 16, tl.int32) tmp13 = tmp12.to(tl.float32) tmp14 = tmp11 / tmp13 tmp15 = tmp5 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.where(xmask, tmp17, 0) tmp20 = tl.sum(tmp19, 1)[:, None] tmp21 = 16.0 tmp22 = tmp20 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tmp27 = tmp1 * tmp26 tmp28 = tmp0 + tmp27 tmp29 = tmp28 - tmp14 tmp30 = tmp29 * tmp25 tmp32 = tmp30 * tmp31 tmp34 = tmp32 + tmp33 tmp35 = 0.0 tmp36 = tmp34 > tmp35 tmp37 = 0.2 tmp38 = tmp34 * tmp37 tmp39 = tl.where(tmp36, tmp34, tmp38) tl.store(out_ptr0 + (r2 + (16*x3)), tmp0, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + (x3), tmp25, xmask) tl.store(in_out_ptr1 + (r2 + (16*x3)), tmp39, xmask) tl.store(out_ptr1 + (x3), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/cs/ccs4b4jy66au5erfv5ifk6fproa7b5z5lu6y3vjlatjl3veiqwwn.py # Topologically Sorted Source Nodes: [weight_2], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight_2 => mul_6 # Graph fragment: # %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_7, 0.23570226039551584), kwargs = {}) triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.23570226039551584 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wx/cwxqbjzszfpdmn2s6ttfpzgq54xal4jdh6c2ucbgsb7lfkfp72sl.py # Topologically Sorted Source Nodes: [result_6, result_9, mul_8, result_10, result_11], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.mul, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # mul_8 => mul_11 # result_10 => add_5 # result_11 => gt_1, mul_12, where_1 # result_6 => convolution # result_9 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %mul_6, %primals_8, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %getitem_4), kwargs = {}) # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_11, %getitem_5), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_5, 0), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.2), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_5, %mul_12), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_leaky_relu_mul_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_leaky_relu_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_leaky_relu_mul_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_leaky_relu_mul_4(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (r2), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x3 % 4), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr3 + (x0 + (8*x1)), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr3 + (4 + x0 + (8*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tl.full([XBLOCK, 1], 16, tl.int32) tmp15 = tmp14.to(tl.float32) tmp16 = tmp13 / tmp15 tmp17 = tmp7 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.where(xmask, tmp19, 0) tmp22 = tl.sum(tmp21, 1)[:, None] tmp23 = 16.0 tmp24 = tmp22 / tmp23 tmp25 = 1e-05 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tmp29 = tmp3 * tmp28 tmp30 = tmp2 + tmp29 tmp31 = tmp30 - tmp16 tmp32 = tmp31 * tmp27 tmp34 = tmp32 * tmp33 tmp36 = tmp34 + tmp35 tmp37 = 0.0 tmp38 = tmp36 > tmp37 tmp39 = 0.2 tmp40 = tmp36 * tmp39 tmp41 = tl.where(tmp38, tmp36, tmp40) tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp27, xmask) tl.store(in_out_ptr2 + (r2 + (16*x3)), tmp41, xmask) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (1, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (8, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_10, (8, 4), (4, 1)) assert_size_stride(primals_11, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_3, buf1, 4, grid=grid(4), stream=stream0) del primals_3 buf2 = empty_strided_cuda((8, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight_1], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_4, buf2, 32, grid=grid(32), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(buf2, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf7 = reinterpret_tensor(buf5, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf5 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [result, result_3, mul_3, result_4, result_5], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.mul, aten.add, aten.leaky_relu] triton_per_fused__native_batch_norm_legit_add_leaky_relu_mul_repeat_2.run(buf7, buf9, primals_1, primals_2, buf1, buf3, buf0, buf4, 16, 16, grid=grid(16), stream=stream0) del primals_1 buf10 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [weight_2], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(primals_7, buf10, 144, grid=grid(144), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [result_6], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf9, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1)) buf13 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [weight_3], Original ATen: [aten.mul] triton_poi_fused_mul_0.run(primals_9, buf13, 4, grid=grid(4), stream=stream0) del primals_9 buf14 = empty_strided_cuda((8, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight_4], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_10, buf14, 32, grid=grid(32), stream=stream0) del primals_10 buf15 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, primals_6, reinterpret_tensor(buf14, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_11 buf12 = buf11; del buf11 # reuse buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf17 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf19 = reinterpret_tensor(buf17, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf17 # reuse buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [result_6, result_9, mul_8, result_10, result_11], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.mul, aten.add, aten.leaky_relu] triton_per_fused__native_batch_norm_legit_add_convolution_leaky_relu_mul_4.run(buf12, buf19, buf21, primals_8, primals_2, buf13, buf15, buf16, 16, 16, grid=grid(16), stream=stream0) del primals_8 return (buf21, buf1, buf2, buf10, buf13, buf14, primals_2, primals_6, buf0, buf1, reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 0), reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 4), buf4, buf7, buf9, buf10, buf12, buf13, reinterpret_tensor(buf15, (4, 4, 1, 1), (8, 1, 1, 1), 0), reinterpret_tensor(buf15, (4, 4, 1, 1), (8, 1, 1, 1), 4), buf16, buf19, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SLinear(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() linear = nn.Linear(dim_in, dim_out) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = quick_scale(linear) def forward(self, x): return self.linear(x) class SConv2d(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = quick_scale(conv) def forward(self, x): return self.conv(x) class FC_A(nn.Module): """ Learned affine transform A, this module is used to transform midiate vector w into a style vector """ def __init__(self, dim_latent, n_channel): super().__init__() self.transform = SLinear(dim_latent, n_channel * 2) self.transform.linear.bias.data[:n_channel] = 1 self.transform.linear.bias.data[n_channel:] = 0 def forward(self, w): style = self.transform(w).unsqueeze(2).unsqueeze(3) return style class AdaIn(nn.Module): """ adaptive instance normalization """ def __init__(self, n_channel): super().__init__() self.norm = nn.InstanceNorm2d(n_channel) def forward(self, image, style): factor, bias = style.chunk(2, 1) result = self.norm(image) result = result * factor + bias return result class Scale_B(nn.Module): """ Learned per-channel scale factor, used to scale the noise """ def __init__(self, n_channel): super().__init__() self.weight = nn.Parameter(torch.zeros((1, n_channel, 1, 1))) def forward(self, noise): result = noise * self.weight return result class Early_StyleConv_Block(nn.Module): """ This is the very first block of generator that get the constant value as input """ def __init__(self, n_channel, dim_latent, dim_input): super().__init__() self.constant = nn.Parameter(torch.randn(1, n_channel, dim_input, dim_input)) self.style1 = FC_A(dim_latent, n_channel) self.style2 = FC_A(dim_latent, n_channel) self.noise1 = quick_scale(Scale_B(n_channel)) self.noise2 = quick_scale(Scale_B(n_channel)) self.adain = AdaIn(n_channel) self.lrelu = nn.LeakyReLU(0.2) self.conv = SConv2d(n_channel, n_channel, 3, padding=1) def forward(self, latent_w, noise): result = self.constant.repeat(noise.shape[0], 1, 1, 1) result = result + self.noise1(noise) result = self.adain(result, self.style1(latent_w)) result = self.lrelu(result) result = self.conv(result) result = result + self.noise2(noise) result = self.adain(result, self.style2(latent_w)) result = self.lrelu(result) return result def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_channel': 4, 'dim_latent': 4, 'dim_input': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_leaky_relu_mul_repeat_2( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4 x3 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0), xmask, eviction_policy= 'evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + r2, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x3 % 4, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr3 + (x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr3 + (4 + x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tl.where(xmask, tmp5, 0) tmp8 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.full([XBLOCK, 1], 16, tl.int32) tmp13 = tmp12.to(tl.float32) tmp14 = tmp11 / tmp13 tmp15 = tmp5 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.where(xmask, tmp17, 0) tmp20 = tl.sum(tmp19, 1)[:, None] tmp21 = 16.0 tmp22 = tmp20 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tmp27 = tmp1 * tmp26 tmp28 = tmp0 + tmp27 tmp29 = tmp28 - tmp14 tmp30 = tmp29 * tmp25 tmp32 = tmp30 * tmp31 tmp34 = tmp32 + tmp33 tmp35 = 0.0 tmp36 = tmp34 > tmp35 tmp37 = 0.2 tmp38 = tmp34 * tmp37 tmp39 = tl.where(tmp36, tmp34, tmp38) tl.store(out_ptr0 + (r2 + 16 * x3), tmp0, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp25, xmask) tl.store(in_out_ptr1 + (r2 + 16 * x3), tmp39, xmask) tl.store(out_ptr1 + x3, tmp14, xmask) @triton.jit def triton_poi_fused_mul_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.23570226039551584 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_leaky_relu_mul_4( in_out_ptr0, in_out_ptr1, in_out_ptr2, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + r2, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x3 % 4, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr3 + (x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp35 = tl.load(in_ptr3 + (4 + x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tl.where(xmask, tmp7, 0) tmp10 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tl.full([XBLOCK, 1], 16, tl.int32) tmp15 = tmp14.to(tl.float32) tmp16 = tmp13 / tmp15 tmp17 = tmp7 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.where(xmask, tmp19, 0) tmp22 = tl.sum(tmp21, 1)[:, None] tmp23 = 16.0 tmp24 = tmp22 / tmp23 tmp25 = 1e-05 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tmp29 = tmp3 * tmp28 tmp30 = tmp2 + tmp29 tmp31 = tmp30 - tmp16 tmp32 = tmp31 * tmp27 tmp34 = tmp32 * tmp33 tmp36 = tmp34 + tmp35 tmp37 = 0.0 tmp38 = tmp36 > tmp37 tmp39 = 0.2 tmp40 = tmp36 * tmp39 tmp41 = tl.where(tmp38, tmp36, tmp40) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp27, xmask) tl.store(in_out_ptr2 + (r2 + 16 * x3), tmp41, xmask) tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (1, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_10, (8, 4), (4, 1)) assert_size_stride(primals_11, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(4)](primals_3, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((8, 4), (4, 1), torch.float32) triton_poi_fused_mul_1[grid(32)](primals_4, buf2, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(buf2, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf7 = reinterpret_tensor(buf5, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf5 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = buf8 del buf8 triton_per_fused__native_batch_norm_legit_add_leaky_relu_mul_repeat_2[ grid(16)](buf7, buf9, primals_1, primals_2, buf1, buf3, buf0, buf4, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del primals_1 buf10 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) triton_poi_fused_mul_3[grid(144)](primals_7, buf10, 144, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf11 = extern_kernels.convolution(buf9, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1)) buf13 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_mul_0[grid(4)](primals_9, buf13, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_9 buf14 = empty_strided_cuda((8, 4), (4, 1), torch.float32) triton_poi_fused_mul_1[grid(32)](primals_10, buf14, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_10 buf15 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_11, primals_6, reinterpret_tensor( buf14, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_11 buf12 = buf11 del buf11 buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf17 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) buf19 = reinterpret_tensor(buf17, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf17 buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf21 = buf20 del buf20 triton_per_fused__native_batch_norm_legit_add_convolution_leaky_relu_mul_4[ grid(16)](buf12, buf19, buf21, primals_8, primals_2, buf13, buf15, buf16, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_8 return (buf21, buf1, buf2, buf10, buf13, buf14, primals_2, primals_6, buf0, buf1, reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 0), reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 4), buf4, buf7, buf9, buf10, buf12, buf13, reinterpret_tensor(buf15, (4, 4, 1, 1), (8, 1, 1, 1), 0), reinterpret_tensor(buf15, (4, 4, 1, 1), (8, 1, 1, 1), 4), buf16, buf19) def quick_scale(module, name='weight'): ScaleW.apply(module, name) return module class ScaleW: """ Constructor: name - name of attribute to be scaled """ def __init__(self, name): self.name = name def scale(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): """ Apply runtime scaling to specific module """ hook = ScaleW(name) weight = getattr(module, name) module.register_parameter(name + '_orig', nn.Parameter(weight.data)) del module._parameters[name] module.register_forward_pre_hook(hook) def __call__(self, module, whatever): weight = self.scale(module) setattr(module, self.name, weight) class SLinear(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() linear = nn.Linear(dim_in, dim_out) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = quick_scale(linear) def forward(self, x): return self.linear(x) class SConv2d(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = quick_scale(conv) def forward(self, x): return self.conv(x) class FC_A(nn.Module): """ Learned affine transform A, this module is used to transform midiate vector w into a style vector """ def __init__(self, dim_latent, n_channel): super().__init__() self.transform = SLinear(dim_latent, n_channel * 2) self.transform.linear.bias.data[:n_channel] = 1 self.transform.linear.bias.data[n_channel:] = 0 def forward(self, w): style = self.transform(w).unsqueeze(2).unsqueeze(3) return style class AdaIn(nn.Module): """ adaptive instance normalization """ def __init__(self, n_channel): super().__init__() self.norm = nn.InstanceNorm2d(n_channel) def forward(self, image, style): factor, bias = style.chunk(2, 1) result = self.norm(image) result = result * factor + bias return result class Scale_B(nn.Module): """ Learned per-channel scale factor, used to scale the noise """ def __init__(self, n_channel): super().__init__() self.weight = nn.Parameter(torch.zeros((1, n_channel, 1, 1))) def forward(self, noise): result = noise * self.weight return result class Early_StyleConv_BlockNew(nn.Module): """ This is the very first block of generator that get the constant value as input """ def __init__(self, n_channel, dim_latent, dim_input): super().__init__() self.constant = nn.Parameter(torch.randn(1, n_channel, dim_input, dim_input)) self.style1 = FC_A(dim_latent, n_channel) self.style2 = FC_A(dim_latent, n_channel) self.noise1 = quick_scale(Scale_B(n_channel)) self.noise2 = quick_scale(Scale_B(n_channel)) self.adain = AdaIn(n_channel) self.lrelu = nn.LeakyReLU(0.2) self.conv = SConv2d(n_channel, n_channel, 3, padding=1) def forward(self, input_0, input_1): primals_1 = self.constant primals_5 = self.style1.transform.linear.bias primals_4 = self.style1.transform.linear.weight_orig primals_11 = self.style2.transform.linear.bias primals_10 = self.style2.transform.linear.weight_orig primals_3 = self.noise1.weight_orig primals_9 = self.noise2.weight_orig primals_8 = self.conv.conv.bias primals_7 = self.conv.conv.weight_orig primals_2 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
sergkuzn148/stg
Early_StyleConv_Block
false
16,412
[ "MIT" ]
96
84d9f53ae3665c423836a4d0176dc3b22de62b19
https://github.com/sergkuzn148/stg/tree/84d9f53ae3665c423836a4d0176dc3b22de62b19
ConvBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/of/cofwklo5nuhcnwyox2iqrwvifqkquaz5nm5gngbpzzb6xu4usmqd.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.23570226039551584), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.23570226039551584 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c5/cc5memys4mk36uelimkmwaoyfedm2jyi3w33cemddvv5wt2gg6tn.py # Topologically Sorted Source Nodes: [add, x, mul_1], Original ATen: [aten.add, aten.leaky_relu, aten.mul] # Source node to ATen node mapping: # add => add # mul_1 => mul_2 # x => gt, mul_1, where # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %view), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul_1), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 0.23570226039551584), kwargs = {}) triton_poi_fused_add_leaky_relu_mul_1 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_mul_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = 0.23570226039551584 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qc/cqc2xwirgawnoilr4he7zwv5ev5jlr7h6gndq46ktmuwecxnmzjx.py # Topologically Sorted Source Nodes: [add_1, x_1], Original ATen: [aten.add, aten.leaky_relu] # Source node to ATen node mapping: # add_1 => add_1 # x_1 => gt_1, mul_3, where_1 # Graph fragment: # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %view_1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.2), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_1, %mul_3), kwargs = {}) triton_poi_fused_add_leaky_relu_2 = async_compile.triton('triton_poi_fused_add_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, x, mul_1], Original ATen: [aten.add, aten.leaky_relu, aten.mul] triton_poi_fused_add_leaky_relu_mul_1.run(buf1, primals_3, buf2, buf3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf6 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add_1, x_1], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_2.run(buf4, primals_5, buf5, buf6, 256, grid=grid(256), stream=stream0) del buf4 del primals_5 return (buf6, primals_2, primals_4, buf0, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn class WSConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, gain=2): super(WSConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.scale = (gain / (in_channels * kernel_size ** 2)) ** 0.5 self.bias = self.conv.bias self.conv.bias = None nn.init.normal_(self.conv.weight) nn.init.zeros_(self.bias) def forward(self, x): return self.conv(x * self.scale) + self.bias.view(1, self.bias. shape[0], 1, 1) class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv1 = WSConv2d(in_channels, out_channels) self.conv2 = WSConv2d(out_channels, out_channels) self.leaky = nn.LeakyReLU(0.2) def forward(self, x): x = self.leaky(self.conv1(x)) x = self.leaky(self.conv2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.23570226039551584 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_leaky_relu_mul_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = 0.23570226039551584 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp9, xmask) @triton.jit def triton_poi_fused_add_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_leaky_relu_mul_1[grid(256)](buf1, primals_3, buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf6 = buf1 del buf1 triton_poi_fused_add_leaky_relu_2[grid(256)](buf4, primals_5, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_5 return buf6, primals_2, primals_4, buf0, buf2, buf3, buf5 class WSConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, gain=2): super(WSConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.scale = (gain / (in_channels * kernel_size ** 2)) ** 0.5 self.bias = self.conv.bias self.conv.bias = None nn.init.normal_(self.conv.weight) nn.init.zeros_(self.bias) def forward(self, x): return self.conv(x * self.scale) + self.bias.view(1, self.bias. shape[0], 1, 1) class ConvBlockNew(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlockNew, self).__init__() self.conv1 = WSConv2d(in_channels, out_channels) self.conv2 = WSConv2d(out_channels, out_channels) self.leaky = nn.LeakyReLU(0.2) def forward(self, input_0): primals_3 = self.conv1.bias primals_2 = self.conv1.conv.weight primals_5 = self.conv2.bias primals_4 = self.conv2.conv.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
shimon-c/Machine-Learning-Collection
ConvBlock
false
16,413
[ "MIT" ]
3,094
ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
https://github.com/shimon-c/Machine-Learning-Collection/tree/ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
PaddedInstanceNorm1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oo/coocmvex5nlnnqvl7zaddk7e3nrsodkasy7xdvohmswagcepm2dg.py # Topologically Sorted Source Nodes: [sum_, mean, pow_1, sqsum, sqmean, pow_2, var, add, pow_3], Original ATen: [aten.sum, aten.div, aten.pow, aten.sub, aten.add] # Source node to ATen node mapping: # add => add # mean => div # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # sqmean => div_1 # sqsum => sum_2 # sum_ => sum_1 # var => sub # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg1_1, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %view), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %view), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_1, %pow_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-05), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.5), kwargs = {}) triton_poi_fused_add_div_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_add_div_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x3 = (xindex // 4) x1 = (xindex // 4) % 16384 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x3)), None) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x3)), None) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x3)), None) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x3)), None) tmp7 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 / tmp7 tmp9 = tmp0 * tmp0 tmp10 = tmp1 * tmp1 tmp11 = tmp9 + tmp10 tmp12 = tmp3 * tmp3 tmp13 = tmp11 + tmp12 tmp14 = tmp5 * tmp5 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 * tmp8 tmp18 = tmp16 - tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.sqrt(tmp20) tl.store(out_ptr0 + (x4), tmp8, None) tl.store(out_ptr1 + (x4), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/el/celssy2sail7q42oq24ur6lmcghikc5sxwlugerb36l4kloss4y5.py # Topologically Sorted Source Nodes: [sub_1, pow_1, sqsum, sqmean, pow_2, var, add, pow_3, truediv_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div, aten.add] # Source node to ATen node mapping: # add => add # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # sqmean => div_1 # sqsum => sum_2 # sub_1 => sub_1 # truediv_2 => div_2 # var => sub # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %div), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %view), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_1, %pow_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-05), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.5), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %pow_3), kwargs = {}) triton_poi_fused_add_div_pow_sub_sum_1 = async_compile.triton('triton_poi_fused_add_div_pow_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_pow_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (4*x2)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(arg1_1, (4, 16384, 4, 4), (262144, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16384, 1, 4), (65536, 4, 262144, 1), torch.float32) buf1 = empty_strided_cuda((4, 16384, 1, 4), (65536, 4, 262144, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_, mean, pow_1, sqsum, sqmean, pow_2, var, add, pow_3], Original ATen: [aten.sum, aten.div, aten.pow, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_div_pow_sub_sum_0.run(arg1_1, arg0_1, buf0, buf1, 262144, grid=grid(262144), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 16384, 4, 4), (262144, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub_1, pow_1, sqsum, sqmean, pow_2, var, add, pow_3, truediv_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div, aten.add] triton_poi_fused_add_div_pow_sub_sum_1.run(arg1_1, buf0, buf1, buf2, 1048576, grid=grid(1048576), stream=stream0) del arg1_1 del buf0 del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 16384, 4, 4), (262144, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PaddedInstanceNorm1d(nn.Module): def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False): super().__init__() self.num_features = num_features self.eps = eps self.momentum = momentum if affine is True: raise NotImplementedError if track_running_stats is True: raise NotImplementedError def forward(self, x, lengths): lengths = lengths.view(-1, 1, 1).float() sum_ = torch.sum(x, dim=2, keepdim=True) mean = sum_ / lengths sqsum = torch.sum(torch.pow(x, 2.0), dim=2, keepdim=True) sqmean = sqsum / lengths var = sqmean - torch.pow(mean, 2.0) return (x - mean) / torch.pow(var + self.eps, 0.5) def get_inputs(): return [torch.rand([4, 16384, 4, 4]), torch.rand([4, 256, 4, 4])] def get_init_inputs(): return [[], {'num_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x3 = xindex // 4 x1 = xindex // 4 % 16384 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x3), None) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x3), None) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x3), None) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x3), None) tmp7 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 / tmp7 tmp9 = tmp0 * tmp0 tmp10 = tmp1 * tmp1 tmp11 = tmp9 + tmp10 tmp12 = tmp3 * tmp3 tmp13 = tmp11 + tmp12 tmp14 = tmp5 * tmp5 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 * tmp8 tmp18 = tmp16 - tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.sqrt(tmp20) tl.store(out_ptr0 + x4, tmp8, None) tl.store(out_ptr1 + x4, tmp21, None) @triton.jit def triton_poi_fused_add_div_pow_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 4 * x2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + x3, tmp4, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(arg1_1, (4, 16384, 4, 4), (262144, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16384, 1, 4), (65536, 4, 262144, 1), torch.float32) buf1 = empty_strided_cuda((4, 16384, 1, 4), (65536, 4, 262144, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_pow_sub_sum_0[grid(262144)](arg1_1, arg0_1, buf0, buf1, 262144, XBLOCK=512, num_warps=8, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 16384, 4, 4), (262144, 16, 4, 1), torch.float32) triton_poi_fused_add_div_pow_sub_sum_1[grid(1048576)](arg1_1, buf0, buf1, buf2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del arg1_1 del buf0 del buf1 return buf2, class PaddedInstanceNorm1dNew(nn.Module): def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False): super().__init__() self.num_features = num_features self.eps = eps self.momentum = momentum if affine is True: raise NotImplementedError if track_running_stats is True: raise NotImplementedError def forward(self, input_0, input_1): arg1_1 = input_0 arg0_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
shaun95/cotatron
PaddedInstanceNorm1d
false
16,414
[ "BSD-3-Clause" ]
202
2d0254399a3063ba1d2f77bef535cc148041236e
https://github.com/shaun95/cotatron/tree/2d0254399a3063ba1d2f77bef535cc148041236e
AtteMatchLay
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dk/cdkstdndbosepqags2f4ezzhwapo4bsz42gpduzicr4a4elnju4y.py # Topologically Sorted Source Nodes: [repres_1, max_att_1, temp], Original ATen: [aten.mul, aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.sum] # Source node to ATen node mapping: # max_att_1 => mul_1 # repres_1 => mul # temp => clamp_min, clamp_min_1, div, div_1, mul_2, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2, sum_3 # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %unsqueeze_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [2], True), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %clamp_min_1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %clamp_min), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [2]), kwargs = {}) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_sum_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 * tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 * tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 * tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = libdevice.sqrt(tmp18) tmp20 = 1e-08 tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp23 = tmp22 * tmp1 tmp24 = tmp23 * tmp23 tmp26 = tmp25 * tmp5 tmp27 = tmp26 * tmp26 tmp28 = tmp24 + tmp27 tmp30 = tmp29 * tmp10 tmp31 = tmp30 * tmp30 tmp32 = tmp28 + tmp31 tmp34 = tmp33 * tmp15 tmp35 = tmp34 * tmp34 tmp36 = tmp32 + tmp35 tmp37 = libdevice.sqrt(tmp36) tmp38 = triton_helpers.maximum(tmp37, tmp20) tmp39 = tmp23 / tmp38 tmp40 = tmp2 / tmp21 tmp41 = tmp39 * tmp40 tmp42 = tmp26 / tmp38 tmp43 = tmp6 / tmp21 tmp44 = tmp42 * tmp43 tmp45 = tmp41 + tmp44 tmp46 = tmp30 / tmp38 tmp47 = tmp11 / tmp21 tmp48 = tmp46 * tmp47 tmp49 = tmp45 + tmp48 tmp50 = tmp34 / tmp38 tmp51 = tmp16 / tmp21 tmp52 = tmp50 * tmp51 tmp53 = tmp49 + tmp52 tl.store(in_out_ptr0 + (x2), tmp53, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 1), (4, 1, 256), torch.float32) buf2 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [repres_1, max_att_1, temp], Original ATen: [aten.mul, aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_sum_0.run(buf2, primals_2, primals_3, primals_1, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.functional import cosine_similarity def multi_perspective_expand_for_2D(in_tensor, decompose_params): """ Return: [batch_size, decompse_dim, dim] """ in_tensor = in_tensor.unsqueeze(1) decompose_params = decompose_params.unsqueeze(0) return torch.mul(in_tensor, decompose_params) class AtteMatchLay(nn.Module): def __init__(self, mp_dim, cont_dim): super(AtteMatchLay, self).__init__() self.cont_dim = cont_dim self.mp_dim = mp_dim self.register_parameter('weight', nn.Parameter(torch.Tensor(mp_dim, cont_dim))) self.weight.data.uniform_(-1.0, 1.0) def forward(self, repres, max_att): """ Args: repres - [bsz, a_len|q_len, cont_dim] max_att - [bsz, q_len|a_len, cont_dim] Return: size - [bsz, sentence_len, mp_dim] """ bsz = repres.size(0) sent_len = repres.size(1) repres = repres.view(-1, self.cont_dim) max_att = max_att.view(-1, self.cont_dim) repres = multi_perspective_expand_for_2D(repres, self.weight) max_att = multi_perspective_expand_for_2D(max_att, self.weight) temp = cosine_similarity(repres, max_att, repres.dim() - 1) return temp.view(bsz, sent_len, self.mp_dim) def get_inputs(): return [torch.rand([16, 4, 4]), torch.rand([64, 4])] def get_init_inputs(): return [[], {'mp_dim': 4, 'cont_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp33 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 * tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 * tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 * tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = libdevice.sqrt(tmp18) tmp20 = 1e-08 tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp23 = tmp22 * tmp1 tmp24 = tmp23 * tmp23 tmp26 = tmp25 * tmp5 tmp27 = tmp26 * tmp26 tmp28 = tmp24 + tmp27 tmp30 = tmp29 * tmp10 tmp31 = tmp30 * tmp30 tmp32 = tmp28 + tmp31 tmp34 = tmp33 * tmp15 tmp35 = tmp34 * tmp34 tmp36 = tmp32 + tmp35 tmp37 = libdevice.sqrt(tmp36) tmp38 = triton_helpers.maximum(tmp37, tmp20) tmp39 = tmp23 / tmp38 tmp40 = tmp2 / tmp21 tmp41 = tmp39 * tmp40 tmp42 = tmp26 / tmp38 tmp43 = tmp6 / tmp21 tmp44 = tmp42 * tmp43 tmp45 = tmp41 + tmp44 tmp46 = tmp30 / tmp38 tmp47 = tmp11 / tmp21 tmp48 = tmp46 * tmp47 tmp49 = tmp45 + tmp48 tmp50 = tmp34 / tmp38 tmp51 = tmp16 / tmp21 tmp52 = tmp50 * tmp51 tmp53 = tmp49 + tmp52 tl.store(in_out_ptr0 + x2, tmp53, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 1), (4, 1, 256), torch.float32) buf2 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_sum_0[grid(256)]( buf2, primals_2, primals_3, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) return reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0 ), primals_1, primals_2, primals_3 def multi_perspective_expand_for_2D(in_tensor, decompose_params): """ Return: [batch_size, decompse_dim, dim] """ in_tensor = in_tensor.unsqueeze(1) decompose_params = decompose_params.unsqueeze(0) return torch.mul(in_tensor, decompose_params) class AtteMatchLayNew(nn.Module): def __init__(self, mp_dim, cont_dim): super(AtteMatchLayNew, self).__init__() self.cont_dim = cont_dim self.mp_dim = mp_dim self.register_parameter('weight', nn.Parameter(torch.Tensor(mp_dim, cont_dim))) self.weight.data.uniform_(-1.0, 1.0) def forward(self, input_0, input_1): primals_3 = self.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
shinoyuki222/torch-light
AtteMatchLay
false
16,415
[ "MIT" ]
310
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
InnerProductDecoder
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mb/cmb72vxh36b4k6lvmt4562lj3nrqtpyzst2qbon2yqx22gdjfa7x.py # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # adj => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mm,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.native_dropout] buf0 = torch.ops.aten.native_dropout.default(arg0_1, 0.1, True) del arg0_1 buf1 = buf0[0] del buf0 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf3) del buf1 buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf4, 16, grid=grid(16), stream=stream0) return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class InnerProductDecoder(nn.Module): def __init__(self, activation=torch.sigmoid, dropout=0.1): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.activation = activation def forward(self, z): z = F.dropout(z, self.dropout) adj = self.activation(torch.mm(z, z.t())) return adj def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.native_dropout.default(arg0_1, 0.1, True) del arg0_1 buf1 = buf0[0] del buf0 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf3) del buf1 buf4 = buf3 del buf3 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(16)](buf4, 16, XBLOCK=16, num_warps =1, num_stages=1) return buf4, class InnerProductDecoderNew(nn.Module): def __init__(self, activation=torch.sigmoid, dropout=0.1): super(InnerProductDecoderNew, self).__init__() self.dropout = dropout self.activation = activation def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shionhonda/graph_ae
InnerProductDecoder
false
16,416
[ "MIT" ]
48
b8284a85286eee1b16cb90c0dd139d8927e83648
https://github.com/shionhonda/graph_ae/tree/b8284a85286eee1b16cb90c0dd139d8927e83648
HyperpriorSynthesisDLMM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zu/czuua4sopi7uw2j4vhwnz6siwft4q3oub6yvsst7upuvdxgbdeip.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 102400 xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = (yindex // 320) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (320*x2) + (8000*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rs/crschneg3kvye3kuwch7myvnxivcwiau22prtweju442z2v6tr7s.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1280 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = (yindex // 320) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (320*x2) + (5120*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yp/cypk6shm66qwudlo2djtgfzqrzq2fyztupq3rysg7n557sbl4x4c.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 20480 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gl/cglkcl5ykpgcv2uydrylvxb6dmvyihdwt3n735pkhiifwgzlyjgn.py # Topologically Sorted Source Nodes: [conv_transpose2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 81920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qc/cqcifbqljbi3jwpix3usk7lyjznx6mau7gwn475jaql4t2vmad47.py # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 327680 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rr/crrnepphlcxumbxug76dqad5k6yukqznmhy2ehyblo25n7vv7jul.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], True, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pq/cpqkalbpw25e3evlemt6aztt5xhvq6zb3s6poshlca36wevc5gy7.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 3072 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = (yindex // 768) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (768*x2) + (196608*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (256*y3)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_2, (320, ), (1, )) assert_size_stride(primals_3, (4, 320, 4, 4), (5120, 16, 4, 1)) assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_5, (320, ), (1, )) assert_size_stride(primals_6, (320, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (768, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_9, (768, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 102400, 25, grid=grid(102400, 25), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 1280, 16, grid=grid(1280, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_4, buf2, 102400, 25, grid=grid(102400, 25), stream=stream0) del primals_4 buf3 = empty_strided_cuda((320, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf3, 20480, 9, grid=grid(20480, 9), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf4, (4, 320, 8, 8), (20480, 1, 2560, 320)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf5, primals_2, 81920, grid=grid(81920), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 16, 16), (81920, 1, 5120, 320)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf7, primals_5, 327680, grid=grid(327680), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf9, primals_7, 65536, grid=grid(65536), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 768, 16, 16), (196608, 1, 12288, 768)) buf11 = empty_strided_cuda((4, 768, 16, 16), (196608, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_6.run(buf10, primals_9, buf11, 3072, 256, grid=grid(3072, 256), stream=stream0) del buf10 del primals_9 return (buf11, buf0, buf1, buf2, buf3, primals_8, buf5, buf7, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 320, 4, 4), (5120, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((320, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((768, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((768, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def get_num_DLMM_channels(C, K=4, params=['mu', 'scale', 'mix']): """ C: Channels of latent representation (L3C uses 5). K: Number of mixture coefficients. """ return C * K * len(params) class HyperpriorSynthesisDLMM(nn.Module): """ Outputs distribution parameters of input latents, conditional on hyperlatents, assuming a discrete logistic mixture model. C: Number of output channels """ def __init__(self, C=64, N=320, activation='relu', final_activation=None): super(HyperpriorSynthesisDLMM, self).__init__() cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, output_padding=1) self.activation = getattr(F, activation) self.final_activation = final_activation self.conv1 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv2 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv3 = nn.ConvTranspose2d(N, C, kernel_size=3, stride=1, padding=1) self.conv_out = nn.Conv2d(C, get_num_DLMM_channels(C), kernel_size= 1, stride=1) if self.final_activation is not None: self.final_activation = getattr(F, final_activation) def forward(self, x): x = self.activation(self.conv1(x)) x = self.activation(self.conv2(x)) x = self.conv3(x) x = self.conv_out(x) if self.final_activation is not None: x = self.final_activation(x) return x def get_inputs(): return [torch.rand([4, 320, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = yindex // 320 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 320 * x2 + 8000 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 1280 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = yindex // 320 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 320 * x2 + 5120 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = yindex // 768 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 768 * x2 + 196608 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 256 * y3), tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_2, (320,), (1,)) assert_size_stride(primals_3, (4, 320, 4, 4), (5120, 16, 4, 1)) assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_5, (320,), (1,)) assert_size_stride(primals_6, (320, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (768, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_9, (768,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(102400, 25)](primals_1, buf0, 102400, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.float32) triton_poi_fused_1[grid(1280, 16)](primals_3, buf1, 1280, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) triton_poi_fused_0[grid(102400, 25)](primals_4, buf2, 102400, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((320, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_2[grid(20480, 9)](primals_6, buf3, 20480, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf4, (4, 320, 8, 8), (20480, 1, 2560, 320)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_3[grid(81920)](buf5, primals_2, 81920, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 16, 16), (81920, 1, 5120, 320)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_4[grid(327680)](buf7, primals_5, 327680, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf9 = buf8 del buf8 triton_poi_fused_convolution_5[grid(65536)](buf9, primals_7, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 768, 16, 16), (196608, 1, 12288, 768)) buf11 = empty_strided_cuda((4, 768, 16, 16), (196608, 256, 16, 1), torch.float32) triton_poi_fused_convolution_6[grid(3072, 256)](buf10, primals_9, buf11, 3072, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf10 del primals_9 return buf11, buf0, buf1, buf2, buf3, primals_8, buf5, buf7, buf9 def get_num_DLMM_channels(C, K=4, params=['mu', 'scale', 'mix']): """ C: Channels of latent representation (L3C uses 5). K: Number of mixture coefficients. """ return C * K * len(params) class HyperpriorSynthesisDLMMNew(nn.Module): """ Outputs distribution parameters of input latents, conditional on hyperlatents, assuming a discrete logistic mixture model. C: Number of output channels """ def __init__(self, C=64, N=320, activation='relu', final_activation=None): super(HyperpriorSynthesisDLMMNew, self).__init__() cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, output_padding=1) self.activation = getattr(F, activation) self.final_activation = final_activation self.conv1 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv2 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv3 = nn.ConvTranspose2d(N, C, kernel_size=3, stride=1, padding=1) self.conv_out = nn.Conv2d(C, get_num_DLMM_channels(C), kernel_size= 1, stride=1) if self.final_activation is not None: self.final_activation = getattr(F, final_activation) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv_out.weight primals_9 = self.conv_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
sedrickkeh/high-fidelity-dual-image
HyperpriorSynthesisDLMM
false
16,417
[ "Apache-2.0" ]
266
9cefd378467826b91596653df38666e469bb23e0
https://github.com/sedrickkeh/high-fidelity-dual-image/tree/9cefd378467826b91596653df38666e469bb23e0
CrossEntropy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7l/c7l3ub2upupvsasdpywg3gprcsoaujygvvtujpjy6husp5fukku6.py # Topologically Sorted Source Nodes: [gt, mask, mul, sum_1, neg, sum_2, truediv], Original ATen: [aten.gt, aten._to_copy, aten.mul, aten.sum, aten.neg, aten.div] # Source node to ATen node mapping: # gt => gt # mask => convert_element_type # mul => mul # neg => neg # sum_1 => sum_1 # sum_2 => sum_2 # truediv => div # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, 0), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %convert_element_type), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %sum_2), kwargs = {}) triton_per_fused__to_copy_div_gt_mul_neg_sum_0 = async_compile.triton('triton_per_fused__to_copy_div_gt_mul_neg_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_div_gt_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_div_gt_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp7 = tmp6.to(tl.float32) tmp8 = tl.full([1, 1], 0, tl.int64) tmp9 = tmp0 > tmp8 tmp10 = tmp9.to(tl.float32) tmp11 = tmp7 * tmp10 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp18 = -tmp14 tmp19 = tmp18 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [gt, mask, mul, sum_1, neg, sum_2, truediv], Original ATen: [aten.gt, aten._to_copy, aten.mul, aten.sum, aten.neg, aten.div] stream0 = get_raw_stream(0) triton_per_fused__to_copy_div_gt_mul_neg_sum_0.run(buf2, arg1_1, arg0_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CrossEntropy(nn.Module): def __init__(self): super().__init__() def forward(self, props, tgt): tgt_props = props.gather(2, tgt.unsqueeze(2)).squeeze() mask = (tgt > 0).float() return -(tgt_props * mask).sum() / mask.sum() def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64)] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_div_gt_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp7 = tmp6.to(tl.float32) tmp8 = tl.full([1, 1], 0, tl.int64) tmp9 = tmp0 > tmp8 tmp10 = tmp9.to(tl.float32) tmp11 = tmp7 * tmp10 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp18 = -tmp14 tmp19 = tmp18 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp19, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused__to_copy_div_gt_mul_neg_sum_0[grid(1)](buf2, arg1_1, arg0_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class CrossEntropyNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
shinoyuki222/torch-light
CrossEntropy
false
16,418
[ "MIT" ]
310
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
HyperpriorSynthesis
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zu/czuua4sopi7uw2j4vhwnz6siwft4q3oub6yvsst7upuvdxgbdeip.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 102400 xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = (yindex // 320) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (320*x2) + (8000*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rs/crschneg3kvye3kuwch7myvnxivcwiau22prtweju442z2v6tr7s.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1280 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = (yindex // 320) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (320*x2) + (5120*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f5/cf5rahjtn7v4v36kwvj65zjpf4ce46w2hyul4dndgpxx4vwwwjzr.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 70400 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 220 y1 = (yindex // 220) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (220*x2) + (1980*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gl/cglkcl5ykpgcv2uydrylvxb6dmvyihdwt3n735pkhiifwgzlyjgn.py # Topologically Sorted Source Nodes: [conv_transpose2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 81920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qc/cqcifbqljbi3jwpix3usk7lyjznx6mau7gwn475jaql4t2vmad47.py # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 327680 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/o6/co6yb7vc327wwyteuvhwzyuiictgb2lllnxydf7efevmaftxhgnt.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], True, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 880 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 220 y1 = (yindex // 220) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (220*x2) + (56320*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (256*y3)), tmp2, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_2, (320, ), (1, )) assert_size_stride(primals_3, (4, 320, 4, 4), (5120, 16, 4, 1)) assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_5, (320, ), (1, )) assert_size_stride(primals_6, (320, 220, 3, 3), (1980, 9, 3, 1)) assert_size_stride(primals_7, (220, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 102400, 25, grid=grid(102400, 25), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 1280, 16, grid=grid(1280, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_4, buf2, 102400, 25, grid=grid(102400, 25), stream=stream0) del primals_4 buf3 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf3, 70400, 9, grid=grid(70400, 9), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf4, (4, 320, 8, 8), (20480, 1, 2560, 320)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf5, primals_2, 81920, grid=grid(81920), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 16, 16), (81920, 1, 5120, 320)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf7, primals_5, 327680, grid=grid(327680), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 220, 16, 16), (56320, 1, 3520, 220)) buf9 = empty_strided_cuda((4, 220, 16, 16), (56320, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf8, primals_7, buf9, 880, 256, grid=grid(880, 256), stream=stream0) del buf8 del primals_7 return (buf9, buf0, buf1, buf2, buf3, buf5, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 320, 4, 4), (5120, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((320, 220, 3, 3), (1980, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((220, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class HyperpriorSynthesis(nn.Module): """ Hyperprior 'synthesis model' as proposed in [1]. Outputs distribution parameters of input latents. [1] Ballé et. al., "Variational image compression with a scale hyperprior", arXiv:1802.01436 (2018). C: Number of output channels """ def __init__(self, C=220, N=320, activation='relu', final_activation=None): super(HyperpriorSynthesis, self).__init__() cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, output_padding=1) self.activation = getattr(F, activation) self.final_activation = final_activation self.conv1 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv2 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv3 = nn.ConvTranspose2d(N, C, kernel_size=3, stride=1, padding=1) if self.final_activation is not None: self.final_activation = getattr(F, final_activation) def forward(self, x): x = self.activation(self.conv1(x)) x = self.activation(self.conv2(x)) x = self.conv3(x) if self.final_activation is not None: x = self.final_activation(x) return x def get_inputs(): return [torch.rand([4, 320, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = yindex // 320 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 320 * x2 + 8000 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 1280 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = yindex // 320 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 320 * x2 + 5120 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 70400 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 220 y1 = yindex // 220 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 220 * x2 + 1980 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 880 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 220 y1 = yindex // 220 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 220 * x2 + 56320 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 256 * y3), tmp2, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_2, (320,), (1,)) assert_size_stride(primals_3, (4, 320, 4, 4), (5120, 16, 4, 1)) assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_5, (320,), (1,)) assert_size_stride(primals_6, (320, 220, 3, 3), (1980, 9, 3, 1)) assert_size_stride(primals_7, (220,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(102400, 25)](primals_1, buf0, 102400, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.float32) triton_poi_fused_1[grid(1280, 16)](primals_3, buf1, 1280, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) triton_poi_fused_0[grid(102400, 25)](primals_4, buf2, 102400, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220), torch.float32) triton_poi_fused_2[grid(70400, 9)](primals_6, buf3, 70400, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf4, (4, 320, 8, 8), (20480, 1, 2560, 320)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_3[grid(81920)](buf5, primals_2, 81920, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 16, 16), (81920, 1, 5120, 320)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_4[grid(327680)](buf7, primals_5, 327680, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 220, 16, 16), (56320, 1, 3520, 220)) buf9 = empty_strided_cuda((4, 220, 16, 16), (56320, 256, 16, 1), torch.float32) triton_poi_fused_convolution_5[grid(880, 256)](buf8, primals_7, buf9, 880, 256, XBLOCK=256, YBLOCK=4, num_warps=4, num_stages=1) del buf8 del primals_7 return buf9, buf0, buf1, buf2, buf3, buf5, buf7 class HyperpriorSynthesisNew(nn.Module): """ Hyperprior 'synthesis model' as proposed in [1]. Outputs distribution parameters of input latents. [1] Ballé et. al., "Variational image compression with a scale hyperprior", arXiv:1802.01436 (2018). C: Number of output channels """ def __init__(self, C=220, N=320, activation='relu', final_activation=None): super(HyperpriorSynthesisNew, self).__init__() cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, output_padding=1) self.activation = getattr(F, activation) self.final_activation = final_activation self.conv1 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv2 = nn.ConvTranspose2d(N, N, **cnn_kwargs) self.conv3 = nn.ConvTranspose2d(N, C, kernel_size=3, stride=1, padding=1) if self.final_activation is not None: self.final_activation = getattr(F, final_activation) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
sedrickkeh/high-fidelity-dual-image
HyperpriorSynthesis
false
16,419
[ "Apache-2.0" ]
266
9cefd378467826b91596653df38666e469bb23e0
https://github.com/sedrickkeh/high-fidelity-dual-image/tree/9cefd378467826b91596653df38666e469bb23e0
BasicUNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pq/cpqjngmwse22zuc3kj4qnpvtiudxh7xrch2gwzvtjb5saxhz2ubd.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/re/crevsbgpcncsm7gtijpfbb2urj47a2o76s4ukpid2yml4qg4v4ui.py # Topologically Sorted Source Nodes: [conv2d_1, instance_norm, x, x_19], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # instance_norm => add, rsqrt, var_mean # x => gt, mul_1, where # x_19 => cat_3 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.001), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul_1), kwargs = {}) # %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%_unsafe_index_3, %view_3], 1), kwargs = {}) triton_red_fused__native_batch_norm_legit_cat_convolution_leaky_relu_1 = async_compile.triton('triton_red_fused__native_batch_norm_legit_cat_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[32, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_cat_convolution_leaky_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_cat_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 32 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 8 tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce( tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0 ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + (4096*x3)), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford( tmp4_mean, tmp4_m2, tmp4_weight, 1 ) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) x1 = (xindex // 8) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp7 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp8 = tmp7 - tmp4 tmp9 = 4096.0 tmp10 = tmp5 / tmp9 tmp11 = 1e-05 tmp12 = tmp10 + tmp11 tmp13 = libdevice.rsqrt(tmp12) tmp14 = tmp8 * tmp13 tmp15 = 0.0 tmp16 = tmp14 > tmp15 tmp17 = 0.001 tmp18 = tmp14 * tmp17 tmp19 = tl.where(tmp16, tmp14, tmp18) tl.store(out_ptr2 + (r2 + (4096*x3)), tmp19, rmask & xmask) tl.store(out_ptr3 + (r2 + (4096*x0) + (98304*x1)), tmp19, rmask & xmask) tmp20 = 4096.0 tmp21 = tmp5 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tl.store(out_ptr4 + (x3), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sh/cshsrfbnj2mtr3hy4an3yzo5bfnis2uevulk23oo25xlkwuosirt.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hu/chuad7jvtwztyl4nplnzkib7dg6ydis2y3cluo7oqurhs4ds6uc4.py # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/st/cstm5mby3hsk6nxv3526eogtkhr6z66w7e24do6b3yqjxz24phdj.py # Topologically Sorted Source Nodes: [conv2d_3, instance_norm_1, x_2, x_16], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # instance_norm_1 => add_1, rsqrt_1, var_mean_1 # x_16 => cat_2 # x_2 => gt_1, mul_3, where_1 # Graph fragment: # %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_6, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, 0.001), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_6, %mul_3), kwargs = {}) # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%_unsafe_index_2, %view_8], 1), kwargs = {}) triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_4(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel): xnumel = 64 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_out_ptr0 + (r2 + (1024*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = tmp2 - tmp10 tmp17 = 1024.0 tmp18 = tmp15 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp16 * tmp21 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.001 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + (1024*x3)), tmp2, None) tl.store(out_ptr2 + (r2 + (1024*x3)), tmp27, None) tl.store(out_ptr3 + (r2 + (1024*x0) + (49152*x1)), tmp27, None) tl.store(out_ptr4 + (x3), tmp21, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ai/caibkfk3bxq2godfssvsctmvar3lgxf47lj4ty6ik7crctqnsgx4.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_3 => getitem_6, getitem_7 # Graph fragment: # %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xb/cxbxouxgqz6pe3dnz4qi3mypv3zitzwlosr33sjcsozlwh4jvawe.py # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bf/cbfqa3dhe3dimlzknkdc7zb6af2jtnjwgpyvkqwfkf7bu57gu527.py # Topologically Sorted Source Nodes: [conv2d_5, instance_norm_2, x_4, x_13], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # instance_norm_2 => add_2, rsqrt_2, var_mean_2 # x_13 => cat_1 # x_4 => gt_2, mul_5, where_2 # Graph fragment: # %convolution_5 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_4, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_10, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_11, 0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.001), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_11, %mul_5), kwargs = {}) # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%_unsafe_index_1, %view_13], 1), kwargs = {}) triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_7 = async_compile.triton('triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 32 x1 = (xindex // 32) tmp0 = tl.load(in_out_ptr0 + (r2 + (256*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = tmp2 - tmp10 tmp17 = 256.0 tmp18 = tmp15 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp16 * tmp21 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.001 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + (256*x3)), tmp2, None) tl.store(out_ptr2 + (r2 + (256*x3)), tmp27, None) tl.store(out_ptr3 + (r2 + (256*x0) + (24576*x1)), tmp27, None) tl.store(out_ptr4 + (x3), tmp21, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/a6/ca6cng7bbgns4ws4hd4a7i6mlc7rafvbvztrwmqqg35zlvtb5u63.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => getitem_10, getitem_11 # Graph fragment: # %getitem_10 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_11 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/il/cilpbahuw43f4gxxbrv3anps3rukxekc7fjqqs2cjnj47pqyt6jy.py # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # Graph fragment: # %convolution_6 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_10, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_9 = async_compile.triton('triton_poi_fused_convolution_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gn/cgnazflyomi7j3anmll4pphpqq7eqwkadm5xgd6w5g3xunkxolu4.py # Topologically Sorted Source Nodes: [conv2d_7, instance_norm_3, x_6, x_10], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # instance_norm_3 => add_3, rsqrt_3, var_mean_3 # x_10 => cat # x_6 => gt_3, mul_7, where_3 # Graph fragment: # %convolution_7 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_6, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_3 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_15, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_12, 1e-05), kwargs = {}) # %rsqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_16, 0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_16, 0.001), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %view_16, %mul_7), kwargs = {}) # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%_unsafe_index, %view_18], 1), kwargs = {}) triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_10 = async_compile.triton('triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_10(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (r2 + (64*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp2 - tmp12 tmp20 = 64.0 tmp21 = tmp18 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tmp25 = tmp19 * tmp24 tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 0.001 tmp29 = tmp25 * tmp28 tmp30 = tl.where(tmp27, tmp25, tmp29) tl.store(in_out_ptr0 + (r2 + (64*x3)), tmp2, xmask) tl.store(out_ptr2 + (r2 + (64*x3)), tmp30, xmask) tl.store(out_ptr3 + (r2 + (64*x0) + (12288*x1)), tmp30, xmask) tl.store(out_ptr4 + (x3), tmp24, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zq/czqwfdofxuzz35sucicv76svoxvr6bxavlnp23hrvm376giozxl5.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_7 => getitem_14, getitem_15 # Graph fragment: # %getitem_14 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {}) # %getitem_15 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/q6/cq6iqe67v47sxb2twrp6akluleocwor2raq7i7r4msdb4eghjs34.py # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # Graph fragment: # %convolution_8 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_14, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_12 = async_compile.triton('triton_poi_fused_convolution_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ju/cjuu4bweldtbcet4dlo4oj4dlgswtzyovjjidvtdgfs7mxl63oao.py # Topologically Sorted Source Nodes: [conv2d_9, instance_norm_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # instance_norm_4 => add_4, rsqrt_4, var_mean_4 # Graph fragment: # %convolution_9 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_8, %primals_20, %primals_21, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_4 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_20, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_16, 1e-05), kwargs = {}) # %rsqrt_4 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_13 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_13', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_13(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 512 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3a/c3aubsagukfcpdcv6lvaiwj3g2w7n7lrm2yheaopofnv2r7a4j5d.py # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_9 => add_5, add_6, convert_element_type, convert_element_type_1, iota, mul_10, mul_11 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_5, torch.float32), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_11, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_14 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_14(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f7/cf7dthhw32pjvubbyyxwlnsmrcqsx6cz5hlqzjpsm57sygqrsxto.py # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x_9 => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_23, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_15 = async_compile.triton('triton_poi_fused__unsafe_index_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_15(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 8) % 8 x0 = xindex % 8 x5 = (xindex // 64) x3 = (xindex // 8192) x6 = xindex % 8192 tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x5), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x5), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + (12288*x3)), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oy/coywjqjjl6oisptt43ssfqgz5plb7pbnuqonvovyedw3ahbs3ee2.py # Topologically Sorted Source Nodes: [conv2d_11, instance_norm_5], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # instance_norm_5 => add_9, rsqrt_5, var_mean_5 # Graph fragment: # %convolution_11 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_5 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_25, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_18, 1e-05), kwargs = {}) # %rsqrt_5 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_9,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_16 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_16', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_16(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (r2 + (64*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + (64*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jy/cjydlz6d2j3sa34jmwpihh7wvfrvefqo3gztcn6coqyocogtsjim.py # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_12 => add_10, add_11, convert_element_type_4, convert_element_type_5, iota_2, mul_16, mul_17 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_16, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_10, torch.float32), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_11, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_17, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_17 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_17(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/as/casjatkrnf4ifydtmzj3npyhwhnit25odbq4rn6jzoi24ssoek52.py # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x_12 => _unsafe_index_1 # Graph fragment: # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_28, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {}) triton_poi_fused__unsafe_index_18 = async_compile.triton('triton_poi_fused__unsafe_index_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 16 x0 = xindex % 16 x5 = (xindex // 256) x3 = (xindex // 16384) x6 = xindex % 16384 tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x5), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x5), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + (24576*x3)), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vh/cvhshvzmyuttgt5xircobicqxklnme7qkcvftaf5jelrqyf5xv2t.py # Topologically Sorted Source Nodes: [conv2d_13, instance_norm_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # instance_norm_6 => add_14, rsqrt_6, var_mean_6 # Graph fragment: # %convolution_13 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_12, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_6 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_30, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_20, 1e-05), kwargs = {}) # %rsqrt_6 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_14,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_19 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_19', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_19(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (r2 + (256*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + (256*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wg/cwgxtc4y3ifd3t7fprczhrjtdxlfclh54p7dwvlgwkaet2cxhnox.py # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_15 => add_15, add_16, convert_element_type_8, convert_element_type_9, iota_4, mul_22, mul_23 # Graph fragment: # %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_4, 1), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_22, 0), kwargs = {}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_15, torch.float32), kwargs = {}) # %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_16, 0.5), kwargs = {}) # %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_23, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_20 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_20(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zd/czdtppr7on5ukrbw7oa2vmiq6lcdfvqkkpqhplp234xourcimcur.py # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x_15 => _unsafe_index_2 # Graph fragment: # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_33, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {}) triton_poi_fused__unsafe_index_21 = async_compile.triton('triton_poi_fused__unsafe_index_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 32 x0 = xindex % 32 x5 = (xindex // 1024) x3 = (xindex // 32768) x6 = xindex % 32768 tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x5), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x5), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + (49152*x3)), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/z3/cz3lcykbprjlamaknn5db2i7ryiolkde6zhvhhzzfx4h6jjztb2g.py # Topologically Sorted Source Nodes: [conv2d_15, instance_norm_7], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # conv2d_15 => convolution_15 # instance_norm_7 => add_19, rsqrt_7, var_mean_7 # Graph fragment: # %convolution_15 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_14, %primals_32, %primals_33, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_7 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_35, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_22, 1e-05), kwargs = {}) # %rsqrt_7 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_19,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_22 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_22', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_22(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 64 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (r2 + (1024*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1024.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + (1024*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c5/cc5kfslnxxf5yiyrkzekedympw26a26w2725vwdxkct2t2yzm42p.py # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_18 => add_20, add_21, convert_element_type_12, convert_element_type_13, iota_6, mul_28, mul_29 # Graph fragment: # %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_6, 1), kwargs = {}) # %add_20 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_28, 0), kwargs = {}) # %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_20, torch.float32), kwargs = {}) # %add_21 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.0), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_21, 0.5), kwargs = {}) # %convert_element_type_13 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_29, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_23 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_23(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2r/c2rkoqzf6ty2yq2635wq5e2di4vxcsnrkbgyobrye4uozvduzy2b.py # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x_18 => _unsafe_index_3 # Graph fragment: # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_38, [None, None, %unsqueeze_3, %convert_element_type_13]), kwargs = {}) triton_poi_fused__unsafe_index_24 = async_compile.triton('triton_poi_fused__unsafe_index_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_24(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = (xindex // 4096) x3 = (xindex // 65536) x6 = xindex % 65536 tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x5), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x5), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (32*tmp4) + (1024*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + (98304*x3)), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/34/c34veqnzsffwucaocbian7dhsieb665y6ii52iajzdtbffi67rza.py # Topologically Sorted Source Nodes: [conv2d_17, instance_norm_8, x_20], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_17 => convolution_17 # instance_norm_8 => add_24, rsqrt_8, var_mean_8 # x_20 => gt_8, mul_33, where_8 # Graph fragment: # %convolution_17 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_16, %primals_36, %primals_37, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_8 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_40, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_24 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_24, 1e-05), kwargs = {}) # %rsqrt_8 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_24,), kwargs = {}) # %gt_8 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_41, 0), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_41, 0.001), kwargs = {}) # %where_8 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %view_41, %mul_33), kwargs = {}) triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_25 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[32, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_25', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_25(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 32 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 8 tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce( tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0 ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + (4096*x3)), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford( tmp4_mean, tmp4_m2, tmp4_weight, 1 ) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp7 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp8 = tmp7 - tmp4 tmp9 = 4096.0 tmp10 = tmp5 / tmp9 tmp11 = 1e-05 tmp12 = tmp10 + tmp11 tmp13 = libdevice.rsqrt(tmp12) tmp14 = tmp8 * tmp13 tmp15 = 0.0 tmp16 = tmp14 > tmp15 tmp17 = 0.001 tmp18 = tmp14 * tmp17 tmp19 = tl.where(tmp16, tmp14, tmp18) tl.store(out_ptr2 + (r2 + (4096*x3)), tmp19, rmask & xmask) tmp20 = 4096.0 tmp21 = tmp5 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tl.store(out_ptr3 + (x3), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b5/cb5rpjyp43cqaxtedd72lbg7klkcx7kxvnueehz4irdta5tihg6w.py # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_18 => convolution_18 # Graph fragment: # %convolution_18 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%view_43, %primals_38, %primals_39, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_26 = async_compile.triton('triton_poi_fused_convolution_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_26', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_26(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xo/cxomx7hetfbcos4prg63lvvjnowlmjg473kz6d4g7zxa4t2htmmp.py # Topologically Sorted Source Nodes: [conv2d_19, instance_norm_9, conv2d_21, instance_norm_10, x_23], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.add] # Source node to ATen node mapping: # conv2d_19 => convolution_19 # conv2d_21 => convolution_21 # instance_norm_10 => add_26, rsqrt_10, var_mean_10 # instance_norm_9 => add_25, rsqrt_9, var_mean_9 # x_23 => add_27 # Graph fragment: # %convolution_19 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_18, %primals_40, %primals_41, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_9 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_45, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_25 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_26, 1e-05), kwargs = {}) # %rsqrt_9 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_25,), kwargs = {}) # %convolution_21 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_20, %primals_44, %primals_45, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_10 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_50, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_26 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_28, 1e-05), kwargs = {}) # %rsqrt_10 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_26,), kwargs = {}) # %add_27 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_48, %view_53), kwargs = {}) triton_red_fused__native_batch_norm_legit_add_convolution_27 = async_compile.triton('triton_red_fused__native_batch_norm_legit_add_convolution_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[4, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_add_convolution_27', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_add_convolution_27(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 4 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_out_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp3 = tmp0 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp5_mean_next, tmp5_m2_next, tmp5_weight_next = triton_helpers.welford_reduce( tmp4, tmp5_mean, tmp5_m2, tmp5_weight, roffset == 0 ) tmp5_mean = tl.where(rmask & xmask, tmp5_mean_next, tmp5_mean) tmp5_m2 = tl.where(rmask & xmask, tmp5_m2_next, tmp5_m2) tmp5_weight = tl.where(rmask & xmask, tmp5_weight_next, tmp5_weight) tl.store(in_out_ptr0 + (r1 + (4096*x0)), tmp3, rmask & xmask) tmp5_tmp, tmp6_tmp, tmp7_tmp = triton_helpers.welford( tmp5_mean, tmp5_m2, tmp5_weight, 1 ) tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tmp7 = tmp7_tmp[:, None] tl.store(out_ptr0 + (x0), tmp5, xmask) tmp8 = 4096.0 tmp9 = tmp6 / tmp8 tmp10 = 1e-05 tmp11 = tmp9 + tmp10 tmp12 = libdevice.rsqrt(tmp11) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp12, xmask) tmp14 = tl.load(in_ptr1 + (0)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp18_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp18_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp18_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp13 = tl.load(in_out_ptr2 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp13 + tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp18_mean_next, tmp18_m2_next, tmp18_weight_next = triton_helpers.welford_reduce( tmp17, tmp18_mean, tmp18_m2, tmp18_weight, roffset == 0 ) tmp18_mean = tl.where(rmask & xmask, tmp18_mean_next, tmp18_mean) tmp18_m2 = tl.where(rmask & xmask, tmp18_m2_next, tmp18_m2) tmp18_weight = tl.where(rmask & xmask, tmp18_weight_next, tmp18_weight) tl.store(in_out_ptr2 + (r1 + (4096*x0)), tmp16, rmask & xmask) tmp18_tmp, tmp19_tmp, tmp20_tmp = triton_helpers.welford( tmp18_mean, tmp18_m2, tmp18_weight, 1 ) tmp18 = tmp18_tmp[:, None] tmp19 = tmp19_tmp[:, None] tmp20 = tmp20_tmp[:, None] tl.store(out_ptr1 + (x0), tmp18, xmask) tmp21 = 4096.0 tmp22 = tmp19 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tl.debug_barrier() tl.store(in_out_ptr3 + (x0), tmp25, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp26 = tl.load(in_out_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp34 = tl.load(in_out_ptr2 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp27 = tmp26 - tmp5 tmp28 = tmp27 * tmp12 tmp29 = 0.0 tmp30 = tmp28 > tmp29 tmp31 = 0.001 tmp32 = tmp28 * tmp31 tmp33 = tl.where(tmp30, tmp28, tmp32) tmp35 = tmp34 - tmp18 tmp36 = tmp35 * tmp25 tmp37 = tmp36 > tmp29 tmp38 = tmp36 * tmp31 tmp39 = tl.where(tmp37, tmp36, tmp38) tmp40 = tmp33 + tmp39 tl.store(out_ptr2 + (r1 + (4096*x0)), tmp40, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45 = args args.clear() assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_2, (8, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (8, ), (1, )) assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32, ), (1, )) assert_size_stride(primals_14, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (128, ), (1, )) assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (64, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_23, (64, ), (1, )) assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_25, (64, ), (1, )) assert_size_stride(primals_26, (32, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_27, (32, ), (1, )) assert_size_stride(primals_28, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_29, (32, ), (1, )) assert_size_stride(primals_30, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_31, (16, ), (1, )) assert_size_stride(primals_32, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_33, (16, ), (1, )) assert_size_stride(primals_34, (8, 24, 3, 3), (216, 9, 3, 1)) assert_size_stride(primals_35, (8, ), (1, )) assert_size_stride(primals_36, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_37, (8, ), (1, )) assert_size_stride(primals_38, (1, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_39, (1, ), (1, )) assert_size_stride(primals_40, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_41, (1, ), (1, )) assert_size_stride(primals_42, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_43, (1, ), (1, )) assert_size_stride(primals_44, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_45, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 131072, grid=grid(131072), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32) buf8 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf91 = empty_strided_cuda((4, 24, 64, 64), (98304, 4096, 64, 1), torch.float32) buf90 = reinterpret_tensor(buf91, (4, 8, 64, 64), (98304, 4096, 64, 1), 65536) # alias buf7 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, instance_norm, x, x_19], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] triton_red_fused__native_batch_norm_legit_cat_convolution_leaky_relu_1.run(buf3, primals_5, buf4, buf8, buf90, buf7, 32, 4096, grid=grid(32), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.float32) buf10 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_2.run(buf8, buf9, buf10, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf12, primals_7, 65536, grid=grid(65536), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf14 = buf13; del buf13 # reuse buf15 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.float32) buf19 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32) buf79 = empty_strided_cuda((4, 48, 32, 32), (49152, 1024, 32, 1), torch.float32) buf78 = reinterpret_tensor(buf79, (4, 16, 32, 32), (49152, 1024, 32, 1), 32768) # alias buf18 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, instance_norm_1, x_2, x_16], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_4.run(buf14, primals_9, buf15, buf19, buf78, buf18, 64, 1024, grid=grid(64), stream=stream0) del primals_9 buf20 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32) buf21 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf19, buf20, buf21, 16384, grid=grid(16384), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf20, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 32, 16, 16), (8192, 256, 16, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] triton_poi_fused_convolution_6.run(buf23, primals_11, 32768, grid=grid(32768), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 16, 16), (8192, 256, 16, 1)) buf25 = buf24; del buf24 # reuse buf26 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf30 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf67 = empty_strided_cuda((4, 96, 16, 16), (24576, 256, 16, 1), torch.float32) buf66 = reinterpret_tensor(buf67, (4, 32, 16, 16), (24576, 256, 16, 1), 16384) # alias buf29 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, instance_norm_2, x_4, x_13], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_7.run(buf25, primals_13, buf26, buf30, buf66, buf29, 128, 256, grid=grid(128), stream=stream0) del primals_13 buf31 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.float32) buf32 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.int8) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_8.run(buf30, buf31, buf32, 8192, grid=grid(8192), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf31, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 64, 8, 8), (4096, 64, 8, 1)) buf34 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] triton_poi_fused_convolution_9.run(buf34, primals_15, 16384, grid=grid(16384), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 64, 8, 8), (4096, 64, 8, 1)) buf36 = buf35; del buf35 # reuse buf37 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf41 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32) buf55 = empty_strided_cuda((4, 192, 8, 8), (12288, 64, 8, 1), torch.float32) buf54 = reinterpret_tensor(buf55, (4, 64, 8, 8), (12288, 64, 8, 1), 8192) # alias buf40 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_7, instance_norm_3, x_6, x_10], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu, aten.cat] triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_10.run(buf36, primals_17, buf37, buf41, buf54, buf40, 256, 64, grid=grid(256), stream=stream0) del primals_17 buf42 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32) buf43 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_11.run(buf41, buf42, buf43, 4096, grid=grid(4096), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf44 = extern_kernels.convolution(buf42, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 128, 4, 4), (2048, 16, 4, 1)) buf45 = buf44; del buf44 # reuse # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] triton_poi_fused_convolution_12.run(buf45, primals_19, 8192, grid=grid(8192), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf46 = extern_kernels.convolution(buf45, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 128, 4, 4), (2048, 16, 4, 1)) buf47 = buf46; del buf46 # reuse buf48 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf49 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf51 = reinterpret_tensor(buf49, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf49 # reuse # Topologically Sorted Source Nodes: [conv2d_9, instance_norm_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_13.run(buf47, buf51, primals_21, buf48, 512, 16, grid=grid(512), stream=stream0) del primals_21 buf52 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_14.run(buf52, 8, grid=grid(8), stream=stream0) buf53 = reinterpret_tensor(buf55, (4, 128, 8, 8), (12288, 64, 8, 1), 0) # alias # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten._unsafe_index] triton_poi_fused__unsafe_index_15.run(buf52, buf47, buf48, buf51, buf53, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf56 = extern_kernels.convolution(buf55, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 64, 8, 8), (4096, 64, 8, 1)) buf57 = buf56; del buf56 # reuse # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] triton_poi_fused_convolution_9.run(buf57, primals_23, 16384, grid=grid(16384), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf58 = extern_kernels.convolution(buf57, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 64, 8, 8), (4096, 64, 8, 1)) buf59 = buf58; del buf58 # reuse buf60 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.float32) buf61 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf63 = reinterpret_tensor(buf61, (1, 256, 1, 1), (256, 1, 1, 1), 0); del buf61 # reuse # Topologically Sorted Source Nodes: [conv2d_11, instance_norm_5], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_16.run(buf59, buf63, primals_25, buf60, 256, 64, grid=grid(256), stream=stream0) del primals_25 buf64 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_17.run(buf64, 16, grid=grid(16), stream=stream0) buf65 = reinterpret_tensor(buf67, (4, 64, 16, 16), (24576, 256, 16, 1), 0) # alias # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten._unsafe_index] triton_poi_fused__unsafe_index_18.run(buf64, buf59, buf60, buf63, buf65, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf68 = extern_kernels.convolution(buf67, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf68, (4, 32, 16, 16), (8192, 256, 16, 1)) buf69 = buf68; del buf68 # reuse # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] triton_poi_fused_convolution_6.run(buf69, primals_27, 32768, grid=grid(32768), stream=stream0) del primals_27 # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf70 = extern_kernels.convolution(buf69, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 32, 16, 16), (8192, 256, 16, 1)) buf71 = buf70; del buf70 # reuse buf72 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32) buf73 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf75 = reinterpret_tensor(buf73, (1, 128, 1, 1), (128, 1, 1, 1), 0); del buf73 # reuse # Topologically Sorted Source Nodes: [conv2d_13, instance_norm_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_19.run(buf71, buf75, primals_29, buf72, 128, 256, grid=grid(128), stream=stream0) del primals_29 buf76 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_20.run(buf76, 32, grid=grid(32), stream=stream0) buf77 = reinterpret_tensor(buf79, (4, 32, 32, 32), (49152, 1024, 32, 1), 0) # alias # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten._unsafe_index] triton_poi_fused__unsafe_index_21.run(buf76, buf71, buf72, buf75, buf77, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf80 = extern_kernels.convolution(buf79, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf80, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf81 = buf80; del buf80 # reuse # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf81, primals_31, 65536, grid=grid(65536), stream=stream0) del primals_31 # Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution] buf82 = extern_kernels.convolution(buf81, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf82, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf83 = buf82; del buf82 # reuse buf84 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 1, 1), torch.float32) buf85 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.float32) buf87 = reinterpret_tensor(buf85, (1, 64, 1, 1), (64, 1, 1, 1), 0); del buf85 # reuse # Topologically Sorted Source Nodes: [conv2d_15, instance_norm_7], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_22.run(buf83, buf87, primals_33, buf84, 64, 1024, grid=grid(64), stream=stream0) del primals_33 buf88 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_23.run(buf88, 64, grid=grid(64), stream=stream0) buf89 = reinterpret_tensor(buf91, (4, 16, 64, 64), (98304, 4096, 64, 1), 0) # alias # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten._unsafe_index] triton_poi_fused__unsafe_index_24.run(buf88, buf83, buf84, buf87, buf89, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution] buf92 = extern_kernels.convolution(buf91, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf92, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf93 = buf92; del buf92 # reuse # Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf93, primals_35, 131072, grid=grid(131072), stream=stream0) del primals_35 # Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution] buf94 = extern_kernels.convolution(buf93, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf94, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf95 = buf94; del buf94 # reuse buf96 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32) buf100 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf99 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d_17, instance_norm_8, x_20], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_25.run(buf95, primals_37, buf96, buf100, buf99, 32, 4096, grid=grid(32), stream=stream0) del primals_37 # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] buf101 = extern_kernels.convolution(buf100, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf101, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf102 = buf101; del buf101 # reuse # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] triton_poi_fused_convolution_26.run(buf102, primals_39, 16384, grid=grid(16384), stream=stream0) del primals_39 # Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution] buf103 = extern_kernels.convolution(buf102, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf103, (4, 1, 64, 64), (4096, 4096, 64, 1)) # Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution] buf109 = extern_kernels.convolution(primals_1, primals_42, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf110 = buf109; del buf109 # reuse # Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution] triton_poi_fused_convolution_26.run(buf110, primals_43, 16384, grid=grid(16384), stream=stream0) del primals_43 # Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution] buf111 = extern_kernels.convolution(buf110, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf111, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf104 = buf103; del buf103 # reuse buf105 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf106 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32) buf108 = reinterpret_tensor(buf106, (1, 4, 1, 1), (4, 1, 1, 1), 0); del buf106 # reuse buf112 = buf111; del buf111 # reuse buf113 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf114 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32) buf116 = reinterpret_tensor(buf114, (1, 4, 1, 1), (4, 1, 1, 1), 0); del buf114 # reuse buf117 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_19, instance_norm_9, conv2d_21, instance_norm_10, x_23], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.add] triton_red_fused__native_batch_norm_legit_add_convolution_27.run(buf104, buf108, buf112, buf116, primals_41, primals_45, buf105, buf113, buf117, 4, 4096, grid=grid(4), stream=stream0) del primals_41 del primals_45 return (buf117, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, buf1, buf3, reinterpret_tensor(buf7, (32, ), (1, ), 0), buf8, buf9, buf10, buf12, buf14, reinterpret_tensor(buf18, (64, ), (1, ), 0), buf19, buf20, buf21, buf23, buf25, reinterpret_tensor(buf29, (128, ), (1, ), 0), buf30, buf31, buf32, buf34, buf36, reinterpret_tensor(buf40, (256, ), (1, ), 0), buf41, buf42, buf43, buf45, buf47, buf48, buf51, buf52, buf55, buf57, buf59, buf60, buf63, buf64, buf67, buf69, buf71, buf72, buf75, buf76, buf79, buf81, buf83, buf84, buf87, buf88, buf91, buf93, buf95, reinterpret_tensor(buf99, (32, ), (1, ), 0), buf100, buf102, buf104, buf105, buf108, buf110, buf112, buf113, buf116, reinterpret_tensor(buf96, (1, 32, 1, 1), (32, 1, 1, 1), 0), reinterpret_tensor(buf37, (1, 256, 1, 1), (256, 1, 1, 1), 0), reinterpret_tensor(buf26, (1, 128, 1, 1), (128, 1, 1, 1), 0), reinterpret_tensor(buf15, (1, 64, 1, 1), (64, 1, 1, 1), 0), reinterpret_tensor(buf4, (1, 32, 1, 1), (32, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((64, 192, 3, 3), (1728, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((32, 96, 3, 3), (864, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((16, 48, 3, 3), (432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((8, 24, 3, 3), (216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((1, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class BasicConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(BasicConvBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.norm = nn.InstanceNorm2d(out_channels) def forward(self, x): x = F.leaky_relu(self.norm(self.conv2(self.conv1(x))), negative_slope=0.001, inplace=True) return x class BasicUNet(nn.Module): def __init__(self, n_input_channel=1, n_output_channel=1, nic=8, residual=True): super().__init__() self.residual = residual self.down1 = nn.MaxPool2d(kernel_size=2) self.down2 = nn.MaxPool2d(kernel_size=2) self.down3 = nn.MaxPool2d(kernel_size=2) self.down4 = nn.MaxPool2d(kernel_size=2) self.up1 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.up2 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.up3 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.up4 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.conv1 = BasicConvBlock(n_input_channel, nic) self.conv2 = BasicConvBlock(nic, nic * 2) self.conv3 = BasicConvBlock(nic * 2, nic * 4) self.conv4 = BasicConvBlock(nic * 4, nic * 8) self.conv5 = BasicConvBlock(nic * 8, nic * 16) self.conv6 = BasicConvBlock(nic * 3 * 8, nic * 8) self.conv7 = BasicConvBlock(nic * 3 * 4, nic * 4) self.conv8 = BasicConvBlock(nic * 3 * 2, nic * 2) self.conv9 = BasicConvBlock(nic * 3, nic) self.conv10 = BasicConvBlock(nic, n_output_channel) if self.residual: self.conv11 = BasicConvBlock(n_input_channel, n_output_channel) def forward(self, x): c0 = x c1 = self.conv1(x) x = self.down1(c1) c2 = self.conv2(x) x = self.down2(c2) c3 = self.conv3(x) x = self.down3(c3) c4 = self.conv4(x) x = self.down4(c4) x = self.conv5(x) x = self.up1(x) x = torch.cat([x, c4], 1) x = self.conv6(x) x = self.up2(x) x = torch.cat([x, c3], 1) x = self.conv7(x) x = self.up3(x) x = torch.cat([x, c2], 1) x = self.conv8(x) x = self.up4(x) x = torch.cat([x, c1], 1) x = self.conv9(x) x = self.conv10(x) if self.residual: x = torch.add(x, self.conv11(c0)) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 8 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_red_fused__native_batch_norm_legit_cat_convolution_leaky_relu_1( in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 32 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 8 tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers. welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0) ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + 4096 * x3), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean, tmp4_m2, tmp4_weight, 1) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6_tmp[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) x1 = xindex // 8 for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp7 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp8 = tmp7 - tmp4 tmp9 = 4096.0 tmp10 = tmp5 / tmp9 tmp11 = 1e-05 tmp12 = tmp10 + tmp11 tmp13 = libdevice.rsqrt(tmp12) tmp14 = tmp8 * tmp13 tmp15 = 0.0 tmp16 = tmp14 > tmp15 tmp17 = 0.001 tmp18 = tmp14 * tmp17 tmp19 = tl.where(tmp16, tmp14, tmp18) tl.store(out_ptr2 + (r2 + 4096 * x3), tmp19, rmask & xmask) tl.store(out_ptr3 + (r2 + 4096 * x0 + 98304 * x1), tmp19, rmask & xmask ) tmp20 = 4096.0 tmp21 = tmp5 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tl.store(out_ptr4 + x3, tmp24, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_4( in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_out_ptr0 + (r2 + 1024 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = tmp2 - tmp10 tmp17 = 1024.0 tmp18 = tmp15 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp16 * tmp21 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.001 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + 1024 * x3), tmp2, None) tl.store(out_ptr2 + (r2 + 1024 * x3), tmp27, None) tl.store(out_ptr3 + (r2 + 1024 * x0 + 49152 * x1), tmp27, None) tl.store(out_ptr4 + x3, tmp21, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_7( in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 32 x1 = xindex // 32 tmp0 = tl.load(in_out_ptr0 + (r2 + 256 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = tmp2 - tmp10 tmp17 = 256.0 tmp18 = tmp15 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp16 * tmp21 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.001 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + 256 * x3), tmp2, None) tl.store(out_ptr2 + (r2 + 256 * x3), tmp27, None) tl.store(out_ptr3 + (r2 + 256 * x0 + 24576 * x1), tmp27, None) tl.store(out_ptr4 + x3, tmp21, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_10( in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + (r2 + 64 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp2 - tmp12 tmp20 = 64.0 tmp21 = tmp18 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tmp25 = tmp19 * tmp24 tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 0.001 tmp29 = tmp25 * tmp28 tmp30 = tl.where(tmp27, tmp25, tmp29) tl.store(in_out_ptr0 + (r2 + 64 * x3), tmp2, xmask) tl.store(out_ptr2 + (r2 + 64 * x3), tmp30, xmask) tl.store(out_ptr3 + (r2 + 64 * x0 + 12288 * x1), tmp30, xmask) tl.store(out_ptr4 + x3, tmp24, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_13(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 512 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_14(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_15(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 8 % 8 x0 = xindex % 8 x5 = xindex // 64 x3 = xindex // 8192 x6 = xindex % 8192 tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x5, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x5, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + 12288 * x3), tmp18, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_16(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (r2 + 64 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + 64 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_17(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 16 x0 = xindex % 16 x5 = xindex // 256 x3 = xindex // 16384 x6 = xindex % 16384 tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x5, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x5, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + 24576 * x3), tmp18, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_19(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (r2 + 256 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + 256 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_20(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x5 = xindex // 1024 x3 = xindex // 32768 x6 = xindex % 32768 tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x5, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x5, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + 49152 * x3), tmp18, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_22(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (r2 + 1024 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1024.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + 1024 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_23(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_24(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex // 4096 x3 = xindex // 65536 x6 = xindex % 65536 tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x5, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x5, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 32 * tmp4 + 1024 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.001 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tl.store(out_ptr0 + (x6 + 98304 * x3), tmp18, None) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_25( in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 32 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 8 tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers. welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0) ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + 4096 * x3), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean, tmp4_m2, tmp4_weight, 1) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6_tmp[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp7 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp8 = tmp7 - tmp4 tmp9 = 4096.0 tmp10 = tmp5 / tmp9 tmp11 = 1e-05 tmp12 = tmp10 + tmp11 tmp13 = libdevice.rsqrt(tmp12) tmp14 = tmp8 * tmp13 tmp15 = 0.0 tmp16 = tmp14 > tmp15 tmp17 = 0.001 tmp18 = tmp14 * tmp17 tmp19 = tl.where(tmp16, tmp14, tmp18) tl.store(out_ptr2 + (r2 + 4096 * x3), tmp19, rmask & xmask) tmp20 = 4096.0 tmp21 = tmp5 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tl.store(out_ptr3 + x3, tmp24, xmask) @triton.jit def triton_poi_fused_convolution_26(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) @triton.jit def triton_red_fused__native_batch_norm_legit_add_convolution_27(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl. constexpr): xnumel = 4 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_out_ptr0 + (r1 + 4096 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp3 = tmp0 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp5_mean_next, tmp5_m2_next, tmp5_weight_next = (triton_helpers. welford_reduce(tmp4, tmp5_mean, tmp5_m2, tmp5_weight, roffset == 0) ) tmp5_mean = tl.where(rmask & xmask, tmp5_mean_next, tmp5_mean) tmp5_m2 = tl.where(rmask & xmask, tmp5_m2_next, tmp5_m2) tmp5_weight = tl.where(rmask & xmask, tmp5_weight_next, tmp5_weight) tl.store(in_out_ptr0 + (r1 + 4096 * x0), tmp3, rmask & xmask) tmp5_tmp, tmp6_tmp, tmp7_tmp = triton_helpers.welford(tmp5_mean, tmp5_m2, tmp5_weight, 1) tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tmp7_tmp[:, None] tl.store(out_ptr0 + x0, tmp5, xmask) tmp8 = 4096.0 tmp9 = tmp6 / tmp8 tmp10 = 1e-05 tmp11 = tmp9 + tmp10 tmp12 = libdevice.rsqrt(tmp11) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp12, xmask) tmp14 = tl.load(in_ptr1 + 0) tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp18_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp18_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp18_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp13 = tl.load(in_out_ptr2 + (r1 + 4096 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp13 + tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp18_mean_next, tmp18_m2_next, tmp18_weight_next = (triton_helpers .welford_reduce(tmp17, tmp18_mean, tmp18_m2, tmp18_weight, roffset == 0)) tmp18_mean = tl.where(rmask & xmask, tmp18_mean_next, tmp18_mean) tmp18_m2 = tl.where(rmask & xmask, tmp18_m2_next, tmp18_m2) tmp18_weight = tl.where(rmask & xmask, tmp18_weight_next, tmp18_weight) tl.store(in_out_ptr2 + (r1 + 4096 * x0), tmp16, rmask & xmask) tmp18_tmp, tmp19_tmp, tmp20_tmp = triton_helpers.welford(tmp18_mean, tmp18_m2, tmp18_weight, 1) tmp18 = tmp18_tmp[:, None] tmp19 = tmp19_tmp[:, None] tmp20_tmp[:, None] tl.store(out_ptr1 + x0, tmp18, xmask) tmp21 = 4096.0 tmp22 = tmp19 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tl.debug_barrier() tl.store(in_out_ptr3 + x0, tmp25, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp26 = tl.load(in_out_ptr0 + (r1 + 4096 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp34 = tl.load(in_out_ptr2 + (r1 + 4096 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp27 = tmp26 - tmp5 tmp28 = tmp27 * tmp12 tmp29 = 0.0 tmp30 = tmp28 > tmp29 tmp31 = 0.001 tmp32 = tmp28 * tmp31 tmp33 = tl.where(tmp30, tmp28, tmp32) tmp35 = tmp34 - tmp18 tmp36 = tmp35 * tmp25 tmp37 = tmp36 > tmp29 tmp38 = tmp36 * tmp31 tmp39 = tl.where(tmp37, tmp36, tmp38) tmp40 = tmp33 + tmp39 tl.store(out_ptr2 + (r1 + 4096 * x0), tmp40, rmask & xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45) = args args.clear() assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_2, (8, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32,), (1,)) assert_size_stride(primals_14, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (128,), (1,)) assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (64, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_23, (64,), (1,)) assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_25, (64,), (1,)) assert_size_stride(primals_26, (32, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_27, (32,), (1,)) assert_size_stride(primals_28, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_29, (32,), (1,)) assert_size_stride(primals_30, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_31, (16,), (1,)) assert_size_stride(primals_32, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_33, (16,), (1,)) assert_size_stride(primals_34, (8, 24, 3, 3), (216, 9, 3, 1)) assert_size_stride(primals_35, (8,), (1,)) assert_size_stride(primals_36, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_37, (8,), (1,)) assert_size_stride(primals_38, (1, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_39, (1,), (1,)) assert_size_stride(primals_40, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_41, (1,), (1,)) assert_size_stride(primals_42, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_43, (1,), (1,)) assert_size_stride(primals_44, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_45, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(131072)](buf1, primals_3, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf3 = buf2 del buf2 buf4 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32 ) buf8 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf91 = empty_strided_cuda((4, 24, 64, 64), (98304, 4096, 64, 1), torch.float32) buf90 = reinterpret_tensor(buf91, (4, 8, 64, 64), (98304, 4096, 64, 1), 65536) buf7 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32 ) triton_red_fused__native_batch_norm_legit_cat_convolution_leaky_relu_1[ grid(32)](buf3, primals_5, buf4, buf8, buf90, buf7, 32, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.float32) buf10 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_2[grid(32768)](buf8, buf9, buf10, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf11 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf12 = buf11 del buf11 triton_poi_fused_convolution_3[grid(65536)](buf12, primals_7, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf13 = extern_kernels.convolution(buf12, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf14 = buf13 del buf13 buf15 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch. float32) buf19 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32) buf79 = empty_strided_cuda((4, 48, 32, 32), (49152, 1024, 32, 1), torch.float32) buf78 = reinterpret_tensor(buf79, (4, 16, 32, 32), (49152, 1024, 32, 1), 32768) buf18 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch. float32) triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_4[ grid(64)](buf14, primals_9, buf15, buf19, buf78, buf18, 64, 1024, num_warps=8, num_stages=1) del primals_9 buf20 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32) buf21 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_5[grid(16384)](buf19, buf20, buf21, 16384, XBLOCK=256, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf20, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 32, 16, 16), (8192, 256, 16, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_6[grid(32768)](buf23, primals_11, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf24 = extern_kernels.convolution(buf23, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 16, 16), (8192, 256, 16, 1)) buf25 = buf24 del buf24 buf26 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf30 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf67 = empty_strided_cuda((4, 96, 16, 16), (24576, 256, 16, 1), torch.float32) buf66 = reinterpret_tensor(buf67, (4, 32, 16, 16), (24576, 256, 16, 1), 16384) buf29 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_7[ grid(128)](buf25, primals_13, buf26, buf30, buf66, buf29, 128, 256, num_warps=2, num_stages=1) del primals_13 buf31 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch. float32) buf32 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_8[grid(8192)](buf30, buf31, buf32, 8192, XBLOCK=128, num_warps=4, num_stages=1) buf33 = extern_kernels.convolution(buf31, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 64, 8, 8), (4096, 64, 8, 1)) buf34 = buf33 del buf33 triton_poi_fused_convolution_9[grid(16384)](buf34, primals_15, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 64, 8, 8), (4096, 64, 8, 1)) buf36 = buf35 del buf35 buf37 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf41 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch. float32) buf55 = empty_strided_cuda((4, 192, 8, 8), (12288, 64, 8, 1), torch .float32) buf54 = reinterpret_tensor(buf55, (4, 64, 8, 8), (12288, 64, 8, 1), 8192) buf40 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) triton_per_fused__native_batch_norm_legit_cat_convolution_leaky_relu_10[ grid(256)](buf36, primals_17, buf37, buf41, buf54, buf40, 256, 64, XBLOCK=8, num_warps=4, num_stages=1) del primals_17 buf42 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch. float32) buf43 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_11[grid(4096)](buf41, buf42, buf43, 4096, XBLOCK=128, num_warps=4, num_stages=1) buf44 = extern_kernels.convolution(buf42, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 128, 4, 4), (2048, 16, 4, 1)) buf45 = buf44 del buf44 triton_poi_fused_convolution_12[grid(8192)](buf45, primals_19, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_19 buf46 = extern_kernels.convolution(buf45, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 128, 4, 4), (2048, 16, 4, 1)) buf47 = buf46 del buf46 buf48 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf49 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf51 = reinterpret_tensor(buf49, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf49 triton_per_fused__native_batch_norm_legit_convolution_13[grid(512)]( buf47, buf51, primals_21, buf48, 512, 16, XBLOCK=32, num_warps= 4, num_stages=1) del primals_21 buf52 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_14[grid(8)](buf52, 8, XBLOCK=8, num_warps=1, num_stages=1) buf53 = reinterpret_tensor(buf55, (4, 128, 8, 8), (12288, 64, 8, 1), 0) triton_poi_fused__unsafe_index_15[grid(32768)](buf52, buf47, buf48, buf51, buf53, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf56 = extern_kernels.convolution(buf55, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 64, 8, 8), (4096, 64, 8, 1)) buf57 = buf56 del buf56 triton_poi_fused_convolution_9[grid(16384)](buf57, primals_23, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf58 = extern_kernels.convolution(buf57, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 64, 8, 8), (4096, 64, 8, 1)) buf59 = buf58 del buf58 buf60 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch. float32) buf61 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf63 = reinterpret_tensor(buf61, (1, 256, 1, 1), (256, 1, 1, 1), 0) del buf61 triton_per_fused__native_batch_norm_legit_convolution_16[grid(256)]( buf59, buf63, primals_25, buf60, 256, 64, XBLOCK=8, num_warps=4, num_stages=1) del primals_25 buf64 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_17[grid(16)](buf64, 16, XBLOCK=16, num_warps=1, num_stages=1) buf65 = reinterpret_tensor(buf67, (4, 64, 16, 16), (24576, 256, 16, 1), 0) triton_poi_fused__unsafe_index_18[grid(65536)](buf64, buf59, buf60, buf63, buf65, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf68 = extern_kernels.convolution(buf67, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf68, (4, 32, 16, 16), (8192, 256, 16, 1)) buf69 = buf68 del buf68 triton_poi_fused_convolution_6[grid(32768)](buf69, primals_27, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_27 buf70 = extern_kernels.convolution(buf69, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 32, 16, 16), (8192, 256, 16, 1)) buf71 = buf70 del buf70 buf72 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch. float32) buf73 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf75 = reinterpret_tensor(buf73, (1, 128, 1, 1), (128, 1, 1, 1), 0) del buf73 triton_per_fused__native_batch_norm_legit_convolution_19[grid(128)]( buf71, buf75, primals_29, buf72, 128, 256, num_warps=2, num_stages=1) del primals_29 buf76 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_20[grid(32)](buf76, 32, XBLOCK=32, num_warps=1, num_stages=1) buf77 = reinterpret_tensor(buf79, (4, 32, 32, 32), (49152, 1024, 32, 1), 0) triton_poi_fused__unsafe_index_21[grid(131072)](buf76, buf71, buf72, buf75, buf77, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf80 = extern_kernels.convolution(buf79, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf80, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf81 = buf80 del buf80 triton_poi_fused_convolution_3[grid(65536)](buf81, primals_31, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_31 buf82 = extern_kernels.convolution(buf81, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf82, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf83 = buf82 del buf82 buf84 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 1, 1), torch.float32) buf85 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch. float32) buf87 = reinterpret_tensor(buf85, (1, 64, 1, 1), (64, 1, 1, 1), 0) del buf85 triton_per_fused__native_batch_norm_legit_convolution_22[grid(64)]( buf83, buf87, primals_33, buf84, 64, 1024, num_warps=8, num_stages=1) del primals_33 buf88 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_23[grid(64)](buf88, 64, XBLOCK=64, num_warps=1, num_stages=1) buf89 = reinterpret_tensor(buf91, (4, 16, 64, 64), (98304, 4096, 64, 1), 0) triton_poi_fused__unsafe_index_24[grid(262144)](buf88, buf83, buf84, buf87, buf89, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf92 = extern_kernels.convolution(buf91, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf92, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf93 = buf92 del buf92 triton_poi_fused_convolution_0[grid(131072)](buf93, primals_35, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_35 buf94 = extern_kernels.convolution(buf93, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf94, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf95 = buf94 del buf94 buf96 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch. float32) buf100 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf99 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch. float32) triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_25[ grid(32)](buf95, primals_37, buf96, buf100, buf99, 32, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del primals_37 buf101 = extern_kernels.convolution(buf100, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf101, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf102 = buf101 del buf101 triton_poi_fused_convolution_26[grid(16384)](buf102, primals_39, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_39 buf103 = extern_kernels.convolution(buf102, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf103, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf109 = extern_kernels.convolution(primals_1, primals_42, stride=( 1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf110 = buf109 del buf109 triton_poi_fused_convolution_26[grid(16384)](buf110, primals_43, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_43 buf111 = extern_kernels.convolution(buf110, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf111, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf104 = buf103 del buf103 buf105 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf106 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32) buf108 = reinterpret_tensor(buf106, (1, 4, 1, 1), (4, 1, 1, 1), 0) del buf106 buf112 = buf111 del buf111 buf113 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf114 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32) buf116 = reinterpret_tensor(buf114, (1, 4, 1, 1), (4, 1, 1, 1), 0) del buf114 buf117 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.float32) triton_red_fused__native_batch_norm_legit_add_convolution_27[grid(4)]( buf104, buf108, buf112, buf116, primals_41, primals_45, buf105, buf113, buf117, 4, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del primals_41 del primals_45 return (buf117, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, buf1, buf3, reinterpret_tensor( buf7, (32,), (1,), 0), buf8, buf9, buf10, buf12, buf14, reinterpret_tensor(buf18, (64,), (1,), 0), buf19, buf20, buf21, buf23, buf25, reinterpret_tensor(buf29, (128,), (1,), 0), buf30, buf31, buf32, buf34, buf36, reinterpret_tensor(buf40, (256,), (1,), 0), buf41, buf42, buf43, buf45, buf47, buf48, buf51, buf52, buf55, buf57, buf59, buf60, buf63, buf64, buf67, buf69, buf71, buf72, buf75, buf76, buf79, buf81, buf83, buf84, buf87, buf88, buf91, buf93, buf95, reinterpret_tensor(buf99, (32,), (1,), 0), buf100, buf102, buf104, buf105, buf108, buf110, buf112, buf113, buf116, reinterpret_tensor(buf96, (1, 32, 1, 1), (32, 1, 1, 1), 0), reinterpret_tensor(buf37, (1, 256, 1, 1), (256, 1, 1, 1), 0), reinterpret_tensor(buf26, (1, 128, 1, 1), (128, 1, 1, 1), 0), reinterpret_tensor(buf15, (1, 64, 1, 1), (64, 1, 1, 1), 0), reinterpret_tensor(buf4, (1, 32, 1, 1), (32, 1, 1, 1), 0)) class BasicConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(BasicConvBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.norm = nn.InstanceNorm2d(out_channels) def forward(self, x): x = F.leaky_relu(self.norm(self.conv2(self.conv1(x))), negative_slope=0.001, inplace=True) return x class BasicUNetNew(nn.Module): def __init__(self, n_input_channel=1, n_output_channel=1, nic=8, residual=True): super().__init__() self.residual = residual self.down1 = nn.MaxPool2d(kernel_size=2) self.down2 = nn.MaxPool2d(kernel_size=2) self.down3 = nn.MaxPool2d(kernel_size=2) self.down4 = nn.MaxPool2d(kernel_size=2) self.up1 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.up2 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.up3 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.up4 = lambda x: nn.functional.interpolate(x, mode='nearest', scale_factor=2) self.conv1 = BasicConvBlock(n_input_channel, nic) self.conv2 = BasicConvBlock(nic, nic * 2) self.conv3 = BasicConvBlock(nic * 2, nic * 4) self.conv4 = BasicConvBlock(nic * 4, nic * 8) self.conv5 = BasicConvBlock(nic * 8, nic * 16) self.conv6 = BasicConvBlock(nic * 3 * 8, nic * 8) self.conv7 = BasicConvBlock(nic * 3 * 4, nic * 4) self.conv8 = BasicConvBlock(nic * 3 * 2, nic * 2) self.conv9 = BasicConvBlock(nic * 3, nic) self.conv10 = BasicConvBlock(nic, n_output_channel) if self.residual: self.conv11 = BasicConvBlock(n_input_channel, n_output_channel) def forward(self, input_0): primals_2 = self.conv1.conv1.weight primals_3 = self.conv1.conv1.bias primals_4 = self.conv1.conv2.weight primals_5 = self.conv1.conv2.bias primals_6 = self.conv2.conv1.weight primals_7 = self.conv2.conv1.bias primals_8 = self.conv2.conv2.weight primals_9 = self.conv2.conv2.bias primals_10 = self.conv3.conv1.weight primals_11 = self.conv3.conv1.bias primals_12 = self.conv3.conv2.weight primals_13 = self.conv3.conv2.bias primals_14 = self.conv4.conv1.weight primals_15 = self.conv4.conv1.bias primals_16 = self.conv4.conv2.weight primals_17 = self.conv4.conv2.bias primals_18 = self.conv5.conv1.weight primals_19 = self.conv5.conv1.bias primals_20 = self.conv5.conv2.weight primals_21 = self.conv5.conv2.bias primals_22 = self.conv6.conv1.weight primals_23 = self.conv6.conv1.bias primals_24 = self.conv6.conv2.weight primals_25 = self.conv6.conv2.bias primals_26 = self.conv7.conv1.weight primals_27 = self.conv7.conv1.bias primals_28 = self.conv7.conv2.weight primals_29 = self.conv7.conv2.bias primals_30 = self.conv8.conv1.weight primals_31 = self.conv8.conv1.bias primals_32 = self.conv8.conv2.weight primals_33 = self.conv8.conv2.bias primals_34 = self.conv9.conv1.weight primals_35 = self.conv9.conv1.bias primals_36 = self.conv9.conv2.weight primals_37 = self.conv9.conv2.bias primals_38 = self.conv10.conv1.weight primals_39 = self.conv10.conv1.bias primals_40 = self.conv10.conv2.weight primals_41 = self.conv10.conv2.bias primals_42 = self.conv11.conv1.weight primals_43 = self.conv11.conv1.bias primals_44 = self.conv11.conv2.weight primals_45 = self.conv11.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45]) return output[0]
royerloic/aydin
BasicUNet
false
16,420
[ "BSD-3-Clause" ]
78
f9c61a24030891d008c318b250da5faec69fcd7d
https://github.com/royerloic/aydin/tree/f9c61a24030891d008c318b250da5faec69fcd7d
HSwish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/4n/c4n4t4ob46tjofubvbx7kuypv4fkq77j7kjunchukdfb6wpttdx6.py # Topologically Sorted Source Nodes: [add, relu6, div_, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # div_ => div # mul => mul # relu6 => clamp_max, clamp_min # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp0 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, div_, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data class HSwish(nn.Module): """Hard Swish activation function. See: https://arxiv.org/abs/1905.02244 """ def forward(self, x): return x * nn.functional.relu6(x + 3).div_(6) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp0 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HSwishNew(nn.Module): """Hard Swish activation function. See: https://arxiv.org/abs/1905.02244 """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shiyuann/determined
HSwish
false
16,421
[ "Apache-2.0" ]
1,729
856123ae112759de7bded9bc7bd0e07055f2174b
https://github.com/shiyuann/determined/tree/856123ae112759de7bded9bc7bd0e07055f2174b
StyledConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ri/criuvsdl3sferb4bb6ci5zaps3wys7xxcpybz7vfo2ba4q7cuq6c.py # Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt] # Source node to ATen node mapping: # add => add # demod => rsqrt # mul_2 => mul_2 # pow_1 => pow_1 # sum_1 => sum_1 # weight => mul_3 # weight_1 => mul_4 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.125), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {}) triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r5 = rindex x0 = xindex % 4 r3 = (rindex // 16) x1 = (xindex // 4) x4 = xindex tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0) tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = 0.125 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 1e-08 tmp11 = tmp9 + tmp10 tmp12 = libdevice.rsqrt(tmp11) tmp13 = tmp4 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (x4), tmp12, xmask) tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/m5/cm56eqdvtyi73jnsik4k6g5v62qofgoqvpcasegx6ljukv6gdjyd.py # Topologically Sorted Source Nodes: [mul_5, out_3, add_2, leaky_relu, out_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # add_2 => add_2 # leaky_relu => gt, mul_6, where # mul_5 => mul_5 # out_3 => add_1 # out_4 => mul_7 # Graph fragment: # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_6, %normal_functional), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %mul_5), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %view_5), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_2, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_2, %mul_6), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1.4142135623730951), kwargs = {}) triton_poi_fused_add_leaky_relu_mul_3 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 25 x2 = (xindex // 100) x1 = (xindex // 25) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + (x0 + (25*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 0.0 tmp9 = tmp7 > tmp8 tmp10 = 0.2 tmp11 = tmp7 * tmp10 tmp12 = tl.where(tmp9, tmp7, tmp11) tmp13 = 1.4142135623730951 tmp14 = tmp12 * tmp13 tl.store(out_ptr0 + (x3), tmp9, xmask) tl.store(out_ptr1 + (x3), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_6, (1, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_3, buf1, 4, grid=grid(4), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, out], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf1 buf3 = buf0; del buf0 # reuse buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt] triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 64, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1)) buf7 = empty_strided_cuda((4, 1, 5, 5), (25, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [noise], Original ATen: [aten.normal_functional] buf8 = torch.ops.aten.normal_functional.default(buf7) del buf7 buf9 = buf8 del buf8 buf10 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool) buf11 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_5, out_3, add_2, leaky_relu, out_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_mul_3.run(buf6, primals_6, buf9, primals_7, buf10, buf11, 400, grid=grid(400), stream=stream0) del buf6 del primals_6 del primals_7 return (buf11, primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf9, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import warnings import numpy as np from torch import nn from torch.nn import functional as F import torch.utils.cpp_extension def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): rest_dim = [1] * (input.ndim - bias.ndim - 1) input = input return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope) * scale def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def _init(): global _inited, _plugin if not _inited: sources = ['upfirdn2d.cpp', 'upfirdn2d.cu'] sources = [os.path.join(os.path.dirname(__file__), s) for s in sources] try: _plugin = custom_ops.get_plugin('upfirdn2d_plugin', sources= sources, extra_cuda_cflags=['--use_fast_math']) except: warnings.warn( """Failed to build CUDA kernels for upfirdn2d. Falling back to slow reference implementation. Details: """ + traceback.format_exc()) return _plugin is not None def _get_filter_size(f): if f is None: return 1, 1 assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] fw = f.shape[-1] fh = f.shape[0] with misc.suppress_tracer_warnings(): fw = int(fw) fh = int(fh) misc.assert_shape(f, [fh, fw][:f.ndim]) assert fw >= 1 and fh >= 1 return fw, fh def _parse_padding(padding): if isinstance(padding, int): padding = [padding, padding] assert isinstance(padding, (list, tuple)) assert all(isinstance(x, int) for x in padding) if len(padding) == 2: padx, pady = padding padding = [padx, padx, pady, pady] padx0, padx1, pady0, pady1 = padding return padx0, padx1, pady0, pady1 def _parse_scaling(scaling): if isinstance(scaling, int): scaling = [scaling, scaling] assert isinstance(scaling, (list, tuple)) assert all(isinstance(x, int) for x in scaling) sx, sy = scaling assert sx >= 1 and sy >= 1 return sx, sy def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1): """Fast CUDA implementation of `upfirdn2d()` using custom ops. """ upx, upy = _parse_scaling(up) downx, downy = _parse_scaling(down) padx0, padx1, pady0, pady1 = _parse_padding(padding) key = upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain if key in _upfirdn2d_cuda_cache: return _upfirdn2d_cuda_cache[key] class Upfirdn2dCuda(torch.autograd.Function): @staticmethod def forward(ctx, x, f): assert isinstance(x, torch.Tensor) and x.ndim == 4 if f is None: f = torch.ones([1, 1], dtype=torch.float32, device=x.device) assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] y = x if f.ndim == 2: y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain) else: y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, padx0, padx1, 0, 0, flip_filter, np.sqrt(gain)) y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, 0, pady0, pady1, flip_filter, np.sqrt(gain)) ctx.save_for_backward(f) ctx.x_shape = x.shape return y @staticmethod def backward(ctx, dy): f, = ctx.saved_tensors _, _, ih, iw = ctx.x_shape _, _, oh, ow = dy.shape fw, fh = _get_filter_size(f) p = [fw - padx0 - 1, iw * upx - ow * downx + padx0 - upx + 1, fh - pady0 - 1, ih * upy - oh * downy + pady0 - upy + 1] dx = None df = None if ctx.needs_input_grad[0]: dx = _upfirdn2d_cuda(up=down, down=up, padding=p, flip_filter=not flip_filter, gain=gain).apply(dy, f) assert not ctx.needs_input_grad[1] return dx, df _upfirdn2d_cuda_cache[key] = Upfirdn2dCuda return Upfirdn2dCuda def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'): """Pad, upsample, filter, and downsample a batch of 2D images. Performs the following sequence of operations for each channel: 1. Upsample the image by inserting N-1 zeros after each pixel (`up`). 2. Pad the image with the specified number of zeros on each side (`padding`). Negative padding corresponds to cropping the image. 3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it so that the footprint of all output pixels lies within the input image. 4. Downsample the image by keeping every Nth pixel (`down`). This sequence of operations bears close resemblance to scipy.signal.upfirdn(). The fused op is considerably more efficient than performing the same calculation using standard PyTorch ops. It supports gradients of arbitrary order. Args: x: Float32/float64/float16 input tensor of the shape `[batch_size, num_channels, in_height, in_width]`. f: Float32 FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). up: Integer upsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). down: Integer downsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). padding: Padding with respect to the upsampled image. Can be a single number or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` (default: 0). flip_filter: False = convolution, True = correlation (default: False). gain: Overall scaling factor for signal magnitude (default: 1). impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). Returns: Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. """ assert isinstance(x, torch.Tensor) assert impl in ['ref', 'cuda'] if impl == 'cuda' and x.device.type == 'cuda' and _init(): return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f) return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = 1 / math.sqrt(in_dim) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * upsample_factor ** 2 self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out class ModulatedConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1]): super().__init__() self.eps = 1e-08 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = len(blur_kernel) - factor - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor =factor) if downsample: factor = 2 p = len(blur_kernel) - factor + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view(batch * self.out_channel, in_channel, self. kernel_size, self.kernel_size) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view(batch, self.out_channel, in_channel, self. kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class NoiseInjection(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, image, noise=None): if noise is None: batch, _, height, width = image.shape noise = image.new_empty(batch, 1, height, width).normal_() return image + self.weight * noise class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(channel)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): return fused_leaky_relu(input, self.bias, self.negative_slope, self .scale) class StyledConv(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True): super().__init__() self.conv = ModulatedConv2d(in_channel, out_channel, kernel_size, style_dim, upsample=upsample, blur_kernel=blur_kernel, demodulate=demodulate) self.noise = NoiseInjection() self.activate = FusedLeakyReLU(out_channel) def forward(self, input, style, noise=None): out = self.conv(input, style) out = self.noise(out, noise=noise) out = self.activate(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4, 'style_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import warnings import numpy as np from torch import nn from torch.nn import functional as F import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r5 = rindex x0 = xindex % 4 r3 = rindex // 16 x1 = xindex // 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy= 'evict_last', other=0.0) tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp1 = 0.125 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 1e-08 tmp11 = tmp9 + tmp10 tmp12 = libdevice.rsqrt(tmp11) tmp13 = tmp4 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + x4, tmp12, xmask) tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask) @triton.jit def triton_poi_fused_add_leaky_relu_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 25 x2 = xindex // 100 x1 = xindex // 25 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + (x0 + 25 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 0.0 tmp9 = tmp7 > tmp8 tmp10 = 0.2 tmp11 = tmp7 * tmp10 tmp12 = tl.where(tmp9, tmp7, tmp11) tmp13 = 1.4142135623730951 tmp14 = tmp12 * tmp13 tl.store(out_ptr0 + x3, tmp9, xmask) tl.store(out_ptr1 + x3, tmp14, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_6, (1,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_3, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf1 buf3 = buf0 del buf0 buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5, buf2, buf5, 16, 64, XBLOCK=8, num_warps=4, num_stages=1) buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1)) buf7 = empty_strided_cuda((4, 1, 5, 5), (25, 25, 5, 1), torch.float32) buf8 = torch.ops.aten.normal_functional.default(buf7) del buf7 buf9 = buf8 del buf8 buf10 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool) buf11 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32 ) triton_poi_fused_add_leaky_relu_mul_3[grid(400)](buf6, primals_6, buf9, primals_7, buf10, buf11, 400, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_6 del primals_7 return buf11, primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf9, buf10 def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): rest_dim = [1] * (input.ndim - bias.ndim - 1) input = input return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope) * scale def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def _init(): global _inited, _plugin if not _inited: sources = ['upfirdn2d.cpp', 'upfirdn2d.cu'] sources = [os.path.join(os.path.dirname(__file__), s) for s in sources] try: _plugin = custom_ops.get_plugin('upfirdn2d_plugin', sources= sources, extra_cuda_cflags=['--use_fast_math']) except: warnings.warn( """Failed to build CUDA kernels for upfirdn2d. Falling back to slow reference implementation. Details: """ + traceback.format_exc()) return _plugin is not None def _get_filter_size(f): if f is None: return 1, 1 assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] fw = f.shape[-1] fh = f.shape[0] with misc.suppress_tracer_warnings(): fw = int(fw) fh = int(fh) misc.assert_shape(f, [fh, fw][:f.ndim]) assert fw >= 1 and fh >= 1 return fw, fh def _parse_padding(padding): if isinstance(padding, int): padding = [padding, padding] assert isinstance(padding, (list, tuple)) assert all(isinstance(x, int) for x in padding) if len(padding) == 2: padx, pady = padding padding = [padx, padx, pady, pady] padx0, padx1, pady0, pady1 = padding return padx0, padx1, pady0, pady1 def _parse_scaling(scaling): if isinstance(scaling, int): scaling = [scaling, scaling] assert isinstance(scaling, (list, tuple)) assert all(isinstance(x, int) for x in scaling) sx, sy = scaling assert sx >= 1 and sy >= 1 return sx, sy def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1): """Fast CUDA implementation of `upfirdn2d()` using custom ops. """ upx, upy = _parse_scaling(up) downx, downy = _parse_scaling(down) padx0, padx1, pady0, pady1 = _parse_padding(padding) key = upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain if key in _upfirdn2d_cuda_cache: return _upfirdn2d_cuda_cache[key] class Upfirdn2dCuda(torch.autograd.Function): @staticmethod def forward(ctx, x, f): assert isinstance(x, torch.Tensor) and x.ndim == 4 if f is None: f = torch.ones([1, 1], dtype=torch.float32, device=x.device) assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] y = x if f.ndim == 2: y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain) else: y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, padx0, padx1, 0, 0, flip_filter, np.sqrt(gain)) y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, 0, pady0, pady1, flip_filter, np.sqrt(gain)) ctx.save_for_backward(f) ctx.x_shape = x.shape return y @staticmethod def backward(ctx, dy): f, = ctx.saved_tensors _, _, ih, iw = ctx.x_shape _, _, oh, ow = dy.shape fw, fh = _get_filter_size(f) p = [fw - padx0 - 1, iw * upx - ow * downx + padx0 - upx + 1, fh - pady0 - 1, ih * upy - oh * downy + pady0 - upy + 1] dx = None df = None if ctx.needs_input_grad[0]: dx = _upfirdn2d_cuda(up=down, down=up, padding=p, flip_filter=not flip_filter, gain=gain).apply(dy, f) assert not ctx.needs_input_grad[1] return dx, df _upfirdn2d_cuda_cache[key] = Upfirdn2dCuda return Upfirdn2dCuda def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'): """Pad, upsample, filter, and downsample a batch of 2D images. Performs the following sequence of operations for each channel: 1. Upsample the image by inserting N-1 zeros after each pixel (`up`). 2. Pad the image with the specified number of zeros on each side (`padding`). Negative padding corresponds to cropping the image. 3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it so that the footprint of all output pixels lies within the input image. 4. Downsample the image by keeping every Nth pixel (`down`). This sequence of operations bears close resemblance to scipy.signal.upfirdn(). The fused op is considerably more efficient than performing the same calculation using standard PyTorch ops. It supports gradients of arbitrary order. Args: x: Float32/float64/float16 input tensor of the shape `[batch_size, num_channels, in_height, in_width]`. f: Float32 FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). up: Integer upsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). down: Integer downsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). padding: Padding with respect to the upsampled image. Can be a single number or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` (default: 0). flip_filter: False = convolution, True = correlation (default: False). gain: Overall scaling factor for signal magnitude (default: 1). impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). Returns: Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. """ assert isinstance(x, torch.Tensor) assert impl in ['ref', 'cuda'] if impl == 'cuda' and x.device.type == 'cuda' and _init(): return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f) return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = 1 / math.sqrt(in_dim) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * upsample_factor ** 2 self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out class ModulatedConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1]): super().__init__() self.eps = 1e-08 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = len(blur_kernel) - factor - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor =factor) if downsample: factor = 2 p = len(blur_kernel) - factor + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view(batch * self.out_channel, in_channel, self. kernel_size, self.kernel_size) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view(batch, self.out_channel, in_channel, self. kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class NoiseInjection(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, image, noise=None): if noise is None: batch, _, height, width = image.shape noise = image.new_empty(batch, 1, height, width).normal_() return image + self.weight * noise class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(channel)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): return fused_leaky_relu(input, self.bias, self.negative_slope, self .scale) class StyledConvNew(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True): super().__init__() self.conv = ModulatedConv2d(in_channel, out_channel, kernel_size, style_dim, upsample=upsample, blur_kernel=blur_kernel, demodulate=demodulate) self.noise = NoiseInjection() self.activate = FusedLeakyReLU(out_channel) def forward(self, input_0, input_1): primals_5 = self.conv.weight primals_2 = self.conv.modulation.weight primals_3 = self.conv.modulation.bias primals_6 = self.noise.weight primals_7 = self.activate.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
phygitalism/PTI
StyledConv
false
16,422
[ "MIT" ]
345
adab2eb1d0e36ac5714e663e1fec9f85a0d51fbf
https://github.com/phygitalism/PTI/tree/adab2eb1d0e36ac5714e663e1fec9f85a0d51fbf
AlphaEntropy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qk/cqk6uygkayz5rfjeyvroasluypdlp4rmaq2oooyljgtf6w22lklj.py # Topologically Sorted Source Nodes: [mul, sum_1, mean], Original ATen: [aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # mean => mean_1 # mul => mul # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %arg3_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_mean_mul_sum_0 = async_compile.triton('triton_per_fused_mean_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp4 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp7 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp11 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp12 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sy/csy5yghzybuog6gicj2rbi7yvelyylsnrsi3dumfcpwmxbd4e3be.py # Topologically Sorted Source Nodes: [mul, sum_1, mean, p_loss, v_loss, add], Original ATen: [aten.mul, aten.sum, aten.mean, aten.neg, aten.mse_loss, aten.add] # Source node to ATen node mapping: # add => add # mean => mean_1 # mul => mul # p_loss => neg # sum_1 => sum_1 # v_loss => mean, pow_1, sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %arg3_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %mean), kwargs = {}) triton_per_fused_add_mean_mse_loss_mul_neg_sum_1 = async_compile.triton('triton_per_fused_add_mean_mse_loss_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mse_loss_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mse_loss_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp7 = tl.load(in_out_ptr0 + (0)) tmp8 = tl.broadcast_to(tmp7, [1]) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp9 = 64.0 tmp10 = tmp8 / tmp9 tmp11 = -tmp10 tmp12 = 256.0 tmp13 = tmp6 / tmp12 tmp14 = tmp11 + tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [mul, sum_1, mean], Original ATen: [aten.mul, aten.sum, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_mul_sum_0.run(arg2_1, arg3_1, buf0, 1, 64, grid=grid(1), stream=stream0) del arg2_1 del arg3_1 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, sum_1, mean, p_loss, v_loss, add], Original ATen: [aten.mul, aten.sum, aten.mean, aten.neg, aten.mse_loss, aten.add] triton_per_fused_add_mean_mse_loss_mul_neg_sum_1.run(buf2, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AlphaEntropy(nn.Module): def __init__(self): super().__init__() self.v_loss = nn.MSELoss() def forward(self, props, v, pi, reward): v_loss = self.v_loss(v, reward) p_loss = -torch.mean(torch.sum(props * pi, 1)) return p_loss + v_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp4 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp7 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp11 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp12 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None) @triton.jit def triton_per_fused_add_mean_mse_loss_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp7 = tl.load(in_out_ptr0 + 0) tmp8 = tl.broadcast_to(tmp7, [1]) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp9 = 64.0 tmp10 = tmp8 / tmp9 tmp11 = -tmp10 tmp12 = 256.0 tmp13 = tmp6 / tmp12 tmp14 = tmp11 + tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_mean_mul_sum_0[grid(1)](arg2_1, arg3_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg2_1 del arg3_1 buf2 = buf0 del buf0 triton_per_fused_add_mean_mse_loss_mul_neg_sum_1[grid(1)](buf2, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class AlphaEntropyNew(nn.Module): def __init__(self): super().__init__() self.v_loss = nn.MSELoss() def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
shinoyuki222/torch-light
AlphaEntropy
false
16,423
[ "MIT" ]
310
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dd/cddsugzjkfr45ivhqpnzfedr6lc5ptacwpecx6j7l2rmsfffadxm.py # Topologically Sorted Source Nodes: [add, x_1, x_2], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # add => add # x_1 => add_1 # x_2 => relu # Graph fragment: # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_3), kwargs = {}) # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor_4, %add_tensor_3), kwargs = {}) # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_7), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add_tensor_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), None) tmp4 = tl.load(in_ptr2 + (x0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x2), None) tmp8 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp11 = tl.full([1], 0, tl.int32) tmp12 = triton_helpers.maximum(tmp11, tmp10) tl.store(in_out_ptr0 + (x2), tmp12, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f3/cf3aanfqkd3b3pvexih2slyq6527crsaqnmvr3rq6tpbn2nyl74i.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_1 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 3, 1024), (3072, 1024, 1)) assert_size_stride(primals_2, (1024, 1024), (1024, 1)) assert_size_stride(primals_3, (1024, ), (1, )) assert_size_stride(primals_4, (1024, 1024), (1024, 1)) assert_size_stride(primals_5, (1024, ), (1, )) assert_size_stride(primals_6, (1024, 1024), (1024, 1)) assert_size_stride(primals_7, (1024, ), (1, )) assert_size_stride(primals_8, (1024, 1024), (1024, 1)) assert_size_stride(primals_9, (1024, ), (1, )) assert_size_stride(primals_10, (1024, 1024), (1024, 1)) assert_size_stride(primals_11, (1024, ), (1, )) assert_size_stride(primals_12, (10, 1024), (1024, 1)) assert_size_stride(primals_13, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 0), reinterpret_tensor(primals_2, (1024, 1024), (1, 1024), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 1024), reinterpret_tensor(primals_4, (1024, 1024), (1, 1024), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 2048), reinterpret_tensor(primals_6, (1024, 1024), (1, 1024), 0), out=buf2) del primals_6 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, x_1, x_2], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(buf3, primals_3, buf1, primals_5, buf2, primals_7, 4096, grid=grid(4096), stream=stream0) del primals_3 del primals_5 del primals_7 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (1024, 1024), (1, 1024), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf5, primals_9, 4096, grid=grid(4096), stream=stream0) del primals_9 buf6 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_10, (1024, 1024), (1, 1024), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf7, primals_11, 4096, grid=grid(4096), stream=stream0) del primals_11 buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, buf7, reinterpret_tensor(primals_12, (1024, 10), (1, 1024), 0), alpha=1, beta=1, out=buf8) del primals_13 return (buf8, reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 1024), reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 2048), buf3, buf5, buf7, primals_12, primals_10, primals_8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 1024), (3072, 1024, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((10, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn import torch.nn.functional as F import torch.cuda import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class Butterfly(nn.Module): """Product of log N butterfly factors, each is a block 2x2 of diagonal matrices. Compatible with torch.nn.Linear. Parameters: in_size: size of input out_size: size of output bias: If set to False, the layer will not learn an additive bias. Default: ``True`` complex: whether complex or real increasing_stride: whether the first butterfly block will multiply with increasing stride (e.g. 1, 2, ..., n/2) or decreasing stride (e.g., n/2, n/4, ..., 1). init: 'randn', 'ortho', or 'identity'. Whether the weight matrix should be initialized to from randn twiddle, or to be randomly orthogonal/unitary, or to be the identity matrix. nblocks: number of B or B^T blocks. The B and B^T will alternate. """ def __init__(self, in_size, out_size, bias=True, complex=False, increasing_stride=True, init='randn', nblocks=1): super().__init__() self.in_size = in_size log_n = int(math.ceil(math.log2(in_size))) self.log_n = log_n size = self.in_size_extended = 1 << log_n self.out_size = out_size self.nstacks = int(math.ceil(out_size / self.in_size_extended)) self.complex = complex self.increasing_stride = increasing_stride assert nblocks >= 1 self.nblocks = nblocks dtype = torch.get_default_dtype( ) if not self.complex else real_dtype_to_complex[torch. get_default_dtype()] twiddle_shape = self.nstacks, nblocks, log_n, size // 2, 2, 2 assert init in ['randn', 'ortho', 'identity'] self.init = init self.twiddle = nn.Parameter(torch.empty(twiddle_shape, dtype=dtype)) if bias: self.bias = nn.Parameter(torch.empty(out_size, dtype=dtype)) else: self.register_parameter('bias', None) self.twiddle._is_structured = True if self.complex: self.twiddle = nn.Parameter(view_as_real(self.twiddle)) if self.bias is not None: self.bias = nn.Parameter(view_as_real(self.bias)) self.reset_parameters() def reset_parameters(self): """Initialize bias the same way as torch.nn.Linear.""" twiddle = self.twiddle if not self.complex else view_as_complex(self .twiddle) if self.init == 'randn': scaling = 1.0 / math.sqrt(2) with torch.no_grad(): twiddle.copy_(torch.randn(twiddle.shape, dtype=twiddle. dtype) * scaling) elif self.init == 'ortho': twiddle_core_shape = twiddle.shape[:-2] if not self.complex: theta = torch.rand(twiddle_core_shape) * math.pi * 2 c, s = torch.cos(theta), torch.sin(theta) det = torch.randint(0, 2, twiddle_core_shape, dtype=c.dtype ) * 2 - 1 with torch.no_grad(): twiddle.copy_(torch.stack((torch.stack((det * c, -det * s), dim=-1), torch.stack((s, c), dim=-1)), dim=-2)) else: phi = torch.asin(torch.sqrt(torch.rand(twiddle_core_shape))) c, s = torch.cos(phi), torch.sin(phi) alpha, psi, chi = torch.rand((3,) + twiddle_core_shape ) * math.pi * 2 A = torch.exp(1.0j * (alpha + psi)) * c B = torch.exp(1.0j * (alpha + chi)) * s C = -torch.exp(1.0j * (alpha - chi)) * s D = torch.exp(1.0j * (alpha - psi)) * c with torch.no_grad(): twiddle.copy_(torch.stack((torch.stack((A, B), dim=-1), torch.stack((C, D), dim=-1)), dim=-2)) elif self.init == 'identity': twiddle_new = torch.eye(2, dtype=twiddle.dtype).reshape(1, 1, 1, 1, 2, 2) twiddle_new = twiddle_new.expand(*twiddle.shape).contiguous() with torch.no_grad(): twiddle.copy_(twiddle_new) if self.bias is not None: bound = 1 / math.sqrt(self.in_size) nn.init.uniform_(self.bias, -bound, bound) def forward(self, input, transpose=False, conjugate=False, subtwiddle=False ): """ Parameters: input: (batch, *, in_size) transpose: whether the butterfly matrix should be transposed. conjugate: whether the butterfly matrix should be conjugated. subtwiddle: allow using only part of the parameters for smaller input. Could be useful for weight sharing. out_size is set to self.nstacks * self.in_size_extended in this case Return: output: (batch, *, out_size) """ twiddle = self.twiddle if not self.complex else view_as_complex(self .twiddle) if not subtwiddle: output = self.pre_process(input) else: log_n = int(math.ceil(math.log2(input.size(-1)))) n = 1 << log_n output = self.pre_process(input, padded_size=n) twiddle = twiddle[:, :, :log_n, :n // 2 ] if self.increasing_stride else twiddle[:, :, -log_n:, :n // 2 ] if conjugate and self.complex: twiddle = twiddle.conj() if not transpose: output = butterfly_multiply(twiddle, output, self.increasing_stride ) else: twiddle = twiddle.transpose(-1, -2).flip([1, 2]) last_increasing_stride = self.increasing_stride != ((self. nblocks - 1) % 2 == 1) output = butterfly_multiply(twiddle, output, not last_increasing_stride) if not subtwiddle: return self.post_process(input, output) else: return self.post_process(input, output, out_size=output.size(-1)) def pre_process(self, input, padded_size=None): if padded_size is None: padded_size = self.in_size_extended input_size = input.size(-1) output = input.reshape(-1, input_size) batch = output.shape[0] if input_size != padded_size: output = F.pad(output, (0, padded_size - input_size)) output = output.unsqueeze(1).expand(batch, self.nstacks, padded_size) return output def post_process(self, input, output, out_size=None): if out_size is None: out_size = self.out_size batch = output.shape[0] output = output.view(batch, self.nstacks * output.size(-1)) out_size_extended = 1 << int(math.ceil(math.log2(output.size(-1)))) if out_size != out_size_extended: output = output[:, :out_size] if self.bias is not None: bias = self.bias if not self.complex else view_as_complex(self.bias ) output = output + bias[:out_size] return output.view(*input.size()[:-1], out_size) def extra_repr(self): s = ( 'in_size={}, out_size={}, bias={}, complex={}, increasing_stride={}, init={}, nblocks={}' .format(self.in_size, self.out_size, self.bias is not None, self.complex, self.increasing_stride, self.init, self.nblocks)) return s class MLP(nn.Module): def __init__(self, method='linear', **kwargs): super().__init__() if method == 'linear': def make_layer(name): return self.add_module(name, nn.Linear(1024, 1024, bias=True)) elif method == 'butterfly': def make_layer(name): return self.add_module(name, Butterfly(1024, 1024, bias= True, **kwargs)) elif method == 'low-rank': def make_layer(name): return self.add_module(name, nn.Sequential(nn.Linear(1024, kwargs['rank'], bias=False), nn.Linear(kwargs['rank'], 1024, bias=True))) elif method == 'toeplitz': def make_layer(name): return self.add_module(name, sl.ToeplitzLikeC(layer_size= 1024, bias=True, **kwargs)) else: assert False, f'method {method} not supported' make_layer('fc10') make_layer('fc11') make_layer('fc12') make_layer('fc2') make_layer('fc3') self.logits = nn.Linear(1024, 10) def forward(self, x): x = x.view(-1, 3, 1024) x = self.fc10(x[:, 0, :]) + self.fc11(x[:, 1, :]) + self.fc12(x[:, 2, :]) x = F.relu(x) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = self.logits(x) return x def get_inputs(): return [torch.rand([4, 3, 1024])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math from torch import nn import torch.nn.functional as F import torch.cuda import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, None) tmp4 = tl.load(in_ptr2 + x0, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x2, None) tmp8 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp11 = tl.full([1], 0, tl.int32) tmp12 = triton_helpers.maximum(tmp11, tmp10) tl.store(in_out_ptr0 + x2, tmp12, None) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 3, 1024), (3072, 1024, 1)) assert_size_stride(primals_2, (1024, 1024), (1024, 1)) assert_size_stride(primals_3, (1024,), (1,)) assert_size_stride(primals_4, (1024, 1024), (1024, 1)) assert_size_stride(primals_5, (1024,), (1,)) assert_size_stride(primals_6, (1024, 1024), (1024, 1)) assert_size_stride(primals_7, (1024,), (1,)) assert_size_stride(primals_8, (1024, 1024), (1024, 1)) assert_size_stride(primals_9, (1024,), (1,)) assert_size_stride(primals_10, (1024, 1024), (1024, 1)) assert_size_stride(primals_11, (1024,), (1,)) assert_size_stride(primals_12, (10, 1024), (1024, 1)) assert_size_stride(primals_13, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 1024), (3072, 1 ), 0), reinterpret_tensor(primals_2, (1024, 1024), (1, 1024), 0 ), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 1024), (3072, 1 ), 1024), reinterpret_tensor(primals_4, (1024, 1024), (1, 1024), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 1024), (3072, 1 ), 2048), reinterpret_tensor(primals_6, (1024, 1024), (1, 1024), 0), out=buf2) del primals_6 buf3 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_relu_0[grid(4096)](buf3, primals_3, buf1, primals_5, buf2, primals_7, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 del primals_5 del primals_7 buf4 = buf2 del buf2 extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (1024, 1024), (1, 1024), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_1[grid(4096)](buf5, primals_9, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf6 = buf1 del buf1 extern_kernels.mm(buf5, reinterpret_tensor(primals_10, (1024, 1024), (1, 1024), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_relu_1[grid(4096)](buf7, primals_11, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_11 buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_13, buf7, reinterpret_tensor( primals_12, (1024, 10), (1, 1024), 0), alpha=1, beta=1, out=buf8) del primals_13 return buf8, reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 0 ), reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 1024 ), reinterpret_tensor(primals_1, (4, 1024), (3072, 1), 2048 ), buf3, buf5, buf7, primals_12, primals_10, primals_8 class Butterfly(nn.Module): """Product of log N butterfly factors, each is a block 2x2 of diagonal matrices. Compatible with torch.nn.Linear. Parameters: in_size: size of input out_size: size of output bias: If set to False, the layer will not learn an additive bias. Default: ``True`` complex: whether complex or real increasing_stride: whether the first butterfly block will multiply with increasing stride (e.g. 1, 2, ..., n/2) or decreasing stride (e.g., n/2, n/4, ..., 1). init: 'randn', 'ortho', or 'identity'. Whether the weight matrix should be initialized to from randn twiddle, or to be randomly orthogonal/unitary, or to be the identity matrix. nblocks: number of B or B^T blocks. The B and B^T will alternate. """ def __init__(self, in_size, out_size, bias=True, complex=False, increasing_stride=True, init='randn', nblocks=1): super().__init__() self.in_size = in_size log_n = int(math.ceil(math.log2(in_size))) self.log_n = log_n size = self.in_size_extended = 1 << log_n self.out_size = out_size self.nstacks = int(math.ceil(out_size / self.in_size_extended)) self.complex = complex self.increasing_stride = increasing_stride assert nblocks >= 1 self.nblocks = nblocks dtype = torch.get_default_dtype( ) if not self.complex else real_dtype_to_complex[torch. get_default_dtype()] twiddle_shape = self.nstacks, nblocks, log_n, size // 2, 2, 2 assert init in ['randn', 'ortho', 'identity'] self.init = init self.twiddle = nn.Parameter(torch.empty(twiddle_shape, dtype=dtype)) if bias: self.bias = nn.Parameter(torch.empty(out_size, dtype=dtype)) else: self.register_parameter('bias', None) self.twiddle._is_structured = True if self.complex: self.twiddle = nn.Parameter(view_as_real(self.twiddle)) if self.bias is not None: self.bias = nn.Parameter(view_as_real(self.bias)) self.reset_parameters() def reset_parameters(self): """Initialize bias the same way as torch.nn.Linear.""" twiddle = self.twiddle if not self.complex else view_as_complex(self .twiddle) if self.init == 'randn': scaling = 1.0 / math.sqrt(2) with torch.no_grad(): twiddle.copy_(torch.randn(twiddle.shape, dtype=twiddle. dtype) * scaling) elif self.init == 'ortho': twiddle_core_shape = twiddle.shape[:-2] if not self.complex: theta = torch.rand(twiddle_core_shape) * math.pi * 2 c, s = torch.cos(theta), torch.sin(theta) det = torch.randint(0, 2, twiddle_core_shape, dtype=c.dtype ) * 2 - 1 with torch.no_grad(): twiddle.copy_(torch.stack((torch.stack((det * c, -det * s), dim=-1), torch.stack((s, c), dim=-1)), dim=-2)) else: phi = torch.asin(torch.sqrt(torch.rand(twiddle_core_shape))) c, s = torch.cos(phi), torch.sin(phi) alpha, psi, chi = torch.rand((3,) + twiddle_core_shape ) * math.pi * 2 A = torch.exp(1.0j * (alpha + psi)) * c B = torch.exp(1.0j * (alpha + chi)) * s C = -torch.exp(1.0j * (alpha - chi)) * s D = torch.exp(1.0j * (alpha - psi)) * c with torch.no_grad(): twiddle.copy_(torch.stack((torch.stack((A, B), dim=-1), torch.stack((C, D), dim=-1)), dim=-2)) elif self.init == 'identity': twiddle_new = torch.eye(2, dtype=twiddle.dtype).reshape(1, 1, 1, 1, 2, 2) twiddle_new = twiddle_new.expand(*twiddle.shape).contiguous() with torch.no_grad(): twiddle.copy_(twiddle_new) if self.bias is not None: bound = 1 / math.sqrt(self.in_size) nn.init.uniform_(self.bias, -bound, bound) def forward(self, input, transpose=False, conjugate=False, subtwiddle=False ): """ Parameters: input: (batch, *, in_size) transpose: whether the butterfly matrix should be transposed. conjugate: whether the butterfly matrix should be conjugated. subtwiddle: allow using only part of the parameters for smaller input. Could be useful for weight sharing. out_size is set to self.nstacks * self.in_size_extended in this case Return: output: (batch, *, out_size) """ twiddle = self.twiddle if not self.complex else view_as_complex(self .twiddle) if not subtwiddle: output = self.pre_process(input) else: log_n = int(math.ceil(math.log2(input.size(-1)))) n = 1 << log_n output = self.pre_process(input, padded_size=n) twiddle = twiddle[:, :, :log_n, :n // 2 ] if self.increasing_stride else twiddle[:, :, -log_n:, :n // 2 ] if conjugate and self.complex: twiddle = twiddle.conj() if not transpose: output = butterfly_multiply(twiddle, output, self.increasing_stride ) else: twiddle = twiddle.transpose(-1, -2).flip([1, 2]) last_increasing_stride = self.increasing_stride != ((self. nblocks - 1) % 2 == 1) output = butterfly_multiply(twiddle, output, not last_increasing_stride) if not subtwiddle: return self.post_process(input, output) else: return self.post_process(input, output, out_size=output.size(-1)) def pre_process(self, input, padded_size=None): if padded_size is None: padded_size = self.in_size_extended input_size = input.size(-1) output = input.reshape(-1, input_size) batch = output.shape[0] if input_size != padded_size: output = F.pad(output, (0, padded_size - input_size)) output = output.unsqueeze(1).expand(batch, self.nstacks, padded_size) return output def post_process(self, input, output, out_size=None): if out_size is None: out_size = self.out_size batch = output.shape[0] output = output.view(batch, self.nstacks * output.size(-1)) out_size_extended = 1 << int(math.ceil(math.log2(output.size(-1)))) if out_size != out_size_extended: output = output[:, :out_size] if self.bias is not None: bias = self.bias if not self.complex else view_as_complex(self.bias ) output = output + bias[:out_size] return output.view(*input.size()[:-1], out_size) def extra_repr(self): s = ( 'in_size={}, out_size={}, bias={}, complex={}, increasing_stride={}, init={}, nblocks={}' .format(self.in_size, self.out_size, self.bias is not None, self.complex, self.increasing_stride, self.init, self.nblocks)) return s class MLPNew(nn.Module): def __init__(self, method='linear', **kwargs): super().__init__() if method == 'linear': def make_layer(name): return self.add_module(name, nn.Linear(1024, 1024, bias=True)) elif method == 'butterfly': def make_layer(name): return self.add_module(name, Butterfly(1024, 1024, bias= True, **kwargs)) elif method == 'low-rank': def make_layer(name): return self.add_module(name, nn.Sequential(nn.Linear(1024, kwargs['rank'], bias=False), nn.Linear(kwargs['rank'], 1024, bias=True))) elif method == 'toeplitz': def make_layer(name): return self.add_module(name, sl.ToeplitzLikeC(layer_size= 1024, bias=True, **kwargs)) else: assert False, f'method {method} not supported' make_layer('fc10') make_layer('fc11') make_layer('fc12') make_layer('fc2') make_layer('fc3') self.logits = nn.Linear(1024, 10) def forward(self, input_0): primals_2 = self.fc10.weight primals_3 = self.fc10.bias primals_4 = self.fc11.weight primals_5 = self.fc11.bias primals_6 = self.fc12.weight primals_7 = self.fc12.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_12 = self.logits.weight primals_13 = self.logits.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
sfox14/butterfly
MLP
false
16,424
[ "Apache-2.0" ]
52
13cc15cee5bdb7adaf376219aaf20fab0459e9ef
https://github.com/sfox14/butterfly/tree/13cc15cee5bdb7adaf376219aaf20fab0459e9ef
ActorCritic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vh/cvhowampoosezwy5zm5vfkdmhzrvsn2u2gxpn4cchngk4b74ympu.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 128), (128, 1)) assert_size_stride(primals_5, (2, ), (1, )) assert_size_stride(primals_6, (1, 128), (128, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [action_scores], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128), 0), alpha=1, beta=1, out=buf2) del primals_5 buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [state_values], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf5, 128, grid=grid(128), stream=stream0) del buf2 return (buf5, reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), buf5, primals_6, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.distributions import Categorical class ActorCritic(nn.Module): def __init__(self): super().__init__() self.affine1 = nn.Linear(4, 128) self.action_head = nn.Linear(128, 2) self.value_head = nn.Linear(128, 1) def forward(self, x): x = F.relu(self.affine1(x)) action_scores = self.action_head(x) state_values = self.value_head(x) return F.softmax(action_scores, dim=-1), state_values def select_action(self, state, values, select_props): state = torch.from_numpy(state).float() props, value = self(Variable(state)) dist = Categorical(props) action = dist.sample() log_props = dist.log_prob(action) values.append(value) select_props.append(log_props) return action.data[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from torch.autograd import Variable from torch.distributions import Categorical assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + x2, tmp11, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 128), (128, 1)) assert_size_stride(primals_5, (2,), (1,)) assert_size_stride(primals_6, (1, 128), (128, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1, primals_2, buf6, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128), 0), alpha=1, beta=1, out=buf2) del primals_5 buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) triton_poi_fused__softmax_1[grid(128)](buf2, buf5, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf2 return buf5, reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 128), (128, 1), 0 ), buf5, primals_6, primals_4, buf6 class ActorCriticNew(nn.Module): def __init__(self): super().__init__() self.affine1 = nn.Linear(4, 128) self.action_head = nn.Linear(128, 2) self.value_head = nn.Linear(128, 1) def select_action(self, state, values, select_props): state = torch.from_numpy(state).float() props, value = self(Variable(state)) dist = Categorical(props) action = dist.sample() log_props = dist.log_prob(action) values.append(value) select_props.append(log_props) return action.data[0] def forward(self, input_0): primals_1 = self.affine1.weight primals_2 = self.affine1.bias primals_4 = self.action_head.weight primals_5 = self.action_head.bias primals_6 = self.value_head.weight primals_7 = self.value_head.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
shinoyuki222/torch-light
ActorCritic
false
16,425
[ "MIT" ]
310
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
AdaIN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vx/cvx2mkof7lntpjrpc65myom6nddnwk6dg2t67qoqxszlsadf3yea.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._native_batch_norm_legit] # Source node to ATen node mapping: # x => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused__native_batch_norm_legit_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qk/cqktolenkjfb466t5wvtfndff62234jne6ubyyx4k2jd25jn3uar.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fl/cflgvbhseauqw5xxppuut3763myia6ggd4h7iojiz3edaac5oyx4.py # Topologically Sorted Source Nodes: [mul_2, add_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add_2 => add_3 # mul_2 => mul_3 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %view_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_3), kwargs = {}) triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = (xindex // 256) x4 = xindex % 16 x0 = xindex % 4 x5 = xindex % 256 x2 = (xindex // 16) % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x5), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr5 + (x4 + (16*x3)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 - tmp4 tmp7 = tmp5 * tmp6 tmp8 = tmp2 * tmp7 tmp11 = tmp9 + tmp10 tmp12 = tmp8 + tmp11 tl.store(out_ptr0 + (x6), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten._native_batch_norm_legit] stream0 = get_raw_stream(0) triton_per_fused__native_batch_norm_legit_0.run(buf3, primals_1, buf0, 16, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_2, buf4, 256, grid=grid(256), stream=stream0) del primals_2 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf5) del primals_3 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf6) del primals_5 buf7 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, add_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_2.run(buf5, primals_4, primals_1, buf0, buf3, buf6, primals_6, buf7, 4096, grid=grid(4096), stream=stream0) del buf5 del buf6 del primals_4 del primals_6 return (buf7, primals_1, buf0, buf3, reinterpret_tensor(buf4, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn class WSLinear(nn.Module): def __init__(self, in_features, out_features, gain=2): super(WSLinear, self).__init__() self.linear = nn.Linear(in_features, out_features) self.scale = (gain / in_features) ** 0.5 self.bias = self.linear.bias self.linear.bias = None nn.init.normal_(self.linear.weight) nn.init.zeros_(self.bias) def forward(self, x): return self.linear(x * self.scale) + self.bias class AdaIN(nn.Module): def __init__(self, channels, w_dim): super().__init__() self.instance_norm = nn.InstanceNorm2d(channels) self.style_scale = WSLinear(w_dim, channels) self.style_bias = WSLinear(w_dim, channels) def forward(self, x, w): x = self.instance_norm(x) style_scale = self.style_scale(w).unsqueeze(2).unsqueeze(3) style_bias = self.style_bias(w).unsqueeze(2).unsqueeze(3) return style_scale * x + style_bias def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'w_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__native_batch_norm_legit_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex // 256 x4 = xindex % 16 x0 = xindex % 4 x5 = xindex % 256 x2 = xindex // 16 % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), None, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x5, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr5 + (x4 + 16 * x3), None, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 - tmp4 tmp7 = tmp5 * tmp6 tmp8 = tmp2 * tmp7 tmp11 = tmp9 + tmp10 tmp12 = tmp8 + tmp11 tl.store(out_ptr0 + x6, tmp12, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf3 = reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf1 get_raw_stream(0) triton_per_fused__native_batch_norm_legit_0[grid(16)](buf3, primals_1, buf0, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(256)](primals_2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf5) del primals_3 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf6) del primals_5 buf7 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_2[grid(4096)](buf5, primals_4, primals_1, buf0, buf3, buf6, primals_6, buf7, 4096, XBLOCK=128, num_warps= 4, num_stages=1) del buf5 del buf6 del primals_4 del primals_6 return buf7, primals_1, buf0, buf3, reinterpret_tensor(buf4, (64, 4), ( 4, 1), 0) class WSLinear(nn.Module): def __init__(self, in_features, out_features, gain=2): super(WSLinear, self).__init__() self.linear = nn.Linear(in_features, out_features) self.scale = (gain / in_features) ** 0.5 self.bias = self.linear.bias self.linear.bias = None nn.init.normal_(self.linear.weight) nn.init.zeros_(self.bias) def forward(self, x): return self.linear(x * self.scale) + self.bias class AdaINNew(nn.Module): def __init__(self, channels, w_dim): super().__init__() self.instance_norm = nn.InstanceNorm2d(channels) self.style_scale = WSLinear(w_dim, channels) self.style_bias = WSLinear(w_dim, channels) def forward(self, input_0, input_1): primals_4 = self.style_scale.bias primals_3 = self.style_scale.linear.weight primals_6 = self.style_bias.bias primals_5 = self.style_bias.linear.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
shimon-c/Machine-Learning-Collection
AdaIN
false
16,426
[ "MIT" ]
3,094
ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
https://github.com/shimon-c/Machine-Learning-Collection/tree/ac5dcd03a40a08a8af7e1a67ade37f28cf88db43
BinaryFocalLossWithLogits
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/32/c32tdn4yej5mcd4zrs5qr56vp44zuc2xkprt2smkg5dq5eszjoqy.py # Topologically Sorted Source Nodes: [probs, sub, add, pow_1, mul, mul_1, add_1, log, mul_2, add_2, pow_2, mul_3, sub_1, mul_4, sub_2, add_3, log_1, mul_5, loss_tmp], Original ATen: [aten.sigmoid, aten.rsub, aten.add, aten.pow, aten.mul, aten.log, aten.sub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # log => log # log_1 => log_1 # loss_tmp => sub_3 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # pow_1 => pow_1 # pow_2 => pow_2 # probs => sigmoid # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-08), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg1_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, 1e-08), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_2, 2.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, -3), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_2, 1e-08), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %log_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_5), kwargs = {}) triton_poi_fused_add_log_mul_pow_rsub_sigmoid_sub_0 = async_compile.triton('triton_poi_fused_add_log_mul_pow_rsub_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_log_mul_pow_rsub_sigmoid_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_log_mul_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp9 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 1e-08 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp5 tmp7 = -4.0 tmp8 = tmp6 * tmp7 tmp10 = tmp8 * tmp9 tmp11 = tmp1 + tmp4 tmp12 = tl_math.log(tmp11) tmp13 = tmp10 * tmp12 tmp14 = tmp11 * tmp11 tmp15 = -3.0 tmp16 = tmp14 * tmp15 tmp17 = tmp2 - tmp9 tmp18 = tmp16 * tmp17 tmp19 = tl_math.log(tmp5) tmp20 = tmp18 * tmp19 tmp21 = tmp13 - tmp20 tl.store(out_ptr0 + (x0), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs, sub, add, pow_1, mul, mul_1, add_1, log, mul_2, add_2, pow_2, mul_3, sub_1, mul_4, sub_2, add_3, log_1, mul_5, loss_tmp], Original ATen: [aten.sigmoid, aten.rsub, aten.add, aten.pow, aten.mul, aten.log, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_log_mul_pow_rsub_sigmoid_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def binary_focal_loss_with_logits(input: 'torch.Tensor', target: 'torch.Tensor', alpha: 'float'=0.25, gamma: 'float'=2.0, reduction: 'str'='none', eps: 'float'=1e-08) ->torch.Tensor: """Function that computes Binary Focal loss. .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: input: input data tensor of arbitrary shape. target: the target tensor with shape matching input. alpha: Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. gamma: Focusing parameter :math:`\\gamma >= 0`. reduction: Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. eps: for numerically stability when dividing. Returns: the computed loss. Examples: >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> logits = torch.tensor([[[6.325]],[[5.26]],[[87.49]]]) >>> labels = torch.tensor([[[1.]],[[1.]],[[0.]]]) >>> binary_focal_loss_with_logits(logits, labels, **kwargs) tensor(4.6052) """ if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not len(input.shape) >= 2: raise ValueError( f'Invalid input shape, we expect BxCx*. Got: {input.shape}') if input.size(0) != target.size(0): raise ValueError( f'Expected input batch_size ({input.size(0)}) to match target batch_size ({target.size(0)}).' ) probs = torch.sigmoid(input) loss_tmp = -alpha * torch.pow(1.0 - probs + eps, gamma ) * target * torch.log(probs + eps) - (1 - alpha) * torch.pow(probs + eps, gamma) * (1.0 - target) * torch.log(1.0 - probs + eps) if reduction == 'none': loss = loss_tmp elif reduction == 'mean': loss = torch.mean(loss_tmp) elif reduction == 'sum': loss = torch.sum(loss_tmp) else: raise NotImplementedError(f'Invalid reduction mode: {reduction}') return loss class BinaryFocalLossWithLogits(nn.Module): """Criterion that computes Focal loss. According to :cite:`lin2018focal`, the Focal loss is computed as follows: .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: alpha): Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. gamma: Focusing parameter :math:`\\gamma >= 0`. reduction: Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Shape: - Input: :math:`(N, 1, *)`. - Target: :math:`(N, 1, *)`. Examples: >>> N = 1 # num_classes >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> loss = BinaryFocalLossWithLogits(**kwargs) >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = loss(input, target) >>> output.backward() """ def __init__(self, alpha: 'float', gamma: 'float'=2.0, reduction: 'str' ='none') ->None: super().__init__() self.alpha: 'float' = alpha self.gamma: 'float' = gamma self.reduction: 'str' = reduction self.eps: 'float' = 1e-08 def forward(self, input: 'torch.Tensor', target: 'torch.Tensor' ) ->torch.Tensor: return binary_focal_loss_with_logits(input, target, self.alpha, self.gamma, self.reduction, self.eps) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'alpha': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_log_mul_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp9 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 1e-08 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp5 tmp7 = -4.0 tmp8 = tmp6 * tmp7 tmp10 = tmp8 * tmp9 tmp11 = tmp1 + tmp4 tmp12 = tl_math.log(tmp11) tmp13 = tmp10 * tmp12 tmp14 = tmp11 * tmp11 tmp15 = -3.0 tmp16 = tmp14 * tmp15 tmp17 = tmp2 - tmp9 tmp18 = tmp16 * tmp17 tmp19 = tl_math.log(tmp5) tmp20 = tmp18 * tmp19 tmp21 = tmp13 - tmp20 tl.store(out_ptr0 + x0, tmp21, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_log_mul_pow_rsub_sigmoid_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, def binary_focal_loss_with_logits(input: 'torch.Tensor', target: 'torch.Tensor', alpha: 'float'=0.25, gamma: 'float'=2.0, reduction: 'str'='none', eps: 'float'=1e-08) ->torch.Tensor: """Function that computes Binary Focal loss. .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: input: input data tensor of arbitrary shape. target: the target tensor with shape matching input. alpha: Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. gamma: Focusing parameter :math:`\\gamma >= 0`. reduction: Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. eps: for numerically stability when dividing. Returns: the computed loss. Examples: >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> logits = torch.tensor([[[6.325]],[[5.26]],[[87.49]]]) >>> labels = torch.tensor([[[1.]],[[1.]],[[0.]]]) >>> binary_focal_loss_with_logits(logits, labels, **kwargs) tensor(4.6052) """ if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not len(input.shape) >= 2: raise ValueError( f'Invalid input shape, we expect BxCx*. Got: {input.shape}') if input.size(0) != target.size(0): raise ValueError( f'Expected input batch_size ({input.size(0)}) to match target batch_size ({target.size(0)}).' ) probs = torch.sigmoid(input) loss_tmp = -alpha * torch.pow(1.0 - probs + eps, gamma ) * target * torch.log(probs + eps) - (1 - alpha) * torch.pow(probs + eps, gamma) * (1.0 - target) * torch.log(1.0 - probs + eps) if reduction == 'none': loss = loss_tmp elif reduction == 'mean': loss = torch.mean(loss_tmp) elif reduction == 'sum': loss = torch.sum(loss_tmp) else: raise NotImplementedError(f'Invalid reduction mode: {reduction}') return loss class BinaryFocalLossWithLogitsNew(nn.Module): """Criterion that computes Focal loss. According to :cite:`lin2018focal`, the Focal loss is computed as follows: .. math:: \\text{FL}(p_t) = -\\alpha_t (1 - p_t)^{\\gamma} \\, \\text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Args: alpha): Weighting factor for the rare class :math:`\\alpha \\in [0, 1]`. gamma: Focusing parameter :math:`\\gamma >= 0`. reduction: Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Shape: - Input: :math:`(N, 1, *)`. - Target: :math:`(N, 1, *)`. Examples: >>> N = 1 # num_classes >>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'} >>> loss = BinaryFocalLossWithLogits(**kwargs) >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = loss(input, target) >>> output.backward() """ def __init__(self, alpha: 'float', gamma: 'float'=2.0, reduction: 'str' ='none') ->None: super().__init__() self.alpha: 'float' = alpha self.gamma: 'float' = gamma self.reduction: 'str' = reduction self.eps: 'float' = 1e-08 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
shiyangc-intusurg/kornia
BinaryFocalLossWithLogits
false
16,427
[ "ECL-2.0", "Apache-2.0" ]
4,894
2e2512f8f20d300d8732e5873e16336b5a01f3bd
https://github.com/shiyangc-intusurg/kornia/tree/2e2512f8f20d300d8732e5873e16336b5a01f3bd
h_sigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rm/crm72qx6rsghhfnyhuw5kfn2z6uwrgv7td4c2blpcrynbklz2exg.py # Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # hardtanh => clamp_max, clamp_min # mul => mul # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tmp9 = 0.16666666666666666 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class h_sigmoid(nn.Module): def __init__(self, inplace=True, h_max=1): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) self.h_max = h_max def forward(self, x): return self.relu(x + 3) * self.h_max / 6 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tmp9 = 0.16666666666666666 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class h_sigmoidNew(nn.Module): def __init__(self, inplace=True, h_max=1): super(h_sigmoidNew, self).__init__() self.relu = nn.ReLU6(inplace=inplace) self.h_max = h_max def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shivamsnaik/dynamic-head-microsoft-fork
h_sigmoid
false
16,428
[ "MIT" ]
494
0f337eec44d262df2517be8f5617477c0b092fcc
https://github.com/shivamsnaik/dynamic-head-microsoft-fork/tree/0f337eec44d262df2517be8f5617477c0b092fcc
DilatedGatedConv1D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xd/cxdkgesb6qc4hbcvbeerj4gwfolzo6uujsc7nr7gmmdljjywjmd6.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/du/cduiwo37rwoxi2gcv7vm5njuipbt3s73osilncnhdi4hqe6v73w3.py # Topologically Sorted Source Nodes: [dropout, x1_1, sub, mul, mul_1, add], Original ATen: [aten.clone, aten.sigmoid, aten.rsub, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # dropout => clone # mul => mul # mul_1 => mul_1 # sub => sub # x1_1 => sigmoid # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_3,), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%clone,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sub), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_6, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_clone_mul_rsub_sigmoid_2 = async_compile.triton('triton_poi_fused_add_clone_mul_rsub_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clone_mul_rsub_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clone_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (4*y0) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (16 + x2 + (4*y0) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = 1.0 tmp4 = tmp3 - tmp2 tmp5 = tmp0 * tmp4 tmp7 = tmp6 * tmp2 tmp8 = tmp5 + tmp7 tl.store(out_ptr0 + (y0 + (4*x2) + (16*y1)), tmp8, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (8, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 8, 4), (32, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 128, grid=grid(128), stream=stream0) del primals_3 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [dropout, x1_1, sub, mul, mul_1, add], Original ATen: [aten.clone, aten.sigmoid, aten.rsub, aten.mul, aten.add] triton_poi_fused_add_clone_mul_rsub_sigmoid_2.run(primals_1, buf2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) return (buf3, primals_1, primals_2, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DilatedGatedConv1D(nn.Module): def __init__(self, dilation_rate, dim): super().__init__() self.dim = dim self.dropout = nn.Dropout(p=0.1) self.cnn = nn.Conv1d(dim, dim * 2, 3, padding=dilation_rate, dilation=dilation_rate) def forward(self, x): residual = x x = self.cnn(x.transpose(1, 2)).transpose(1, 2) x1, x2 = x[:, :, :self.dim], x[:, :, self.dim:] x1 = torch.sigmoid(self.dropout(x1)) return residual * (1 - x1) + x2 * x1 def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dilation_rate': 1, 'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_clone_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 4 * y0 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (16 + x2 + 4 * y0 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = 1.0 tmp4 = tmp3 - tmp2 tmp5 = tmp0 * tmp4 tmp7 = tmp6 * tmp2 tmp8 = tmp5 + tmp7 tl.store(out_ptr0 + (y0 + 4 * x2 + 16 * y1), tmp8, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (8, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 8, 4), (32, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(128)](buf2, primals_3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = buf0 del buf0 triton_poi_fused_add_clone_mul_rsub_sigmoid_2[grid(16, 4)](primals_1, buf2, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) return buf3, primals_1, primals_2, buf2 class DilatedGatedConv1DNew(nn.Module): def __init__(self, dilation_rate, dim): super().__init__() self.dim = dim self.dropout = nn.Dropout(p=0.1) self.cnn = nn.Conv1d(dim, dim * 2, 3, padding=dilation_rate, dilation=dilation_rate) def forward(self, input_0): primals_2 = self.cnn.weight primals_3 = self.cnn.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shinoyuki222/torch-light
DilatedGatedConv1D
false
16,429
[ "MIT" ]
310
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
MaskedMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3w/c3wz4ocb4lxjauhilza5zv4flhxivvvbzy7sau5kuhlocrkqzmv6.py # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul, sum_1, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, minimum, mul_1, neg, sub, sub_1, sub_2, sum_1 # loss => div # mul => mul # sum_1 => sum_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {}) # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %mul), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %mul), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %sub_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_2,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_binary_cross_entropy_with_logits_div_mul_sum_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_div_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_div_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_div_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp4 = tl.load(in_ptr2 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 * tmp5 tmp7 = 0.0 tmp8 = triton_helpers.minimum(tmp7, tmp5) tmp9 = tl_math.abs(tmp5) tmp10 = -tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = libdevice.log1p(tmp11) tmp13 = tmp8 - tmp12 tmp14 = tmp6 - tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = tl.broadcast_to(tmp4, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = tmp17 / tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul, sum_1, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_div_mul_sum_0.run(buf2, arg2_1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MaskedMSELoss(nn.Module): def __init__(self): super(MaskedMSELoss, self).__init__() self.loss = nn.BCEWithLogitsLoss(reduction='sum') def forward(self, pred, target, mask): """ pred -> batch*seq_len target -> batch*seq_len mask -> batch*seq_len """ loss = self.loss(pred * mask, target) / torch.sum(mask) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_div_mul_sum_0(in_out_ptr0 , in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp4 = tl.load(in_ptr2 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 * tmp5 tmp7 = 0.0 tmp8 = triton_helpers.minimum(tmp7, tmp5) tmp9 = tl_math.abs(tmp5) tmp10 = -tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = libdevice.log1p(tmp11) tmp13 = tmp8 - tmp12 tmp14 = tmp6 - tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = tl.broadcast_to(tmp4, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = tmp17 / tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_div_mul_sum_0[grid(1) ](buf2, arg2_1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class MaskedMSELossNew(nn.Module): def __init__(self): super(MaskedMSELossNew, self).__init__() self.loss = nn.BCEWithLogitsLoss(reduction='sum') def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
shrx11/M2H2-dataset
MaskedMSELoss
false
16,430
[ "MIT" ]
206
8be80041fc0de04f2a6113e305f09f3b8d6279f4
https://github.com/shrx11/M2H2-dataset/tree/8be80041fc0de04f2a6113e305f09f3b8d6279f4
CombineTensorPatches
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/aa/caa6fq266iykltiy742bcvfllwt3rns2bw3nxkbd4mv4ax22o2cp.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_4, %getitem_5, %getitem_6, %getitem_7], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) % 16 x2 = (xindex // 256) % 4 x3 = (xindex // 1024) x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp7 & tmp4 tmp9 = tl.load(in_ptr0 + ((4*x1) + (16*x2) + (1024*x3) + x0), tmp8, eviction_policy='evict_last', other=0.0) tmp10 = tmp5 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp5 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tmp13 & tmp4 tmp15 = tl.load(in_ptr0 + (256 + (4*((-4) + x1)) + (16*x2) + (1024*x3) + x0), tmp14, eviction_policy='evict_last', other=0.0) tmp16 = tmp5 >= tmp11 tmp17 = tl.full([1], 12, tl.int64) tmp18 = tmp5 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tmp19 & tmp4 tmp21 = tl.load(in_ptr0 + (512 + (4*((-8) + x1)) + (16*x2) + (1024*x3) + x0), tmp20, eviction_policy='evict_last', other=0.0) tmp22 = tmp5 >= tmp17 tmp23 = tl.full([1], 16, tl.int64) tmp24 = tmp5 < tmp23 tmp25 = tmp22 & tmp4 tmp26 = tl.load(in_ptr0 + (768 + (4*((-12) + x1)) + (16*x2) + (1024*x3) + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.where(tmp19, tmp21, tmp26) tmp28 = tl.where(tmp13, tmp15, tmp27) tmp29 = tl.where(tmp7, tmp9, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp4, tmp29, tmp30) tmp32 = tmp0 >= tmp3 tmp33 = tmp0 < tmp11 tmp34 = tmp32 & tmp33 tmp35 = tmp7 & tmp34 tmp36 = tl.load(in_ptr0 + (64 + (4*x1) + (16*x2) + (1024*x3) + ((-4) + x0)), tmp35, eviction_policy='evict_last', other=0.0) tmp37 = tmp13 & tmp34 tmp38 = tl.load(in_ptr0 + (320 + (4*((-4) + x1)) + (16*x2) + (1024*x3) + ((-4) + x0)), tmp37, eviction_policy='evict_last', other=0.0) tmp39 = tmp19 & tmp34 tmp40 = tl.load(in_ptr0 + (576 + (4*((-8) + x1)) + (16*x2) + (1024*x3) + ((-4) + x0)), tmp39, eviction_policy='evict_last', other=0.0) tmp41 = tmp22 & tmp34 tmp42 = tl.load(in_ptr0 + (832 + (4*((-12) + x1)) + (16*x2) + (1024*x3) + ((-4) + x0)), tmp41, eviction_policy='evict_last', other=0.0) tmp43 = tl.where(tmp19, tmp40, tmp42) tmp44 = tl.where(tmp13, tmp38, tmp43) tmp45 = tl.where(tmp7, tmp36, tmp44) tmp46 = tl.full(tmp45.shape, 0.0, tmp45.dtype) tmp47 = tl.where(tmp34, tmp45, tmp46) tmp48 = tmp0 >= tmp11 tmp49 = tmp0 < tmp17 tmp50 = tmp48 & tmp49 tmp51 = tmp7 & tmp50 tmp52 = tl.load(in_ptr0 + (128 + (4*x1) + (16*x2) + (1024*x3) + ((-8) + x0)), tmp51, eviction_policy='evict_last', other=0.0) tmp53 = tmp13 & tmp50 tmp54 = tl.load(in_ptr0 + (384 + (4*((-4) + x1)) + (16*x2) + (1024*x3) + ((-8) + x0)), tmp53, eviction_policy='evict_last', other=0.0) tmp55 = tmp19 & tmp50 tmp56 = tl.load(in_ptr0 + (640 + (4*((-8) + x1)) + (16*x2) + (1024*x3) + ((-8) + x0)), tmp55, eviction_policy='evict_last', other=0.0) tmp57 = tmp22 & tmp50 tmp58 = tl.load(in_ptr0 + (896 + (4*((-12) + x1)) + (16*x2) + (1024*x3) + ((-8) + x0)), tmp57, eviction_policy='evict_last', other=0.0) tmp59 = tl.where(tmp19, tmp56, tmp58) tmp60 = tl.where(tmp13, tmp54, tmp59) tmp61 = tl.where(tmp7, tmp52, tmp60) tmp62 = tl.full(tmp61.shape, 0.0, tmp61.dtype) tmp63 = tl.where(tmp50, tmp61, tmp62) tmp64 = tmp0 >= tmp17 tmp65 = tmp0 < tmp23 tmp66 = tmp7 & tmp64 tmp67 = tl.load(in_ptr0 + (192 + (4*x1) + (16*x2) + (1024*x3) + ((-12) + x0)), tmp66, eviction_policy='evict_last', other=0.0) tmp68 = tmp13 & tmp64 tmp69 = tl.load(in_ptr0 + (448 + (4*((-4) + x1)) + (16*x2) + (1024*x3) + ((-12) + x0)), tmp68, eviction_policy='evict_last', other=0.0) tmp70 = tmp19 & tmp64 tmp71 = tl.load(in_ptr0 + (704 + (4*((-8) + x1)) + (16*x2) + (1024*x3) + ((-12) + x0)), tmp70, eviction_policy='evict_last', other=0.0) tmp72 = tmp22 & tmp64 tmp73 = tl.load(in_ptr0 + (960 + (4*((-12) + x1)) + (16*x2) + (1024*x3) + ((-12) + x0)), tmp72, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp19, tmp71, tmp73) tmp75 = tl.where(tmp13, tmp69, tmp74) tmp76 = tl.where(tmp7, tmp67, tmp75) tmp77 = tl.full(tmp76.shape, 0.0, tmp76.dtype) tmp78 = tl.where(tmp64, tmp76, tmp77) tmp79 = tl.where(tmp50, tmp63, tmp78) tmp80 = tl.where(tmp34, tmp47, tmp79) tmp81 = tl.where(tmp4, tmp31, tmp80) tl.store(out_ptr0 + (x4), tmp81, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 16, 16), (1024, 1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 4096, grid=grid(4096), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 16, 16), (1024, 256, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Optional from typing import Tuple import torch.nn as nn from typing import Union from torch.nn.modules.utils import _pair def combine_tensor_patches(patches: 'torch.Tensor', window_size: 'Tuple[int, int]'=(4, 4), stride: 'Tuple[int, int]'=(4, 4), unpadding: 'Optional[Tuple[int, int, int, int]]'=None) ->torch.Tensor: """Restore input from patches. Args: patches: patched tensor. window_size: the size of the sliding window and the output patch size. stride: stride of the sliding window. unpadding: remove the padding added to both side of the input. Shape: - Input: :math:`(B, N, C, H_{out}, W_{out})` - Output: :math:`(B, C, H, W)` Example: >>> out = extract_tensor_patches(torch.arange(16).view(1, 1, 4, 4), window_size=(2, 2), stride=(2, 2)) >>> combine_tensor_patches(out, window_size=(2, 2), stride=(2, 2)) tensor([[[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]]]) """ if stride[0] != window_size[0] or stride[1] != window_size[1]: raise NotImplementedError( f'Only stride == window_size is supported. Got {stride} and {window_size}.Please feel free to drop a PR to Kornia Github.' ) if unpadding is not None: window_size = window_size[0] + (unpadding[0] + unpadding[1] ) // window_size[0], window_size[1] + (unpadding[2] + unpadding[3] ) // window_size[1] patches_tensor = patches.view(-1, window_size[0], window_size[1], * patches.shape[-3:]) restored_tensor = torch.cat(torch.chunk(patches_tensor, window_size[0], dim=1), -2).squeeze(1) restored_tensor = torch.cat(torch.chunk(restored_tensor, window_size[1], dim=1), -1).squeeze(1) if unpadding is not None: restored_tensor = torch.nn.functional.pad(restored_tensor, [(-i) for i in unpadding]) return restored_tensor class CombineTensorPatches(nn.Module): """Module that combine patches from tensors. In the simplest case, the output value of the operator with input size :math:`(B, N, C, H_{out}, W_{out})` is :math:`(B, C, H, W)`. where - :math:`B` is the batch size. - :math:`N` denotes the total number of extracted patches stacked in - :math:`C` denotes the number of input channels. - :math:`H`, :math:`W` the input height and width of the input in pixels. - :math:`H_{out}`, :math:`W_{out}` denote to denote to the patch size defined in the function signature. left-right and top-bottom order. * :attr:`window_size` is the size of the sliding window and controls the shape of the output tensor and defines the shape of the output patch. * :attr:`stride` controls the stride to apply to the sliding window and regulates the overlapping between the extracted patches. * :attr:`padding` controls the amount of implicit zeros-paddings on both sizes at each dimension. The parameters :attr:`window_size`, :attr:`stride` and :attr:`padding` can be either: - a single ``int`` -- in which case the same value is used for the height and width dimension. - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, and the second `int` for the width dimension. Args: patches: patched tensor. window_size: the size of the sliding window and the output patch size. unpadding: remove the padding added to both side of the input. Shape: - Input: :math:`(B, N, C, H_{out}, W_{out})` - Output: :math:`(B, C, H, W)` Example: >>> out = extract_tensor_patches(torch.arange(16).view(1, 1, 4, 4), window_size=(2, 2), stride=(2, 2)) >>> combine_tensor_patches(out, window_size=(2, 2), stride=(2, 2)) tensor([[[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]]]) """ def __init__(self, window_size: 'Union[int, Tuple[int, int]]', unpadding: 'Union[int, Tuple[int, int]]'=0) ->None: super().__init__() self.window_size: 'Tuple[int, int]' = _pair(window_size) pad: 'Tuple[int, int]' = _pair(unpadding) self.unpadding: 'Tuple[int, int, int, int]' = (pad[0], pad[0], pad[ 1], pad[1]) def forward(self, input: 'torch.Tensor') ->torch.Tensor: return combine_tensor_patches(input, self.window_size, stride=self. window_size, unpadding=self.unpadding) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'window_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from typing import Optional from typing import Tuple import torch.nn as nn from typing import Union from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 % 16 x2 = xindex // 256 % 4 x3 = xindex // 1024 x4 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp7 = tmp5 < tmp3 tmp8 = tmp7 & tmp4 tmp9 = tl.load(in_ptr0 + (4 * x1 + 16 * x2 + 1024 * x3 + x0), tmp8, eviction_policy='evict_last', other=0.0) tmp10 = tmp5 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp5 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tmp13 & tmp4 tmp15 = tl.load(in_ptr0 + (256 + 4 * (-4 + x1) + 16 * x2 + 1024 * x3 + x0), tmp14, eviction_policy='evict_last', other=0.0) tmp16 = tmp5 >= tmp11 tmp17 = tl.full([1], 12, tl.int64) tmp18 = tmp5 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tmp19 & tmp4 tmp21 = tl.load(in_ptr0 + (512 + 4 * (-8 + x1) + 16 * x2 + 1024 * x3 + x0), tmp20, eviction_policy='evict_last', other=0.0) tmp22 = tmp5 >= tmp17 tl.full([1], 16, tl.int64) tmp25 = tmp22 & tmp4 tmp26 = tl.load(in_ptr0 + (768 + 4 * (-12 + x1) + 16 * x2 + 1024 * x3 + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.where(tmp19, tmp21, tmp26) tmp28 = tl.where(tmp13, tmp15, tmp27) tmp29 = tl.where(tmp7, tmp9, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp4, tmp29, tmp30) tmp32 = tmp0 >= tmp3 tmp33 = tmp0 < tmp11 tmp34 = tmp32 & tmp33 tmp35 = tmp7 & tmp34 tmp36 = tl.load(in_ptr0 + (64 + 4 * x1 + 16 * x2 + 1024 * x3 + (-4 + x0 )), tmp35, eviction_policy='evict_last', other=0.0) tmp37 = tmp13 & tmp34 tmp38 = tl.load(in_ptr0 + (320 + 4 * (-4 + x1) + 16 * x2 + 1024 * x3 + (-4 + x0)), tmp37, eviction_policy='evict_last', other=0.0) tmp39 = tmp19 & tmp34 tmp40 = tl.load(in_ptr0 + (576 + 4 * (-8 + x1) + 16 * x2 + 1024 * x3 + (-4 + x0)), tmp39, eviction_policy='evict_last', other=0.0) tmp41 = tmp22 & tmp34 tmp42 = tl.load(in_ptr0 + (832 + 4 * (-12 + x1) + 16 * x2 + 1024 * x3 + (-4 + x0)), tmp41, eviction_policy='evict_last', other=0.0) tmp43 = tl.where(tmp19, tmp40, tmp42) tmp44 = tl.where(tmp13, tmp38, tmp43) tmp45 = tl.where(tmp7, tmp36, tmp44) tmp46 = tl.full(tmp45.shape, 0.0, tmp45.dtype) tmp47 = tl.where(tmp34, tmp45, tmp46) tmp48 = tmp0 >= tmp11 tmp49 = tmp0 < tmp17 tmp50 = tmp48 & tmp49 tmp51 = tmp7 & tmp50 tmp52 = tl.load(in_ptr0 + (128 + 4 * x1 + 16 * x2 + 1024 * x3 + (-8 + x0)), tmp51, eviction_policy='evict_last', other=0.0) tmp53 = tmp13 & tmp50 tmp54 = tl.load(in_ptr0 + (384 + 4 * (-4 + x1) + 16 * x2 + 1024 * x3 + (-8 + x0)), tmp53, eviction_policy='evict_last', other=0.0) tmp55 = tmp19 & tmp50 tmp56 = tl.load(in_ptr0 + (640 + 4 * (-8 + x1) + 16 * x2 + 1024 * x3 + (-8 + x0)), tmp55, eviction_policy='evict_last', other=0.0) tmp57 = tmp22 & tmp50 tmp58 = tl.load(in_ptr0 + (896 + 4 * (-12 + x1) + 16 * x2 + 1024 * x3 + (-8 + x0)), tmp57, eviction_policy='evict_last', other=0.0) tmp59 = tl.where(tmp19, tmp56, tmp58) tmp60 = tl.where(tmp13, tmp54, tmp59) tmp61 = tl.where(tmp7, tmp52, tmp60) tmp62 = tl.full(tmp61.shape, 0.0, tmp61.dtype) tmp63 = tl.where(tmp50, tmp61, tmp62) tmp64 = tmp0 >= tmp17 tmp66 = tmp7 & tmp64 tmp67 = tl.load(in_ptr0 + (192 + 4 * x1 + 16 * x2 + 1024 * x3 + (-12 + x0)), tmp66, eviction_policy='evict_last', other=0.0) tmp68 = tmp13 & tmp64 tmp69 = tl.load(in_ptr0 + (448 + 4 * (-4 + x1) + 16 * x2 + 1024 * x3 + (-12 + x0)), tmp68, eviction_policy='evict_last', other=0.0) tmp70 = tmp19 & tmp64 tmp71 = tl.load(in_ptr0 + (704 + 4 * (-8 + x1) + 16 * x2 + 1024 * x3 + (-12 + x0)), tmp70, eviction_policy='evict_last', other=0.0) tmp72 = tmp22 & tmp64 tmp73 = tl.load(in_ptr0 + (960 + 4 * (-12 + x1) + 16 * x2 + 1024 * x3 + (-12 + x0)), tmp72, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp19, tmp71, tmp73) tmp75 = tl.where(tmp13, tmp69, tmp74) tmp76 = tl.where(tmp7, tmp67, tmp75) tmp77 = tl.full(tmp76.shape, 0.0, tmp76.dtype) tmp78 = tl.where(tmp64, tmp76, tmp77) tmp79 = tl.where(tmp50, tmp63, tmp78) tmp80 = tl.where(tmp34, tmp47, tmp79) tmp81 = tl.where(tmp4, tmp31, tmp80) tl.store(out_ptr0 + x4, tmp81, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 16, 16), (1024, 1024, 256, 16, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(4096)](arg0_1, buf0, 4096, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 16, 16), (1024, 256, 16, 1), 0), def combine_tensor_patches(patches: 'torch.Tensor', window_size: 'Tuple[int, int]'=(4, 4), stride: 'Tuple[int, int]'=(4, 4), unpadding: 'Optional[Tuple[int, int, int, int]]'=None) ->torch.Tensor: """Restore input from patches. Args: patches: patched tensor. window_size: the size of the sliding window and the output patch size. stride: stride of the sliding window. unpadding: remove the padding added to both side of the input. Shape: - Input: :math:`(B, N, C, H_{out}, W_{out})` - Output: :math:`(B, C, H, W)` Example: >>> out = extract_tensor_patches(torch.arange(16).view(1, 1, 4, 4), window_size=(2, 2), stride=(2, 2)) >>> combine_tensor_patches(out, window_size=(2, 2), stride=(2, 2)) tensor([[[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]]]) """ if stride[0] != window_size[0] or stride[1] != window_size[1]: raise NotImplementedError( f'Only stride == window_size is supported. Got {stride} and {window_size}.Please feel free to drop a PR to Kornia Github.' ) if unpadding is not None: window_size = window_size[0] + (unpadding[0] + unpadding[1] ) // window_size[0], window_size[1] + (unpadding[2] + unpadding[3] ) // window_size[1] patches_tensor = patches.view(-1, window_size[0], window_size[1], * patches.shape[-3:]) restored_tensor = torch.cat(torch.chunk(patches_tensor, window_size[0], dim=1), -2).squeeze(1) restored_tensor = torch.cat(torch.chunk(restored_tensor, window_size[1], dim=1), -1).squeeze(1) if unpadding is not None: restored_tensor = torch.nn.functional.pad(restored_tensor, [(-i) for i in unpadding]) return restored_tensor class CombineTensorPatchesNew(nn.Module): """Module that combine patches from tensors. In the simplest case, the output value of the operator with input size :math:`(B, N, C, H_{out}, W_{out})` is :math:`(B, C, H, W)`. where - :math:`B` is the batch size. - :math:`N` denotes the total number of extracted patches stacked in - :math:`C` denotes the number of input channels. - :math:`H`, :math:`W` the input height and width of the input in pixels. - :math:`H_{out}`, :math:`W_{out}` denote to denote to the patch size defined in the function signature. left-right and top-bottom order. * :attr:`window_size` is the size of the sliding window and controls the shape of the output tensor and defines the shape of the output patch. * :attr:`stride` controls the stride to apply to the sliding window and regulates the overlapping between the extracted patches. * :attr:`padding` controls the amount of implicit zeros-paddings on both sizes at each dimension. The parameters :attr:`window_size`, :attr:`stride` and :attr:`padding` can be either: - a single ``int`` -- in which case the same value is used for the height and width dimension. - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, and the second `int` for the width dimension. Args: patches: patched tensor. window_size: the size of the sliding window and the output patch size. unpadding: remove the padding added to both side of the input. Shape: - Input: :math:`(B, N, C, H_{out}, W_{out})` - Output: :math:`(B, C, H, W)` Example: >>> out = extract_tensor_patches(torch.arange(16).view(1, 1, 4, 4), window_size=(2, 2), stride=(2, 2)) >>> combine_tensor_patches(out, window_size=(2, 2), stride=(2, 2)) tensor([[[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]]]) """ def __init__(self, window_size: 'Union[int, Tuple[int, int]]', unpadding: 'Union[int, Tuple[int, int]]'=0) ->None: super().__init__() self.window_size: 'Tuple[int, int]' = _pair(window_size) pad: 'Tuple[int, int]' = _pair(unpadding) self.unpadding: 'Tuple[int, int, int, int]' = (pad[0], pad[0], pad[ 1], pad[1]) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shiyangc-intusurg/kornia
CombineTensorPatches
false
16,431
[ "ECL-2.0", "Apache-2.0" ]
4,894
2e2512f8f20d300d8732e5873e16336b5a01f3bd
https://github.com/shiyangc-intusurg/kornia/tree/2e2512f8f20d300d8732e5873e16336b5a01f3bd
KLDivergence
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wq/cwq5ar7x4w72rft7s3gjlikyil3h3bo3kpq25ppgk4lkuasnqkaz.py # Topologically Sorted Source Nodes: [log, mul, log_softmax, mul_1, sub, loss, mean], Original ATen: [aten.log, aten.mul, aten._log_softmax, aten.sub, aten.sum, aten.mean] # Source node to ATen node mapping: # log => log # log_softmax => exp, log_1, sub_1, sum_1 # loss => sum_2 # mean => mean # mul => mul # mul_1 => mul_1 # sub => sub_2 # Graph fragment: # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %log), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_2, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused__log_softmax_log_mean_mul_sub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_log_mean_mul_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_log_mean_mul_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_log_mean_mul_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp3 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp11 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp18 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp25 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp32 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp1 = tl_math.log(tmp0) tmp2 = tmp0 * tmp1 tmp4 = tl_math.exp(tmp3) tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tl_math.log(tmp13) tmp15 = tmp3 - tmp14 tmp16 = tmp0 * tmp15 tmp17 = tmp2 - tmp16 tmp19 = tl_math.log(tmp18) tmp20 = tmp18 * tmp19 tmp21 = tmp5 - tmp14 tmp22 = tmp18 * tmp21 tmp23 = tmp20 - tmp22 tmp24 = tmp17 + tmp23 tmp26 = tl_math.log(tmp25) tmp27 = tmp25 * tmp26 tmp28 = tmp8 - tmp14 tmp29 = tmp25 * tmp28 tmp30 = tmp27 - tmp29 tmp31 = tmp24 + tmp30 tmp33 = tl_math.log(tmp32) tmp34 = tmp32 * tmp33 tmp35 = tmp11 - tmp14 tmp36 = tmp32 * tmp35 tmp37 = tmp34 - tmp36 tmp38 = tmp31 + tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = 64.0 tmp43 = tmp41 / tmp42 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp43, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [log, mul, log_softmax, mul_1, sub, loss, mean], Original ATen: [aten.log, aten.mul, aten._log_softmax, aten.sub, aten.sum, aten.mean] triton_per_fused__log_softmax_log_mean_mul_sub_sum_1.run(buf3, arg0_1, buf0, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.optim def kl_divergence(y, target, mask=None, reduce=True): loss = (target * torch.log(target) - target * F.log_softmax(y, 1)).sum(1) if mask is not None: loss = mask * loss if reduce: return loss.mean() else: return loss class KLDivergence(nn.Module): def __init__(self, reduce): super().__init__() self.reduce = reduce def forward(self, y, target, mask=None, *args, **kwargs): return kl_divergence(y, target.detach(), mask, self.reduce) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'reduce': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn as nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_log_mean_mul_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp3 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp11 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp18 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp25 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp32 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp1 = tl_math.log(tmp0) tmp2 = tmp0 * tmp1 tmp4 = tl_math.exp(tmp3) tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tl_math.log(tmp13) tmp15 = tmp3 - tmp14 tmp16 = tmp0 * tmp15 tmp17 = tmp2 - tmp16 tmp19 = tl_math.log(tmp18) tmp20 = tmp18 * tmp19 tmp21 = tmp5 - tmp14 tmp22 = tmp18 * tmp21 tmp23 = tmp20 - tmp22 tmp24 = tmp17 + tmp23 tmp26 = tl_math.log(tmp25) tmp27 = tmp25 * tmp26 tmp28 = tmp8 - tmp14 tmp29 = tmp25 * tmp28 tmp30 = tmp27 - tmp29 tmp31 = tmp24 + tmp30 tmp33 = tl_math.log(tmp32) tmp34 = tmp32 * tmp33 tmp35 = tmp11 - tmp14 tmp36 = tmp32 * tmp35 tmp37 = tmp34 - tmp36 tmp38 = tmp31 + tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = 64.0 tmp43 = tmp41 / tmp42 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp43, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused__log_softmax_log_mean_mul_sub_sum_1[grid(1)](buf3, arg0_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf3, def kl_divergence(y, target, mask=None, reduce=True): loss = (target * torch.log(target) - target * F.log_softmax(y, 1)).sum(1) if mask is not None: loss = mask * loss if reduce: return loss.mean() else: return loss class KLDivergenceNew(nn.Module): def __init__(self, reduce): super().__init__() self.reduce = reduce def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
shrutimoy10/cords
KLDivergence
false
16,432
[ "MIT" ]
185
8f8d087098afafd352f793821911d80eb7b39a7d
https://github.com/shrutimoy10/cords/tree/8f8d087098afafd352f793821911d80eb7b39a7d
JointsMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6b/c6ba66mnjaoaqcyan4gntekhevsjcuebgcvasyx5yi5vnfp42otw.py # Topologically Sorted Source Nodes: [mse_loss, mul, loss, mse_loss_1, mul_1, loss_1, mse_loss_2, mul_2, loss_2, mse_loss_3, mul_3, loss_3, truediv], Original ATen: [aten.mse_loss, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # loss => add # loss_1 => add_1 # loss_2 => add_2 # loss_3 => add_3 # mse_loss => mean, pow_1, sub # mse_loss_1 => mean_1, pow_2, sub_1 # mse_loss_2 => mean_2, pow_3, sub_2 # mse_loss_3 => mean_3, pow_4, sub_3 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %squeeze_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze_2, %squeeze_3), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze_4, %squeeze_5), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze_6, %squeeze_7), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_4,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 0.5), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {}) triton_per_fused_add_div_mse_loss_mul_0 = async_compile.triton('triton_per_fused_add_div_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp7 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp14 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp15 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp21 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp22 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 64.0 tmp29 = tmp6 / tmp28 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.0 tmp33 = tmp31 + tmp32 tmp34 = tmp13 / tmp28 tmp35 = tmp34 * tmp30 tmp36 = tmp33 + tmp35 tmp37 = tmp20 / tmp28 tmp38 = tmp37 * tmp30 tmp39 = tmp36 + tmp38 tmp40 = tmp27 / tmp28 tmp41 = tmp40 * tmp30 tmp42 = tmp39 + tmp41 tmp43 = 0.25 tmp44 = tmp42 * tmp43 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp44, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mse_loss, mul, loss, mse_loss_1, mul_1, loss_1, mse_loss_2, mul_2, loss_2, mse_loss_3, mul_3, loss_3, truediv], Original ATen: [aten.mse_loss, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mse_loss_mul_0.run(buf4, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class JointsMSELoss(nn.Module): def __init__(self): super(JointsMSELoss, self).__init__() self.criterion = nn.MSELoss(reduction='mean') def forward(self, output, target, target_weight=None): batch_size = output.size(0) num_keypoints = output.size(1) heatmaps_pred = output.reshape((batch_size, num_keypoints, -1)).split( 1, 1) heatmaps_gt = target.reshape((batch_size, num_keypoints, -1)).split( 1, 1) loss = 0 for idx in range(num_keypoints): heatmap_pred = heatmaps_pred[idx].squeeze() heatmap_gt = heatmaps_gt[idx].squeeze() if target_weight is not None: loss += 0.5 * self.criterion(heatmap_pred.mul(target_weight [:, idx]), heatmap_gt.mul(target_weight[:, idx])) else: loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt) return loss / num_keypoints def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp7 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp14 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp15 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp21 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp22 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 64.0 tmp29 = tmp6 / tmp28 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.0 tmp33 = tmp31 + tmp32 tmp34 = tmp13 / tmp28 tmp35 = tmp34 * tmp30 tmp36 = tmp33 + tmp35 tmp37 = tmp20 / tmp28 tmp38 = tmp37 * tmp30 tmp39 = tmp36 + tmp38 tmp40 = tmp27 / tmp28 tmp41 = tmp40 * tmp30 tmp42 = tmp39 + tmp41 tmp43 = 0.25 tmp44 = tmp42 * tmp43 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp44, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mse_loss_mul_0[grid(1)](buf4, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf4, class JointsMSELossNew(nn.Module): def __init__(self): super(JointsMSELossNew, self).__init__() self.criterion = nn.MSELoss(reduction='mean') def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
shunya-toyokawa/qanet_human_parts_segmentatiom
JointsMSELoss
false
16,433
[ "MIT" ]
72
5527b247acd65534b455c26e3692a14b31669602
https://github.com/shunya-toyokawa/qanet_human_parts_segmentatiom/tree/5527b247acd65534b455c26e3692a14b31669602
BoundedIoULoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7x/c7xwrwphgpxaqzcdkusz7k3bdfxknc3itqkz2qte5dmrgecbr7ie.py # Topologically Sorted Source Nodes: [cat, loss, lt, pow_1, mul, truediv_3, sub_5, loss_1, sum_1], Original ATen: [aten.cat, aten.rsub, aten.lt, aten.pow, aten.mul, aten.div, aten.sub, aten.where, aten.sum] # Source node to ATen node mapping: # cat => cat # loss => sub_4 # loss_1 => where # lt => lt # mul => mul # pow_1 => pow_1 # sub_5 => sub_5 # sum_1 => sum_1 # truediv_3 => div_3 # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%clamp_min, %minimum], -1), kwargs = {}) # %sub_4 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %cat), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%sub_4, 0.2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_4, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.2), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div_3, %sub_5), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where,), kwargs = {}) triton_per_fused_cat_div_lt_mul_pow_rsub_sub_sum_where_0 = async_compile.triton('triton_per_fused_cat_div_lt_mul_pow_rsub_sub_sum_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_div_lt_mul_pow_rsub_sub_sum_where_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cat_div_lt_mul_pow_rsub_sub_sum_where_0(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex % 8 r1 = (rindex // 8) % 8 r2 = (rindex // 64) r3 = rindex tmp0 = r0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (tl.broadcast_to(32 + (4*r1) + (64*r2) + r0, [RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (tl.broadcast_to((4*r1) + (64*r2) + r0, [RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 - tmp6 tmp8 = tmp6 + tmp5 tmp9 = tl.load(in_ptr1 + (tl.broadcast_to((4*r1) + (64*r2) + r0, [RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr1 + (tl.broadcast_to(32 + (4*r1) + (64*r2) + r0, [RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl_math.abs(tmp12) tmp14 = tmp7 - tmp13 tmp15 = tmp7 + tmp13 tmp16 = 0.001 tmp17 = tmp15 + tmp16 tmp18 = tmp14 / tmp17 tmp19 = 0.0 tmp20 = triton_helpers.maximum(tmp18, tmp19) tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp4, tmp20, tmp21) tmp23 = tmp0 >= tmp3 tmp24 = tl.full([1], 8, tl.int64) tmp25 = tmp0 < tmp24 tmp26 = tl.load(in_ptr0 + (tl.broadcast_to(32 + (4*r1) + (64*r2) + ((-4) + r0), [RBLOCK])), tmp23, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr0 + (tl.broadcast_to((4*r1) + (64*r2) + ((-4) + r0), [RBLOCK])), tmp23, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 - tmp27 tmp29 = tl.load(in_ptr1 + (tl.broadcast_to(32 + (4*r1) + (64*r2) + ((-4) + r0), [RBLOCK])), tmp23, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + (tl.broadcast_to((4*r1) + (64*r2) + ((-4) + r0), [RBLOCK])), tmp23, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 - tmp30 tmp32 = tmp31 + tmp16 tmp33 = tmp28 / tmp32 tmp34 = tmp28 + tmp16 tmp35 = tmp31 / tmp34 tmp36 = triton_helpers.minimum(tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp23, tmp36, tmp37) tmp39 = tl.where(tmp4, tmp22, tmp38) tmp40 = 1.0 tmp41 = tmp40 - tmp39 tmp42 = 0.2 tmp43 = tmp41 < tmp42 tmp44 = tmp41 * tmp41 tmp45 = 0.5 tmp46 = tmp44 * tmp45 tmp47 = 5.0 tmp48 = tmp46 * tmp47 tmp49 = 0.1 tmp50 = tmp41 - tmp49 tmp51 = tl.where(tmp43, tmp48, tmp50) tmp52 = tl.broadcast_to(tmp51, [RBLOCK]) tmp54 = triton_helpers.promote_to_tensor(tl.sum(tmp52, 0)) tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp54, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [cat, loss, lt, pow_1, mul, truediv_3, sub_5, loss_1, sum_1], Original ATen: [aten.cat, aten.rsub, aten.lt, aten.pow, aten.mul, aten.div, aten.sub, aten.where, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_cat_div_lt_mul_pow_rsub_sub_sum_where_0.run(arg1_1, arg0_1, buf1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class BoundedIoULoss(nn.Module): def __init__(self, beta=0.2, eps=0.001): super(BoundedIoULoss, self).__init__() self.beta = beta self.eps = eps def forward(self, pred, target, weight=None): pred_ctr_2x = pred[:, :2] + pred[:, 2:] pred_wh = pred[:, 2:] - pred[:, :2] with torch.no_grad(): target_ctr_2x = target[:, :2] + target[:, 2:] target_wh = target[:, 2:] - target[:, :2] d_xy_2x = (target_ctr_2x - pred_ctr_2x).abs() loss_xy = torch.clamp((target_wh - d_xy_2x) / (target_wh + d_xy_2x + self.eps), min=0) loss_wh = torch.min(target_wh / (pred_wh + self.eps), pred_wh / ( target_wh + self.eps)) loss = 1 - torch.cat([loss_xy, loss_wh], dim=-1) if self.beta >= 1e-05: loss = torch.where(loss < self.beta, 0.5 * loss ** 2 / self. beta, loss - 0.5 * self.beta) if weight is not None: loss = loss * weight return loss.sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_cat_div_lt_mul_pow_rsub_sub_sum_where_0(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex % 8 r1 = rindex // 8 % 8 r2 = rindex // 64 tmp0 = r0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + tl.broadcast_to(32 + 4 * r1 + 64 * r2 + r0, [ RBLOCK]), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + tl.broadcast_to(4 * r1 + 64 * r2 + r0, [RBLOCK ]), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 - tmp6 tmp8 = tmp6 + tmp5 tmp9 = tl.load(in_ptr1 + tl.broadcast_to(4 * r1 + 64 * r2 + r0, [RBLOCK ]), tmp4, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr1 + tl.broadcast_to(32 + 4 * r1 + 64 * r2 + r0, [ RBLOCK]), tmp4, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl_math.abs(tmp12) tmp14 = tmp7 - tmp13 tmp15 = tmp7 + tmp13 tmp16 = 0.001 tmp17 = tmp15 + tmp16 tmp18 = tmp14 / tmp17 tmp19 = 0.0 tmp20 = triton_helpers.maximum(tmp18, tmp19) tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp4, tmp20, tmp21) tmp23 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp26 = tl.load(in_ptr0 + tl.broadcast_to(32 + 4 * r1 + 64 * r2 + (-4 + r0), [RBLOCK]), tmp23, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr0 + tl.broadcast_to(4 * r1 + 64 * r2 + (-4 + r0), [RBLOCK]), tmp23, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 - tmp27 tmp29 = tl.load(in_ptr1 + tl.broadcast_to(32 + 4 * r1 + 64 * r2 + (-4 + r0), [RBLOCK]), tmp23, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + tl.broadcast_to(4 * r1 + 64 * r2 + (-4 + r0), [RBLOCK]), tmp23, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 - tmp30 tmp32 = tmp31 + tmp16 tmp33 = tmp28 / tmp32 tmp34 = tmp28 + tmp16 tmp35 = tmp31 / tmp34 tmp36 = triton_helpers.minimum(tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp23, tmp36, tmp37) tmp39 = tl.where(tmp4, tmp22, tmp38) tmp40 = 1.0 tmp41 = tmp40 - tmp39 tmp42 = 0.2 tmp43 = tmp41 < tmp42 tmp44 = tmp41 * tmp41 tmp45 = 0.5 tmp46 = tmp44 * tmp45 tmp47 = 5.0 tmp48 = tmp46 * tmp47 tmp49 = 0.1 tmp50 = tmp41 - tmp49 tmp51 = tl.where(tmp43, tmp48, tmp50) tmp52 = tl.broadcast_to(tmp51, [RBLOCK]) tmp54 = triton_helpers.promote_to_tensor(tl.sum(tmp52, 0)) tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp54, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_cat_div_lt_mul_pow_rsub_sub_sum_where_0[grid(1)]( arg1_1, arg0_1, buf1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class BoundedIoULossNew(nn.Module): def __init__(self, beta=0.2, eps=0.001): super(BoundedIoULossNew, self).__init__() self.beta = beta self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
shunya-toyokawa/qanet_human_parts_segmentatiom
BoundedIoULoss
false
16,434
[ "MIT" ]
72
5527b247acd65534b455c26e3692a14b31669602
https://github.com/shunya-toyokawa/qanet_human_parts_segmentatiom/tree/5527b247acd65534b455c26e3692a14b31669602
HyperpriorAnalysis
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ri/criqkuezky4rfayw6ltqhgahwfjt2yn2oze6l7t3fkgbcyinvotk.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 70400 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 220 y1 = (yindex // 220) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (220*x2) + (1980*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wh/cwhkswckmxft7monsnauuprtatvuatkc4bi2kgvlifmba3jwe76j.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 880 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 220 y1 = (yindex // 220) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (220*x2) + (901120*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pa/cpapdgqqws5ag5ehwpofrqtvw5xphxp2fs56js4yos3j74haw2xm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 102400 xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = (yindex // 320) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (320*x2) + (8000*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ph/cphj34isihiy7vcgo2uyriwgge7pmnu2sij75kxq7ggby6hlmwvh.py # Topologically Sorted Source Nodes: [conv2d, x, pad], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d => convolution # pad => _unsafe_index, _unsafe_index_1 # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5918720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 320 x1 = (xindex // 320) % 68 x2 = (xindex // 21760) % 68 x3 = (xindex // 1479680) x4 = xindex tmp0 = tl.load(in_ptr0 + (1310400 + x0 + ((-20480)*(tl_math.abs((-63) + (tl_math.abs((-2) + x2))))) + ((-320)*(tl_math.abs((-63) + (tl_math.abs((-2) + x1))))) + (1310720*x3)), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v4/cv47rfntyy3kzrek5u7vimlqya432tgzptvdqdmafj6vdacriaky.py # Topologically Sorted Source Nodes: [conv2d_1, x_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # pad_1 => _unsafe_index_2, _unsafe_index_3 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_4 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1658880 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 320 x1 = (xindex // 320) % 36 x2 = (xindex // 11520) % 36 x3 = (xindex // 414720) x4 = xindex tmp0 = tl.load(in_ptr0 + (327360 + x0 + ((-10240)*(tl_math.abs((-31) + (tl_math.abs((-2) + x2))))) + ((-320)*(tl_math.abs((-31) + (tl_math.abs((-2) + x1))))) + (327680*x3)), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yi/cyipfmkmpblqs4aii7e57iy25xgn5wjt4gc2pyq36tdwjza3ab4v.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1280 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 320 y1 = (yindex // 320) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (320*x2) + (81920*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (256*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5n/c5nmtj336g7l5l66tr54hrh23mpif2c4y6mvrwfj7oymjbig3oot.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1310720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pd/cpdnddlltf377q3jfxsohyo3jb3e2v5oczjlv7ymcx5pggaqhm34.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_37 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5242880 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (320, 220, 3, 3), (1980, 9, 3, 1)) assert_size_stride(primals_2, (320, ), (1, )) assert_size_stride(primals_3, (4, 220, 64, 64), (901120, 4096, 64, 1)) assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_5, (320, ), (1, )) assert_size_stride(primals_6, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_7, (320, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 70400, 9, grid=grid(70400, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 220, 64, 64), (901120, 1, 14080, 220), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 880, 4096, grid=grid(880, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 102400, 25, grid=grid(102400, 25), stream=stream0) del primals_4 buf3 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf3, 102400, 25, grid=grid(102400, 25), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 320, 64, 64), (1310720, 1, 20480, 320)) buf5 = empty_strided_cuda((4, 320, 68, 68), (1479680, 1, 21760, 320), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x, pad], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_2, buf5, 5918720, grid=grid(5918720), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 32, 32), (327680, 1, 10240, 320)) buf7 = empty_strided_cuda((4, 320, 36, 36), (414720, 1, 11520, 320), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_4.run(buf6, primals_5, buf7, 1658880, grid=grid(1658880), stream=stream0) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 320, 16, 16), (81920, 1, 5120, 320)) buf9 = empty_strided_cuda((4, 320, 16, 16), (81920, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf8, primals_7, buf9, 1280, 256, grid=grid(1280, 256), stream=stream0) del buf8 del primals_7 buf10 = empty_strided_cuda((4, 320, 32, 32), (327680, 1, 10240, 320), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf6, primals_5, buf10, 1310720, grid=grid(1310720), stream=stream0) del buf6 del primals_5 buf11 = empty_strided_cuda((4, 320, 64, 64), (1310720, 1, 20480, 320), torch.bool) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf4, primals_2, buf11, 5242880, grid=grid(5242880), stream=stream0) del buf4 del primals_2 return (buf9, buf0, buf1, buf2, buf3, buf5, buf7, buf10, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((320, 220, 3, 3), (1980, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 220, 64, 64), (901120, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class HyperpriorAnalysis(nn.Module): """ Hyperprior 'analysis model' as proposed in [1]. [1] Ballé et. al., "Variational image compression with a scale hyperprior", arXiv:1802.01436 (2018). C: Number of input channels """ def __init__(self, C=220, N=320, activation='relu'): super(HyperpriorAnalysis, self).__init__() cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, padding_mode= 'reflect') self.activation = getattr(F, activation) self.n_downsampling_layers = 2 self.conv1 = nn.Conv2d(C, N, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(N, N, **cnn_kwargs) self.conv3 = nn.Conv2d(N, N, **cnn_kwargs) def forward(self, x): x = self.activation(self.conv1(x)) x = self.activation(self.conv2(x)) x = self.conv3(x) return x def get_inputs(): return [torch.rand([4, 220, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 70400 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 220 y1 = yindex // 220 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 220 * x2 + 1980 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 880 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 220 y1 = yindex // 220 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 220 * x2 + 901120 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 320 y1 = yindex // 320 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 320 * x2 + 8000 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 320 x1 = xindex // 320 % 68 x2 = xindex // 21760 % 68 x3 = xindex // 1479680 x4 = xindex tmp0 = tl.load(in_ptr0 + (1310400 + x0 + -20480 * tl_math.abs(-63 + tl_math.abs(-2 + x2)) + -320 * tl_math.abs(-63 + tl_math.abs(-2 + x1)) + 1310720 * x3), None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 320 x1 = xindex // 320 % 36 x2 = xindex // 11520 % 36 x3 = xindex // 414720 x4 = xindex tmp0 = tl.load(in_ptr0 + (327360 + x0 + -10240 * tl_math.abs(-31 + tl_math.abs(-2 + x2)) + -320 * tl_math.abs(-31 + tl_math.abs(-2 + x1)) + 327680 * x3), None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, None) @triton.jit def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 1280 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 320 y1 = yindex // 320 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 320 * x2 + 81920 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 256 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (320, 220, 3, 3), (1980, 9, 3, 1)) assert_size_stride(primals_2, (320,), (1,)) assert_size_stride(primals_3, (4, 220, 64, 64), (901120, 4096, 64, 1)) assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_5, (320,), (1,)) assert_size_stride(primals_6, (320, 320, 5, 5), (8000, 25, 5, 1)) assert_size_stride(primals_7, (320,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(70400, 9)](primals_1, buf0, 70400, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 220, 64, 64), (901120, 1, 14080, 220), torch.float32) triton_poi_fused_1[grid(880, 4096)](primals_3, buf1, 880, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) triton_poi_fused_2[grid(102400, 25)](primals_4, buf2, 102400, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32) triton_poi_fused_2[grid(102400, 25)](primals_6, buf3, 102400, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_6 buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 320, 64, 64), (1310720, 1, 20480, 320)) buf5 = empty_strided_cuda((4, 320, 68, 68), (1479680, 1, 21760, 320 ), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(5918720)]( buf4, primals_2, buf5, 5918720, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 32, 32), (327680, 1, 10240, 320)) buf7 = empty_strided_cuda((4, 320, 36, 36), (414720, 1, 11520, 320), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_4[grid(1658880)]( buf6, primals_5, buf7, 1658880, XBLOCK=1024, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf7, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 320, 16, 16), (81920, 1, 5120, 320)) buf9 = empty_strided_cuda((4, 320, 16, 16), (81920, 256, 16, 1), torch.float32) triton_poi_fused_convolution_5[grid(1280, 256)](buf8, primals_7, buf9, 1280, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf8 del primals_7 buf10 = empty_strided_cuda((4, 320, 32, 32), (327680, 1, 10240, 320 ), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(1310720)]( buf6, primals_5, buf10, 1310720, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 del primals_5 buf11 = empty_strided_cuda((4, 320, 64, 64), (1310720, 1, 20480, 320), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(5242880)]( buf4, primals_2, buf11, 5242880, XBLOCK=1024, num_warps=4, num_stages=1) del buf4 del primals_2 return buf9, buf0, buf1, buf2, buf3, buf5, buf7, buf10, buf11 class HyperpriorAnalysisNew(nn.Module): """ Hyperprior 'analysis model' as proposed in [1]. [1] Ballé et. al., "Variational image compression with a scale hyperprior", arXiv:1802.01436 (2018). C: Number of input channels """ def __init__(self, C=220, N=320, activation='relu'): super(HyperpriorAnalysisNew, self).__init__() cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, padding_mode= 'reflect') self.activation = getattr(F, activation) self.n_downsampling_layers = 2 self.conv1 = nn.Conv2d(C, N, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(N, N, **cnn_kwargs) self.conv3 = nn.Conv2d(N, N, **cnn_kwargs) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
sedrickkeh/high-fidelity-dual-image
HyperpriorAnalysis
false
16,435
[ "Apache-2.0" ]
266
9cefd378467826b91596653df38666e469bb23e0
https://github.com/sedrickkeh/high-fidelity-dual-image/tree/9cefd378467826b91596653df38666e469bb23e0
NormalizeScale
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/np/cnps5tn7p5oel2g4xflss7hji5wez7yd4am3swgdezysbdfcjyvl.py # Topologically Sorted Source Nodes: [bottom_normalized, bottom_normalized_scaled], Original ATen: [aten.div, aten.mul] # Source node to ATen node mapping: # bottom_normalized => div # bottom_normalized_scaled => mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_2), kwargs = {}) triton_poi_fused_div_mul_0 = async_compile.triton('triton_poi_fused_div_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = (xindex // 64) x5 = xindex % 16 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + (x4), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bottom_normalized, bottom_normalized_scaled], Original ATen: [aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class NormalizeScale(nn.Module): def __init__(self, dim, init_norm=20): super(NormalizeScale, self).__init__() self.init_norm = init_norm self.weight = nn.Parameter(torch.ones(1, dim) * init_norm) def forward(self, bottom): bottom_normalized = F.normalize(bottom, p=2, dim=1) bottom_normalized_scaled = bottom_normalized * self.weight return bottom_normalized_scaled def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = xindex // 64 x5 = xindex % 16 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + x4, tmp17, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class NormalizeScaleNew(nn.Module): def __init__(self, dim, init_norm=20): super(NormalizeScaleNew, self).__init__() self.init_norm = init_norm self.weight = nn.Parameter(torch.ones(1, dim) * init_norm) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
sibeiyang/sgmn
NormalizeScale
false
16,436
[ "MIT" ]
130
00731b4f2202246d40a36d2a6727c599e6e649aa
https://github.com/sibeiyang/sgmn/tree/00731b4f2202246d40a36d2a6727c599e6e649aa
PrimaryCapsLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/my/cmywhultrq2bo2glrc4pxf5zvi76gyyi6wzgrympkqvplmtgmnrp.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/q7/cq76sscp5jckpbmg3kidehbzbntesd4wwpimroumxaaoq32jzmpb.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] # Source node to ATen node mapping: # x => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view_2), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 1.0 tmp13 = tmp11 + tmp12 tmp14 = tmp11 / tmp13 tmp15 = libdevice.sqrt(tmp11) tmp16 = tmp14 / tmp15 tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 1, 1), (16, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) return (buf2, primals_1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def squash(x): lengths2 = x.pow(2).sum(dim=2) lengths = lengths2.sqrt() x = x * (lengths2 / (1 + lengths2) / lengths).view(x.size(0), x.size(1), 1) return x class PrimaryCapsLayer(nn.Module): def __init__(self, input_channels, output_caps, output_dim, kernel_size, stride): super(PrimaryCapsLayer, self).__init__() self.conv = nn.Conv2d(input_channels, output_caps * output_dim, kernel_size=kernel_size, stride=stride) self.input_channels = input_channels self.output_caps = output_caps self.output_dim = output_dim def forward(self, input): out = self.conv(input) N, _C, H, W = out.size() out = out.view(N, self.output_caps, self.output_dim, H, W) out = out.permute(0, 1, 3, 4, 2).contiguous() out = out.view(out.size(0), -1, out.size(4)) out = squash(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'output_caps': 4, 'output_dim': 4, 'kernel_size': 4, 'stride': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 1.0 tmp13 = tmp11 + tmp12 tmp14 = tmp11 / tmp13 tmp15 = libdevice.sqrt(tmp11) tmp16 = tmp14 / tmp15 tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + x2, tmp17, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 1, 1), (16, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, primals_1, primals_3, buf1 def squash(x): lengths2 = x.pow(2).sum(dim=2) lengths = lengths2.sqrt() x = x * (lengths2 / (1 + lengths2) / lengths).view(x.size(0), x.size(1), 1) return x class PrimaryCapsLayerNew(nn.Module): def __init__(self, input_channels, output_caps, output_dim, kernel_size, stride): super(PrimaryCapsLayerNew, self).__init__() self.conv = nn.Conv2d(input_channels, output_caps * output_dim, kernel_size=kernel_size, stride=stride) self.input_channels = input_channels self.output_caps = output_caps self.output_dim = output_dim def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shwetasrsh/MNIST-baselines
PrimaryCapsLayer
false
16,437
[ "MIT" ]
61
aa888e201a1dddda13e7b278cab8f940d57538db
https://github.com/shwetasrsh/MNIST-baselines/tree/aa888e201a1dddda13e7b278cab8f940d57538db
NormAttnMap
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yg/cygpjynbou473tf4noi2cem3yrk3bayubj7lfcuqbdqshgaaj7wb.py # Topologically Sorted Source Nodes: [max_1, setitem], Original ATen: [aten.max, aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # max_1 => max_1 # setitem => full_default, index_put # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, 1, True), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%getitem, [%le], %full_default), kwargs = {}) triton_poi_fused_index_put_lift_fresh_max_0 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_max_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_put_lift_fresh_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = 1.0 tmp8 = tmp6 <= tmp7 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mq/cmqzmtg5i7c3jiw6tatnxnuezvocfhdxvxtgr246t3g35eioloo2.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.div] # Source node to ATen node mapping: # attn => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %index_put), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_1, setitem], Original ATen: [aten.max, aten.lift_fresh, aten.index_put] stream0 = get_raw_stream(0) triton_poi_fused_index_put_lift_fresh_max_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.div] triton_poi_fused_div_1.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class NormAttnMap(nn.Module): def __init__(self, norm_type='cossim'): super(NormAttnMap, self).__init__() self.norm_type = norm_type def forward(self, attn_map): if self.norm_type != 'cosssim': norm = torch.max(attn_map, dim=1, keepdim=True)[0].detach() else: norm = torch.max(torch.abs(attn_map), dim=1, keepdim=True)[0 ].detach() norm[norm <= 1] = 1 attn = attn_map / norm return attn, norm def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_index_put_lift_fresh_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = 1.0 tmp8 = tmp6 <= tmp7 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_index_put_lift_fresh_max_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_div_1[grid(256)](arg0_1, buf0, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf1, buf0 class NormAttnMapNew(nn.Module): def __init__(self, norm_type='cossim'): super(NormAttnMapNew, self).__init__() self.norm_type = norm_type def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
sibeiyang/sgmn
NormAttnMap
false
16,438
[ "MIT" ]
130
00731b4f2202246d40a36d2a6727c599e6e649aa
https://github.com/sibeiyang/sgmn/tree/00731b4f2202246d40a36d2a6727c599e6e649aa
SwishX
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7h/c7hojmlj4yycj63kwnqi2x7j5ce4vpbjhwzmyybmluzqgaeyt6sv.py # Topologically Sorted Source Nodes: [sigmoid, output, sub, clamp, output_1], Original ATen: [aten.sigmoid, aten.mul, aten.sub, aten.clamp, aten.add, aten.le] # Source node to ATen node mapping: # clamp => clamp_max # output => mul # output_1 => add # sigmoid => sigmoid # sub => sub # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %primals_2), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%sub, 0.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_max, %primals_2), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%sub, 0.0), kwargs = {}) triton_poi_fused_add_clamp_le_mul_sigmoid_sub_0 = async_compile.triton('triton_poi_fused_add_clamp_le_mul_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_le_mul_sigmoid_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_le_mul_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = tl.sigmoid(tmp0) tmp2 = tmp0 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = 0.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp8 = tmp7 + tmp4 tmp9 = tmp5 <= tmp6 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [sigmoid, output, sub, clamp, output_1], Original ATen: [aten.sigmoid, aten.mul, aten.sub, aten.clamp, aten.add, aten.le] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_le_mul_sigmoid_sub_0.run(primals_1, primals_2, buf0, buf1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class SwishX(nn.Module): def __init__(self, maxvalue=2.72): super(SwishX, self).__init__() self.maximal = nn.Parameter(torch.FloatTensor([maxvalue])) def forward(self, x): output = x * torch.sigmoid(x) output = output.sub(self.maximal).clamp(max=0.0).add(self.maximal) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_le_mul_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = tl.sigmoid(tmp0) tmp2 = tmp0 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = 0.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp8 = tmp7 + tmp4 tmp9 = tmp5 <= tmp6 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp9, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_clamp_le_mul_sigmoid_sub_0[grid(256)](primals_1, primals_2, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, buf1 class SwishXNew(nn.Module): def __init__(self, maxvalue=2.72): super(SwishXNew, self).__init__() self.maximal = nn.Parameter(torch.FloatTensor([maxvalue])) def forward(self, input_0): primals_2 = self.maximal primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
shunya-toyokawa/qanet_human_parts_segmentatiom
SwishX
false
16,439
[ "MIT" ]
72
5527b247acd65534b455c26e3692a14b31669602
https://github.com/shunya-toyokawa/qanet_human_parts_segmentatiom/tree/5527b247acd65534b455c26e3692a14b31669602
Anomaly
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fv/cfvmfhncjkqx2v7rw6mb36tmxqnebq7nnu7nihptqk57t7kgg62s.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uz/cuzbnz5k52xhjpdoaucm3u5qsyj2prasqn3xsty665xnmdng4lmj.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_5 => relu_1 # Graph fragment: # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/i6/ci6majez2aud55eq5xybhkd2mfzqkgh5gnlnqqt7zfbhwxzfzbtu.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_7 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ar/car7npnehgqa6cartjtkz2r24t3hoefata7ryth2h3ampzdx5u62.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 1024, 1), (1024, 1, 1)) assert_size_stride(primals_2, (1024, 1024, 1), (1024, 1, 1)) assert_size_stride(primals_3, (1024, ), (1, )) assert_size_stride(primals_4, (2048, 1024, 1), (1024, 1, 1)) assert_size_stride(primals_5, (2048, ), (1, )) assert_size_stride(primals_6, (4096, 2048), (2048, 1)) assert_size_stride(primals_7, (4096, ), (1, )) assert_size_stride(primals_8, (1024, 4096), (4096, 1)) assert_size_stride(primals_9, (1024, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 1024, 1), (1024, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 4096, grid=grid(4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 2048, 1), (2048, 1, 1)) buf3 = reinterpret_tensor(buf2, (4, 2048), (2048, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2048, 4096), (1, 2048), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf5, primals_7, 16384, grid=grid(16384), stream=stream0) del primals_7 buf6 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (4096, 1024), (1, 4096), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_3.run(buf7, primals_9, 4096, grid=grid(4096), stream=stream0) del primals_9 return (buf7, primals_1, primals_2, primals_4, buf1, buf3, buf5, buf7, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1024, 1), (1024, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, 1024, 1), (1024, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2048, 1024, 1), (1024, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4096, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1024, 4096), (4096, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch import nn class Anomaly(nn.Module): def __init__(self, window=1024): self.window = window super(Anomaly, self).__init__() self.layer1 = nn.Conv1d(window, window, kernel_size=1, stride=1, padding=0) self.layer2 = nn.Conv1d(window, 2 * window, kernel_size=1, stride=1, padding=0) self.fc1 = nn.Linear(2 * window, 4 * window) self.fc2 = nn.Linear(4 * window, window) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = x.view(x.size(0), self.window, 1) x = self.layer1(x) x = self.relu(x) x = self.layer2(x) x = x.view(x.size(0), -1) x = self.relu(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return torch.sigmoid(x) def get_inputs(): return [torch.rand([4, 1024, 1])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 1024, 1), (1024, 1, 1)) assert_size_stride(primals_2, (1024, 1024, 1), (1024, 1, 1)) assert_size_stride(primals_3, (1024,), (1,)) assert_size_stride(primals_4, (2048, 1024, 1), (1024, 1, 1)) assert_size_stride(primals_5, (2048,), (1,)) assert_size_stride(primals_6, (4096, 2048), (2048, 1)) assert_size_stride(primals_7, (4096,), (1,)) assert_size_stride(primals_8, (1024, 4096), (4096, 1)) assert_size_stride(primals_9, (1024,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 1024, 1), (1024, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(4096)](buf1, primals_3, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 2048, 1), (2048, 1, 1)) buf3 = reinterpret_tensor(buf2, (4, 2048), (2048, 1), 0) del buf2 triton_poi_fused_relu_1[grid(8192)](buf3, primals_5, 8192, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2048, 4096), (1, 2048), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_2[grid(16384)](buf5, primals_7, 16384, XBLOCK =256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (4096, 1024), (1, 4096), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_sigmoid_3[grid(4096)](buf7, primals_9, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 return (buf7, primals_1, primals_2, primals_4, buf1, buf3, buf5, buf7, primals_8, primals_6) class AnomalyNew(nn.Module): def __init__(self, window=1024): self.window = window super(AnomalyNew, self).__init__() self.layer1 = nn.Conv1d(window, window, kernel_size=1, stride=1, padding=0) self.layer2 = nn.Conv1d(window, 2 * window, kernel_size=1, stride=1, padding=0) self.fc1 = nn.Linear(2 * window, 4 * window) self.fc2 = nn.Linear(4 * window, window) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.layer1.weight primals_3 = self.layer1.bias primals_4 = self.layer2.weight primals_5 = self.layer2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
sccc19/anomalydetector
Anomaly
false
16,440
[ "MIT" ]
180
a963ef8d7f30971e99d21a748d059e26f2163b09
https://github.com/sccc19/anomalydetector/tree/a963ef8d7f30971e99d21a748d059e26f2163b09
Log10Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vj/cvjnwkp2dk2n4r5pk56p2jwi22rcqeox7eojc6ybz5p4z2cppq3d.py # Topologically Sorted Source Nodes: [log, log_1, sub, truediv, loss], Original ATen: [aten.log, aten.sub, aten.div, aten.abs] # Source node to ATen node mapping: # log => log # log_1 => log_1 # loss => abs_1 # sub => sub # truediv => div # Graph fragment: # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 2.302585092994046), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {}) triton_poi_fused_abs_div_log_sub_0 = async_compile.triton('triton_poi_fused_abs_div_log_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_div_log_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_div_log_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl_math.log(tmp0) tmp3 = tl_math.log(tmp2) tmp4 = tmp1 - tmp3 tmp5 = 0.43429448190325176 tmp6 = tmp4 * tmp5 tmp7 = tl_math.abs(tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log, log_1, sub, truediv, loss], Original ATen: [aten.log, aten.sub, aten.div, aten.abs] stream0 = get_raw_stream(0) triton_poi_fused_abs_div_log_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.init from math import log def _mask_input(input, mask=None): if mask is not None: input = input * mask count = torch.sum(mask).data[0] else: count = np.prod(input.size(), dtype=np.float32).item() return input, count class Log10Loss(nn.Module): def forward(self, input, target, mask=None): loss = torch.abs((torch.log(target) - torch.log(input)) / log(10)) loss, count = _mask_input(loss, mask) return torch.sum(loss) / count def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_div_log_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl_math.log(tmp0) tmp3 = tl_math.log(tmp2) tmp4 = tmp1 - tmp3 tmp5 = 0.43429448190325176 tmp6 = tmp4 * tmp5 tmp7 = tl_math.abs(tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_div_log_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, def _mask_input(input, mask=None): if mask is not None: input = input * mask count = torch.sum(mask).data[0] else: count = np.prod(input.size(), dtype=np.float32).item() return input, count class Log10LossNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
simonmeister/pytorch-mono-depth
Log10Loss
false
16,441
[ "MIT" ]
56
713c70e2fdae6d9d6e0322febadfedcaee9470d3
https://github.com/simonmeister/pytorch-mono-depth/tree/713c70e2fdae6d9d6e0322febadfedcaee9470d3
NormalizationLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5d/c5dhk7bkuqo4u6hoo6g4wm36lekpofplwrblvshjxay6uhmurm2w.py # Topologically Sorted Source Nodes: [mul, features], Original ATen: [aten.mul, aten.div] # Source node to ATen node mapping: # features => div # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %expand), kwargs = {}) triton_poi_fused_div_mul_0 = async_compile.triton('triton_poi_fused_div_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp11 + tmp13 tmp15 = libdevice.sqrt(tmp14) tmp16 = tmp3 / tmp15 tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, features], Original ATen: [aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.init class NormalizationLayer(torch.nn.Module): """Class for normalization layer.""" def __init__(self, normalize_scale=1.0, learn_scale=True): super(NormalizationLayer, self).__init__() self.norm_s = float(normalize_scale) if learn_scale: self.norm_s = torch.nn.Parameter(torch.FloatTensor((self.norm_s,))) def forward(self, x): features = self.norm_s * x / torch.norm(x, dim=1, keepdim=True ).expand_as(x) return features def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp11 + tmp13 tmp15 = libdevice.sqrt(tmp14) tmp16 = tmp3 / tmp15 tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class NormalizationLayerNew(torch.nn.Module): """Class for normalization layer.""" def __init__(self, normalize_scale=1.0, learn_scale=True): super(NormalizationLayerNew, self).__init__() self.norm_s = float(normalize_scale) if learn_scale: self.norm_s = torch.nn.Parameter(torch.FloatTensor((self.norm_s,))) def forward(self, input_0): primals_1 = self.norm_s primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
sidphbot/jina-hub
NormalizationLayer
false
16,442
[ "Apache-2.0" ]
106
ab195030b72353c9b803874e2c99829fb75e1b17
https://github.com/sidphbot/jina-hub/tree/ab195030b72353c9b803874e2c99829fb75e1b17
MaskIOULoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/p3/cp3rlgczdqp27cbq7u456fb24gd36onvg4yriw72uare3co23dqk.py # Topologically Sorted Source Nodes: [total, max_1, min_1], Original ATen: [aten.stack, aten.max, aten.min] # Source node to ATen node mapping: # max_1 => max_1 # min_1 => min_1 # total => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], -1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%cat, 2), kwargs = {}) # %min_1 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%cat, 2), kwargs = {}) triton_poi_fused_max_min_stack_0 = async_compile.triton('triton_poi_fused_max_min_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_min_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_min_stack_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 4 x2 = (xindex // 8) x3 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = tl.load(in_ptr0 + (4 + x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.load(in_ptr1 + (4 + x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tl.load(in_ptr0 + (8 + x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (8 + x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.where(tmp4, tmp15, tmp16) tmp18 = triton_helpers.maximum(tmp14, tmp17) tmp19 = tl.load(in_ptr0 + (12 + x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr1 + (12 + x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.where(tmp4, tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp18, tmp21) tmp23 = triton_helpers.minimum(tmp10, tmp13) tmp24 = triton_helpers.minimum(tmp23, tmp17) tmp25 = triton_helpers.minimum(tmp24, tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) tl.store(out_ptr1 + (x3), tmp25, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t2/ct2pvjspcwv4kcntui47tkazly3f5j5gca72ed537bhssto3li6i.py # Topologically Sorted Source Nodes: [sum_1, sum_2, truediv, loss], Original ATen: [aten.sum, aten.div, aten.log] # Source node to ATen node mapping: # loss => log # sum_1 => sum_1 # sum_2 => sum_2 # truediv => div # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%getitem, [1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%getitem_2, [1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {}) triton_poi_fused_div_log_sum_1 = async_compile.triton('triton_poi_fused_div_log_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_log_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_log_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (32*x1)), xmask) tmp1 = tl.load(in_ptr0 + (8 + x0 + (32*x1)), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0 + (32*x1)), xmask) tmp5 = tl.load(in_ptr0 + (24 + x0 + (32*x1)), xmask) tmp7 = tl.load(in_ptr1 + (x0 + (32*x1)), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + (32*x1)), xmask) tmp10 = tl.load(in_ptr1 + (16 + x0 + (32*x1)), xmask) tmp12 = tl.load(in_ptr1 + (24 + x0 + (32*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = tmp6 / tmp13 tmp15 = tl_math.log(tmp14) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xb/cxbq43hryomnr3dhkbcdn4sffrvonl3ryppjmvh3cgbtrx5vdk35.py # Topologically Sorted Source Nodes: [sum_1, sum_2, truediv, loss, loss_1, sum_3], Original ATen: [aten.sum, aten.div, aten.log, aten.mul] # Source node to ATen node mapping: # loss => log # loss_1 => mul # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # truediv => div # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%getitem, [1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%getitem_2, [1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log, %arg2_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) triton_per_fused_div_log_mul_sum_2 = async_compile.triton('triton_per_fused_div_log_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_log_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_log_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 32 r2 = rindex tmp0 = tl.load(in_ptr0 + (r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r2), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 2), (32, 8, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [total, max_1, min_1], Original ATen: [aten.stack, aten.max, aten.min] stream0 = get_raw_stream(0) triton_poi_fused_max_min_stack_0.run(arg0_1, arg1_1, buf0, buf1, 128, grid=grid(128), stream=stream0) del arg0_1 del arg1_1 buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, sum_2, truediv, loss], Original ATen: [aten.sum, aten.div, aten.log] triton_poi_fused_div_log_sum_1.run(buf0, buf1, buf2, 32, grid=grid(32), stream=stream0) del buf0 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sum_1, sum_2, truediv, loss, loss_1, sum_3], Original ATen: [aten.sum, aten.div, aten.log, aten.mul] triton_per_fused_div_log_mul_sum_2.run(buf2, arg2_1, buf3, 1, 128, grid=grid(1), stream=stream0) del arg2_1 del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 2), (32, 8, 2, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class MaskIOULoss(nn.Module): def __init__(self): super(MaskIOULoss, self).__init__() def forward(self, pred, target, weight): total = torch.stack([pred, target], -1) l_max = total.max(dim=2)[0] l_min = total.min(dim=2)[0] loss = (l_max.sum(dim=1) / l_min.sum(dim=1)).log() loss = loss * weight return loss.sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 2])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_min_stack_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 4 x2 = xindex // 8 x3 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp9 = tl.load(in_ptr1 + (x1 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = tl.load(in_ptr0 + (4 + x1 + 16 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.load(in_ptr1 + (4 + x1 + 16 * x2), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tl.load(in_ptr0 + (8 + x1 + 16 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (8 + x1 + 16 * x2), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.where(tmp4, tmp15, tmp16) tmp18 = triton_helpers.maximum(tmp14, tmp17) tmp19 = tl.load(in_ptr0 + (12 + x1 + 16 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr1 + (12 + x1 + 16 * x2), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.where(tmp4, tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp18, tmp21) tmp23 = triton_helpers.minimum(tmp10, tmp13) tmp24 = triton_helpers.minimum(tmp23, tmp17) tmp25 = triton_helpers.minimum(tmp24, tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) tl.store(out_ptr1 + x3, tmp25, xmask) @triton.jit def triton_poi_fused_div_log_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 32 * x1), xmask) tmp1 = tl.load(in_ptr0 + (8 + x0 + 32 * x1), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0 + 32 * x1), xmask) tmp5 = tl.load(in_ptr0 + (24 + x0 + 32 * x1), xmask) tmp7 = tl.load(in_ptr1 + (x0 + 32 * x1), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + 32 * x1), xmask) tmp10 = tl.load(in_ptr1 + (16 + x0 + 32 * x1), xmask) tmp12 = tl.load(in_ptr1 + (24 + x0 + 32 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = tmp6 / tmp13 tmp15 = tl_math.log(tmp14) tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_per_fused_div_log_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 32 r2 = rindex tmp0 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + r2, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 2), (32, 8, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_min_stack_0[grid(128)](arg0_1, arg1_1, buf0, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) triton_poi_fused_div_log_sum_1[grid(32)](buf0, buf1, buf2, 32, XBLOCK=32, num_warps=1, num_stages=1) del buf0 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) triton_per_fused_div_log_mul_sum_2[grid(1)](buf2, arg2_1, buf3, 1, 128, XBLOCK=1, num_warps=2, num_stages=1) del arg2_1 del buf2 return buf3, class MaskIOULossNew(nn.Module): def __init__(self): super(MaskIOULossNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
shunya-toyokawa/qanet_human_parts_segmentatiom
MaskIOULoss
false
16,443
[ "MIT" ]
72
5527b247acd65534b455c26e3692a14b31669602
https://github.com/shunya-toyokawa/qanet_human_parts_segmentatiom/tree/5527b247acd65534b455c26e3692a14b31669602
LocationEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uf/cufnedxa7vzq3ip72kyt5bitnvnjk3f5izl22vednvhtwpnahgqy.py # Topologically Sorted Source Nodes: [bottom_normalized, bottom_normalized_scaled], Original ATen: [aten.div, aten.mul] # Source node to ATen node mapping: # bottom_normalized => div # bottom_normalized_scaled => mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_2), kwargs = {}) triton_poi_fused_div_mul_0 = async_compile.triton('triton_poi_fused_div_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = (xindex // 80) x5 = xindex % 20 x0 = xindex % 5 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x5 + (80*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (20 + x5 + (80*x3)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (40 + x5 + (80*x3)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (60 + x5 + (80*x3)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + (x4), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 5), (80, 20, 5, 1)) assert_size_stride(primals_2, (1, 5), (5, 1)) assert_size_stride(primals_3, (4, 5), (5, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [bottom_normalized, bottom_normalized_scaled], Original ATen: [aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_0.run(primals_1, primals_2, buf0, 320, grid=grid(320), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 5), (5, 1), 0), reinterpret_tensor(primals_3, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf1) del primals_4 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(buf0, (64, 5), (5, 1), 0), primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 5), (80, 20, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 5), (5, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class NormalizeScale(nn.Module): def __init__(self, dim, init_norm=20): super(NormalizeScale, self).__init__() self.init_norm = init_norm self.weight = nn.Parameter(torch.ones(1, dim) * init_norm) def forward(self, bottom): bottom_normalized = F.normalize(bottom, p=2, dim=1) bottom_normalized_scaled = bottom_normalized * self.weight return bottom_normalized_scaled class LocationEncoder(nn.Module): def __init__(self, init_norm, dim): super(LocationEncoder, self).__init__() self.lfeat_normalizer = NormalizeScale(5, init_norm) self.fc = nn.Linear(5, dim) def forward(self, lfeats): loc_feat = self.lfeat_normalizer(lfeats) output = self.fc(loc_feat) return output def get_inputs(): return [torch.rand([4, 4, 4, 5])] def get_init_inputs(): return [[], {'init_norm': 4, 'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = xindex // 80 x5 = xindex % 20 x0 = xindex % 5 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + (x5 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (20 + x5 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (40 + x5 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (60 + x5 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + x4, tmp17, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 5), (80, 20, 5, 1)) assert_size_stride(primals_2, (1, 5), (5, 1)) assert_size_stride(primals_3, (4, 5), (5, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_0[grid(320)](primals_1, primals_2, buf0, 320, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 5), ( 5, 1), 0), reinterpret_tensor(primals_3, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf1) del primals_4 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, reinterpret_tensor(buf0, (64, 5), (5, 1), 0), primals_3 class NormalizeScale(nn.Module): def __init__(self, dim, init_norm=20): super(NormalizeScale, self).__init__() self.init_norm = init_norm self.weight = nn.Parameter(torch.ones(1, dim) * init_norm) def forward(self, bottom): bottom_normalized = F.normalize(bottom, p=2, dim=1) bottom_normalized_scaled = bottom_normalized * self.weight return bottom_normalized_scaled class LocationEncoderNew(nn.Module): def __init__(self, init_norm, dim): super(LocationEncoderNew, self).__init__() self.lfeat_normalizer = NormalizeScale(5, init_norm) self.fc = nn.Linear(5, dim) def forward(self, input_0): primals_2 = self.lfeat_normalizer.weight primals_3 = self.fc.weight primals_4 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
sibeiyang/sgmn
LocationEncoder
false
16,444
[ "MIT" ]
130
00731b4f2202246d40a36d2a6727c599e6e649aa
https://github.com/sibeiyang/sgmn/tree/00731b4f2202246d40a36d2a6727c599e6e649aa
ConvUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/f4/cf4ifsqcqwdpr272fpp3kls2r7dv45llmezneacs7dxjmqv5pu6h.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 460800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3600) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (32, 256, 5, 5), (6400, 25, 5, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 256, 64, 64), (1048576, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 60, 60), (115200, 3600, 60, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 460800, grid=grid(460800), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 256, 5, 5), (6400, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ConvUnit(nn.Module): def __init__(self): super(ConvUnit, self).__init__() self.conv = nn.Conv2d(in_channels=256, out_channels=32, kernel_size =5, stride=1) def forward(self, x): return self.conv(x) def get_inputs(): return [torch.rand([4, 256, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3600 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (32, 256, 5, 5), (6400, 25, 5, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 256, 64, 64), (1048576, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 60, 60), (115200, 3600, 60, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(460800)](buf1, primals_2, 460800, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class ConvUnitNew(nn.Module): def __init__(self): super(ConvUnitNew, self).__init__() self.conv = nn.Conv2d(in_channels=256, out_channels=32, kernel_size =5, stride=1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shinoyuki222/torch-light
ConvUnit
false
16,445
[ "MIT" ]
310
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
https://github.com/shinoyuki222/torch-light/tree/4799805d9bcae82a9f12a574dcf9fdd838c92ee9
RelLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xv/cxvarvo2hn56e6z3rj3qi7p6nbrxiuvbj6qw3qyksxbfpdw27rvv.py # Topologically Sorted Source Nodes: [sub, abs_1, loss], Original ATen: [aten.sub, aten.abs, aten.div] # Source node to ATen node mapping: # abs_1 => abs_1 # loss => div # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, %arg1_1), kwargs = {}) triton_poi_fused_abs_div_sub_0 = async_compile.triton('triton_poi_fused_abs_div_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_div_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_div_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 / tmp1 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, abs_1, loss], Original ATen: [aten.sub, aten.abs, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_abs_div_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.init def _mask_input(input, mask=None): if mask is not None: input = input * mask count = torch.sum(mask).data[0] else: count = np.prod(input.size(), dtype=np.float32).item() return input, count class RelLoss(nn.Module): def forward(self, input, target, mask=None): loss = torch.abs(input - target) / target loss, count = _mask_input(loss, mask) return torch.sum(loss) / count def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_div_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 / tmp1 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_div_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, def _mask_input(input, mask=None): if mask is not None: input = input * mask count = torch.sum(mask).data[0] else: count = np.prod(input.size(), dtype=np.float32).item() return input, count class RelLossNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
simonmeister/pytorch-mono-depth
RelLoss
false
16,446
[ "MIT" ]
56
713c70e2fdae6d9d6e0322febadfedcaee9470d3
https://github.com/simonmeister/pytorch-mono-depth/tree/713c70e2fdae6d9d6e0322febadfedcaee9470d3
MergeModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/jr/cjrodalf3ceeqlfy7acvbucqx3b3jl7kw6yxinxjxecfhzetqyyh.py # Topologically Sorted Source Nodes: [mul, sub_attn_map_sum, mul_1, obj_attn_map_sum, add], Original ATen: [aten.mul, aten.sum, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # mul_1 => mul_1 # obj_attn_map_sum => sum_2 # sub_attn_map_sum => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %arg0_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand_1, %arg3_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_poi_fused_add_mul_sum_0 = async_compile.triton('triton_poi_fused_add_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x3 + (64*x2)), xmask) tmp6 = tl.load(in_ptr0 + (4 + x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (16 + x3 + (64*x2)), xmask) tmp12 = tl.load(in_ptr0 + (8 + x1), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (32 + x3 + (64*x2)), xmask) tmp18 = tl.load(in_ptr0 + (12 + x1), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (48 + x3 + (64*x2)), xmask) tmp24 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + (x3 + (64*x2)), xmask) tmp29 = tl.load(in_ptr2 + (4 + x1), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr3 + (16 + x3 + (64*x2)), xmask) tmp35 = tl.load(in_ptr2 + (8 + x1), xmask, eviction_policy='evict_last') tmp38 = tl.load(in_ptr3 + (32 + x3 + (64*x2)), xmask) tmp41 = tl.load(in_ptr2 + (12 + x1), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr3 + (48 + x3 + (64*x2)), xmask) tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.float32) tmp5 = tmp3 * tmp4 tmp7 = tmp6 == tmp1 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tmp5 + tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13.to(tl.float32) tmp16 = tmp14 * tmp15 tmp17 = tmp11 + tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19.to(tl.float32) tmp22 = tmp20 * tmp21 tmp23 = tmp17 + tmp22 tmp25 = tmp24 == tmp1 tmp26 = tmp25.to(tl.float32) tmp28 = tmp26 * tmp27 tmp30 = tmp29 == tmp1 tmp31 = tmp30.to(tl.float32) tmp33 = tmp31 * tmp32 tmp34 = tmp28 + tmp33 tmp36 = tmp35 == tmp1 tmp37 = tmp36.to(tl.float32) tmp39 = tmp37 * tmp38 tmp40 = tmp34 + tmp39 tmp42 = tmp41 == tmp1 tmp43 = tmp42.to(tl.float32) tmp45 = tmp43 * tmp44 tmp46 = tmp40 + tmp45 tmp47 = tmp23 + tmp46 tl.store(out_ptr0 + (x4), tmp47, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bk/cbkr7e4apb3rdmx2gwwydk7wlxvxklzm3uup3akkpcjtl4xcd6zn.py # Topologically Sorted Source Nodes: [attn_map_sum, max_1, setitem], Original ATen: [aten.add, aten.max, aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # attn_map_sum => add_1 # max_1 => max_1 # setitem => full_default, index_put # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %arg4_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%add_1, 1, True), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%getitem, [%le], %full_default), kwargs = {}) triton_poi_fused_add_index_put_lift_fresh_max_1 = async_compile.triton('triton_poi_fused_add_index_put_lift_fresh_max_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_put_lift_fresh_max_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_index_put_lift_fresh_max_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp11 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = 1.0 tmp16 = tmp14 <= tmp15 tmp17 = tl.where(tmp16, tmp15, tmp14) tl.store(in_out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t6/ct6ws545hprtb33ro667dno4qgvlbd545cowvrlc3dvlmwidn5l7.py # Topologically Sorted Source Nodes: [attn_map_sum, attn], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # attn => div # attn_map_sum => add_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %arg4_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %index_put), kwargs = {}) triton_poi_fused_add_div_2 = async_compile.triton('triton_poi_fused_add_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask) tmp3 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sub_attn_map_sum, mul_1, obj_attn_map_sum, add], Original ATen: [aten.mul, aten.sum, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sum_0.run(arg1_1, arg0_1, arg2_1, arg3_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [attn_map_sum, max_1, setitem], Original ATen: [aten.add, aten.max, aten.lift_fresh, aten.index_put] triton_poi_fused_add_index_put_lift_fresh_max_1.run(buf2, buf0, arg4_1, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_map_sum, attn], Original ATen: [aten.add, aten.div] triton_poi_fused_add_div_2.run(buf0, arg4_1, buf2, buf3, 256, grid=grid(256), stream=stream0) del arg4_1 del buf0 del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class NormAttnMap(nn.Module): def __init__(self, norm_type='cossim'): super(NormAttnMap, self).__init__() self.norm_type = norm_type def forward(self, attn_map): if self.norm_type != 'cosssim': norm = torch.max(attn_map, dim=1, keepdim=True)[0].detach() else: norm = torch.max(torch.abs(attn_map), dim=1, keepdim=True)[0 ].detach() norm[norm <= 1] = 1 attn = attn_map / norm return attn, norm class MergeModule(nn.Module): def __init__(self, norm_type='cossim', need_norm=True): super(MergeModule, self).__init__() self.norm_type = norm_type self.need_norm = need_norm self.norm_fun = NormAttnMap(norm_type) def forward(self, attn_map, global_sub_attn_maps, global_obj_attn_maps, mask_sub, mask_obj): bs, num_seq, n = global_sub_attn_maps.size(0 ), global_sub_attn_maps.size(1), global_sub_attn_maps.size(2) mask_sub_expand = (mask_sub == 1).float().unsqueeze(2).expand(bs, num_seq, n) sub_attn_map_sum = torch.sum(mask_sub_expand * global_sub_attn_maps, dim=1) mask_obj_expand = (mask_obj == 1).float().unsqueeze(2).expand(bs, num_seq, n) obj_attn_map_sum = torch.sum(mask_obj_expand * global_obj_attn_maps, dim=1) attn_map_sum = sub_attn_map_sum + obj_attn_map_sum + attn_map if self.need_norm: attn, _norm = self.norm_fun(attn_map_sum) else: attn = attn_map_sum return attn def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask) tmp6 = tl.load(in_ptr0 + (4 + x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask) tmp12 = tl.load(in_ptr0 + (8 + x1), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask) tmp18 = tl.load(in_ptr0 + (12 + x1), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask) tmp24 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + (x3 + 64 * x2), xmask) tmp29 = tl.load(in_ptr2 + (4 + x1), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr3 + (16 + x3 + 64 * x2), xmask) tmp35 = tl.load(in_ptr2 + (8 + x1), xmask, eviction_policy='evict_last') tmp38 = tl.load(in_ptr3 + (32 + x3 + 64 * x2), xmask) tmp41 = tl.load(in_ptr2 + (12 + x1), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr3 + (48 + x3 + 64 * x2), xmask) tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.float32) tmp5 = tmp3 * tmp4 tmp7 = tmp6 == tmp1 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tmp5 + tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13.to(tl.float32) tmp16 = tmp14 * tmp15 tmp17 = tmp11 + tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19.to(tl.float32) tmp22 = tmp20 * tmp21 tmp23 = tmp17 + tmp22 tmp25 = tmp24 == tmp1 tmp26 = tmp25.to(tl.float32) tmp28 = tmp26 * tmp27 tmp30 = tmp29 == tmp1 tmp31 = tmp30.to(tl.float32) tmp33 = tmp31 * tmp32 tmp34 = tmp28 + tmp33 tmp36 = tmp35 == tmp1 tmp37 = tmp36.to(tl.float32) tmp39 = tmp37 * tmp38 tmp40 = tmp34 + tmp39 tmp42 = tmp41 == tmp1 tmp43 = tmp42.to(tl.float32) tmp45 = tmp43 * tmp44 tmp46 = tmp40 + tmp45 tmp47 = tmp23 + tmp46 tl.store(out_ptr0 + x4, tmp47, xmask) @triton.jit def triton_poi_fused_add_index_put_lift_fresh_max_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp11 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = 1.0 tmp16 = tmp14 <= tmp15 tmp17 = tl.where(tmp16, tmp15, tmp14) tl.store(in_out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused_add_div_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask) tmp3 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sum_0[grid(64)](arg1_1, arg0_1, arg2_1, arg3_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf2 = buf1 del buf1 triton_poi_fused_add_index_put_lift_fresh_max_1[grid(64)](buf2, buf0, arg4_1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_2[grid(256)](buf0, arg4_1, buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg4_1 del buf0 del buf2 return buf3, class NormAttnMap(nn.Module): def __init__(self, norm_type='cossim'): super(NormAttnMap, self).__init__() self.norm_type = norm_type def forward(self, attn_map): if self.norm_type != 'cosssim': norm = torch.max(attn_map, dim=1, keepdim=True)[0].detach() else: norm = torch.max(torch.abs(attn_map), dim=1, keepdim=True)[0 ].detach() norm[norm <= 1] = 1 attn = attn_map / norm return attn, norm class MergeModuleNew(nn.Module): def __init__(self, norm_type='cossim', need_norm=True): super(MergeModuleNew, self).__init__() self.norm_type = norm_type self.need_norm = need_norm self.norm_fun = NormAttnMap(norm_type) def forward(self, input_0, input_1, input_2, input_3, input_4): arg0_1 = input_0 arg3_1 = input_1 arg4_1 = input_2 arg1_1 = input_3 arg2_1 = input_4 output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1]) return output[0]
sibeiyang/sgmn
MergeModule
false
16,447
[ "MIT" ]
130
00731b4f2202246d40a36d2a6727c599e6e649aa
https://github.com/sibeiyang/sgmn/tree/00731b4f2202246d40a36d2a6727c599e6e649aa
GSympNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yc/cyccry4agz6fho3j2txqcq7s6w3cbxqp25s3bjf2yb3dpe6q5sgt.py # Topologically Sorted Source Nodes: [add, sigmoid, mul], Original ATen: [aten.add, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # sigmoid => sigmoid # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_4), kwargs = {}) triton_poi_fused_add_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ts/ctshmjxiubxutvmsloys6a5fvrpex5qymvu4frsjsx7ayrcuit7l.py # Topologically Sorted Source Nodes: [p_1], Original ATen: [aten.add] # Source node to ATen node mapping: # p_1 => add_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_1, %view_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/am/camcqc6ipaoh7nku3qgz73pdjidzdm2fc272fuxfzghsxiz4hdj7.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.add] # Source node to ATen node mapping: # q_1 => add_3 # Graph fragment: # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_7, %slice_2), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 x1 = (xindex // 2) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3k/c3ko5okkcgntk4ai7xt7lmo3cbvxnljnnkgvfs2jo2kprky5lwqc.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_5, %add_3], -1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + ((2*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 4, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr2 + ((2*x1) + ((-2) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 20), (20, 1)) assert_size_stride(primals_3, (20, ), (1, )) assert_size_stride(primals_4, (20, ), (1, )) assert_size_stride(primals_5, (2, 20), (20, 1)) assert_size_stride(primals_6, (20, ), (1, )) assert_size_stride(primals_7, (20, ), (1, )) assert_size_stride(primals_8, (2, 20), (20, 1)) assert_size_stride(primals_9, (20, ), (1, )) assert_size_stride(primals_10, (20, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 2), (4, 1), 2), primals_2, out=buf0) buf1 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.float32) # Topologically Sorted Source Nodes: [add, sigmoid, mul], Original ATen: [aten.add, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_0.run(buf0, primals_3, primals_4, buf1, 1280, grid=grid(1280), stream=stream0) buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [gradH], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_2, (20, 2), (1, 20), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [p_1], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf3, primals_1, 128, grid=grid(128), stream=stream0) buf4 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0), primals_5, out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.float32) # Topologically Sorted Source Nodes: [add_2, sigmoid_1, mul_2], Original ATen: [aten.add, aten.sigmoid, aten.mul] triton_poi_fused_add_mul_sigmoid_0.run(buf4, primals_6, primals_7, buf5, 1280, grid=grid(1280), stream=stream0) buf6 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [gradH_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf5, (64, 20), (20, 1), 0), reinterpret_tensor(primals_5, (20, 2), (1, 20), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf7, primals_1, 128, grid=grid(128), stream=stream0) buf8 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf7, (64, 2), (2, 1), 0), primals_8, out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.float32) # Topologically Sorted Source Nodes: [add_4, sigmoid_2, mul_4], Original ATen: [aten.add, aten.sigmoid, aten.mul] triton_poi_fused_add_mul_sigmoid_0.run(buf8, primals_9, primals_10, buf9, 1280, grid=grid(1280), stream=stream0) buf10 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [gradH_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf9, (64, 20), (20, 1), 0), reinterpret_tensor(primals_8, (20, 2), (1, 20), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf3, buf10, buf7, buf11, 256, grid=grid(256), stream=stream0) del buf10 return (buf11, primals_3, primals_4, primals_6, primals_7, primals_9, primals_10, buf0, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), buf4, reinterpret_tensor(primals_5, (20, 2), (1, 20), 0), reinterpret_tensor(buf5, (64, 20), (20, 1), 0), buf8, reinterpret_tensor(primals_8, (20, 2), (1, 20), 0), reinterpret_tensor(buf9, (64, 20), (20, 1), 0), reinterpret_tensor(buf7, (2, 64), (1, 2), 0), reinterpret_tensor(buf3, (2, 64), (1, 2), 0), primals_2, reinterpret_tensor(primals_1, (2, 64), (1, 4), 2), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn as nn class Module(torch.nn.Module): """Standard module format. """ def __init__(self): super(Module, self).__init__() self.activation = None self.initializer = None self.__device = None self.__dtype = None @property def device(self): return self.__device @property def dtype(self): return self.__dtype @device.setter def device(self, d): if d == 'cpu': self.cpu() elif d == 'gpu': self else: raise ValueError self.__device = d @dtype.setter def dtype(self, d): if d == 'float': self elif d == 'double': self else: raise ValueError self.__dtype = d @property def Device(self): if self.__device == 'cpu': return torch.device('cpu') elif self.__device == 'gpu': return torch.device('cuda') @property def Dtype(self): if self.__dtype == 'float': return torch.float32 elif self.__dtype == 'double': return torch.float64 @property def act(self): if self.activation == 'sigmoid': return torch.sigmoid elif self.activation == 'relu': return torch.relu elif self.activation == 'tanh': return torch.tanh elif self.activation == 'elu': return torch.elu else: raise NotImplementedError @property def Act(self): if self.activation == 'sigmoid': return torch.nn.Sigmoid() elif self.activation == 'relu': return torch.nn.ReLU() elif self.activation == 'tanh': return torch.nn.Tanh() elif self.activation == 'elu': return torch.nn.ELU() else: raise NotImplementedError @property def weight_init_(self): if self.initializer == 'He normal': return torch.nn.init.kaiming_normal_ elif self.initializer == 'He uniform': return torch.nn.init.kaiming_uniform_ elif self.initializer == 'Glorot normal': return torch.nn.init.xavier_normal_ elif self.initializer == 'Glorot uniform': return torch.nn.init.xavier_uniform_ elif self.initializer == 'orthogonal': return torch.nn.init.orthogonal_ elif self.initializer == 'default': if self.activation == 'relu': return torch.nn.init.kaiming_normal_ elif self.activation == 'tanh': return torch.nn.init.orthogonal_ else: return lambda x: None else: raise NotImplementedError class StructureNN(Module): """Structure-oriented neural network used as a general map based on designing architecture. """ def __init__(self): super(StructureNN, self).__init__() def predict(self, x, returnnp=False): if not isinstance(x, torch.Tensor): x = torch.tensor(x, dtype=self.Dtype, device=self.Device) return self(x).cpu().detach().numpy() if returnnp else self(x) class GradientModule(Module): """Gradient symplectic module. """ def __init__(self, dim, width, activation, mode): super(GradientModule, self).__init__() self.dim = dim self.width = width self.activation = activation self.mode = mode self.params = self.__init_params() def forward(self, pqh): p, q, h = pqh if self.mode == 'up': gradH = self.act(q @ self.params['K'] + self.params['b'] ) * self.params['a'] @ self.params['K'].t() return p + gradH * h, q elif self.mode == 'low': gradH = self.act(p @ self.params['K'] + self.params['b'] ) * self.params['a'] @ self.params['K'].t() return p, gradH * h + q else: raise ValueError def __init_params(self): d = int(self.dim / 2) params = nn.ParameterDict() params['K'] = nn.Parameter((torch.randn([d, self.width]) * 0.01). requires_grad_(True)) params['a'] = nn.Parameter((torch.randn([self.width]) * 0.01). requires_grad_(True)) params['b'] = nn.Parameter(torch.zeros([self.width]).requires_grad_ (True)) return params class SympNet(StructureNN): def __init__(self): super(SympNet, self).__init__() self.dim = None def predict(self, xh, steps=1, keepinitx=False, returnnp=False): dim = xh.size(-1) size = len(xh.size()) if dim == self.dim: pred = [xh] for _ in range(steps): pred.append(self(pred[-1])) else: x0, h = xh[..., :-1], xh[..., -1:] pred = [x0] for _ in range(steps): pred.append(self(torch.cat([pred[-1], h], dim=-1))) if keepinitx: steps = steps + 1 else: pred = pred[1:] res = torch.cat(pred, dim=-1).view([-1, steps, self.dim][2 - size:]) return res.cpu().detach().numpy() if returnnp else res class GSympNet(SympNet): """G-SympNet. Input: [num, dim] or [num, dim + 1] Output: [num, dim] """ def __init__(self, dim, layers=3, width=20, activation='sigmoid'): super(GSympNet, self).__init__() self.dim = dim self.layers = layers self.width = width self.activation = activation self.modus = self.__init_modules() def forward(self, pqh): d = int(self.dim / 2) if pqh.size(-1) == self.dim + 1: p, q, h = pqh[..., :d], pqh[..., d:-1], pqh[..., -1:] elif pqh.size(-1) == self.dim: p, q, h = pqh[..., :d], pqh[..., d:], torch.ones_like(pqh[..., -1:] ) else: raise ValueError for i in range(self.layers): GradM = self.modus['GradM{}'.format(i + 1)] p, q = GradM([p, q, h]) return torch.cat([p, q], dim=-1) def __init_modules(self): modules = nn.ModuleDict() for i in range(self.layers): mode = 'up' if i % 2 == 0 else 'low' modules['GradM{}'.format(i + 1)] = GradientModule(self.dim, self.width, self.activation, mode) return modules def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 x1 = xindex // 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (2 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp13 = tl.load(in_ptr2 + (2 * x1 + (-2 + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 20), (20, 1)) assert_size_stride(primals_3, (20,), (1,)) assert_size_stride(primals_4, (20,), (1,)) assert_size_stride(primals_5, (2, 20), (20, 1)) assert_size_stride(primals_6, (20,), (1,)) assert_size_stride(primals_7, (20,), (1,)) assert_size_stride(primals_8, (2, 20), (20, 1)) assert_size_stride(primals_9, (20,), (1,)) assert_size_stride(primals_10, (20,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 2), (4, 1), 2), primals_2, out=buf0) buf1 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch. float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_0[grid(1280)](buf0, primals_3, primals_4, buf1, 1280, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_2, (20, 2), (1, 20), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf2 triton_poi_fused_add_1[grid(128)](buf3, primals_1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0), primals_5, out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch. float32) triton_poi_fused_add_mul_sigmoid_0[grid(1280)](buf4, primals_6, primals_7, buf5, 1280, XBLOCK=128, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 20), (20, 1), 0), reinterpret_tensor(primals_5, (20, 2), (1, 20), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf6 triton_poi_fused_add_2[grid(128)](buf7, primals_1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 2), (2, 1), 0), primals_8, out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch. float32) triton_poi_fused_add_mul_sigmoid_0[grid(1280)](buf8, primals_9, primals_10, buf9, 1280, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (64, 20), (20, 1), 0), reinterpret_tensor(primals_8, (20, 2), (1, 20), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_cat_3[grid(256)](buf3, buf10, buf7, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf10 return (buf11, primals_3, primals_4, primals_6, primals_7, primals_9, primals_10, buf0, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), buf4, reinterpret_tensor(primals_5, (20, 2), (1, 20), 0), reinterpret_tensor(buf5, (64, 20), (20, 1), 0), buf8, reinterpret_tensor(primals_8, (20, 2), (1, 20), 0), reinterpret_tensor(buf9, (64, 20), (20, 1), 0), reinterpret_tensor( buf7, (2, 64), (1, 2), 0), reinterpret_tensor(buf3, (2, 64), (1, 2), 0), primals_2, reinterpret_tensor(primals_1, (2, 64), (1, 4), 2)) class Module(torch.nn.Module): """Standard module format. """ def __init__(self): super(Module, self).__init__() self.activation = None self.initializer = None self.__device = None self.__dtype = None @property def device(self): return self.__device @property def dtype(self): return self.__dtype @device.setter def device(self, d): if d == 'cpu': self.cpu() elif d == 'gpu': self else: raise ValueError self.__device = d @dtype.setter def dtype(self, d): if d == 'float': self elif d == 'double': self else: raise ValueError self.__dtype = d @property def Device(self): if self.__device == 'cpu': return torch.device('cpu') elif self.__device == 'gpu': return torch.device('cuda') @property def Dtype(self): if self.__dtype == 'float': return torch.float32 elif self.__dtype == 'double': return torch.float64 @property def act(self): if self.activation == 'sigmoid': return torch.sigmoid elif self.activation == 'relu': return torch.relu elif self.activation == 'tanh': return torch.tanh elif self.activation == 'elu': return torch.elu else: raise NotImplementedError @property def Act(self): if self.activation == 'sigmoid': return torch.nn.Sigmoid() elif self.activation == 'relu': return torch.nn.ReLU() elif self.activation == 'tanh': return torch.nn.Tanh() elif self.activation == 'elu': return torch.nn.ELU() else: raise NotImplementedError @property def weight_init_(self): if self.initializer == 'He normal': return torch.nn.init.kaiming_normal_ elif self.initializer == 'He uniform': return torch.nn.init.kaiming_uniform_ elif self.initializer == 'Glorot normal': return torch.nn.init.xavier_normal_ elif self.initializer == 'Glorot uniform': return torch.nn.init.xavier_uniform_ elif self.initializer == 'orthogonal': return torch.nn.init.orthogonal_ elif self.initializer == 'default': if self.activation == 'relu': return torch.nn.init.kaiming_normal_ elif self.activation == 'tanh': return torch.nn.init.orthogonal_ else: return lambda x: None else: raise NotImplementedError class StructureNN(Module): """Structure-oriented neural network used as a general map based on designing architecture. """ def __init__(self): super(StructureNN, self).__init__() def predict(self, x, returnnp=False): if not isinstance(x, torch.Tensor): x = torch.tensor(x, dtype=self.Dtype, device=self.Device) return self(x).cpu().detach().numpy() if returnnp else self(x) class GradientModule(Module): """Gradient symplectic module. """ def __init__(self, dim, width, activation, mode): super(GradientModule, self).__init__() self.dim = dim self.width = width self.activation = activation self.mode = mode self.params = self.__init_params() def forward(self, pqh): p, q, h = pqh if self.mode == 'up': gradH = self.act(q @ self.params['K'] + self.params['b'] ) * self.params['a'] @ self.params['K'].t() return p + gradH * h, q elif self.mode == 'low': gradH = self.act(p @ self.params['K'] + self.params['b'] ) * self.params['a'] @ self.params['K'].t() return p, gradH * h + q else: raise ValueError def __init_params(self): d = int(self.dim / 2) params = nn.ParameterDict() params['K'] = nn.Parameter((torch.randn([d, self.width]) * 0.01). requires_grad_(True)) params['a'] = nn.Parameter((torch.randn([self.width]) * 0.01). requires_grad_(True)) params['b'] = nn.Parameter(torch.zeros([self.width]).requires_grad_ (True)) return params class SympNet(StructureNN): def __init__(self): super(SympNet, self).__init__() self.dim = None def predict(self, xh, steps=1, keepinitx=False, returnnp=False): dim = xh.size(-1) size = len(xh.size()) if dim == self.dim: pred = [xh] for _ in range(steps): pred.append(self(pred[-1])) else: x0, h = xh[..., :-1], xh[..., -1:] pred = [x0] for _ in range(steps): pred.append(self(torch.cat([pred[-1], h], dim=-1))) if keepinitx: steps = steps + 1 else: pred = pred[1:] res = torch.cat(pred, dim=-1).view([-1, steps, self.dim][2 - size:]) return res.cpu().detach().numpy() if returnnp else res class GSympNetNew(SympNet): """G-SympNet. Input: [num, dim] or [num, dim + 1] Output: [num, dim] """ def __init__(self, dim, layers=3, width=20, activation='sigmoid'): super(GSympNetNew, self).__init__() self.dim = dim self.layers = layers self.width = width self.activation = activation self.modus = self.__init_modules() def __init_modules(self): modules = nn.ModuleDict() for i in range(self.layers): mode = 'up' if i % 2 == 0 else 'low' modules['GradM{}'.format(i + 1)] = GradientModule(self.dim, self.width, self.activation, mode) return modules def forward(self, input_0): primals_2 = self.modus.GradM1.params.K primals_3 = self.modus.GradM1.params.a primals_4 = self.modus.GradM1.params.b primals_5 = self.modus.GradM2.params.K primals_6 = self.modus.GradM2.params.a primals_7 = self.modus.GradM2.params.b primals_8 = self.modus.GradM3.params.K primals_9 = self.modus.GradM3.params.a primals_10 = self.modus.GradM3.params.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
shushu-qin/deeponet
GSympNet
false
16,448
[ "Apache-2.0" ]
140
5bbe066279bba055ad80e04c364140363c87634a
https://github.com/shushu-qin/deeponet/tree/5bbe066279bba055ad80e04c364140363c87634a
_TransitionUp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7u/c7uhkvgwxg2by2iylt2a32rce6cpfi4djnsc523l63tuabi6td67.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 8 x0 = xindex % 16 x2 = (xindex // 128) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr2 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp10 & xmask, other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + (x3), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [up], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_4, primals_2, buf1, 512, grid=grid(512), stream=stream0) del buf0 del primals_2 del primals_4 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.init class _TransitionUp(nn.Module): def __init__(self, num_features): super().__init__() self.deconv = nn.ConvTranspose2d(num_features, num_features, kernel_size=3, stride=2, padding=1) def forward(self, x, skip): self.deconv.padding = ((x.size(2) - 1) * self.deconv.stride[0] - skip.size(2) + self.deconv.kernel_size[0] + 1) // 2, ((x.size(3 ) - 1) * self.deconv.stride[1] - skip.size(3) + self.deconv. kernel_size[1] + 1) // 2 up = self.deconv(x, output_size=skip.size()) return torch.cat([up, skip], 1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 8 x0 = xindex % 16 x2 = xindex // 128 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp13 = tl.load(in_ptr2 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp10 & xmask, other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + x3, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](buf0, primals_4, primals_2, buf1, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_4 return buf1, primals_1, primals_3 class _TransitionUpNew(nn.Module): def __init__(self, num_features): super().__init__() self.deconv = nn.ConvTranspose2d(num_features, num_features, kernel_size=3, stride=2, padding=1) def forward(self, input_0, input_1): primals_3 = self.deconv.weight primals_4 = self.deconv.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
simonmeister/pytorch-mono-depth
_TransitionUp
false
16,449
[ "MIT" ]
56
713c70e2fdae6d9d6e0322febadfedcaee9470d3
https://github.com/simonmeister/pytorch-mono-depth/tree/713c70e2fdae6d9d6e0322febadfedcaee9470d3
Downsample
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_2, buf0, 16, 16, grid=grid(16, 16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 4, 4)) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 1, 1, 4), (4, 4, 4, 1), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn class Downsample(nn.Module): def __init__(self, c1, c2, patch_size): super().__init__() self.proj = nn.Conv2d(c1, c2, patch_size, patch_size) def forward(self, x: 'Tensor') ->Tensor: x = x.permute(0, 3, 1, 2) x = self.proj(x) x = x.permute(0, 2, 3, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c1': 4, 'c2': 4, 'patch_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 16)](primals_2, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 4, 4)) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 16, 16), 0) del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 1, 1, 4), (4, 4, 4, 1), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0) class DownsampleNew(nn.Module): def __init__(self, c1, c2, patch_size): super().__init__() self.proj = nn.Conv2d(c1, c2, patch_size, patch_size) def forward(self, input_0): primals_1 = self.proj.weight primals_3 = self.proj.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sithu31296/image_classification
Downsample
false
16,450
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
SAGEConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mb/cmbvzrmlik5p447ffabi325kbp6eve6vcn7hhpfb6chazehjyegc.py # Topologically Sorted Source Nodes: [x, x_], Original ATen: [aten.relu, aten.pow] # Source node to ATen node mapping: # x => relu # x_ => pow_1 # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_2), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu, 2.0), kwargs = {}) triton_poi_fused_pow_relu_0 = async_compile.triton('triton_poi_fused_pow_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_relu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tmp4 * tmp4 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/64/c64xfffgdjojgwtqipvz3kjeijszfmu4w6thlvqjcz2kkqydpjhi.py # Topologically Sorted Source Nodes: [x__1], Original ATen: [aten.pow] # Source node to ATen node mapping: # x__1 => pow_2 # Graph fragment: # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mm, 0.5), kwargs = {}) triton_poi_fused_pow_1 = async_compile.triton('triton_poi_fused_pow_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.sqrt(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ou/couousup2n7bhgx7kcqkuwh7icfhsuwbegwhx4ny2cpqpxbc6bat.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor_1, %add_tensor), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_], Original ATen: [aten.relu, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_pow_relu_0.run(buf1, primals_2, buf2, 16, grid=grid(16), stream=stream0) del primals_2 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_, spmm], Original ATen: [aten.pow, aten.mm] extern_kernels.mm(primals_4, buf2, out=buf3) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x__1], Original ATen: [aten.pow] triton_poi_fused_pow_1.run(buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf6) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf7, primals_6, buf6, primals_8, 16, grid=grid(16), stream=stream0) del buf6 del primals_6 del primals_8 return (buf7, primals_3, buf1, buf3, buf4, primals_7, primals_5, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class SAGEConv(nn.Module): """ Description ----------- SAGE convolutional layer. Parameters ---------- in_features : int Dimension of input features. pool_features : int Dimension of pooling features. out_features : int Dimension of output features. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. dropout : float, optional Rate of dropout. Default: ``0.0``. mu : float, optional Hyper-parameter, refer to original paper. Default: ``2.0``. """ def __init__(self, in_features, pool_features, out_features, activation =None, mu=2.0, dropout=0.0): super(SAGEConv, self).__init__() self.pool_layer = nn.Linear(in_features, pool_features) self.linear1 = nn.Linear(pool_features, out_features) self.linear2 = nn.Linear(pool_features, out_features) self.activation = activation self.mu = mu if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.reset_parameters() def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear1.weight, gain=gain) nn.init.xavier_normal_(self.linear2.weight, gain=gain) nn.init.xavier_normal_(self.pool_layer.weight, gain=gain) def forward(self, x, adj): """ Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of layer. """ x = F.relu(self.pool_layer(x)) x_ = x ** self.mu x_ = torch.spmm(adj, x_) ** (1 / self.mu) x = self.linear1(x) x_ = self.linear2(x_) x = x + x_ if self.activation is not None: x = self.activation(x) if self.dropout is not None: x = self.dropout(x) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'pool_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_pow_relu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tmp4 * tmp4 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.sqrt(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_relu_0[grid(16)](buf1, primals_2, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_4, buf2, out=buf3) buf4 = buf2 del buf2 triton_poi_fused_pow_1[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (4, 4), (1, 4 ), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4 ), 0), out=buf6) buf7 = buf5 del buf5 triton_poi_fused_add_2[grid(16)](buf7, primals_6, buf6, primals_8, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf6 del primals_6 del primals_8 return (buf7, primals_3, buf1, buf3, buf4, primals_7, primals_5, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0)) class SAGEConvNew(nn.Module): """ Description ----------- SAGE convolutional layer. Parameters ---------- in_features : int Dimension of input features. pool_features : int Dimension of pooling features. out_features : int Dimension of output features. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. dropout : float, optional Rate of dropout. Default: ``0.0``. mu : float, optional Hyper-parameter, refer to original paper. Default: ``2.0``. """ def __init__(self, in_features, pool_features, out_features, activation =None, mu=2.0, dropout=0.0): super(SAGEConvNew, self).__init__() self.pool_layer = nn.Linear(in_features, pool_features) self.linear1 = nn.Linear(pool_features, out_features) self.linear2 = nn.Linear(pool_features, out_features) self.activation = activation self.mu = mu if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.reset_parameters() def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear1.weight, gain=gain) nn.init.xavier_normal_(self.linear2.weight, gain=gain) nn.init.xavier_normal_(self.pool_layer.weight, gain=gain) def forward(self, input_0, input_1): primals_1 = self.pool_layer.weight primals_2 = self.pool_layer.bias primals_3 = self.linear1.weight primals_6 = self.linear1.bias primals_4 = self.linear2.weight primals_8 = self.linear2.bias primals_5 = input_0 primals_7 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
sigeisler/grb
SAGEConv
false
16,451
[ "MIT" ]
51
c89e21076dc05d1edb87dfe2eff20c29ba6bd0c1
https://github.com/sigeisler/grb/tree/c89e21076dc05d1edb87dfe2eff20c29ba6bd0c1
GCNConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l4/cl4boort6vfsvh6h6bfd4lck36kbmtipkqcrnhckuuxer6sfib77.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.zeros] # Source node to ATen node mapping: # x_1 => full # Graph fragment: # %full : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_0 = async_compile.triton('triton_poi_fused_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.zeros] stream0 = get_raw_stream(0) triton_poi_fused_zeros_0.run(buf1, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._sparse_addmm] buf2 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf1, (4, 4), (1, 4), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), beta=0) del buf0 del buf1 buf3 = buf2 del buf2 return (reinterpret_tensor(buf3, (4, 4), (1, 4), 0), primals_3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class GCNConv(nn.Module): """ Description ----------- GCN convolutional layer. Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. residual : bool, optional Whether to use residual connection. Default: ``False``. dropout : float, optional Dropout rate during training. Default: ``0.0``. """ def __init__(self, in_features, out_features, activation=None, residual =False, dropout=0.0): super(GCNConv, self).__init__() self.in_features = in_features self.out_features = out_features self.linear = nn.Linear(in_features, out_features) if residual: self.residual = nn.Linear(in_features, out_features) else: self.residual = None self.activation = activation if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.reset_parameters() def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear.weight, gain=gain) def forward(self, x, adj): """ Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of layer. """ x = self.linear(x) x = torch.sparse.mm(adj, x) if self.activation is not None: x = self.activation(x) if self.residual is not None: x = x + self.residual(x) if self.dropout is not None: x = self.dropout(x) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor( primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_zeros_0[grid(16)](buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf1, (4, 4), (1, 4), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), beta=0) del buf0 del buf1 buf3 = buf2 del buf2 return reinterpret_tensor(buf3, (4, 4), (1, 4), 0), primals_3, primals_4 class GCNConvNew(nn.Module): """ Description ----------- GCN convolutional layer. Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. residual : bool, optional Whether to use residual connection. Default: ``False``. dropout : float, optional Dropout rate during training. Default: ``0.0``. """ def __init__(self, in_features, out_features, activation=None, residual =False, dropout=0.0): super(GCNConvNew, self).__init__() self.in_features = in_features self.out_features = out_features self.linear = nn.Linear(in_features, out_features) if residual: self.residual = nn.Linear(in_features, out_features) else: self.residual = None self.activation = activation if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.reset_parameters() def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear.weight, gain=gain) def forward(self, input_0, input_1): primals_1 = self.linear.weight primals_2 = self.linear.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
sigeisler/grb
GCNConv
false
16,452
[ "MIT" ]
51
c89e21076dc05d1edb87dfe2eff20c29ba6bd0c1
https://github.com/sigeisler/grb/tree/c89e21076dc05d1edb87dfe2eff20c29ba6bd0c1
localSubNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xf/cxfcqgqzkxpafh7ngi5lmyvtgswx4bwrz3upkkjlnp6wzixzpn5k.py # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # input_1 => convolution # input_2 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wv/cwvlgiiynchbeju4rilglrk4ynrtgcixgjkdwocknt4i3bammlvv.py # Topologically Sorted Source Nodes: [input_31, input_32, local_layer], Original ATen: [aten.convolution, aten.tanh, aten.mul] # Source node to ATen node mapping: # input_31 => convolution_15 # input_32 => tanh # local_layer => mul_15 # Graph fragment: # %convolution_15 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%where_14, %primals_32, %primals_33, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%convolution_15,), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 0.25), kwargs = {}) triton_poi_fused_convolution_mul_tanh_1 = async_compile.triton('triton_poi_fused_convolution_mul_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_tanh_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = 0.25 tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33 = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32, ), (1, )) assert_size_stride(primals_14, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (32, ), (1, )) assert_size_stride(primals_16, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_17, (32, ), (1, )) assert_size_stride(primals_18, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_19, (32, ), (1, )) assert_size_stride(primals_20, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_21, (32, ), (1, )) assert_size_stride(primals_22, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_23, (32, ), (1, )) assert_size_stride(primals_24, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_25, (32, ), (1, )) assert_size_stride(primals_26, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_27, (32, ), (1, )) assert_size_stride(primals_28, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_29, (32, ), (1, )) assert_size_stride(primals_30, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_31, (32, ), (1, )) assert_size_stride(primals_32, (3, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_33, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 524288, grid=grid(524288), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [input_3, input_4], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 524288, grid=grid(524288), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf8 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [input_5, input_6], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf6, primals_7, buf7, buf8, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf11 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [input_7, input_8], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf9, primals_9, buf10, buf11, 524288, grid=grid(524288), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [input_9], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf14 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [input_9, input_10], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf12, primals_11, buf13, buf14, 524288, grid=grid(524288), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf16 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf17 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [input_11, input_12], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf15, primals_13, buf16, buf17, 524288, grid=grid(524288), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf19 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf20 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [input_13, input_14], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf18, primals_15, buf19, buf20, 524288, grid=grid(524288), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [input_15], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf22 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf23 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [input_15, input_16], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf21, primals_17, buf22, buf23, 524288, grid=grid(524288), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [input_17], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf25 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf26 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [input_17, input_18], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf24, primals_19, buf25, buf26, 524288, grid=grid(524288), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf26, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf28 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf29 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [input_19, input_20], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf27, primals_21, buf28, buf29, 524288, grid=grid(524288), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [input_21], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf31 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf32 = buf27; del buf27 # reuse # Topologically Sorted Source Nodes: [input_21, input_22], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf30, primals_23, buf31, buf32, 524288, grid=grid(524288), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [input_23], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf34 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf35 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [input_23, input_24], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf33, primals_25, buf34, buf35, 524288, grid=grid(524288), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [input_25], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf37 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf38 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [input_25, input_26], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf36, primals_27, buf37, buf38, 524288, grid=grid(524288), stream=stream0) del primals_27 # Topologically Sorted Source Nodes: [input_27], Original ATen: [aten.convolution] buf39 = extern_kernels.convolution(buf38, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf40 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf41 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [input_27, input_28], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf39, primals_29, buf40, buf41, 524288, grid=grid(524288), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [input_29], Original ATen: [aten.convolution] buf42 = extern_kernels.convolution(buf41, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf43 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf44 = buf39; del buf39 # reuse # Topologically Sorted Source Nodes: [input_29, input_30], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf42, primals_31, buf43, buf44, 524288, grid=grid(524288), stream=stream0) del buf42 del primals_31 # Topologically Sorted Source Nodes: [input_31], Original ATen: [aten.convolution] buf45 = extern_kernels.convolution(buf44, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf46 = buf45; del buf45 # reuse buf47 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [input_31, input_32, local_layer], Original ATen: [aten.convolution, aten.tanh, aten.mul] triton_poi_fused_convolution_mul_tanh_1.run(buf46, primals_33, buf47, 49152, grid=grid(49152), stream=stream0) del primals_33 return (buf47, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22, buf23, buf25, buf26, buf28, buf29, buf31, buf32, buf34, buf35, buf37, buf38, buf40, buf41, buf43, buf44, buf46, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((3, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class localSubNet(nn.Module): def __init__(self, blockDepth=16, convDepth=32, scale=0.25): super(localSubNet, self).__init__() self.blockDepth = blockDepth self.convDepth = convDepth self.scale = scale self.net = torch.nn.Sequential() for i in range(self.blockDepth): if i != self.blockDepth - 1: if i == 0: conv = torch.nn.Conv2d(3, self.convDepth, 3, padding=1) torch.nn.init.kaiming_normal_(conv.weight) torch.nn.init.zeros_(conv.bias) else: conv = torch.nn.Conv2d(self.convDepth, self.convDepth, 3, padding=1) torch.nn.init.kaiming_normal_(conv.weight) torch.nn.init.zeros_(conv.bias) self.net.add_module('conv%d' % i, conv) self.net.add_module('leakyRelu%d' % i, torch.nn.LeakyReLU( inplace=False)) else: conv = torch.nn.Conv2d(self.convDepth, 3, 3, padding=1) torch.nn.init.kaiming_normal_(conv.weight) torch.nn.init.zeros_(conv.bias) self.net.add_module('conv%d' % i, conv) self.net.add_module('tanh-out', torch.nn.Tanh()) def forward(self, x): local_layer = self.net(x) * self.scale return local_layer def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_mul_tanh_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = 0.25 tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp5, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33 ) = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32,), (1,)) assert_size_stride(primals_14, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (32,), (1,)) assert_size_stride(primals_16, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_17, (32,), (1,)) assert_size_stride(primals_18, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_19, (32,), (1,)) assert_size_stride(primals_20, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_21, (32,), (1,)) assert_size_stride(primals_22, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_23, (32,), (1,)) assert_size_stride(primals_24, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_25, (32,), (1,)) assert_size_stride(primals_26, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_27, (32,), (1,)) assert_size_stride(primals_28, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_29, (32,), (1,)) assert_size_stride(primals_30, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_31, (32,), (1,)) assert_size_stride(primals_32, (3, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_33, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf0, primals_2, buf1, buf2, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf3, primals_5, buf4, buf5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf8 = buf3 del buf3 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf6, primals_7, buf7, buf8, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf11 = buf6 del buf6 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf9, primals_9, buf10, buf11, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf14 = buf9 del buf9 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf12, primals_11, buf13, buf14, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf15 = extern_kernels.convolution(buf14, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf16 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf17 = buf12 del buf12 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf15, primals_13, buf16, buf17, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf19 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf20 = buf15 del buf15 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf18, primals_15, buf19, buf20, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf21 = extern_kernels.convolution(buf20, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf22 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf23 = buf18 del buf18 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf21, primals_17, buf22, buf23, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf24 = extern_kernels.convolution(buf23, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf25 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf26 = buf21 del buf21 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf24, primals_19, buf25, buf26, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf27 = extern_kernels.convolution(buf26, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf28 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf29 = buf24 del buf24 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf27, primals_21, buf28, buf29, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_21 buf30 = extern_kernels.convolution(buf29, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf31 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf32 = buf27 del buf27 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf30, primals_23, buf31, buf32, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_23 buf33 = extern_kernels.convolution(buf32, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf34 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf35 = buf30 del buf30 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf33, primals_25, buf34, buf35, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_25 buf36 = extern_kernels.convolution(buf35, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf37 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf38 = buf33 del buf33 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf36, primals_27, buf37, buf38, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_27 buf39 = extern_kernels.convolution(buf38, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf40 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf41 = buf36 del buf36 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf39, primals_29, buf40, buf41, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_29 buf42 = extern_kernels.convolution(buf41, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf43 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf44 = buf39 del buf39 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf42, primals_31, buf43, buf44, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf42 del primals_31 buf45 = extern_kernels.convolution(buf44, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf46 = buf45 del buf45 buf47 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) triton_poi_fused_convolution_mul_tanh_1[grid(49152)](buf46, primals_33, buf47, 49152, XBLOCK=256, num_warps=4, num_stages=1) del primals_33 return (buf47, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22, buf23, buf25, buf26, buf28, buf29, buf31, buf32, buf34, buf35, buf37, buf38, buf40, buf41, buf43, buf44, buf46) class localSubNetNew(nn.Module): def __init__(self, blockDepth=16, convDepth=32, scale=0.25): super(localSubNetNew, self).__init__() self.blockDepth = blockDepth self.convDepth = convDepth self.scale = scale self.net = torch.nn.Sequential() for i in range(self.blockDepth): if i != self.blockDepth - 1: if i == 0: conv = torch.nn.Conv2d(3, self.convDepth, 3, padding=1) torch.nn.init.kaiming_normal_(conv.weight) torch.nn.init.zeros_(conv.bias) else: conv = torch.nn.Conv2d(self.convDepth, self.convDepth, 3, padding=1) torch.nn.init.kaiming_normal_(conv.weight) torch.nn.init.zeros_(conv.bias) self.net.add_module('conv%d' % i, conv) self.net.add_module('leakyRelu%d' % i, torch.nn.LeakyReLU( inplace=False)) else: conv = torch.nn.Conv2d(self.convDepth, 3, 3, padding=1) torch.nn.init.kaiming_normal_(conv.weight) torch.nn.init.zeros_(conv.bias) self.net.add_module('conv%d' % i, conv) self.net.add_module('tanh-out', torch.nn.Tanh()) def forward(self, input_0): primals_1 = self.net.conv0.weight primals_2 = self.net.conv0.bias primals_4 = self.net.conv1.weight primals_5 = self.net.conv1.bias primals_6 = self.net.conv2.weight primals_7 = self.net.conv2.bias primals_8 = self.net.conv3.weight primals_9 = self.net.conv3.bias primals_10 = self.net.conv4.weight primals_11 = self.net.conv4.bias primals_12 = self.net.conv5.weight primals_13 = self.net.conv5.bias primals_14 = self.net.conv6.weight primals_15 = self.net.conv6.bias primals_16 = self.net.conv7.weight primals_17 = self.net.conv7.bias primals_18 = self.net.conv8.weight primals_19 = self.net.conv8.bias primals_20 = self.net.conv9.weight primals_21 = self.net.conv9.bias primals_22 = self.net.conv10.weight primals_23 = self.net.conv10.bias primals_24 = self.net.conv11.weight primals_25 = self.net.conv11.bias primals_26 = self.net.conv12.weight primals_27 = self.net.conv12.bias primals_28 = self.net.conv13.weight primals_29 = self.net.conv13.bias primals_30 = self.net.conv14.weight primals_31 = self.net.conv14.bias primals_32 = self.net.conv15.weight primals_33 = self.net.conv15.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33]) return output[0]
shir-barzel-healthy/CIE_XYZ_NET
localSubNet
false
16,453
[ "MIT" ]
64
9aabf5222dd81efa518233340dc3313177927e27
https://github.com/shir-barzel-healthy/CIE_XYZ_NET/tree/9aabf5222dd81efa518233340dc3313177927e27
GRUStep
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5b/c5bkw2jxfpnk3o5xqifvptqcde6oukvmpsxncnrr4hbmq6dbwwvm.py # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_2 => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mul, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = tl.load(in_ptr1 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp4, tmp10, tmp14) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tn/ctn3hks2zjt4xmjlguifn25zx6whcel77cdlsr33hdq2oyumfsoc.py # Topologically Sorted Source Nodes: [z, t, sub, mul_1, mul_2, h_state], Original ATen: [aten.sigmoid, aten.tanh, aten.rsub, aten.mul, aten.add] # Source node to ATen node mapping: # h_state => add # mul_1 => mul_1 # mul_2 => mul_2 # sub => sub # t => tanh # z => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp1 * tmp7 tmp9 = tmp5 + tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf2, primals_1, primals_2, buf3, 512, grid=grid(512), stream=stream0) del primals_2 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [z, t, sub, mul_1, mul_2, h_state], Original ATen: [aten.sigmoid, aten.tanh, aten.rsub, aten.mul, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_tanh_2.run(buf1, primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, primals_1, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf1, buf2, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), buf4, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GRUStep(nn.Module): def __init__(self, hidden_size, input_size): super(GRUStep, self).__init__() """GRU module""" self.linear_z = nn.Linear(hidden_size + input_size, hidden_size, bias=False) self.linear_r = nn.Linear(hidden_size + input_size, hidden_size, bias=False) self.linear_t = nn.Linear(hidden_size + input_size, hidden_size, bias=False) def forward(self, h_state, input_): z = torch.sigmoid(self.linear_z(torch.cat([h_state, input_], -1))) r = torch.sigmoid(self.linear_r(torch.cat([h_state, input_], -1))) t = torch.tanh(self.linear_t(torch.cat([r * h_state, input_], -1))) h_state = (1 - z) * h_state + z * t return h_state def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4, 'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = tl.load(in_ptr1 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp4, tmp10, tmp14) tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp1 * tmp7 tmp9 = tmp5 + tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) triton_poi_fused_cat_1[grid(512)](buf2, primals_1, primals_2, buf3, 512, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2[grid(256)](buf1, primals_1, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf5, primals_1, reinterpret_tensor(buf0, (64, 8), (8, 1), 0 ), buf1, buf2, reinterpret_tensor(buf3, (64, 8), (8, 1), 0 ), buf4, primals_5 class GRUStepNew(nn.Module): def __init__(self, hidden_size, input_size): super(GRUStepNew, self).__init__() """GRU module""" self.linear_z = nn.Linear(hidden_size + input_size, hidden_size, bias=False) self.linear_r = nn.Linear(hidden_size + input_size, hidden_size, bias=False) self.linear_t = nn.Linear(hidden_size + input_size, hidden_size, bias=False) def forward(self, input_0, input_1): primals_3 = self.linear_z.weight primals_4 = self.linear_r.weight primals_5 = self.linear_t.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
siyangZhao/BAMnet
GRUStep
false
16,454
[ "Apache-2.0" ]
170
4c6222610c120a4a114daf40938219ea0ca57dc6
https://github.com/siyangZhao/BAMnet/tree/4c6222610c120a4a114daf40938219ea0ca57dc6
AgreementRouting
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py # Topologically Sorted Source Nodes: [c], Original ATen: [aten._softmax] # Source node to ATen node mapping: # c => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_2, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py # Topologically Sorted Source Nodes: [c], Original ATen: [aten._softmax] # Source node to ATen node mapping: # c => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/aj/cajnfn4dfbc6usnkqebmhnks35kkrodsrc3gynfsb56b5tcpnit4.py # Topologically Sorted Source Nodes: [mul, s], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # s => sum_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %primals_1), kwargs = {}) # %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mul_sum_2 = async_compile.triton('triton_poi_fused_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3 + (64*x2)), xmask) tmp3 = tl.load(in_ptr0 + (4 + x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x3 + (64*x2)), xmask) tmp7 = tl.load(in_ptr0 + (8 + x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x3 + (64*x2)), xmask) tmp11 = tl.load(in_ptr0 + (12 + x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x3 + (64*x2)), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6c/c6cxitoinplot2lb2nsqjxcfvoeulhjikauaic44zgpmnhn6m6dm.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] # Source node to ATen node mapping: # x => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, %view), kwargs = {}) triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 1.0 tmp13 = tmp11 + tmp12 tmp14 = tmp11 / tmp13 tmp15 = libdevice.sqrt(tmp11) tmp16 = tmp14 / tmp15 tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tz/ctzkrdbwmdk4havssadppcim4uiewy6wtjyndwqkx4keavz6xu6j.py # Topologically Sorted Source Nodes: [mul_2, sum_3, b_batch_1], Original ATen: [aten.mul, aten.sum, aten.add] # Source node to ATen node mapping: # b_batch_1 => add_1 # mul_2 => mul_2 # sum_3 => sum_4 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %unsqueeze_1), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %sum_4), kwargs = {}) triton_poi_fused_add_mul_sum_4 = async_compile.triton('triton_poi_fused_add_mul_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 16 x4 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x4)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x4)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x4)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp6 = tmp4 * tmp5 tmp7 = tmp3 + tmp6 tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tmp0 + tmp15 tl.store(out_ptr0 + (x4), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/j7/cj7mv2k5l2kigfluq2rwwpouckm4oow7jia7wwvjogp3qlr23xwv.py # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_1 => amax_1, exp_1, sub_1 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b4/cb4vdtviarmy2ckmxjdkc3dnwp4gssl3dh4u4col3s2illvdpvql.py # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_1 => div_3, sum_5 # Graph fragment: # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_5), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hk/chkymnmrtvm26agoxolleunayy4vpu2ntpnerpf3vgesh7nmasco.py # Topologically Sorted Source Nodes: [mul_3, s_1], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul_3 => mul_3 # s_1 => sum_6 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_1), kwargs = {}) # %sum_6 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {}) triton_poi_fused_mul_sum_7 = async_compile.triton('triton_poi_fused_mul_sum_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3 + (64*x2)), xmask) tmp3 = tl.load(in_ptr0 + (4 + x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x3 + (64*x2)), xmask) tmp7 = tl.load(in_ptr0 + (8 + x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x3 + (64*x2)), xmask) tmp11 = tl.load(in_ptr0 + (12 + x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x3 + (64*x2)), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wy/cwy6nwovy7yqtkn7mqqun5gnuovqjt4rhesigmga3qlwtxqxvuoo.py # Topologically Sorted Source Nodes: [mul_5, sum_6, b_batch_2], Original ATen: [aten.mul, aten.sum, aten.add] # Source node to ATen node mapping: # b_batch_2 => add_3 # mul_5 => mul_5 # sum_6 => sum_8 # Graph fragment: # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %unsqueeze_2), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %sum_8), kwargs = {}) triton_poi_fused_add_mul_sum_8 = async_compile.triton('triton_poi_fused_add_mul_sum_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sum_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sum_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp6 = tmp4 * tmp5 tmp7 = tmp3 + tmp6 tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tmp0 + tmp15 tl.store(in_out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [c], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [c], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, s], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_2.run(buf1, primals_1, buf2, 64, grid=grid(64), stream=stream0) del buf1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [mul_2, sum_3, b_batch_1], Original ATen: [aten.mul, aten.sum, aten.add] triton_poi_fused_add_mul_sum_4.run(primals_2, primals_1, buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [mul_3, s_1], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_7.run(buf6, primals_1, buf7, 64, grid=grid(64), stream=stream0) buf8 = reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [mul_5, sum_6, b_batch_2], Original ATen: [aten.mul, aten.sum, aten.add] triton_poi_fused_add_mul_sum_8.run(buf9, primals_1, buf8, 64, grid=grid(64), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf9, buf10, 64, grid=grid(64), stream=stream0) buf11 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf10, buf11, 64, grid=grid(64), stream=stream0) buf12 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [mul_6, s_2], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_7.run(buf11, primals_1, buf12, 64, grid=grid(64), stream=stream0) buf13 = reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf12, buf13, 64, grid=grid(64), stream=stream0) buf14 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [mul_8, sum_9, b_batch_3], Original ATen: [aten.mul, aten.sum, aten.add] triton_poi_fused_add_mul_sum_8.run(buf14, primals_1, buf13, 64, grid=grid(64), stream=stream0) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf14, buf15, 64, grid=grid(64), stream=stream0) buf16 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf15, buf16, 64, grid=grid(64), stream=stream0) buf17 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [mul_9, s_3], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_7.run(buf16, primals_1, buf17, 64, grid=grid(64), stream=stream0) buf18 = reinterpret_tensor(buf16, (4, 4, 4), (16, 4, 1), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf17, buf18, 64, grid=grid(64), stream=stream0) del buf17 buf19 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [mul_11, sum_12, b_batch_4], Original ATen: [aten.mul, aten.sum, aten.add] triton_poi_fused_add_mul_sum_8.run(buf19, primals_1, buf18, 64, grid=grid(64), stream=stream0) buf20 = reinterpret_tensor(buf18, (16, 4), (4, 1), 0); del buf18 # reuse # Topologically Sorted Source Nodes: [softmax_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf19, buf20, 64, grid=grid(64), stream=stream0) buf21 = reinterpret_tensor(buf19, (16, 4), (4, 1), 0); del buf19 # reuse # Topologically Sorted Source Nodes: [softmax_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf20, buf21, 64, grid=grid(64), stream=stream0) buf22 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [mul_12, s_4], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_7.run(buf21, primals_1, buf22, 64, grid=grid(64), stream=stream0) buf23 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0); del buf21 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf22, buf23, 64, grid=grid(64), stream=stream0) del buf22 return (buf23, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def squash(x): lengths2 = x.pow(2).sum(dim=2) lengths = lengths2.sqrt() x = x * (lengths2 / (1 + lengths2) / lengths).view(x.size(0), x.size(1), 1) return x class AgreementRouting(nn.Module): def __init__(self, input_caps, output_caps, n_iterations): super(AgreementRouting, self).__init__() self.n_iterations = n_iterations self.b = nn.Parameter(torch.zeros((input_caps, output_caps))) def forward(self, u_predict): batch_size, input_caps, output_caps, _output_dim = u_predict.size() c = F.softmax(self.b, dim=1) s = (c.unsqueeze(2) * u_predict).sum(dim=1) v = squash(s) if self.n_iterations > 0: b_batch = self.b.expand((batch_size, input_caps, output_caps)) for r in range(self.n_iterations): v = v.unsqueeze(1) b_batch = b_batch + (u_predict * v).sum(-1) c = F.softmax(b_batch.view(-1, output_caps), dim=1).view(-1, input_caps, output_caps, 1) s = (c * u_predict).sum(dim=1) v = squash(s) return v def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_caps': 4, 'output_caps': 4, 'n_iterations': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask) tmp3 = tl.load(in_ptr0 + (4 + x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask) tmp7 = tl.load(in_ptr0 + (8 + x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask) tmp11 = tl.load(in_ptr0 + (12 + x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_mul_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 1.0 tmp13 = tmp11 + tmp12 tmp14 = tmp11 / tmp13 tmp15 = libdevice.sqrt(tmp11) tmp16 = tmp14 / tmp15 tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused_add_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 16 x4 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (4 * x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x4), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last') tmp12 = tl.load(in_ptr1 + (3 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr2 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp6 = tmp4 * tmp5 tmp7 = tmp3 + tmp6 tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tmp0 + tmp15 tl.store(out_ptr0 + x4, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask) tmp3 = tl.load(in_ptr0 + (4 + x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask) tmp7 = tl.load(in_ptr0 + (8 + x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask) tmp11 = tl.load(in_ptr0 + (12 + x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_add_mul_sum_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (4 * x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last') tmp12 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp6 = tmp4 * tmp5 tmp7 = tmp3 + tmp6 tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tmp0 + tmp15 tl.store(in_out_ptr0 + x3, tmp16, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](primals_2, buf0, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_sum_2[grid(64)](buf1, primals_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_3[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused_add_mul_sum_4[grid(64)](primals_2, primals_1, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0) del buf3 triton_poi_fused__softmax_5[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__softmax_6[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0) del buf5 triton_poi_fused_mul_sum_7[grid(64)](buf6, primals_1, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0) del buf6 triton_poi_fused_mul_3[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = buf4 del buf4 triton_poi_fused_add_mul_sum_8[grid(64)](buf9, primals_1, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0) del buf8 triton_poi_fused__softmax_5[grid(64)](buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 triton_poi_fused__softmax_6[grid(64)](buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf12 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0) del buf10 triton_poi_fused_mul_sum_7[grid(64)](buf11, primals_1, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0) del buf11 triton_poi_fused_mul_3[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf14 = buf9 del buf9 triton_poi_fused_add_mul_sum_8[grid(64)](buf14, primals_1, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0) del buf13 triton_poi_fused__softmax_5[grid(64)](buf14, buf15, 64, XBLOCK=64, num_warps=1, num_stages=1) buf16 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0) del buf12 triton_poi_fused__softmax_6[grid(64)](buf15, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) buf17 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0) del buf15 triton_poi_fused_mul_sum_7[grid(64)](buf16, primals_1, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = reinterpret_tensor(buf16, (4, 4, 4), (16, 4, 1), 0) del buf16 triton_poi_fused_mul_3[grid(64)](buf17, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf17 buf19 = buf14 del buf14 triton_poi_fused_add_mul_sum_8[grid(64)](buf19, primals_1, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) buf20 = reinterpret_tensor(buf18, (16, 4), (4, 1), 0) del buf18 triton_poi_fused__softmax_5[grid(64)](buf19, buf20, 64, XBLOCK=64, num_warps=1, num_stages=1) buf21 = reinterpret_tensor(buf19, (16, 4), (4, 1), 0) del buf19 triton_poi_fused__softmax_6[grid(64)](buf20, buf21, 64, XBLOCK=64, num_warps=1, num_stages=1) buf22 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0) del buf20 triton_poi_fused_mul_sum_7[grid(64)](buf21, primals_1, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) buf23 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0) del buf21 triton_poi_fused_mul_3[grid(64)](buf22, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf22 return buf23, primals_1, primals_2 def squash(x): lengths2 = x.pow(2).sum(dim=2) lengths = lengths2.sqrt() x = x * (lengths2 / (1 + lengths2) / lengths).view(x.size(0), x.size(1), 1) return x class AgreementRoutingNew(nn.Module): def __init__(self, input_caps, output_caps, n_iterations): super(AgreementRoutingNew, self).__init__() self.n_iterations = n_iterations self.b = nn.Parameter(torch.zeros((input_caps, output_caps))) def forward(self, input_0): primals_2 = self.b primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
shwetasrsh/MNIST-baselines
AgreementRouting
false
16,455
[ "MIT" ]
61
aa888e201a1dddda13e7b278cab8f940d57538db
https://github.com/shwetasrsh/MNIST-baselines/tree/aa888e201a1dddda13e7b278cab8f940d57538db
_FPNUp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fp/cfp5jrxxyxrvhcpoq5tio3p5tkhj5ugdrpyur3x4v6meatzih7jn.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pi/cpiqq6ydqends5jgnpbakdwghpnovztoymnjrsnfd3ycpt6b7cp7.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pa/cpazsbmct7bq6fofvdc67dz3gxjoouipsqf6hehsui5v7kyfrs25.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, clamp_max_2, clamp_max_3, clamp_min, clamp_min_2, clamp_min_3, convert_element_type, convert_element_type_1, convert_element_type_3, iota, mul, mul_2, mul_3, mul_4, sub, sub_1, sub_2, sub_3, sub_4 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 1.0), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {}) # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp13, tmp4) tmp15 = tmp14.to(tl.int32) tmp16 = tl.load(in_ptr0 + (tmp15 + (4*tmp10) + (16*x2)), None, eviction_policy='evict_last') tmp17 = tmp15 + tmp7 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl.load(in_ptr0 + (tmp18 + (4*tmp10) + (16*x2)), None, eviction_policy='evict_last') tmp20 = tmp19 - tmp16 tmp21 = tmp15.to(tl.float32) tmp22 = tmp14 - tmp21 tmp23 = triton_helpers.maximum(tmp22, tmp4) tmp24 = triton_helpers.minimum(tmp23, tmp2) tmp25 = tmp20 * tmp24 tmp26 = tmp16 + tmp25 tmp27 = tl.load(in_ptr0 + (tmp15 + (4*tmp6) + (16*x2)), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (tmp18 + (4*tmp6) + (16*x2)), None, eviction_policy='evict_last') tmp29 = tmp28 - tmp27 tmp30 = tmp29 * tmp24 tmp31 = tmp27 + tmp30 tmp32 = tmp26 - tmp31 tmp33 = tmp6.to(tl.float32) tmp34 = tmp5 - tmp33 tmp35 = triton_helpers.maximum(tmp34, tmp4) tmp36 = triton_helpers.minimum(tmp35, tmp2) tmp37 = tmp32 * tmp36 tmp38 = tmp31 + tmp37 tl.store(in_out_ptr0 + (x4), tmp38, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ek/cekjzomjohgpojh7mixefnswiuuc26qael44t5tnof7mmidhnsga.py # Topologically Sorted Source Nodes: [skip, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add_5 # skip => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %convolution), kwargs = {}) triton_poi_fused_add_convolution_3 = async_compile.triton('triton_poi_fused_add_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (4096*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (x2 + (256*y3)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (256*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/o6/co6dt6churpozf2rlggjsgkkxvbf2ncrmpy44yybwa2jccbraben.py # Topologically Sorted Source Nodes: [fused], Original ATen: [aten.convolution] # Source node to ATen node mapping: # fused => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_5, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = (yindex // 256) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (4096*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_3, (256, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (256, ), (1, )) assert_size_stride(primals_5, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_6, (256, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_5, buf1, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_5 buf2 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2.run(buf3, primals_2, 16384, grid=grid(16384), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [skip], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [skip, add], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_3.run(buf5, buf3, primals_4, 64, 256, grid=grid(64, 256), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [fused], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf7 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [fused], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf6, primals_6, buf7, 1024, 16, grid=grid(1024, 16), stream=stream0) del buf6 del primals_6 return (buf7, buf0, primals_3, buf1, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.init class _FPNUp(nn.Module): def __init__(self, num_input_features, skip_channel_adjust=True): super().__init__() self.conv_channel_adjust = nn.Conv2d(num_input_features, 256, kernel_size=1) self.conv_fusion = nn.Conv2d(256, 256, kernel_size=3, padding=1) def forward(self, x, skip): upsample = nn.UpsamplingBilinear2d(size=skip.size()[2:]) x = upsample(x) skip = self.conv_channel_adjust(skip) fused = self.conv_fusion(x + skip) return fused def get_inputs(): return [torch.rand([4, 256, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_input_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2( in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp13, tmp4) tmp15 = tmp14.to(tl.int32) tmp16 = tl.load(in_ptr0 + (tmp15 + 4 * tmp10 + 16 * x2), None, eviction_policy='evict_last') tmp17 = tmp15 + tmp7 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl.load(in_ptr0 + (tmp18 + 4 * tmp10 + 16 * x2), None, eviction_policy='evict_last') tmp20 = tmp19 - tmp16 tmp21 = tmp15.to(tl.float32) tmp22 = tmp14 - tmp21 tmp23 = triton_helpers.maximum(tmp22, tmp4) tmp24 = triton_helpers.minimum(tmp23, tmp2) tmp25 = tmp20 * tmp24 tmp26 = tmp16 + tmp25 tmp27 = tl.load(in_ptr0 + (tmp15 + 4 * tmp6 + 16 * x2), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (tmp18 + 4 * tmp6 + 16 * x2), None, eviction_policy='evict_last') tmp29 = tmp28 - tmp27 tmp30 = tmp29 * tmp24 tmp31 = tmp27 + tmp30 tmp32 = tmp26 - tmp31 tmp33 = tmp6.to(tl.float32) tmp34 = tmp5 - tmp33 tmp35 = triton_helpers.maximum(tmp34, tmp4) tmp36 = triton_helpers.minimum(tmp35, tmp2) tmp37 = tmp32 * tmp36 tmp38 = tmp31 + tmp37 tl.store(in_out_ptr0 + x4, tmp38, None) @triton.jit def triton_poi_fused_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 4096 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (x2 + 256 * y3), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 256 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_convolution_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = yindex // 256 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 4096 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_3, (256, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (256,), (1,)) assert_size_stride(primals_5, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_6, (256,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 16)](primals_1, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_1[grid(65536, 9)](primals_5, buf1, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_5 buf2 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch. float32) buf3 = buf2 del buf2 triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2[grid (16384)](buf3, primals_2, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf4 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf5 = buf4 del buf4 triton_poi_fused_add_convolution_3[grid(64, 256)](buf5, buf3, primals_4, 64, 256, XBLOCK=256, YBLOCK=1, num_warps=4, num_stages=1 ) del primals_4 buf6 = extern_kernels.convolution(buf5, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf7 = buf3 del buf3 triton_poi_fused_convolution_4[grid(1024, 16)](buf6, primals_6, buf7, 1024, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del buf6 del primals_6 return buf7, buf0, primals_3, buf1, buf5 class _FPNUpNew(nn.Module): def __init__(self, num_input_features, skip_channel_adjust=True): super().__init__() self.conv_channel_adjust = nn.Conv2d(num_input_features, 256, kernel_size=1) self.conv_fusion = nn.Conv2d(256, 256, kernel_size=3, padding=1) def forward(self, input_0, input_1): primals_3 = self.conv_channel_adjust.weight primals_4 = self.conv_channel_adjust.bias primals_5 = self.conv_fusion.weight primals_6 = self.conv_fusion.bias primals_2 = input_0 primals_1 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
simonmeister/pytorch-mono-depth
_FPNUp
false
16,456
[ "MIT" ]
56
713c70e2fdae6d9d6e0322febadfedcaee9470d3
https://github.com/simonmeister/pytorch-mono-depth/tree/713c70e2fdae6d9d6e0322febadfedcaee9470d3
TAGConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/z2/cz2jhsdkrp52elfw55sen5tqot7bispboogikhvxocjudi232ud3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %mm, %mm_1], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (12*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/e3/ce3yy4nrwi44hjujecgr3jax6u7rakuyrqx2xahfyees3v5twajq.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %mm, %mm_1], -1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (12*x1)), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 12), (12, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) buf4 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf1 = reinterpret_tensor(buf4, (4, 4), (12, 1), 8) # alias # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.mm] extern_kernels.mm(primals_2, buf0, out=buf1) del primals_2 buf2 = reinterpret_tensor(buf4, (4, 4), (12, 1), 0) # alias # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf2, 16, grid=grid(16), stream=stream0) del primals_1 buf3 = reinterpret_tensor(buf4, (4, 4), (12, 1), 4) # alias # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf0, buf3, 16, grid=grid(16), stream=stream0) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf4, reinterpret_tensor(primals_3, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf5) del primals_3 del primals_4 return (buf5, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class TAGConv(nn.Module): """ Description ----------- TAGCN convolutional layer. Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. k : int, optional Hyper-parameter, refer to original paper. Default: ``2``. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. batch_norm : bool, optional Whether to apply batch normalization. Default: ``False``. dropout : float, optional Rate of dropout. Default: ``0.0``. """ def __init__(self, in_features, out_features, k=2, activation=None, batch_norm=False, dropout=0.0): super(TAGConv, self).__init__() self.in_features = in_features self.out_features = out_features self.linear = nn.Linear(in_features * (k + 1), out_features) self.batch_norm = batch_norm if batch_norm: self.norm_func = nn.BatchNorm1d(out_features, affine=False) self.activation = activation if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.k = k self.reset_parameters() def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear.weight, gain=gain) def forward(self, x, adj): """ Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of layer. """ fstack = [x] for i in range(self.k): y = torch.spmm(adj, fstack[-1]) fstack.append(y) x = torch.cat(fstack, dim=-1) x = self.linear(x) if self.batch_norm: x = self.norm_func(x) if self.activation is not None: x = self.activation(x) if self.dropout is not None: x = self.dropout(x) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 12 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 12 * x1), tmp0, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 12), (12, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) buf4 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf1 = reinterpret_tensor(buf4, (4, 4), (12, 1), 8) extern_kernels.mm(primals_2, buf0, out=buf1) del primals_2 buf2 = reinterpret_tensor(buf4, (4, 4), (12, 1), 0) get_raw_stream(0) triton_poi_fused_cat_0[grid(16)](primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf3 = reinterpret_tensor(buf4, (4, 4), (12, 1), 4) triton_poi_fused_cat_1[grid(16)](buf0, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = buf0 del buf0 extern_kernels.addmm(primals_4, buf4, reinterpret_tensor(primals_3, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf5) del primals_3 del primals_4 return buf5, buf4 class TAGConvNew(nn.Module): """ Description ----------- TAGCN convolutional layer. Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. k : int, optional Hyper-parameter, refer to original paper. Default: ``2``. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. batch_norm : bool, optional Whether to apply batch normalization. Default: ``False``. dropout : float, optional Rate of dropout. Default: ``0.0``. """ def __init__(self, in_features, out_features, k=2, activation=None, batch_norm=False, dropout=0.0): super(TAGConvNew, self).__init__() self.in_features = in_features self.out_features = out_features self.linear = nn.Linear(in_features * (k + 1), out_features) self.batch_norm = batch_norm if batch_norm: self.norm_func = nn.BatchNorm1d(out_features, affine=False) self.activation = activation if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.k = k self.reset_parameters() def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear.weight, gain=gain) def forward(self, input_0, input_1): primals_3 = self.linear.weight primals_4 = self.linear.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
sigeisler/grb
TAGConv
false
16,457
[ "MIT" ]
51
c89e21076dc05d1edb87dfe2eff20c29ba6bd0c1
https://github.com/sigeisler/grb/tree/c89e21076dc05d1edb87dfe2eff20c29ba6bd0c1
ResNetV2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/a2/ca2l7bjxfwrklzvcxfa2hnyzqh3p6neak37vi6fkugdhbu26fbpz.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 768 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (147*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/co/ccosum7u5lx5fx5hf5opofiygxj2ntiq67yo5gfegevmhtkaru4r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qg/cqg4z653mpzmif22rwtpmv42y4lbkkxhxjqguwoxl3wb6cn5fn7k.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ot/cotn5a2cqhwvdw4ugt6b2a4jl2ou2mh37mnmwxgwogdqw4kcufhp.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1048576 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 1024 y1 = (yindex // 1024) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (1024*x2) + (9216*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7n/c7npfx4cng24bae4uqu2hpgblpis6j6mmnvhinuzjms74o3kespg.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4194304 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 2048 y1 = (yindex // 2048) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (2048*x2) + (18432*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ck/cck257ksuszi7rylew7fge2srrwr6phqjm3wbowg7merkmnxmshd.py # Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, w], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # sqrt => sqrt # sub => sub # var_mean => var_mean # w => div # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-10), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) triton_per_fused_add_div_sqrt_sub_var_mean_6 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_sqrt_sub_var_mean_6(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 147 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (147*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask & xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 147, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(rmask & xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 147.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-10 tmp20 = tmp18 + tmp19 tmp21 = libdevice.sqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (147*x0)), tmp23, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nt/cntsn7m3r2xjxa4wdf4m34w7p5wrpvazgixessnri35z7hkzioyv.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # input_2 => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_7 = async_compile.triton('triton_poi_fused_constant_pad_nd_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1183744 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 8704) % 34 x1 = (xindex // 256) % 34 x3 = (xindex // 295936) x4 = xindex % 8704 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-8448) + x4 + (8192*x2) + (262144*x3)), tmp10, other=0.0) tl.store(out_ptr0 + (x6), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bf/cbf5dxwqyr3hqcx4qflqp4smyzjh74okbtbp3q4x6lxhqo5bx6kt.py # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_3 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 16 x2 = (xindex // 4096) % 16 x3 = (xindex // 65536) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp3 = tl.load(in_ptr0 + (512 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp5 = tl.load(in_ptr0 + (8704 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp7 = tl.load(in_ptr0 + (8960 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp9 = tl.load(in_ptr0 + (9216 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp11 = tl.load(in_ptr0 + (17408 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp13 = tl.load(in_ptr0 + (17664 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp15 = tl.load(in_ptr0 + (17920 + x0 + (512*x1) + (17408*x2) + (295936*x3)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + (x4), tmp16, None) tl.store(out_ptr1 + (x4), tmp41, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v6/cv6xitrbrydxmqmrppdwzu4z4evlalp2yvk4c5vppkczm3j3ligg.py # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm => add_1, rsqrt, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) triton_red_fused_native_group_norm_9 = async_compile.triton('triton_red_fused_native_group_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 2048], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_native_group_norm_9(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = (xindex // 32) tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 8 r3 = (rindex // 8) tmp0 = tl.load(in_ptr0 + (r2 + (8*x0) + (256*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce( tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0 ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford( tmp2_mean, tmp2_m2, tmp2_weight, 1 ) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tl.store(out_ptr0 + (x4), tmp2, xmask) tl.store(out_ptr1 + (x4), tmp3, xmask) tmp5 = 2048.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fa/cfasmvqd2wokec24hd5leef4rosb4wbws23u3moszdu6v4nwesae.py # Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm => add_2, mul_1 # out => relu # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_2,), kwargs = {}) triton_poi_fused_native_group_norm_relu_10 = async_compile.triton('triton_poi_fused_native_group_norm_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 256 x2 = (xindex // 65536) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 8)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 8)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2048.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5f/c5fdme65e6sapqxvpch33udzplyqtzt6nq7xyqsairo2b6g7a2ig.py # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.add] # Source node to ATen node mapping: # input_4 => add_7 # Graph fragment: # %add_7 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %convolution_1), kwargs = {}) triton_poi_fused_add_11 = async_compile.triton('triton_poi_fused_add_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tl.load(in_out_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ko/cko54yui74kmwqhv447fx22qwp7jnwemjonlulxgnw5dmue4lv7s.py # Topologically Sorted Source Nodes: [group_norm_3], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_3 => add_8, rsqrt_3, var_mean_4 # Graph fragment: # %var_mean_4 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_6, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_10, 1e-05), kwargs = {}) # %rsqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_8,), kwargs = {}) triton_red_fused_native_group_norm_12 = async_compile.triton('triton_red_fused_native_group_norm_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 8192], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_native_group_norm_12(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = (xindex // 32) tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 32 r3 = (rindex // 32) tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (262144*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce( tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0 ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford( tmp2_mean, tmp2_m2, tmp2_weight, 1 ) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tl.store(out_ptr0 + (x4), tmp2, xmask) tl.store(out_ptr1 + (x4), tmp3, xmask) tmp5 = 8192.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v7/cv7gphlgrnxqhb3o6xz2fmlrl3qq5qreuxqsizdjdmjlei2n7flx.py # Topologically Sorted Source Nodes: [group_norm_3, out_4], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_3 => add_9, mul_7 # out_4 => relu_3 # Graph fragment: # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, %unsqueeze_23), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %unsqueeze_20), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_9,), kwargs = {}) triton_poi_fused_native_group_norm_relu_13 = async_compile.triton('triton_poi_fused_native_group_norm_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_13(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 1024 x2 = (xindex // 262144) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 8192.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hx/chxsqk7qaob3peavveg77grejwbdilkkgl4tcdy3fzbebvpstmlp.py # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.add] # Source node to ATen node mapping: # input_5 => add_14 # Graph fragment: # %add_14 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_7, %add_7), kwargs = {}) triton_poi_fused_add_14 = async_compile.triton('triton_poi_fused_add_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qx/cqxt7sx7h4rppcdgdvnzpauxfukrumn4y4ym7pao2fb35esvfhmd.py # Topologically Sorted Source Nodes: [group_norm_13], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_13 => add_31, rsqrt_13, var_mean_14 # Graph fragment: # %var_mean_14 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_26, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_31 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_30, 1e-05), kwargs = {}) # %rsqrt_13 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_31,), kwargs = {}) triton_red_fused_native_group_norm_15 = async_compile.triton('triton_red_fused_native_group_norm_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_native_group_norm_15(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = (xindex // 32) tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 16 r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (512*r3) + (131072*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce( tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0 ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford( tmp2_mean, tmp2_m2, tmp2_weight, 1 ) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tl.store(out_ptr0 + (x4), tmp2, xmask) tl.store(out_ptr1 + (x4), tmp3, xmask) tmp5 = 4096.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/56/c56vczdotihmfda6u5ucl2xnug7va7wbnyjzf255dvfislcptvf7.py # Topologically Sorted Source Nodes: [group_norm_13, relu_13], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_13 => add_32, mul_27 # relu_13 => relu_13 # Graph fragment: # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_27, %unsqueeze_83), kwargs = {}) # %add_32 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_27, %unsqueeze_80), kwargs = {}) # %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_32,), kwargs = {}) triton_poi_fused_native_group_norm_relu_16 = async_compile.triton('triton_poi_fused_native_group_norm_relu_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 512 x2 = (xindex // 131072) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 4096.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ah/cahyvhivy62lbh4u2msdkpocyupcs745a4q3nzkgxi4l7dimdlb5.py # Topologically Sorted Source Nodes: [group_norm_14], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_14 => add_33, rsqrt_14, var_mean_15 # Graph fragment: # %var_mean_15 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_28, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_33 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_32, 1e-05), kwargs = {}) # %rsqrt_14 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_33,), kwargs = {}) triton_per_fused_native_group_norm_17 = async_compile.triton('triton_per_fused_native_group_norm_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_17', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_17(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex % 16 r3 = (rindex // 16) x0 = xindex % 32 x1 = (xindex // 32) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (512*r3) + (32768*x1)), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + (x4), tmp18, None) tl.store(out_ptr0 + (x4), tmp8, None) tl.store(out_ptr1 + (x4), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4p/c4p77icwssrq64e72yfmj4vwfu2dkw3vd26qkd2p6fyjezfd6j74.py # Topologically Sorted Source Nodes: [group_norm_14, relu_14], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_14 => add_34, mul_29 # relu_14 => relu_14 # Graph fragment: # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_29, %unsqueeze_89), kwargs = {}) # %add_34 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_29, %unsqueeze_86), kwargs = {}) # %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_34,), kwargs = {}) triton_poi_fused_native_group_norm_relu_18 = async_compile.triton('triton_poi_fused_native_group_norm_relu_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 512 x2 = (xindex // 32768) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1024.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wd/cwdaii5fkuthctbzoypogvwcznsd5ng7ytvtvzxr32wd5euxn2qa.py # Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.add] # Source node to ATen node mapping: # input_8 => add_35 # Graph fragment: # %add_35 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_17, %convolution_14), kwargs = {}) triton_poi_fused_add_19 = async_compile.triton('triton_poi_fused_add_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_19', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tl.load(in_out_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pg/cpgh4s6y63mcbvrcx22o7452pgyc4t7nl6tvbtkz5hpzshqxzqxn.py # Topologically Sorted Source Nodes: [group_norm_15], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_15 => add_36, rsqrt_15, var_mean_16 # Graph fragment: # %var_mean_16 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_30, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_36 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_34, 1e-05), kwargs = {}) # %rsqrt_15 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_36,), kwargs = {}) triton_red_fused_native_group_norm_20 = async_compile.triton('triton_red_fused_native_group_norm_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_native_group_norm_20(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = (xindex // 32) tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 64 r3 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r2 + (64*x0) + (2048*r3) + (131072*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce( tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0 ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford( tmp2_mean, tmp2_m2, tmp2_weight, 1 ) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tl.store(out_ptr0 + (x4), tmp2, xmask) tl.store(out_ptr1 + (x4), tmp3, xmask) tmp5 = 4096.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dg/cdg5tttxk7465izpys3jcdfkeg2jlo2zu77au5mqsay37xhdxofi.py # Topologically Sorted Source Nodes: [group_norm_15, out_20], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_15 => add_37, mul_31 # out_20 => relu_15 # Graph fragment: # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_31, %unsqueeze_95), kwargs = {}) # %add_37 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_31, %unsqueeze_92), kwargs = {}) # %relu_15 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_37,), kwargs = {}) triton_poi_fused_native_group_norm_relu_21 = async_compile.triton('triton_poi_fused_native_group_norm_relu_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 2048 x2 = (xindex // 131072) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 4096.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pb/cpb2jrw7y3rjx64oigpgehcu5j5v3yzdzflecuivlmkbk4v45xlq.py # Topologically Sorted Source Nodes: [input_9], Original ATen: [aten.add] # Source node to ATen node mapping: # input_9 => add_42 # Graph fragment: # %add_42 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_20, %add_35), kwargs = {}) triton_poi_fused_add_22 = async_compile.triton('triton_poi_fused_add_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_22', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_22(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/u2/cu2mfguyheid3lhsertsqwgzhmbcdboexa6orv77am6dgv3c56tz.py # Topologically Sorted Source Nodes: [group_norm_25], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_25 => add_59, rsqrt_25, var_mean_26 # Graph fragment: # %var_mean_26 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_50, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_59 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_54, 1e-05), kwargs = {}) # %rsqrt_25 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_59,), kwargs = {}) triton_red_fused_native_group_norm_23 = async_compile.triton('triton_red_fused_native_group_norm_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 2048], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_native_group_norm_23(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = (xindex // 32) tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 32 r3 = (rindex // 32) tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce( tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0 ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford( tmp2_mean, tmp2_m2, tmp2_weight, 1 ) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tl.store(out_ptr0 + (x4), tmp2, xmask) tl.store(out_ptr1 + (x4), tmp3, xmask) tmp5 = 2048.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2i/c2ibn4t36ftepehjhmjy2lhy2k64sos4xxmmc3rqlr4ipxgj7kvu.py # Topologically Sorted Source Nodes: [group_norm_25, relu_25], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_25 => add_60, mul_51 # relu_25 => relu_25 # Graph fragment: # %mul_51 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_51, %unsqueeze_155), kwargs = {}) # %add_60 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_51, %unsqueeze_152), kwargs = {}) # %relu_25 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_60,), kwargs = {}) triton_poi_fused_native_group_norm_relu_24 = async_compile.triton('triton_poi_fused_native_group_norm_relu_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_24(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 1024 x2 = (xindex // 65536) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2048.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ts/ctsijwy2nkmeeicjj3guvwcwmca4hjmvf76h5bv5ih53bxzwmxia.py # Topologically Sorted Source Nodes: [group_norm_26], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_26 => add_61, rsqrt_26, var_mean_27 # Graph fragment: # %var_mean_27 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_52, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_61 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_56, 1e-05), kwargs = {}) # %rsqrt_26 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_61,), kwargs = {}) triton_per_fused_native_group_norm_25 = async_compile.triton('triton_per_fused_native_group_norm_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_25', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_25(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex % 32 r3 = (rindex // 32) x0 = xindex % 32 x1 = (xindex // 32) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (16384*x1)), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 512, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 512.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + (x4), tmp18, None) tl.store(out_ptr0 + (x4), tmp8, None) tl.store(out_ptr1 + (x4), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/s4/cs4p5dn7xucm63y5ztk2foxz2etqrvzlzgrzfczfalaql4eiulzx.py # Topologically Sorted Source Nodes: [group_norm_26, relu_26], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_26 => add_62, mul_53 # relu_26 => relu_26 # Graph fragment: # %mul_53 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_53, %unsqueeze_161), kwargs = {}) # %add_62 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_53, %unsqueeze_158), kwargs = {}) # %relu_26 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_62,), kwargs = {}) triton_poi_fused_native_group_norm_relu_26 = async_compile.triton('triton_poi_fused_native_group_norm_relu_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_26(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 1024 x2 = (xindex // 16384) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 512.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/cs/ccsvazrebzcai6zrturgyw3jbkxvss7iwwocp74sbpz5o47xqnh5.py # Topologically Sorted Source Nodes: [input_12], Original ATen: [aten.add] # Source node to ATen node mapping: # input_12 => add_63 # Graph fragment: # %add_63 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_30, %convolution_27), kwargs = {}) triton_poi_fused_add_27 = async_compile.triton('triton_poi_fused_add_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_27', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_27(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tl.load(in_out_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/q3/cq3u5xqyiucbjm2ljjvmh575yiuz54bhlkwarxw3l4jaccbxrb7b.py # Topologically Sorted Source Nodes: [group_norm_27], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_27 => add_64, rsqrt_27, var_mean_28 # Graph fragment: # %var_mean_28 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_54, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_64 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_58, 1e-05), kwargs = {}) # %rsqrt_27 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_64,), kwargs = {}) triton_red_fused_native_group_norm_28 = async_compile.triton('triton_red_fused_native_group_norm_28', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 2048], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_native_group_norm_28(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = (xindex // 32) tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 128 r3 = (rindex // 128) tmp0 = tl.load(in_ptr0 + (r2 + (128*x0) + (4096*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce( tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0 ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford( tmp2_mean, tmp2_m2, tmp2_weight, 1 ) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tl.store(out_ptr0 + (x4), tmp2, xmask) tl.store(out_ptr1 + (x4), tmp3, xmask) tmp5 = 2048.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/et/cet6cogmkjub3gngbqx53hrtwaggsomi75nwjc4lff3hrlcydjb2.py # Topologically Sorted Source Nodes: [group_norm_27, out_36], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_27 => add_65, mul_55 # out_36 => relu_27 # Graph fragment: # %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_55, %unsqueeze_167), kwargs = {}) # %add_65 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_55, %unsqueeze_164), kwargs = {}) # %relu_27 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_65,), kwargs = {}) triton_poi_fused_native_group_norm_relu_29 = async_compile.triton('triton_poi_fused_native_group_norm_relu_29', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = (xindex // 65536) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2048.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mi/cmiq5wwxjkdlvsolp5gi4emkkr36p4chwtezhbmw2yawiz6vzl6s.py # Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.add] # Source node to ATen node mapping: # input_13 => add_70 # Graph fragment: # %add_70 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_33, %add_63), kwargs = {}) triton_poi_fused_add_30 = async_compile.triton('triton_poi_fused_add_30', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_30', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_30(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hl/chlapuas22bbqfgfcakfby65m6nqcszwr7h7zb4db6prtecb7rgx.py # Topologically Sorted Source Nodes: [group_norm_37], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_37 => add_87, rsqrt_37, var_mean_38 # Graph fragment: # %var_mean_38 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_74, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_87 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_78, 1e-05), kwargs = {}) # %rsqrt_37 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_87,), kwargs = {}) triton_per_fused_native_group_norm_31 = async_compile.triton('triton_per_fused_native_group_norm_31', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_31', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_31(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex % 64 r3 = (rindex // 64) x0 = xindex % 32 x1 = (xindex // 32) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (64*x0) + (2048*r3) + (32768*x1)), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + (x4), tmp18, None) tl.store(out_ptr0 + (x4), tmp8, None) tl.store(out_ptr1 + (x4), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4w/c4wcwkbz4iluaatvhbtcyyvy4lghw5dhm67346wjsavgjxqqyisn.py # Topologically Sorted Source Nodes: [group_norm_37, relu_37], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_37 => add_88, mul_75 # relu_37 => relu_37 # Graph fragment: # %mul_75 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_75, %unsqueeze_227), kwargs = {}) # %add_88 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_75, %unsqueeze_224), kwargs = {}) # %relu_37 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_88,), kwargs = {}) triton_poi_fused_native_group_norm_relu_32 = async_compile.triton('triton_poi_fused_native_group_norm_relu_32', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_32(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 2048 x2 = (xindex // 32768) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1024.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ef/cefla5ncukzquxkvhoz24sn6jxxmtsm4con6ztnl73s5gbqg5c36.py # Topologically Sorted Source Nodes: [group_norm_38], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_38 => add_89, rsqrt_38, var_mean_39 # Graph fragment: # %var_mean_39 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_76, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_89 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_80, 1e-05), kwargs = {}) # %rsqrt_38 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_89,), kwargs = {}) triton_per_fused_native_group_norm_33 = async_compile.triton('triton_per_fused_native_group_norm_33', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_33', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_33(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex % 64 r3 = (rindex // 64) x0 = xindex % 32 x1 = (xindex // 32) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (64*x0) + (2048*r3) + (8192*x1)), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 256, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 256.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + (x4), tmp18, None) tl.store(out_ptr0 + (x4), tmp8, None) tl.store(out_ptr1 + (x4), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2l/c2lztqwkyp4vlp5rzelzkmfsnc2qfyzq43vgxya3h3yybdxldxlr.py # Topologically Sorted Source Nodes: [group_norm_38, relu_38], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_38 => add_90, mul_77 # relu_38 => relu_38 # Graph fragment: # %mul_77 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_77, %unsqueeze_233), kwargs = {}) # %add_90 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_77, %unsqueeze_230), kwargs = {}) # %relu_38 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_90,), kwargs = {}) triton_poi_fused_native_group_norm_relu_34 = async_compile.triton('triton_poi_fused_native_group_norm_relu_34', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_34', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_34(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 2048 x2 = (xindex // 8192) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 256.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/at/cathviy462t2m7xrfdix74co7y4jqx4tpjom2gsa6vrepusnn7yl.py # Topologically Sorted Source Nodes: [input_16], Original ATen: [aten.add] # Source node to ATen node mapping: # input_16 => add_91 # Graph fragment: # %add_91 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_43, %convolution_40), kwargs = {}) triton_poi_fused_add_35 = async_compile.triton('triton_poi_fused_add_35', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_35', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_35(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tl.load(in_out_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ok/cokbbgdxp4kvsqs7ly6tgurysy2ycpzdknvrwmfkzaeskt55cixj.py # Topologically Sorted Source Nodes: [group_norm_39], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm_39 => add_92, rsqrt_39, var_mean_40 # Graph fragment: # %var_mean_40 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_78, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_92 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_82, 1e-05), kwargs = {}) # %rsqrt_39 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_92,), kwargs = {}) triton_per_fused_native_group_norm_36 = async_compile.triton('triton_per_fused_native_group_norm_36', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_36', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_36(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex % 256 r3 = (rindex // 256) x0 = xindex % 32 x1 = (xindex // 32) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (256*x0) + (8192*r3) + (32768*x1)), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + (x4), tmp18, None) tl.store(out_ptr0 + (x4), tmp8, None) tl.store(out_ptr1 + (x4), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/r4/cr4zapi6cfgujbfor3eajpuxzwpgdg4qetlbu4zys3s7etdbkreo.py # Topologically Sorted Source Nodes: [group_norm_39, out_52], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm_39 => add_93, mul_79 # out_52 => relu_39 # Graph fragment: # %mul_79 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_79, %unsqueeze_239), kwargs = {}) # %add_93 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_79, %unsqueeze_236), kwargs = {}) # %relu_39 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_93,), kwargs = {}) triton_poi_fused_native_group_norm_relu_37 = async_compile.triton('triton_poi_fused_native_group_norm_relu_37', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_37', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_37(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 8192 x2 = (xindex // 32768) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 256)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 256)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1024.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7f/c7f5o4vhy6f4tzv2uapg7b7puvccoydkpylbod2pu5letkcrnjfg.py # Topologically Sorted Source Nodes: [input_17], Original ATen: [aten.add] # Source node to ATen node mapping: # input_17 => add_98 # Graph fragment: # %add_98 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_46, %add_91), kwargs = {}) triton_poi_fused_add_38 = async_compile.triton('triton_poi_fused_add_38', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_38', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_38(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (x0), None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qk/cqkj5qfedtmbikvtontzig3tfyoit2n72by3qha7pva74opsqycz.py # Topologically Sorted Source Nodes: [input_20], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # input_20 => add_113, rsqrt_48, var_mean_49 # Graph fragment: # %var_mean_49 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_96, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_113 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_100, 1e-05), kwargs = {}) # %rsqrt_48 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_113,), kwargs = {}) triton_per_fused_native_group_norm_39 = async_compile.triton('triton_per_fused_native_group_norm_39', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_39', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_39(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 128 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex % 256 r3 = (rindex // 256) x0 = xindex % 32 x1 = (xindex // 32) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (256*x0) + (8192*r3) + (32768*x1)), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.debug_barrier() tl.store(in_out_ptr0 + (x4), tmp18, None) tl.store(out_ptr0 + (x4), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/du/cdun2xs7seqmwjqgyp2nzcoxmjhy6zhqu7ptyozhimwsb6z6fk2b.py # Topologically Sorted Source Nodes: [input_20, input_21, input_22], Original ATen: [aten.native_group_norm, aten.relu, aten.mean] # Source node to ATen node mapping: # input_20 => add_114, mul_97 # input_21 => relu_48 # input_22 => mean # Graph fragment: # %mul_97 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_97, %unsqueeze_293), kwargs = {}) # %add_114 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_97, %unsqueeze_290), kwargs = {}) # %relu_48 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_114,), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_48, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_native_group_norm_relu_40 = async_compile.triton('triton_poi_fused_mean_native_group_norm_relu_40', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_native_group_norm_relu_40', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_native_group_norm_relu_40(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8192 x1 = (xindex // 8192) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (32768*x1)), None) tmp1 = tl.load(in_ptr1 + ((x2 // 256)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((x2 // 256)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (8192 + x0 + (32768*x1)), None) tmp18 = tl.load(in_ptr0 + (16384 + x0 + (32768*x1)), None) tmp25 = tl.load(in_ptr0 + (24576 + x0 + (32768*x1)), None) tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = tmp11 - tmp1 tmp13 = tmp12 * tmp3 tmp14 = tmp13 * tmp5 tmp15 = tmp14 + tmp7 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp17 = tmp10 + tmp16 tmp19 = tmp18 - tmp1 tmp20 = tmp19 * tmp3 tmp21 = tmp20 * tmp5 tmp22 = tmp21 + tmp7 tmp23 = triton_helpers.maximum(tmp9, tmp22) tmp24 = tmp17 + tmp23 tmp26 = tmp25 - tmp1 tmp27 = tmp26 * tmp3 tmp28 = tmp27 * tmp5 tmp29 = tmp28 + tmp7 tmp30 = triton_helpers.maximum(tmp9, tmp29) tmp31 = tmp24 + tmp30 tmp32 = 4.0 tmp33 = tmp31 / tmp32 tl.store(out_ptr0 + (x2), tmp33, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jc/cjcnicxv5h7prutathudeetq66kicy3jgfixcauhyzxf4kbpduoz.py # Topologically Sorted Source Nodes: [input_23], Original ATen: [aten.convolution] # Source node to ATen node mapping: # input_23 => convolution_53 # Graph fragment: # %convolution_53 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_153, %primals_154, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_41 = async_compile.triton('triton_poi_fused_convolution_41', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_41', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_41(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 87372 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 21843 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154 = args args.clear() assert_size_stride(primals_1, (256, 3, 7, 7), (147, 49, 7, 1)) assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_3, (256, ), (1, )) assert_size_stride(primals_4, (256, ), (1, )) assert_size_stride(primals_5, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_6, (256, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, ), (1, )) assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_10, (256, ), (1, )) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_13, (1024, ), (1, )) assert_size_stride(primals_14, (1024, ), (1, )) assert_size_stride(primals_15, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_16, (256, ), (1, )) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (256, ), (1, )) assert_size_stride(primals_20, (256, ), (1, )) assert_size_stride(primals_21, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_22, (1024, ), (1, )) assert_size_stride(primals_23, (1024, ), (1, )) assert_size_stride(primals_24, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_25, (256, ), (1, )) assert_size_stride(primals_26, (256, ), (1, )) assert_size_stride(primals_27, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_28, (256, ), (1, )) assert_size_stride(primals_29, (256, ), (1, )) assert_size_stride(primals_30, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_31, (1024, ), (1, )) assert_size_stride(primals_32, (1024, ), (1, )) assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_34, (256, ), (1, )) assert_size_stride(primals_35, (256, ), (1, )) assert_size_stride(primals_36, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_37, (256, ), (1, )) assert_size_stride(primals_38, (256, ), (1, )) assert_size_stride(primals_39, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_40, (1024, ), (1, )) assert_size_stride(primals_41, (1024, ), (1, )) assert_size_stride(primals_42, (2048, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_43, (512, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_44, (512, ), (1, )) assert_size_stride(primals_45, (512, ), (1, )) assert_size_stride(primals_46, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_47, (512, ), (1, )) assert_size_stride(primals_48, (512, ), (1, )) assert_size_stride(primals_49, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_50, (2048, ), (1, )) assert_size_stride(primals_51, (2048, ), (1, )) assert_size_stride(primals_52, (512, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_53, (512, ), (1, )) assert_size_stride(primals_54, (512, ), (1, )) assert_size_stride(primals_55, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_56, (512, ), (1, )) assert_size_stride(primals_57, (512, ), (1, )) assert_size_stride(primals_58, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_59, (2048, ), (1, )) assert_size_stride(primals_60, (2048, ), (1, )) assert_size_stride(primals_61, (512, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_62, (512, ), (1, )) assert_size_stride(primals_63, (512, ), (1, )) assert_size_stride(primals_64, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_65, (512, ), (1, )) assert_size_stride(primals_66, (512, ), (1, )) assert_size_stride(primals_67, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_68, (2048, ), (1, )) assert_size_stride(primals_69, (2048, ), (1, )) assert_size_stride(primals_70, (512, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_71, (512, ), (1, )) assert_size_stride(primals_72, (512, ), (1, )) assert_size_stride(primals_73, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_74, (512, ), (1, )) assert_size_stride(primals_75, (512, ), (1, )) assert_size_stride(primals_76, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_77, (2048, ), (1, )) assert_size_stride(primals_78, (2048, ), (1, )) assert_size_stride(primals_79, (4096, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_80, (1024, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_81, (1024, ), (1, )) assert_size_stride(primals_82, (1024, ), (1, )) assert_size_stride(primals_83, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_84, (1024, ), (1, )) assert_size_stride(primals_85, (1024, ), (1, )) assert_size_stride(primals_86, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_87, (4096, ), (1, )) assert_size_stride(primals_88, (4096, ), (1, )) assert_size_stride(primals_89, (1024, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_90, (1024, ), (1, )) assert_size_stride(primals_91, (1024, ), (1, )) assert_size_stride(primals_92, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_93, (1024, ), (1, )) assert_size_stride(primals_94, (1024, ), (1, )) assert_size_stride(primals_95, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_96, (4096, ), (1, )) assert_size_stride(primals_97, (4096, ), (1, )) assert_size_stride(primals_98, (1024, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_99, (1024, ), (1, )) assert_size_stride(primals_100, (1024, ), (1, )) assert_size_stride(primals_101, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_102, (1024, ), (1, )) assert_size_stride(primals_103, (1024, ), (1, )) assert_size_stride(primals_104, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_105, (4096, ), (1, )) assert_size_stride(primals_106, (4096, ), (1, )) assert_size_stride(primals_107, (1024, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_108, (1024, ), (1, )) assert_size_stride(primals_109, (1024, ), (1, )) assert_size_stride(primals_110, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_111, (1024, ), (1, )) assert_size_stride(primals_112, (1024, ), (1, )) assert_size_stride(primals_113, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_114, (4096, ), (1, )) assert_size_stride(primals_115, (4096, ), (1, )) assert_size_stride(primals_116, (8192, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_117, (2048, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_118, (2048, ), (1, )) assert_size_stride(primals_119, (2048, ), (1, )) assert_size_stride(primals_120, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_121, (2048, ), (1, )) assert_size_stride(primals_122, (2048, ), (1, )) assert_size_stride(primals_123, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_124, (8192, ), (1, )) assert_size_stride(primals_125, (8192, ), (1, )) assert_size_stride(primals_126, (2048, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_127, (2048, ), (1, )) assert_size_stride(primals_128, (2048, ), (1, )) assert_size_stride(primals_129, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_130, (2048, ), (1, )) assert_size_stride(primals_131, (2048, ), (1, )) assert_size_stride(primals_132, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_133, (8192, ), (1, )) assert_size_stride(primals_134, (8192, ), (1, )) assert_size_stride(primals_135, (2048, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_136, (2048, ), (1, )) assert_size_stride(primals_137, (2048, ), (1, )) assert_size_stride(primals_138, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_139, (2048, ), (1, )) assert_size_stride(primals_140, (2048, ), (1, )) assert_size_stride(primals_141, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_142, (8192, ), (1, )) assert_size_stride(primals_143, (8192, ), (1, )) assert_size_stride(primals_144, (2048, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_145, (2048, ), (1, )) assert_size_stride(primals_146, (2048, ), (1, )) assert_size_stride(primals_147, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_148, (2048, ), (1, )) assert_size_stride(primals_149, (2048, ), (1, )) assert_size_stride(primals_150, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_151, (8192, ), (1, )) assert_size_stride(primals_152, (8192, ), (1, )) assert_size_stride(primals_153, (21843, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_154, (21843, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 768, 49, grid=grid(768, 49), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_2 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_9, buf2, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_9 buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_18, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_18 buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_27, buf4, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_27 buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_36, buf5, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_36 buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_46, buf6, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_46 buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_55, buf7, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_55 buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_64, buf8, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_64 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_73, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_73 buf10 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_83, buf10, 1048576, 9, grid=grid(1048576, 9), stream=stream0) del primals_83 buf11 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_92, buf11, 1048576, 9, grid=grid(1048576, 9), stream=stream0) del primals_92 buf12 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_101, buf12, 1048576, 9, grid=grid(1048576, 9), stream=stream0) del primals_101 buf13 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_110, buf13, 1048576, 9, grid=grid(1048576, 9), stream=stream0) del primals_110 buf14 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_120, buf14, 4194304, 9, grid=grid(4194304, 9), stream=stream0) del primals_120 buf15 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_129, buf15, 4194304, 9, grid=grid(4194304, 9), stream=stream0) del primals_129 buf16 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_138, buf16, 4194304, 9, grid=grid(4194304, 9), stream=stream0) del primals_138 buf17 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_147, buf17, 4194304, 9, grid=grid(4194304, 9), stream=stream0) del primals_147 buf19 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32) buf21 = reinterpret_tensor(buf19, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf19 # reuse buf22 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.float32) # Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, w], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div] triton_per_fused_add_div_sqrt_sub_var_mean_6.run(buf21, buf0, buf22, 256, 147, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf1, buf22, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf24 = empty_strided_cuda((4, 256, 34, 34), (295936, 1, 8704, 256), torch.float32) # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_7.run(buf23, buf24, 1183744, grid=grid(1183744), stream=stream0) buf25 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) buf26 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.int8) # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_8.run(buf24, buf25, buf26, 262144, grid=grid(262144), stream=stream0) buf27 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf28 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf30 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf25, buf27, buf28, buf30, 128, 2048, grid=grid(128), stream=stream0) buf31 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf25, buf27, buf28, primals_3, primals_4, buf31, 262144, grid=grid(262144), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [residual], Original ATen: [aten.convolution] buf32 = extern_kernels.convolution(buf31, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf31, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf34 = buf28; del buf28 # reuse buf35 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf37 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_1], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf33, buf34, buf35, buf37, 128, 2048, grid=grid(128), stream=stream0) buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_1, relu_1], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf33, buf34, buf35, primals_7, primals_8, buf38, 262144, grid=grid(262144), stream=stream0) del primals_8 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf39 = extern_kernels.convolution(buf38, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf40 = buf35; del buf35 # reuse buf41 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf43 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_2], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf39, buf40, buf41, buf43, 128, 2048, grid=grid(128), stream=stream0) buf44 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_2, relu_2], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf39, buf40, buf41, primals_10, primals_11, buf44, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf45 = extern_kernels.convolution(buf44, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf46 = buf32; del buf32 # reuse # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.add] triton_poi_fused_add_11.run(buf46, buf45, 1048576, grid=grid(1048576), stream=stream0) buf47 = buf41; del buf41 # reuse buf48 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf50 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_3], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_12.run(buf46, buf47, buf48, buf50, 128, 8192, grid=grid(128), stream=stream0) buf51 = buf45; del buf45 # reuse # Topologically Sorted Source Nodes: [group_norm_3, out_4], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_13.run(buf46, buf47, buf48, primals_13, primals_14, buf51, 1048576, grid=grid(1048576), stream=stream0) del primals_14 # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution] buf52 = extern_kernels.convolution(buf51, primals_15, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf52, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf53 = buf48; del buf48 # reuse buf54 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf56 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_4], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf52, buf53, buf54, buf56, 128, 2048, grid=grid(128), stream=stream0) buf57 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_4, relu_4], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf52, buf53, buf54, primals_16, primals_17, buf57, 262144, grid=grid(262144), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.convolution] buf58 = extern_kernels.convolution(buf57, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf59 = buf54; del buf54 # reuse buf60 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf62 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_5], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf58, buf59, buf60, buf62, 128, 2048, grid=grid(128), stream=stream0) buf63 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_5, relu_5], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf58, buf59, buf60, primals_19, primals_20, buf63, 262144, grid=grid(262144), stream=stream0) del primals_20 # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.convolution] buf64 = extern_kernels.convolution(buf63, primals_21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf65 = buf64; del buf64 # reuse # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.add] triton_poi_fused_add_14.run(buf65, buf46, 1048576, grid=grid(1048576), stream=stream0) buf66 = buf60; del buf60 # reuse buf67 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf69 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_6], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_12.run(buf65, buf66, buf67, buf69, 128, 8192, grid=grid(128), stream=stream0) buf70 = reinterpret_tensor(buf23, (4, 1024, 16, 16), (262144, 1, 16384, 1024), 0); del buf23 # reuse # Topologically Sorted Source Nodes: [group_norm_6, out_8], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_13.run(buf65, buf66, buf67, primals_22, primals_23, buf70, 1048576, grid=grid(1048576), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.convolution] buf71 = extern_kernels.convolution(buf70, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf71, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf72 = buf67; del buf67 # reuse buf73 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf75 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_7], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf71, buf72, buf73, buf75, 128, 2048, grid=grid(128), stream=stream0) buf76 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_7, relu_7], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf71, buf72, buf73, primals_25, primals_26, buf76, 262144, grid=grid(262144), stream=stream0) del primals_26 # Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution] buf77 = extern_kernels.convolution(buf76, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf77, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf78 = buf73; del buf73 # reuse buf79 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf81 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_8], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf77, buf78, buf79, buf81, 128, 2048, grid=grid(128), stream=stream0) buf82 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_8, relu_8], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf77, buf78, buf79, primals_28, primals_29, buf82, 262144, grid=grid(262144), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.convolution] buf83 = extern_kernels.convolution(buf82, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf84 = buf83; del buf83 # reuse # Topologically Sorted Source Nodes: [input_6], Original ATen: [aten.add] triton_poi_fused_add_14.run(buf84, buf65, 1048576, grid=grid(1048576), stream=stream0) buf85 = buf79; del buf79 # reuse buf86 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf88 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_9], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_12.run(buf84, buf85, buf86, buf88, 128, 8192, grid=grid(128), stream=stream0) buf89 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_9, out_12], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_13.run(buf84, buf85, buf86, primals_31, primals_32, buf89, 1048576, grid=grid(1048576), stream=stream0) del primals_32 # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.convolution] buf90 = extern_kernels.convolution(buf89, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf90, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf91 = buf86; del buf86 # reuse buf92 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf94 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_10], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf90, buf91, buf92, buf94, 128, 2048, grid=grid(128), stream=stream0) buf95 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_10, relu_10], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf90, buf91, buf92, primals_34, primals_35, buf95, 262144, grid=grid(262144), stream=stream0) del primals_35 # Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.convolution] buf96 = extern_kernels.convolution(buf95, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf96, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf97 = buf92; del buf92 # reuse buf98 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf100 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_11], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_9.run(buf96, buf97, buf98, buf100, 128, 2048, grid=grid(128), stream=stream0) buf101 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [group_norm_11, relu_11], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_10.run(buf96, buf97, buf98, primals_37, primals_38, buf101, 262144, grid=grid(262144), stream=stream0) del primals_38 # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution] buf102 = extern_kernels.convolution(buf101, primals_39, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf102, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf103 = buf102; del buf102 # reuse # Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.add] triton_poi_fused_add_14.run(buf103, buf84, 1048576, grid=grid(1048576), stream=stream0) buf104 = buf98; del buf98 # reuse buf105 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf107 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_12], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_12.run(buf103, buf104, buf105, buf107, 128, 8192, grid=grid(128), stream=stream0) buf108 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_12, out_16], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_13.run(buf103, buf104, buf105, primals_40, primals_41, buf108, 1048576, grid=grid(1048576), stream=stream0) del primals_41 # Topologically Sorted Source Nodes: [residual_1], Original ATen: [aten.convolution] buf109 = extern_kernels.convolution(buf108, primals_42, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) # Topologically Sorted Source Nodes: [out_17], Original ATen: [aten.convolution] buf110 = extern_kernels.convolution(buf108, primals_43, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf110, (4, 512, 16, 16), (131072, 1, 8192, 512)) buf111 = buf105; del buf105 # reuse buf112 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf114 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_13], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_15.run(buf110, buf111, buf112, buf114, 128, 4096, grid=grid(128), stream=stream0) buf115 = empty_strided_cuda((4, 512, 16, 16), (131072, 1, 8192, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_13, relu_13], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_16.run(buf110, buf111, buf112, primals_44, primals_45, buf115, 524288, grid=grid(524288), stream=stream0) del primals_45 # Topologically Sorted Source Nodes: [out_18], Original ATen: [aten.convolution] buf116 = extern_kernels.convolution(buf115, buf6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf116, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf117 = buf112; del buf112 # reuse buf118 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf120 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_14], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_17.run(buf116, buf117, buf118, buf120, 128, 1024, grid=grid(128), stream=stream0) buf121 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_14, relu_14], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_18.run(buf116, buf117, buf118, primals_47, primals_48, buf121, 131072, grid=grid(131072), stream=stream0) del primals_48 # Topologically Sorted Source Nodes: [out_19], Original ATen: [aten.convolution] buf122 = extern_kernels.convolution(buf121, primals_49, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf122, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf123 = buf109; del buf109 # reuse # Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.add] triton_poi_fused_add_19.run(buf123, buf122, 524288, grid=grid(524288), stream=stream0) buf124 = buf118; del buf118 # reuse buf125 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf127 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_15], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_20.run(buf123, buf124, buf125, buf127, 128, 4096, grid=grid(128), stream=stream0) buf128 = buf122; del buf122 # reuse # Topologically Sorted Source Nodes: [group_norm_15, out_20], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_21.run(buf123, buf124, buf125, primals_50, primals_51, buf128, 524288, grid=grid(524288), stream=stream0) del primals_51 # Topologically Sorted Source Nodes: [out_21], Original ATen: [aten.convolution] buf129 = extern_kernels.convolution(buf128, primals_52, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf129, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf130 = buf125; del buf125 # reuse buf131 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf133 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_16], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_17.run(buf129, buf130, buf131, buf133, 128, 1024, grid=grid(128), stream=stream0) buf134 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_16, relu_16], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_18.run(buf129, buf130, buf131, primals_53, primals_54, buf134, 131072, grid=grid(131072), stream=stream0) del primals_54 # Topologically Sorted Source Nodes: [out_22], Original ATen: [aten.convolution] buf135 = extern_kernels.convolution(buf134, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf135, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf136 = buf131; del buf131 # reuse buf137 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf139 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_17], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_17.run(buf135, buf136, buf137, buf139, 128, 1024, grid=grid(128), stream=stream0) buf140 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_17, relu_17], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_18.run(buf135, buf136, buf137, primals_56, primals_57, buf140, 131072, grid=grid(131072), stream=stream0) del primals_57 # Topologically Sorted Source Nodes: [out_23], Original ATen: [aten.convolution] buf141 = extern_kernels.convolution(buf140, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf141, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf142 = buf141; del buf141 # reuse # Topologically Sorted Source Nodes: [input_9], Original ATen: [aten.add] triton_poi_fused_add_22.run(buf142, buf123, 524288, grid=grid(524288), stream=stream0) buf143 = buf137; del buf137 # reuse buf144 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf146 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_18], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_20.run(buf142, buf143, buf144, buf146, 128, 4096, grid=grid(128), stream=stream0) buf147 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_18, out_24], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_21.run(buf142, buf143, buf144, primals_59, primals_60, buf147, 524288, grid=grid(524288), stream=stream0) del primals_60 # Topologically Sorted Source Nodes: [out_25], Original ATen: [aten.convolution] buf148 = extern_kernels.convolution(buf147, primals_61, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf148, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf149 = buf144; del buf144 # reuse buf150 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf152 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_19], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_17.run(buf148, buf149, buf150, buf152, 128, 1024, grid=grid(128), stream=stream0) buf153 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_19, relu_19], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_18.run(buf148, buf149, buf150, primals_62, primals_63, buf153, 131072, grid=grid(131072), stream=stream0) del primals_63 # Topologically Sorted Source Nodes: [out_26], Original ATen: [aten.convolution] buf154 = extern_kernels.convolution(buf153, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf154, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf155 = buf150; del buf150 # reuse buf156 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf158 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_20], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_17.run(buf154, buf155, buf156, buf158, 128, 1024, grid=grid(128), stream=stream0) buf159 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_20, relu_20], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_18.run(buf154, buf155, buf156, primals_65, primals_66, buf159, 131072, grid=grid(131072), stream=stream0) del primals_66 # Topologically Sorted Source Nodes: [out_27], Original ATen: [aten.convolution] buf160 = extern_kernels.convolution(buf159, primals_67, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf160, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf161 = buf160; del buf160 # reuse # Topologically Sorted Source Nodes: [input_10], Original ATen: [aten.add] triton_poi_fused_add_22.run(buf161, buf142, 524288, grid=grid(524288), stream=stream0) buf162 = buf156; del buf156 # reuse buf163 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf165 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_21], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_20.run(buf161, buf162, buf163, buf165, 128, 4096, grid=grid(128), stream=stream0) buf166 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_21, out_28], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_21.run(buf161, buf162, buf163, primals_68, primals_69, buf166, 524288, grid=grid(524288), stream=stream0) del primals_69 # Topologically Sorted Source Nodes: [out_29], Original ATen: [aten.convolution] buf167 = extern_kernels.convolution(buf166, primals_70, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf167, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf168 = buf163; del buf163 # reuse buf169 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf171 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_22], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_17.run(buf167, buf168, buf169, buf171, 128, 1024, grid=grid(128), stream=stream0) buf172 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_22, relu_22], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_18.run(buf167, buf168, buf169, primals_71, primals_72, buf172, 131072, grid=grid(131072), stream=stream0) del primals_72 # Topologically Sorted Source Nodes: [out_30], Original ATen: [aten.convolution] buf173 = extern_kernels.convolution(buf172, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf173, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf174 = buf169; del buf169 # reuse buf175 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf177 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_23], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_17.run(buf173, buf174, buf175, buf177, 128, 1024, grid=grid(128), stream=stream0) buf178 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) # Topologically Sorted Source Nodes: [group_norm_23, relu_23], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_18.run(buf173, buf174, buf175, primals_74, primals_75, buf178, 131072, grid=grid(131072), stream=stream0) del primals_75 # Topologically Sorted Source Nodes: [out_31], Original ATen: [aten.convolution] buf179 = extern_kernels.convolution(buf178, primals_76, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf179, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf180 = buf179; del buf179 # reuse # Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.add] triton_poi_fused_add_22.run(buf180, buf161, 524288, grid=grid(524288), stream=stream0) buf181 = buf175; del buf175 # reuse buf182 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf184 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_24], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_20.run(buf180, buf181, buf182, buf184, 128, 4096, grid=grid(128), stream=stream0) buf185 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_24, out_32], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_21.run(buf180, buf181, buf182, primals_77, primals_78, buf185, 524288, grid=grid(524288), stream=stream0) del primals_78 # Topologically Sorted Source Nodes: [residual_2], Original ATen: [aten.convolution] buf186 = extern_kernels.convolution(buf185, primals_79, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf186, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) # Topologically Sorted Source Nodes: [out_33], Original ATen: [aten.convolution] buf187 = extern_kernels.convolution(buf185, primals_80, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf187, (4, 1024, 8, 8), (65536, 1, 8192, 1024)) buf188 = buf182; del buf182 # reuse buf189 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf191 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_25], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_23.run(buf187, buf188, buf189, buf191, 128, 2048, grid=grid(128), stream=stream0) buf192 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_25, relu_25], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_24.run(buf187, buf188, buf189, primals_81, primals_82, buf192, 262144, grid=grid(262144), stream=stream0) del primals_82 # Topologically Sorted Source Nodes: [out_34], Original ATen: [aten.convolution] buf193 = extern_kernels.convolution(buf192, buf10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf193, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf194 = buf189; del buf189 # reuse buf195 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf197 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_26], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_25.run(buf193, buf194, buf195, buf197, 128, 512, grid=grid(128), stream=stream0) buf198 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_26, relu_26], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_26.run(buf193, buf194, buf195, primals_84, primals_85, buf198, 65536, grid=grid(65536), stream=stream0) del primals_85 # Topologically Sorted Source Nodes: [out_35], Original ATen: [aten.convolution] buf199 = extern_kernels.convolution(buf198, primals_86, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf199, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf200 = buf186; del buf186 # reuse # Topologically Sorted Source Nodes: [input_12], Original ATen: [aten.add] triton_poi_fused_add_27.run(buf200, buf199, 262144, grid=grid(262144), stream=stream0) buf201 = buf195; del buf195 # reuse buf202 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf204 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_27], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_28.run(buf200, buf201, buf202, buf204, 128, 2048, grid=grid(128), stream=stream0) buf205 = buf199; del buf199 # reuse # Topologically Sorted Source Nodes: [group_norm_27, out_36], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_29.run(buf200, buf201, buf202, primals_87, primals_88, buf205, 262144, grid=grid(262144), stream=stream0) del primals_88 # Topologically Sorted Source Nodes: [out_37], Original ATen: [aten.convolution] buf206 = extern_kernels.convolution(buf205, primals_89, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf206, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf207 = buf202; del buf202 # reuse buf208 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf210 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_28], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_25.run(buf206, buf207, buf208, buf210, 128, 512, grid=grid(128), stream=stream0) buf211 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_28, relu_28], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_26.run(buf206, buf207, buf208, primals_90, primals_91, buf211, 65536, grid=grid(65536), stream=stream0) del primals_91 # Topologically Sorted Source Nodes: [out_38], Original ATen: [aten.convolution] buf212 = extern_kernels.convolution(buf211, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf212, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf213 = buf208; del buf208 # reuse buf214 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf216 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_29], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_25.run(buf212, buf213, buf214, buf216, 128, 512, grid=grid(128), stream=stream0) buf217 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_29, relu_29], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_26.run(buf212, buf213, buf214, primals_93, primals_94, buf217, 65536, grid=grid(65536), stream=stream0) del primals_94 # Topologically Sorted Source Nodes: [out_39], Original ATen: [aten.convolution] buf218 = extern_kernels.convolution(buf217, primals_95, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf218, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf219 = buf218; del buf218 # reuse # Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.add] triton_poi_fused_add_30.run(buf219, buf200, 262144, grid=grid(262144), stream=stream0) buf220 = buf214; del buf214 # reuse buf221 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf223 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_30], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_28.run(buf219, buf220, buf221, buf223, 128, 2048, grid=grid(128), stream=stream0) buf224 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32) # Topologically Sorted Source Nodes: [group_norm_30, out_40], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_29.run(buf219, buf220, buf221, primals_96, primals_97, buf224, 262144, grid=grid(262144), stream=stream0) del primals_97 # Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution] buf225 = extern_kernels.convolution(buf224, primals_98, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf225, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf226 = buf221; del buf221 # reuse buf227 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf229 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_31], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_25.run(buf225, buf226, buf227, buf229, 128, 512, grid=grid(128), stream=stream0) buf230 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_31, relu_31], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_26.run(buf225, buf226, buf227, primals_99, primals_100, buf230, 65536, grid=grid(65536), stream=stream0) del primals_100 # Topologically Sorted Source Nodes: [out_42], Original ATen: [aten.convolution] buf231 = extern_kernels.convolution(buf230, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf231, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf232 = buf227; del buf227 # reuse buf233 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf235 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_32], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_25.run(buf231, buf232, buf233, buf235, 128, 512, grid=grid(128), stream=stream0) buf236 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_32, relu_32], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_26.run(buf231, buf232, buf233, primals_102, primals_103, buf236, 65536, grid=grid(65536), stream=stream0) del primals_103 # Topologically Sorted Source Nodes: [out_43], Original ATen: [aten.convolution] buf237 = extern_kernels.convolution(buf236, primals_104, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf237, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf238 = buf237; del buf237 # reuse # Topologically Sorted Source Nodes: [input_14], Original ATen: [aten.add] triton_poi_fused_add_30.run(buf238, buf219, 262144, grid=grid(262144), stream=stream0) buf239 = buf233; del buf233 # reuse buf240 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf242 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_33], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_28.run(buf238, buf239, buf240, buf242, 128, 2048, grid=grid(128), stream=stream0) buf243 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32) # Topologically Sorted Source Nodes: [group_norm_33, out_44], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_29.run(buf238, buf239, buf240, primals_105, primals_106, buf243, 262144, grid=grid(262144), stream=stream0) del primals_106 # Topologically Sorted Source Nodes: [out_45], Original ATen: [aten.convolution] buf244 = extern_kernels.convolution(buf243, primals_107, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf244, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf245 = buf240; del buf240 # reuse buf246 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf248 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_34], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_25.run(buf244, buf245, buf246, buf248, 128, 512, grid=grid(128), stream=stream0) buf249 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_34, relu_34], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_26.run(buf244, buf245, buf246, primals_108, primals_109, buf249, 65536, grid=grid(65536), stream=stream0) del primals_109 # Topologically Sorted Source Nodes: [out_46], Original ATen: [aten.convolution] buf250 = extern_kernels.convolution(buf249, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf250, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf251 = buf246; del buf246 # reuse buf252 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf254 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_35], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_25.run(buf250, buf251, buf252, buf254, 128, 512, grid=grid(128), stream=stream0) buf255 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) # Topologically Sorted Source Nodes: [group_norm_35, relu_35], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_26.run(buf250, buf251, buf252, primals_111, primals_112, buf255, 65536, grid=grid(65536), stream=stream0) del primals_112 # Topologically Sorted Source Nodes: [out_47], Original ATen: [aten.convolution] buf256 = extern_kernels.convolution(buf255, primals_113, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf256, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf257 = buf256; del buf256 # reuse # Topologically Sorted Source Nodes: [input_15], Original ATen: [aten.add] triton_poi_fused_add_30.run(buf257, buf238, 262144, grid=grid(262144), stream=stream0) buf258 = buf252; del buf252 # reuse buf259 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf261 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_36], Original ATen: [aten.native_group_norm] triton_red_fused_native_group_norm_28.run(buf257, buf258, buf259, buf261, 128, 2048, grid=grid(128), stream=stream0) buf262 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32) # Topologically Sorted Source Nodes: [group_norm_36, out_48], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_29.run(buf257, buf258, buf259, primals_114, primals_115, buf262, 262144, grid=grid(262144), stream=stream0) del primals_115 # Topologically Sorted Source Nodes: [residual_3], Original ATen: [aten.convolution] buf263 = extern_kernels.convolution(buf262, primals_116, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf263, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) # Topologically Sorted Source Nodes: [out_49], Original ATen: [aten.convolution] buf264 = extern_kernels.convolution(buf262, primals_117, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf264, (4, 2048, 4, 4), (32768, 1, 8192, 2048)) buf265 = buf259; del buf259 # reuse buf266 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf268 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_37], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_31.run(buf264, buf265, buf266, buf268, 128, 1024, grid=grid(128), stream=stream0) buf269 = empty_strided_cuda((4, 2048, 4, 4), (32768, 1, 8192, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_37, relu_37], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_32.run(buf264, buf265, buf266, primals_118, primals_119, buf269, 131072, grid=grid(131072), stream=stream0) del primals_119 # Topologically Sorted Source Nodes: [out_50], Original ATen: [aten.convolution] buf270 = extern_kernels.convolution(buf269, buf14, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf270, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf271 = buf266; del buf266 # reuse buf272 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf274 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_38], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_33.run(buf270, buf271, buf272, buf274, 128, 256, grid=grid(128), stream=stream0) buf275 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_38, relu_38], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_34.run(buf270, buf271, buf272, primals_121, primals_122, buf275, 32768, grid=grid(32768), stream=stream0) del primals_122 # Topologically Sorted Source Nodes: [out_51], Original ATen: [aten.convolution] buf276 = extern_kernels.convolution(buf275, primals_123, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf276, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf277 = buf263; del buf263 # reuse # Topologically Sorted Source Nodes: [input_16], Original ATen: [aten.add] triton_poi_fused_add_35.run(buf277, buf276, 131072, grid=grid(131072), stream=stream0) buf278 = buf272; del buf272 # reuse buf279 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf281 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_39], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_36.run(buf277, buf278, buf279, buf281, 128, 1024, grid=grid(128), stream=stream0) buf282 = buf276; del buf276 # reuse # Topologically Sorted Source Nodes: [group_norm_39, out_52], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_37.run(buf277, buf278, buf279, primals_124, primals_125, buf282, 131072, grid=grid(131072), stream=stream0) del primals_125 # Topologically Sorted Source Nodes: [out_53], Original ATen: [aten.convolution] buf283 = extern_kernels.convolution(buf282, primals_126, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf283, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf284 = buf279; del buf279 # reuse buf285 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf287 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_40], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_33.run(buf283, buf284, buf285, buf287, 128, 256, grid=grid(128), stream=stream0) buf288 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_40, relu_40], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_34.run(buf283, buf284, buf285, primals_127, primals_128, buf288, 32768, grid=grid(32768), stream=stream0) del primals_128 # Topologically Sorted Source Nodes: [out_54], Original ATen: [aten.convolution] buf289 = extern_kernels.convolution(buf288, buf15, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf289, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf290 = buf285; del buf285 # reuse buf291 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf293 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_41], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_33.run(buf289, buf290, buf291, buf293, 128, 256, grid=grid(128), stream=stream0) buf294 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_41, relu_41], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_34.run(buf289, buf290, buf291, primals_130, primals_131, buf294, 32768, grid=grid(32768), stream=stream0) del primals_131 # Topologically Sorted Source Nodes: [out_55], Original ATen: [aten.convolution] buf295 = extern_kernels.convolution(buf294, primals_132, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf295, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf296 = buf295; del buf295 # reuse # Topologically Sorted Source Nodes: [input_17], Original ATen: [aten.add] triton_poi_fused_add_38.run(buf296, buf277, 131072, grid=grid(131072), stream=stream0) buf297 = buf291; del buf291 # reuse buf298 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf300 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_42], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_36.run(buf296, buf297, buf298, buf300, 128, 1024, grid=grid(128), stream=stream0) buf301 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192), torch.float32) # Topologically Sorted Source Nodes: [group_norm_42, out_56], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_37.run(buf296, buf297, buf298, primals_133, primals_134, buf301, 131072, grid=grid(131072), stream=stream0) del primals_134 # Topologically Sorted Source Nodes: [out_57], Original ATen: [aten.convolution] buf302 = extern_kernels.convolution(buf301, primals_135, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf302, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf303 = buf298; del buf298 # reuse buf304 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf306 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_43], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_33.run(buf302, buf303, buf304, buf306, 128, 256, grid=grid(128), stream=stream0) buf307 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_43, relu_43], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_34.run(buf302, buf303, buf304, primals_136, primals_137, buf307, 32768, grid=grid(32768), stream=stream0) del primals_137 # Topologically Sorted Source Nodes: [out_58], Original ATen: [aten.convolution] buf308 = extern_kernels.convolution(buf307, buf16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf308, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf309 = buf304; del buf304 # reuse buf310 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf312 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_44], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_33.run(buf308, buf309, buf310, buf312, 128, 256, grid=grid(128), stream=stream0) buf313 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_44, relu_44], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_34.run(buf308, buf309, buf310, primals_139, primals_140, buf313, 32768, grid=grid(32768), stream=stream0) del primals_140 # Topologically Sorted Source Nodes: [out_59], Original ATen: [aten.convolution] buf314 = extern_kernels.convolution(buf313, primals_141, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf314, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf315 = buf314; del buf314 # reuse # Topologically Sorted Source Nodes: [input_18], Original ATen: [aten.add] triton_poi_fused_add_38.run(buf315, buf296, 131072, grid=grid(131072), stream=stream0) buf316 = buf310; del buf310 # reuse buf317 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf319 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_45], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_36.run(buf315, buf316, buf317, buf319, 128, 1024, grid=grid(128), stream=stream0) buf320 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192), torch.float32) # Topologically Sorted Source Nodes: [group_norm_45, out_60], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_37.run(buf315, buf316, buf317, primals_142, primals_143, buf320, 131072, grid=grid(131072), stream=stream0) del primals_143 # Topologically Sorted Source Nodes: [out_61], Original ATen: [aten.convolution] buf321 = extern_kernels.convolution(buf320, primals_144, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf321, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf322 = buf317; del buf317 # reuse buf323 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf325 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_46], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_33.run(buf321, buf322, buf323, buf325, 128, 256, grid=grid(128), stream=stream0) buf326 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_46, relu_46], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_34.run(buf321, buf322, buf323, primals_145, primals_146, buf326, 32768, grid=grid(32768), stream=stream0) del primals_146 # Topologically Sorted Source Nodes: [out_62], Original ATen: [aten.convolution] buf327 = extern_kernels.convolution(buf326, buf17, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf327, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf328 = buf323; del buf323 # reuse buf329 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf331 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) # Topologically Sorted Source Nodes: [group_norm_47], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_33.run(buf327, buf328, buf329, buf331, 128, 256, grid=grid(128), stream=stream0) buf332 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) # Topologically Sorted Source Nodes: [group_norm_47, relu_47], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_34.run(buf327, buf328, buf329, primals_148, primals_149, buf332, 32768, grid=grid(32768), stream=stream0) del primals_149 # Topologically Sorted Source Nodes: [out_63], Original ATen: [aten.convolution] buf333 = extern_kernels.convolution(buf332, primals_150, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf333, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf334 = buf333; del buf333 # reuse # Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.add] triton_poi_fused_add_38.run(buf334, buf315, 131072, grid=grid(131072), stream=stream0) buf335 = reinterpret_tensor(buf329, (4, 32, 1, 1), (32, 1, 32, 32), 0); del buf329 # reuse buf336 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf338 = reinterpret_tensor(buf336, (4, 32, 1, 1), (32, 1, 32, 32), 0); del buf336 # reuse # Topologically Sorted Source Nodes: [input_20], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_39.run(buf338, buf334, buf335, 128, 1024, grid=grid(128), stream=stream0) buf339 = empty_strided_cuda((4, 8192, 1, 1), (8192, 1, 8192, 8192), torch.float32) # Topologically Sorted Source Nodes: [input_20, input_21, input_22], Original ATen: [aten.native_group_norm, aten.relu, aten.mean] triton_poi_fused_mean_native_group_norm_relu_40.run(buf334, buf335, buf338, primals_151, primals_152, buf339, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [input_23], Original ATen: [aten.convolution] buf340 = extern_kernels.convolution(buf339, primals_153, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf340, (4, 21843, 1, 1), (21843, 1, 21843, 21843)) buf341 = reinterpret_tensor(buf340, (4, 21843, 1, 1), (21843, 1, 87372, 87372), 0); del buf340 # reuse # Topologically Sorted Source Nodes: [input_23], Original ATen: [aten.convolution] triton_poi_fused_convolution_41.run(buf341, primals_154, 87372, grid=grid(87372), stream=stream0) del primals_154 return (reinterpret_tensor(buf341, (4, 21843), (21843, 1), 0), buf0, buf1, primals_3, primals_5, primals_6, primals_7, buf2, primals_10, primals_12, primals_13, primals_15, primals_16, buf3, primals_19, primals_21, primals_22, primals_24, primals_25, buf4, primals_28, primals_30, primals_31, primals_33, primals_34, buf5, primals_37, primals_39, primals_40, primals_42, primals_43, primals_44, buf6, primals_47, primals_49, primals_50, primals_52, primals_53, buf7, primals_56, primals_58, primals_59, primals_61, primals_62, buf8, primals_65, primals_67, primals_68, primals_70, primals_71, buf9, primals_74, primals_76, primals_77, primals_79, primals_80, primals_81, buf10, primals_84, primals_86, primals_87, primals_89, primals_90, buf11, primals_93, primals_95, primals_96, primals_98, primals_99, buf12, primals_102, primals_104, primals_105, primals_107, primals_108, buf13, primals_111, primals_113, primals_114, primals_116, primals_117, primals_118, buf14, primals_121, primals_123, primals_124, primals_126, primals_127, buf15, primals_130, primals_132, primals_133, primals_135, primals_136, buf16, primals_139, primals_141, primals_142, primals_144, primals_145, buf17, primals_148, primals_150, primals_151, primals_152, primals_153, buf21, buf22, buf24, buf25, buf26, reinterpret_tensor(buf27, (4, 32), (32, 1), 0), reinterpret_tensor(buf30, (4, 32), (32, 1), 0), buf31, buf33, reinterpret_tensor(buf34, (4, 32), (32, 1), 0), reinterpret_tensor(buf37, (4, 32), (32, 1), 0), buf38, buf39, reinterpret_tensor(buf40, (4, 32), (32, 1), 0), reinterpret_tensor(buf43, (4, 32), (32, 1), 0), buf44, buf46, reinterpret_tensor(buf47, (4, 32), (32, 1), 0), reinterpret_tensor(buf50, (4, 32), (32, 1), 0), buf51, buf52, reinterpret_tensor(buf53, (4, 32), (32, 1), 0), reinterpret_tensor(buf56, (4, 32), (32, 1), 0), buf57, buf58, reinterpret_tensor(buf59, (4, 32), (32, 1), 0), reinterpret_tensor(buf62, (4, 32), (32, 1), 0), buf63, buf65, reinterpret_tensor(buf66, (4, 32), (32, 1), 0), reinterpret_tensor(buf69, (4, 32), (32, 1), 0), buf70, buf71, reinterpret_tensor(buf72, (4, 32), (32, 1), 0), reinterpret_tensor(buf75, (4, 32), (32, 1), 0), buf76, buf77, reinterpret_tensor(buf78, (4, 32), (32, 1), 0), reinterpret_tensor(buf81, (4, 32), (32, 1), 0), buf82, buf84, reinterpret_tensor(buf85, (4, 32), (32, 1), 0), reinterpret_tensor(buf88, (4, 32), (32, 1), 0), buf89, buf90, reinterpret_tensor(buf91, (4, 32), (32, 1), 0), reinterpret_tensor(buf94, (4, 32), (32, 1), 0), buf95, buf96, reinterpret_tensor(buf97, (4, 32), (32, 1), 0), reinterpret_tensor(buf100, (4, 32), (32, 1), 0), buf101, buf103, reinterpret_tensor(buf104, (4, 32), (32, 1), 0), reinterpret_tensor(buf107, (4, 32), (32, 1), 0), buf108, buf110, reinterpret_tensor(buf111, (4, 32), (32, 1), 0), reinterpret_tensor(buf114, (4, 32), (32, 1), 0), buf115, buf116, reinterpret_tensor(buf117, (4, 32), (32, 1), 0), reinterpret_tensor(buf120, (4, 32), (32, 1), 0), buf121, buf123, reinterpret_tensor(buf124, (4, 32), (32, 1), 0), reinterpret_tensor(buf127, (4, 32), (32, 1), 0), buf128, buf129, reinterpret_tensor(buf130, (4, 32), (32, 1), 0), reinterpret_tensor(buf133, (4, 32), (32, 1), 0), buf134, buf135, reinterpret_tensor(buf136, (4, 32), (32, 1), 0), reinterpret_tensor(buf139, (4, 32), (32, 1), 0), buf140, buf142, reinterpret_tensor(buf143, (4, 32), (32, 1), 0), reinterpret_tensor(buf146, (4, 32), (32, 1), 0), buf147, buf148, reinterpret_tensor(buf149, (4, 32), (32, 1), 0), reinterpret_tensor(buf152, (4, 32), (32, 1), 0), buf153, buf154, reinterpret_tensor(buf155, (4, 32), (32, 1), 0), reinterpret_tensor(buf158, (4, 32), (32, 1), 0), buf159, buf161, reinterpret_tensor(buf162, (4, 32), (32, 1), 0), reinterpret_tensor(buf165, (4, 32), (32, 1), 0), buf166, buf167, reinterpret_tensor(buf168, (4, 32), (32, 1), 0), reinterpret_tensor(buf171, (4, 32), (32, 1), 0), buf172, buf173, reinterpret_tensor(buf174, (4, 32), (32, 1), 0), reinterpret_tensor(buf177, (4, 32), (32, 1), 0), buf178, buf180, reinterpret_tensor(buf181, (4, 32), (32, 1), 0), reinterpret_tensor(buf184, (4, 32), (32, 1), 0), buf185, buf187, reinterpret_tensor(buf188, (4, 32), (32, 1), 0), reinterpret_tensor(buf191, (4, 32), (32, 1), 0), buf192, buf193, reinterpret_tensor(buf194, (4, 32), (32, 1), 0), reinterpret_tensor(buf197, (4, 32), (32, 1), 0), buf198, buf200, reinterpret_tensor(buf201, (4, 32), (32, 1), 0), reinterpret_tensor(buf204, (4, 32), (32, 1), 0), buf205, buf206, reinterpret_tensor(buf207, (4, 32), (32, 1), 0), reinterpret_tensor(buf210, (4, 32), (32, 1), 0), buf211, buf212, reinterpret_tensor(buf213, (4, 32), (32, 1), 0), reinterpret_tensor(buf216, (4, 32), (32, 1), 0), buf217, buf219, reinterpret_tensor(buf220, (4, 32), (32, 1), 0), reinterpret_tensor(buf223, (4, 32), (32, 1), 0), buf224, buf225, reinterpret_tensor(buf226, (4, 32), (32, 1), 0), reinterpret_tensor(buf229, (4, 32), (32, 1), 0), buf230, buf231, reinterpret_tensor(buf232, (4, 32), (32, 1), 0), reinterpret_tensor(buf235, (4, 32), (32, 1), 0), buf236, buf238, reinterpret_tensor(buf239, (4, 32), (32, 1), 0), reinterpret_tensor(buf242, (4, 32), (32, 1), 0), buf243, buf244, reinterpret_tensor(buf245, (4, 32), (32, 1), 0), reinterpret_tensor(buf248, (4, 32), (32, 1), 0), buf249, buf250, reinterpret_tensor(buf251, (4, 32), (32, 1), 0), reinterpret_tensor(buf254, (4, 32), (32, 1), 0), buf255, buf257, reinterpret_tensor(buf258, (4, 32), (32, 1), 0), reinterpret_tensor(buf261, (4, 32), (32, 1), 0), buf262, buf264, reinterpret_tensor(buf265, (4, 32), (32, 1), 0), reinterpret_tensor(buf268, (4, 32), (32, 1), 0), buf269, buf270, reinterpret_tensor(buf271, (4, 32), (32, 1), 0), reinterpret_tensor(buf274, (4, 32), (32, 1), 0), buf275, buf277, reinterpret_tensor(buf278, (4, 32), (32, 1), 0), reinterpret_tensor(buf281, (4, 32), (32, 1), 0), buf282, buf283, reinterpret_tensor(buf284, (4, 32), (32, 1), 0), reinterpret_tensor(buf287, (4, 32), (32, 1), 0), buf288, buf289, reinterpret_tensor(buf290, (4, 32), (32, 1), 0), reinterpret_tensor(buf293, (4, 32), (32, 1), 0), buf294, buf296, reinterpret_tensor(buf297, (4, 32), (32, 1), 0), reinterpret_tensor(buf300, (4, 32), (32, 1), 0), buf301, buf302, reinterpret_tensor(buf303, (4, 32), (32, 1), 0), reinterpret_tensor(buf306, (4, 32), (32, 1), 0), buf307, buf308, reinterpret_tensor(buf309, (4, 32), (32, 1), 0), reinterpret_tensor(buf312, (4, 32), (32, 1), 0), buf313, buf315, reinterpret_tensor(buf316, (4, 32), (32, 1), 0), reinterpret_tensor(buf319, (4, 32), (32, 1), 0), buf320, buf321, reinterpret_tensor(buf322, (4, 32), (32, 1), 0), reinterpret_tensor(buf325, (4, 32), (32, 1), 0), buf326, buf327, reinterpret_tensor(buf328, (4, 32), (32, 1), 0), reinterpret_tensor(buf331, (4, 32), (32, 1), 0), buf332, buf334, buf335, buf338, buf339, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 3, 7, 7), (147, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((2048, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((512, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_48 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_49 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_50 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_51 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_52 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_53 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_54 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_55 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_56 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_57 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_58 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_59 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_60 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_61 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_62 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_63 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_64 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_65 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_66 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_67 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_68 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_69 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_70 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_71 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_72 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_73 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_74 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_75 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_76 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_77 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_78 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_79 = rand_strided((4096, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_80 = rand_strided((1024, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_81 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_82 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_83 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_84 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_85 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_86 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_87 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_88 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_89 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_90 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_91 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_92 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_93 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_94 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_95 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_96 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_97 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_98 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_99 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_100 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_101 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_102 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_103 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_104 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_105 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_106 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_107 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_108 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_109 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_110 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_111 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_112 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_113 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_114 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_115 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_116 = rand_strided((8192, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_117 = rand_strided((2048, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_118 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_119 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_120 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_121 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_122 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_123 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_124 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_125 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_126 = rand_strided((2048, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_127 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_128 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_129 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_130 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_131 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_132 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_133 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_134 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_135 = rand_strided((2048, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_136 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_137 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_138 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_139 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_140 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_141 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_142 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_143 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_144 = rand_strided((2048, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_145 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_146 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_147 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_148 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_149 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_150 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_151 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_152 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_153 = rand_strided((21843, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_154 = rand_strided((21843, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn from torch.nn import functional as F from collections import OrderedDict def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def tf2th(conv_weights): """Possibly convert HWIO to OIHW.""" if conv_weights.ndim == 4: conv_weights = conv_weights.transpose([3, 2, 0, 1]) return torch.from_numpy(conv_weights) class StdConv2d(nn.Conv2d): def forward(self, x): w = self.weight v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False) w = (w - m) / torch.sqrt(v + 1e-10) return F.conv2d(x, w, self.bias, self.stride, self.padding, self. dilation, self.groups) class PreActBottleneck(nn.Module): """Pre-activation (v2) bottleneck block. Follows the implementation of "Identity Mappings in Deep Residual Networks": https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua Except it puts the stride on 3x3 conv when available. """ def __init__(self, cin, cout=None, cmid=None, stride=1): super().__init__() cout = cout or cin cmid = cmid or cout // 4 self.gn1 = nn.GroupNorm(32, cin) self.conv1 = conv1x1(cin, cmid) self.gn2 = nn.GroupNorm(32, cmid) self.conv2 = conv3x3(cmid, cmid, stride) self.gn3 = nn.GroupNorm(32, cmid) self.conv3 = conv1x1(cmid, cout) self.relu = nn.ReLU(inplace=True) if stride != 1 or cin != cout: self.downsample = conv1x1(cin, cout, stride) def forward(self, x): out = self.relu(self.gn1(x)) residual = x if hasattr(self, 'downsample'): residual = self.downsample(out) out = self.conv1(out) out = self.conv2(self.relu(self.gn2(out))) out = self.conv3(self.relu(self.gn3(out))) return out + residual def load_from(self, weights, prefix=''): convname = 'standardized_conv2d' with torch.no_grad(): self.conv1.weight.copy_(tf2th(weights[ f'{prefix}a/{convname}/kernel'])) self.conv2.weight.copy_(tf2th(weights[ f'{prefix}b/{convname}/kernel'])) self.conv3.weight.copy_(tf2th(weights[ f'{prefix}c/{convname}/kernel'])) self.gn1.weight.copy_(tf2th(weights[f'{prefix}a/group_norm/gamma']) ) self.gn2.weight.copy_(tf2th(weights[f'{prefix}b/group_norm/gamma']) ) self.gn3.weight.copy_(tf2th(weights[f'{prefix}c/group_norm/gamma']) ) self.gn1.bias.copy_(tf2th(weights[f'{prefix}a/group_norm/beta'])) self.gn2.bias.copy_(tf2th(weights[f'{prefix}b/group_norm/beta'])) self.gn3.bias.copy_(tf2th(weights[f'{prefix}c/group_norm/beta'])) if hasattr(self, 'downsample'): w = weights[f'{prefix}a/proj/{convname}/kernel'] self.downsample.weight.copy_(tf2th(w)) class ResNetV2(nn.Module): """Implementation of Pre-activation (v2) ResNet mode.""" def __init__(self, block_units, width_factor, head_size=21843, zero_head=False): super().__init__() wf = width_factor self.root = nn.Sequential(OrderedDict([('conv', StdConv2d(3, 64 * wf, kernel_size=7, stride=2, padding=3, bias=False)), ('pad', nn.ConstantPad2d(1, 0)), ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))])) self.body = nn.Sequential(OrderedDict([('block1', nn.Sequential( OrderedDict([('unit01', PreActBottleneck(cin=64 * wf, cout=256 * wf, cmid=64 * wf))] + [(f'unit{i:02d}', PreActBottleneck(cin= 256 * wf, cout=256 * wf, cmid=64 * wf)) for i in range(2, block_units[0] + 1)]))), ('block2', nn.Sequential(OrderedDict([ ('unit01', PreActBottleneck(cin=256 * wf, cout=512 * wf, cmid= 128 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin= 512 * wf, cout=512 * wf, cmid=128 * wf)) for i in range(2, block_units[1] + 1)]))), ('block3', nn.Sequential(OrderedDict([ ('unit01', PreActBottleneck(cin=512 * wf, cout=1024 * wf, cmid= 256 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin= 1024 * wf, cout=1024 * wf, cmid=256 * wf)) for i in range(2, block_units[2] + 1)]))), ('block4', nn.Sequential(OrderedDict([ ('unit01', PreActBottleneck(cin=1024 * wf, cout=2048 * wf, cmid =512 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin =2048 * wf, cout=2048 * wf, cmid=512 * wf)) for i in range(2, block_units[3] + 1)])))])) self.zero_head = zero_head self.head = nn.Sequential(OrderedDict([('gn', nn.GroupNorm(32, 2048 * wf)), ('relu', nn.ReLU(inplace=True)), ('avg', nn. AdaptiveAvgPool2d(output_size=1)), ('conv', nn.Conv2d(2048 * wf, head_size, kernel_size=1, bias=True))])) def forward(self, x): x = self.head(self.body(self.root(x))) assert x.shape[-2:] == (1, 1) return x[..., 0, 0] def load_from(self, weights, prefix='resnet/'): with torch.no_grad(): self.root.conv.weight.copy_(tf2th(weights[ f'{prefix}root_block/standardized_conv2d/kernel'])) self.head.gn.weight.copy_(tf2th(weights[ f'{prefix}group_norm/gamma'])) self.head.gn.bias.copy_(tf2th(weights[f'{prefix}group_norm/beta'])) if self.zero_head: nn.init.zeros_(self.head.conv.weight) nn.init.zeros_(self.head.conv.bias) else: self.head.conv.weight.copy_(tf2th(weights[ f'{prefix}head/conv2d/kernel'])) self.head.conv.bias.copy_(tf2th(weights[ f'{prefix}head/conv2d/bias'])) for bname, block in self.body.named_children(): for uname, unit in block.named_children(): unit.load_from(weights, prefix=f'{prefix}{bname}/{uname}/') def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {'block_units': [4, 4, 4, 4], 'width_factor': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn from torch.nn import functional as F from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 768 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 147 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 1024 y1 = yindex // 1024 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 1024 * x2 + 9216 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 2048 y1 = yindex // 2048 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 2048 * x2 + 18432 * y1), tmp0, xmask) @triton.jit def triton_per_fused_add_div_sqrt_sub_var_mean_6(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 rnumel = 147 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 147 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(rmask & xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask & xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 147, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(rmask & xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 147.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-10 tmp20 = tmp18 + tmp19 tmp21 = libdevice.sqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 147 * x0), tmp23, rmask & xmask) @triton.jit def triton_poi_fused_constant_pad_nd_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 8704 % 34 x1 = xindex // 256 % 34 x3 = xindex // 295936 x4 = xindex % 8704 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-8448 + x4 + 8192 * x2 + 262144 * x3), tmp10, other=0.0) tl.store(out_ptr0 + x6, tmp11, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 16 x2 = xindex // 4096 % 16 x3 = xindex // 65536 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp3 = tl.load(in_ptr0 + (512 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp5 = tl.load(in_ptr0 + (8704 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp7 = tl.load(in_ptr0 + (8960 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp9 = tl.load(in_ptr0 + (9216 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp11 = tl.load(in_ptr0 + (17408 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp13 = tl.load(in_ptr0 + (17664 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp15 = tl.load(in_ptr0 + (17920 + x0 + 512 * x1 + 17408 * x2 + 295936 * x3), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + x4, tmp16, None) tl.store(out_ptr1 + x4, tmp41, None) @triton.jit def triton_red_fused_native_group_norm_9(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = xindex // 32 tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 8 r3 = rindex // 8 tmp0 = tl.load(in_ptr0 + (r2 + 8 * x0 + 256 * r3 + 65536 * x1), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers. welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0) ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean, tmp2_m2, tmp2_weight, 1) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4_tmp[:, None] tl.store(out_ptr0 + x4, tmp2, xmask) tl.store(out_ptr1 + x4, tmp3, xmask) tmp5 = 2048.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 256 x2 = xindex // 65536 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 8), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 8), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2048.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = tl.load(in_out_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_red_fused_native_group_norm_12(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = xindex // 32 tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 32 r3 = rindex // 32 tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 262144 * x1), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers. welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0) ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean, tmp2_m2, tmp2_weight, 1) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4_tmp[:, None] tl.store(out_ptr0 + x4, tmp2, xmask) tl.store(out_ptr1 + x4, tmp3, xmask) tmp5 = 8192.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_13(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 1024 x2 = xindex // 262144 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 8192.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_red_fused_native_group_norm_15(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = xindex // 32 tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 16 r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 512 * r3 + 131072 * x1), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers. welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0) ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean, tmp2_m2, tmp2_weight, 1) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4_tmp[:, None] tl.store(out_ptr0 + x4, tmp2, xmask) tl.store(out_ptr1 + x4, tmp3, xmask) tmp5 = 4096.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 512 x2 = xindex // 131072 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 4096.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_per_fused_native_group_norm_17(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex % 16 r3 = rindex // 16 x0 = xindex % 32 x1 = xindex // 32 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 512 * r3 + 32768 * x1), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + x4, tmp18, None) tl.store(out_ptr0 + x4, tmp8, None) tl.store(out_ptr1 + x4, tmp13, None) @triton.jit def triton_poi_fused_native_group_norm_relu_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 512 x2 = xindex // 32768 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1024.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = tl.load(in_out_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_red_fused_native_group_norm_20(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = xindex // 32 tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 64 r3 = rindex // 64 tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0 + 2048 * r3 + 131072 * x1), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers. welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0) ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean, tmp2_m2, tmp2_weight, 1) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4_tmp[:, None] tl.store(out_ptr0 + x4, tmp2, xmask) tl.store(out_ptr1 + x4, tmp3, xmask) tmp5 = 4096.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 2048 x2 = xindex // 131072 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 64), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 64), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 4096.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_22(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_red_fused_native_group_norm_23(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = xindex // 32 tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 32 r3 = rindex // 32 tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 65536 * x1), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers. welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0) ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean, tmp2_m2, tmp2_weight, 1) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4_tmp[:, None] tl.store(out_ptr0 + x4, tmp2, xmask) tl.store(out_ptr1 + x4, tmp3, xmask) tmp5 = 2048.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_24(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 1024 x2 = xindex // 65536 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2048.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_per_fused_native_group_norm_25(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex % 32 r3 = rindex // 32 x0 = xindex % 32 x1 = xindex // 32 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 16384 * x1), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 512, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 512.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + x4, tmp18, None) tl.store(out_ptr0 + x4, tmp8, None) tl.store(out_ptr1 + x4, tmp13, None) @triton.jit def triton_poi_fused_native_group_norm_relu_26(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 1024 x2 = xindex // 16384 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 512.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_27(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = tl.load(in_out_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_red_fused_native_group_norm_28(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 32 x1 = xindex // 32 tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex % 128 r3 = rindex // 128 tmp0 = tl.load(in_ptr0 + (r2 + 128 * x0 + 4096 * r3 + 65536 * x1), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers. welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0) ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean, tmp2_m2, tmp2_weight, 1) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4_tmp[:, None] tl.store(out_ptr0 + x4, tmp2, xmask) tl.store(out_ptr1 + x4, tmp3, xmask) tmp5 = 2048.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.store(out_ptr2 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = xindex // 65536 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 128), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 128), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2048.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_30(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_per_fused_native_group_norm_31(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex % 64 r3 = rindex // 64 x0 = xindex % 32 x1 = xindex // 32 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0 + 2048 * r3 + 32768 * x1), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + x4, tmp18, None) tl.store(out_ptr0 + x4, tmp8, None) tl.store(out_ptr1 + x4, tmp13, None) @triton.jit def triton_poi_fused_native_group_norm_relu_32(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 2048 x2 = xindex // 32768 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 64), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 64), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1024.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_per_fused_native_group_norm_33(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex % 64 r3 = rindex // 64 x0 = xindex % 32 x1 = xindex // 32 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0 + 2048 * r3 + 8192 * x1), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 256, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 256.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + x4, tmp18, None) tl.store(out_ptr0 + x4, tmp8, None) tl.store(out_ptr1 + x4, tmp13, None) @triton.jit def triton_poi_fused_native_group_norm_relu_34(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 2048 x2 = xindex // 8192 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 64), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 64), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 256.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_35(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = tl.load(in_out_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_per_fused_native_group_norm_36(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex % 256 r3 = rindex // 256 x0 = xindex % 32 x1 = xindex // 32 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 256 * x0 + 8192 * r3 + 32768 * x1), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.store(out_ptr2 + x4, tmp18, None) tl.store(out_ptr0 + x4, tmp8, None) tl.store(out_ptr1 + x4, tmp13, None) @triton.jit def triton_poi_fused_native_group_norm_relu_37(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 8192 x2 = xindex // 32768 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 256), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 256), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1024.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_38(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + x0, None) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, None) @triton.jit def triton_per_fused_native_group_norm_39(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex % 256 r3 = rindex // 256 x0 = xindex % 32 x1 = xindex // 32 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 256 * x0 + 8192 * r3 + 32768 * x1), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 1024, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 1024.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.debug_barrier() tl.store(in_out_ptr0 + x4, tmp18, None) tl.store(out_ptr0 + x4, tmp8, None) @triton.jit def triton_poi_fused_mean_native_group_norm_relu_40(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8192 x1 = xindex // 8192 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 32768 * x1), None) tmp1 = tl.load(in_ptr1 + x2 // 256, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2 // 256, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (8192 + x0 + 32768 * x1), None) tmp18 = tl.load(in_ptr0 + (16384 + x0 + 32768 * x1), None) tmp25 = tl.load(in_ptr0 + (24576 + x0 + 32768 * x1), None) tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = tmp11 - tmp1 tmp13 = tmp12 * tmp3 tmp14 = tmp13 * tmp5 tmp15 = tmp14 + tmp7 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp17 = tmp10 + tmp16 tmp19 = tmp18 - tmp1 tmp20 = tmp19 * tmp3 tmp21 = tmp20 * tmp5 tmp22 = tmp21 + tmp7 tmp23 = triton_helpers.maximum(tmp9, tmp22) tmp24 = tmp17 + tmp23 tmp26 = tmp25 - tmp1 tmp27 = tmp26 * tmp3 tmp28 = tmp27 * tmp5 tmp29 = tmp28 + tmp7 tmp30 = triton_helpers.maximum(tmp9, tmp29) tmp31 = tmp24 + tmp30 tmp32 = 4.0 tmp33 = tmp31 / tmp32 tl.store(out_ptr0 + x2, tmp33, None) @triton.jit def triton_poi_fused_convolution_41(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 87372 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 21843 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154) = args args.clear() assert_size_stride(primals_1, (256, 3, 7, 7), (147, 49, 7, 1)) assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_3, (256,), (1,)) assert_size_stride(primals_4, (256,), (1,)) assert_size_stride(primals_5, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_6, (256, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256,), (1,)) assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_10, (256,), (1,)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_13, (1024,), (1,)) assert_size_stride(primals_14, (1024,), (1,)) assert_size_stride(primals_15, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_16, (256,), (1,)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (256,), (1,)) assert_size_stride(primals_20, (256,), (1,)) assert_size_stride(primals_21, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_22, (1024,), (1,)) assert_size_stride(primals_23, (1024,), (1,)) assert_size_stride(primals_24, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_25, (256,), (1,)) assert_size_stride(primals_26, (256,), (1,)) assert_size_stride(primals_27, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_28, (256,), (1,)) assert_size_stride(primals_29, (256,), (1,)) assert_size_stride(primals_30, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_31, (1024,), (1,)) assert_size_stride(primals_32, (1024,), (1,)) assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_34, (256,), (1,)) assert_size_stride(primals_35, (256,), (1,)) assert_size_stride(primals_36, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_37, (256,), (1,)) assert_size_stride(primals_38, (256,), (1,)) assert_size_stride(primals_39, (1024, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_40, (1024,), (1,)) assert_size_stride(primals_41, (1024,), (1,)) assert_size_stride(primals_42, (2048, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_43, (512, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_44, (512,), (1,)) assert_size_stride(primals_45, (512,), (1,)) assert_size_stride(primals_46, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_47, (512,), (1,)) assert_size_stride(primals_48, (512,), (1,)) assert_size_stride(primals_49, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_50, (2048,), (1,)) assert_size_stride(primals_51, (2048,), (1,)) assert_size_stride(primals_52, (512, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_53, (512,), (1,)) assert_size_stride(primals_54, (512,), (1,)) assert_size_stride(primals_55, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_56, (512,), (1,)) assert_size_stride(primals_57, (512,), (1,)) assert_size_stride(primals_58, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_59, (2048,), (1,)) assert_size_stride(primals_60, (2048,), (1,)) assert_size_stride(primals_61, (512, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_62, (512,), (1,)) assert_size_stride(primals_63, (512,), (1,)) assert_size_stride(primals_64, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_65, (512,), (1,)) assert_size_stride(primals_66, (512,), (1,)) assert_size_stride(primals_67, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_68, (2048,), (1,)) assert_size_stride(primals_69, (2048,), (1,)) assert_size_stride(primals_70, (512, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_71, (512,), (1,)) assert_size_stride(primals_72, (512,), (1,)) assert_size_stride(primals_73, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_74, (512,), (1,)) assert_size_stride(primals_75, (512,), (1,)) assert_size_stride(primals_76, (2048, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_77, (2048,), (1,)) assert_size_stride(primals_78, (2048,), (1,)) assert_size_stride(primals_79, (4096, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_80, (1024, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_81, (1024,), (1,)) assert_size_stride(primals_82, (1024,), (1,)) assert_size_stride(primals_83, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_84, (1024,), (1,)) assert_size_stride(primals_85, (1024,), (1,)) assert_size_stride(primals_86, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_87, (4096,), (1,)) assert_size_stride(primals_88, (4096,), (1,)) assert_size_stride(primals_89, (1024, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_90, (1024,), (1,)) assert_size_stride(primals_91, (1024,), (1,)) assert_size_stride(primals_92, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_93, (1024,), (1,)) assert_size_stride(primals_94, (1024,), (1,)) assert_size_stride(primals_95, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_96, (4096,), (1,)) assert_size_stride(primals_97, (4096,), (1,)) assert_size_stride(primals_98, (1024, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_99, (1024,), (1,)) assert_size_stride(primals_100, (1024,), (1,)) assert_size_stride(primals_101, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_102, (1024,), (1,)) assert_size_stride(primals_103, (1024,), (1,)) assert_size_stride(primals_104, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_105, (4096,), (1,)) assert_size_stride(primals_106, (4096,), (1,)) assert_size_stride(primals_107, (1024, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_108, (1024,), (1,)) assert_size_stride(primals_109, (1024,), (1,)) assert_size_stride(primals_110, (1024, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_111, (1024,), (1,)) assert_size_stride(primals_112, (1024,), (1,)) assert_size_stride(primals_113, (4096, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_114, (4096,), (1,)) assert_size_stride(primals_115, (4096,), (1,)) assert_size_stride(primals_116, (8192, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_117, (2048, 4096, 1, 1), (4096, 1, 1, 1)) assert_size_stride(primals_118, (2048,), (1,)) assert_size_stride(primals_119, (2048,), (1,)) assert_size_stride(primals_120, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_121, (2048,), (1,)) assert_size_stride(primals_122, (2048,), (1,)) assert_size_stride(primals_123, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_124, (8192,), (1,)) assert_size_stride(primals_125, (8192,), (1,)) assert_size_stride(primals_126, (2048, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_127, (2048,), (1,)) assert_size_stride(primals_128, (2048,), (1,)) assert_size_stride(primals_129, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_130, (2048,), (1,)) assert_size_stride(primals_131, (2048,), (1,)) assert_size_stride(primals_132, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_133, (8192,), (1,)) assert_size_stride(primals_134, (8192,), (1,)) assert_size_stride(primals_135, (2048, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_136, (2048,), (1,)) assert_size_stride(primals_137, (2048,), (1,)) assert_size_stride(primals_138, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_139, (2048,), (1,)) assert_size_stride(primals_140, (2048,), (1,)) assert_size_stride(primals_141, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_142, (8192,), (1,)) assert_size_stride(primals_143, (8192,), (1,)) assert_size_stride(primals_144, (2048, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_145, (2048,), (1,)) assert_size_stride(primals_146, (2048,), (1,)) assert_size_stride(primals_147, (2048, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_148, (2048,), (1,)) assert_size_stride(primals_149, (2048,), (1,)) assert_size_stride(primals_150, (8192, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_151, (8192,), (1,)) assert_size_stride(primals_152, (8192,), (1,)) assert_size_stride(primals_153, (21843, 8192, 1, 1), (8192, 1, 1, 1)) assert_size_stride(primals_154, (21843,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(768, 49)](primals_1, buf0, 768, 49, XBLOCK= 32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_2, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_2[grid(65536, 9)](primals_9, buf2, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_9 buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_2[grid(65536, 9)](primals_18, buf3, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_18 buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_2[grid(65536, 9)](primals_27, buf4, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_27 buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_2[grid(65536, 9)](primals_36, buf5, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_36 buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_3[grid(262144, 9)](primals_46, buf6, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_46 buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_3[grid(262144, 9)](primals_55, buf7, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_55 buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_3[grid(262144, 9)](primals_64, buf8, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_64 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_3[grid(262144, 9)](primals_73, buf9, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_73 buf10 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024 ), torch.float32) triton_poi_fused_4[grid(1048576, 9)](primals_83, buf10, 1048576, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_83 buf11 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024 ), torch.float32) triton_poi_fused_4[grid(1048576, 9)](primals_92, buf11, 1048576, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_92 buf12 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024 ), torch.float32) triton_poi_fused_4[grid(1048576, 9)](primals_101, buf12, 1048576, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_101 buf13 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024 ), torch.float32) triton_poi_fused_4[grid(1048576, 9)](primals_110, buf13, 1048576, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_110 buf14 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) triton_poi_fused_5[grid(4194304, 9)](primals_120, buf14, 4194304, 9, XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1) del primals_120 buf15 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) triton_poi_fused_5[grid(4194304, 9)](primals_129, buf15, 4194304, 9, XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1) del primals_129 buf16 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) triton_poi_fused_5[grid(4194304, 9)](primals_138, buf16, 4194304, 9, XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1) del primals_138 buf17 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32) triton_poi_fused_5[grid(4194304, 9)](primals_147, buf17, 4194304, 9, XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1) del primals_147 buf19 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32) buf21 = reinterpret_tensor(buf19, (256, 1, 1, 1), (1, 1, 1, 1), 0) del buf19 buf22 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch. float32) triton_per_fused_add_div_sqrt_sub_var_mean_6[grid(256)](buf21, buf0, buf22, 256, 147, XBLOCK=1, num_warps=2, num_stages=1) buf23 = extern_kernels.convolution(buf1, buf22, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf24 = empty_strided_cuda((4, 256, 34, 34), (295936, 1, 8704, 256), torch.float32) triton_poi_fused_constant_pad_nd_7[grid(1183744)](buf23, buf24, 1183744, XBLOCK=1024, num_warps=4, num_stages=1) buf25 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) buf26 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_8[grid(262144)](buf24, buf25, buf26, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf27 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf28 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf30 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf25, buf27, buf28, buf30, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf31 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf25, buf27, buf28, primals_3, primals_4, buf31, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_4 buf32 = extern_kernels.convolution(buf31, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf33 = extern_kernels.convolution(buf31, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf34 = buf28 del buf28 buf35 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf37 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf33, buf34, buf35, buf37, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf33, buf34, buf35, primals_7, primals_8, buf38, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_8 buf39 = extern_kernels.convolution(buf38, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf40 = buf35 del buf35 buf41 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf43 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf39, buf40, buf41, buf43, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf44 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf39, buf40, buf41, primals_10, primals_11, buf44, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_11 buf45 = extern_kernels.convolution(buf44, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf46 = buf32 del buf32 triton_poi_fused_add_11[grid(1048576)](buf46, buf45, 1048576, XBLOCK=512, num_warps=8, num_stages=1) buf47 = buf41 del buf41 buf48 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf50 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_12[grid(128)](buf46, buf47, buf48, buf50, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf51 = buf45 del buf45 triton_poi_fused_native_group_norm_relu_13[grid(1048576)](buf46, buf47, buf48, primals_13, primals_14, buf51, 1048576, XBLOCK= 512, num_warps=8, num_stages=1) del primals_14 buf52 = extern_kernels.convolution(buf51, primals_15, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf52, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf53 = buf48 del buf48 buf54 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf56 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf52, buf53, buf54, buf56, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf57 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf52, buf53, buf54, primals_16, primals_17, buf57, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_17 buf58 = extern_kernels.convolution(buf57, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf59 = buf54 del buf54 buf60 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf62 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf58, buf59, buf60, buf62, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf63 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf58, buf59, buf60, primals_19, primals_20, buf63, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_20 buf64 = extern_kernels.convolution(buf63, primals_21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf65 = buf64 del buf64 triton_poi_fused_add_14[grid(1048576)](buf65, buf46, 1048576, XBLOCK=512, num_warps=8, num_stages=1) buf66 = buf60 del buf60 buf67 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf69 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_12[grid(128)](buf65, buf66, buf67, buf69, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf70 = reinterpret_tensor(buf23, (4, 1024, 16, 16), (262144, 1, 16384, 1024), 0) del buf23 triton_poi_fused_native_group_norm_relu_13[grid(1048576)](buf65, buf66, buf67, primals_22, primals_23, buf70, 1048576, XBLOCK= 512, num_warps=8, num_stages=1) del primals_23 buf71 = extern_kernels.convolution(buf70, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf71, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf72 = buf67 del buf67 buf73 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf75 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf71, buf72, buf73, buf75, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf76 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf71, buf72, buf73, primals_25, primals_26, buf76, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_26 buf77 = extern_kernels.convolution(buf76, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf77, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf78 = buf73 del buf73 buf79 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf81 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf77, buf78, buf79, buf81, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf82 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf77, buf78, buf79, primals_28, primals_29, buf82, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_29 buf83 = extern_kernels.convolution(buf82, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf84 = buf83 del buf83 triton_poi_fused_add_14[grid(1048576)](buf84, buf65, 1048576, XBLOCK=512, num_warps=8, num_stages=1) buf85 = buf79 del buf79 buf86 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf88 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_12[grid(128)](buf84, buf85, buf86, buf88, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf89 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_13[grid(1048576)](buf84, buf85, buf86, primals_31, primals_32, buf89, 1048576, XBLOCK= 512, num_warps=8, num_stages=1) del primals_32 buf90 = extern_kernels.convolution(buf89, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf90, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf91 = buf86 del buf86 buf92 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf94 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) triton_red_fused_native_group_norm_9[grid(128)](buf90, buf91, buf92, buf94, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf95 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf90, buf91, buf92, primals_34, primals_35, buf95, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_35 buf96 = extern_kernels.convolution(buf95, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf96, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf97 = buf92 del buf92 buf98 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf100 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_9[grid(128)](buf96, buf97, buf98, buf100, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf101 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_native_group_norm_relu_10[grid(262144)](buf96, buf97, buf98, primals_37, primals_38, buf101, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_38 buf102 = extern_kernels.convolution(buf101, primals_39, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf102, (4, 1024, 16, 16), (262144, 1, 16384, 1024)) buf103 = buf102 del buf102 triton_poi_fused_add_14[grid(1048576)](buf103, buf84, 1048576, XBLOCK=512, num_warps=8, num_stages=1) buf104 = buf98 del buf98 buf105 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf107 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_12[grid(128)](buf103, buf104, buf105, buf107, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf108 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_13[grid(1048576)](buf103, buf104, buf105, primals_40, primals_41, buf108, 1048576, XBLOCK =512, num_warps=8, num_stages=1) del primals_41 buf109 = extern_kernels.convolution(buf108, primals_42, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf110 = extern_kernels.convolution(buf108, primals_43, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf110, (4, 512, 16, 16), (131072, 1, 8192, 512)) buf111 = buf105 del buf105 buf112 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf114 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_15[grid(128)](buf110, buf111, buf112, buf114, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf115 = empty_strided_cuda((4, 512, 16, 16), (131072, 1, 8192, 512 ), torch.float32) triton_poi_fused_native_group_norm_relu_16[grid(524288)](buf110, buf111, buf112, primals_44, primals_45, buf115, 524288, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_45 buf116 = extern_kernels.convolution(buf115, buf6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf116, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf117 = buf112 del buf112 buf118 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf120 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_17[grid(128)](buf116, buf117, buf118, buf120, 128, 1024, num_warps=8, num_stages=1) buf121 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) triton_poi_fused_native_group_norm_relu_18[grid(131072)](buf116, buf117, buf118, primals_47, primals_48, buf121, 131072, XBLOCK= 512, num_warps=8, num_stages=1) del primals_48 buf122 = extern_kernels.convolution(buf121, primals_49, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf122, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf123 = buf109 del buf109 triton_poi_fused_add_19[grid(524288)](buf123, buf122, 524288, XBLOCK=512, num_warps=8, num_stages=1) buf124 = buf118 del buf118 buf125 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf127 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_20[grid(128)](buf123, buf124, buf125, buf127, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf128 = buf122 del buf122 triton_poi_fused_native_group_norm_relu_21[grid(524288)](buf123, buf124, buf125, primals_50, primals_51, buf128, 524288, XBLOCK= 512, num_warps=8, num_stages=1) del primals_51 buf129 = extern_kernels.convolution(buf128, primals_52, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf129, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf130 = buf125 del buf125 buf131 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf133 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_17[grid(128)](buf129, buf130, buf131, buf133, 128, 1024, num_warps=8, num_stages=1) buf134 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) triton_poi_fused_native_group_norm_relu_18[grid(131072)](buf129, buf130, buf131, primals_53, primals_54, buf134, 131072, XBLOCK= 512, num_warps=8, num_stages=1) del primals_54 buf135 = extern_kernels.convolution(buf134, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf135, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf136 = buf131 del buf131 buf137 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf139 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_17[grid(128)](buf135, buf136, buf137, buf139, 128, 1024, num_warps=8, num_stages=1) buf140 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) triton_poi_fused_native_group_norm_relu_18[grid(131072)](buf135, buf136, buf137, primals_56, primals_57, buf140, 131072, XBLOCK= 512, num_warps=8, num_stages=1) del primals_57 buf141 = extern_kernels.convolution(buf140, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf141, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf142 = buf141 del buf141 triton_poi_fused_add_22[grid(524288)](buf142, buf123, 524288, XBLOCK=512, num_warps=8, num_stages=1) buf143 = buf137 del buf137 buf144 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf146 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_20[grid(128)](buf142, buf143, buf144, buf146, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf147 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_21[grid(524288)](buf142, buf143, buf144, primals_59, primals_60, buf147, 524288, XBLOCK= 512, num_warps=8, num_stages=1) del primals_60 buf148 = extern_kernels.convolution(buf147, primals_61, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf148, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf149 = buf144 del buf144 buf150 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf152 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_17[grid(128)](buf148, buf149, buf150, buf152, 128, 1024, num_warps=8, num_stages=1) buf153 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) triton_poi_fused_native_group_norm_relu_18[grid(131072)](buf148, buf149, buf150, primals_62, primals_63, buf153, 131072, XBLOCK= 512, num_warps=8, num_stages=1) del primals_63 buf154 = extern_kernels.convolution(buf153, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf154, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf155 = buf150 del buf150 buf156 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf158 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_17[grid(128)](buf154, buf155, buf156, buf158, 128, 1024, num_warps=8, num_stages=1) buf159 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) triton_poi_fused_native_group_norm_relu_18[grid(131072)](buf154, buf155, buf156, primals_65, primals_66, buf159, 131072, XBLOCK= 512, num_warps=8, num_stages=1) del primals_66 buf160 = extern_kernels.convolution(buf159, primals_67, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf160, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf161 = buf160 del buf160 triton_poi_fused_add_22[grid(524288)](buf161, buf142, 524288, XBLOCK=512, num_warps=8, num_stages=1) buf162 = buf156 del buf156 buf163 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf165 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_20[grid(128)](buf161, buf162, buf163, buf165, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf166 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_21[grid(524288)](buf161, buf162, buf163, primals_68, primals_69, buf166, 524288, XBLOCK= 512, num_warps=8, num_stages=1) del primals_69 buf167 = extern_kernels.convolution(buf166, primals_70, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf167, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf168 = buf163 del buf163 buf169 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf171 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_17[grid(128)](buf167, buf168, buf169, buf171, 128, 1024, num_warps=8, num_stages=1) buf172 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) triton_poi_fused_native_group_norm_relu_18[grid(131072)](buf167, buf168, buf169, primals_71, primals_72, buf172, 131072, XBLOCK= 512, num_warps=8, num_stages=1) del primals_72 buf173 = extern_kernels.convolution(buf172, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf173, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf174 = buf169 del buf169 buf175 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf177 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_17[grid(128)](buf173, buf174, buf175, buf177, 128, 1024, num_warps=8, num_stages=1) buf178 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32) triton_poi_fused_native_group_norm_relu_18[grid(131072)](buf173, buf174, buf175, primals_74, primals_75, buf178, 131072, XBLOCK= 512, num_warps=8, num_stages=1) del primals_75 buf179 = extern_kernels.convolution(buf178, primals_76, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf179, (4, 2048, 8, 8), (131072, 1, 16384, 2048)) buf180 = buf179 del buf179 triton_poi_fused_add_22[grid(524288)](buf180, buf161, 524288, XBLOCK=512, num_warps=8, num_stages=1) buf181 = buf175 del buf175 buf182 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf184 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_20[grid(128)](buf180, buf181, buf182, buf184, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf185 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_21[grid(524288)](buf180, buf181, buf182, primals_77, primals_78, buf185, 524288, XBLOCK= 512, num_warps=8, num_stages=1) del primals_78 buf186 = extern_kernels.convolution(buf185, primals_79, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf186, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf187 = extern_kernels.convolution(buf185, primals_80, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf187, (4, 1024, 8, 8), (65536, 1, 8192, 1024)) buf188 = buf182 del buf182 buf189 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf191 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_23[grid(128)](buf187, buf188, buf189, buf191, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf192 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_24[grid(262144)](buf187, buf188, buf189, primals_81, primals_82, buf192, 262144, XBLOCK= 512, num_warps=8, num_stages=1) del primals_82 buf193 = extern_kernels.convolution(buf192, buf10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf193, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf194 = buf189 del buf189 buf195 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf197 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_25[grid(128)](buf193, buf194, buf195, buf197, 128, 512, num_warps=4, num_stages=1) buf198 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_26[grid(65536)](buf193, buf194, buf195, primals_84, primals_85, buf198, 65536, XBLOCK= 256, num_warps=4, num_stages=1) del primals_85 buf199 = extern_kernels.convolution(buf198, primals_86, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf199, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf200 = buf186 del buf186 triton_poi_fused_add_27[grid(262144)](buf200, buf199, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf201 = buf195 del buf195 buf202 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf204 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_28[grid(128)](buf200, buf201, buf202, buf204, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf205 = buf199 del buf199 triton_poi_fused_native_group_norm_relu_29[grid(262144)](buf200, buf201, buf202, primals_87, primals_88, buf205, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_88 buf206 = extern_kernels.convolution(buf205, primals_89, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf206, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf207 = buf202 del buf202 buf208 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf210 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_25[grid(128)](buf206, buf207, buf208, buf210, 128, 512, num_warps=4, num_stages=1) buf211 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_26[grid(65536)](buf206, buf207, buf208, primals_90, primals_91, buf211, 65536, XBLOCK= 256, num_warps=4, num_stages=1) del primals_91 buf212 = extern_kernels.convolution(buf211, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf212, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf213 = buf208 del buf208 buf214 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf216 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_25[grid(128)](buf212, buf213, buf214, buf216, 128, 512, num_warps=4, num_stages=1) buf217 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_26[grid(65536)](buf212, buf213, buf214, primals_93, primals_94, buf217, 65536, XBLOCK= 256, num_warps=4, num_stages=1) del primals_94 buf218 = extern_kernels.convolution(buf217, primals_95, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf218, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf219 = buf218 del buf218 triton_poi_fused_add_30[grid(262144)](buf219, buf200, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf220 = buf214 del buf214 buf221 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf223 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_28[grid(128)](buf219, buf220, buf221, buf223, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf224 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096 ), torch.float32) triton_poi_fused_native_group_norm_relu_29[grid(262144)](buf219, buf220, buf221, primals_96, primals_97, buf224, 262144, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_97 buf225 = extern_kernels.convolution(buf224, primals_98, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf225, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf226 = buf221 del buf221 buf227 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf229 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_25[grid(128)](buf225, buf226, buf227, buf229, 128, 512, num_warps=4, num_stages=1) buf230 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_26[grid(65536)](buf225, buf226, buf227, primals_99, primals_100, buf230, 65536, XBLOCK= 256, num_warps=4, num_stages=1) del primals_100 buf231 = extern_kernels.convolution(buf230, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf231, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf232 = buf227 del buf227 buf233 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf235 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_25[grid(128)](buf231, buf232, buf233, buf235, 128, 512, num_warps=4, num_stages=1) buf236 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_26[grid(65536)](buf231, buf232, buf233, primals_102, primals_103, buf236, 65536, XBLOCK =256, num_warps=4, num_stages=1) del primals_103 buf237 = extern_kernels.convolution(buf236, primals_104, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf237, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf238 = buf237 del buf237 triton_poi_fused_add_30[grid(262144)](buf238, buf219, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf239 = buf233 del buf233 buf240 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf242 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_28[grid(128)](buf238, buf239, buf240, buf242, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf243 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096 ), torch.float32) triton_poi_fused_native_group_norm_relu_29[grid(262144)](buf238, buf239, buf240, primals_105, primals_106, buf243, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_106 buf244 = extern_kernels.convolution(buf243, primals_107, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf244, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf245 = buf240 del buf240 buf246 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf248 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_25[grid(128)](buf244, buf245, buf246, buf248, 128, 512, num_warps=4, num_stages=1) buf249 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_26[grid(65536)](buf244, buf245, buf246, primals_108, primals_109, buf249, 65536, XBLOCK =256, num_warps=4, num_stages=1) del primals_109 buf250 = extern_kernels.convolution(buf249, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf250, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf251 = buf246 del buf246 buf252 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf254 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_25[grid(128)](buf250, buf251, buf252, buf254, 128, 512, num_warps=4, num_stages=1) buf255 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32) triton_poi_fused_native_group_norm_relu_26[grid(65536)](buf250, buf251, buf252, primals_111, primals_112, buf255, 65536, XBLOCK =256, num_warps=4, num_stages=1) del primals_112 buf256 = extern_kernels.convolution(buf255, primals_113, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf256, (4, 4096, 4, 4), (65536, 1, 16384, 4096)) buf257 = buf256 del buf256 triton_poi_fused_add_30[grid(262144)](buf257, buf238, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf258 = buf252 del buf252 buf259 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf261 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_red_fused_native_group_norm_28[grid(128)](buf257, buf258, buf259, buf261, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf262 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096 ), torch.float32) triton_poi_fused_native_group_norm_relu_29[grid(262144)](buf257, buf258, buf259, primals_114, primals_115, buf262, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_115 buf263 = extern_kernels.convolution(buf262, primals_116, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf263, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf264 = extern_kernels.convolution(buf262, primals_117, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf264, (4, 2048, 4, 4), (32768, 1, 8192, 2048)) buf265 = buf259 del buf259 buf266 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf268 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_31[grid(128)](buf264, buf265, buf266, buf268, 128, 1024, num_warps=8, num_stages=1) buf269 = empty_strided_cuda((4, 2048, 4, 4), (32768, 1, 8192, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_32[grid(131072)](buf264, buf265, buf266, primals_118, primals_119, buf269, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_119 buf270 = extern_kernels.convolution(buf269, buf14, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf270, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf271 = buf266 del buf266 buf272 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf274 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_33[grid(128)](buf270, buf271, buf272, buf274, 128, 256, num_warps=2, num_stages=1) buf275 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_34[grid(32768)](buf270, buf271, buf272, primals_121, primals_122, buf275, 32768, XBLOCK =256, num_warps=4, num_stages=1) del primals_122 buf276 = extern_kernels.convolution(buf275, primals_123, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf276, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf277 = buf263 del buf263 triton_poi_fused_add_35[grid(131072)](buf277, buf276, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf278 = buf272 del buf272 buf279 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf281 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_36[grid(128)](buf277, buf278, buf279, buf281, 128, 1024, num_warps=8, num_stages=1) buf282 = buf276 del buf276 triton_poi_fused_native_group_norm_relu_37[grid(131072)](buf277, buf278, buf279, primals_124, primals_125, buf282, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_125 buf283 = extern_kernels.convolution(buf282, primals_126, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf283, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf284 = buf279 del buf279 buf285 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf287 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_33[grid(128)](buf283, buf284, buf285, buf287, 128, 256, num_warps=2, num_stages=1) buf288 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_34[grid(32768)](buf283, buf284, buf285, primals_127, primals_128, buf288, 32768, XBLOCK =256, num_warps=4, num_stages=1) del primals_128 buf289 = extern_kernels.convolution(buf288, buf15, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf289, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf290 = buf285 del buf285 buf291 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf293 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_33[grid(128)](buf289, buf290, buf291, buf293, 128, 256, num_warps=2, num_stages=1) buf294 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_34[grid(32768)](buf289, buf290, buf291, primals_130, primals_131, buf294, 32768, XBLOCK =256, num_warps=4, num_stages=1) del primals_131 buf295 = extern_kernels.convolution(buf294, primals_132, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf295, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf296 = buf295 del buf295 triton_poi_fused_add_38[grid(131072)](buf296, buf277, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf297 = buf291 del buf291 buf298 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf300 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_36[grid(128)](buf296, buf297, buf298, buf300, 128, 1024, num_warps=8, num_stages=1) buf301 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192 ), torch.float32) triton_poi_fused_native_group_norm_relu_37[grid(131072)](buf296, buf297, buf298, primals_133, primals_134, buf301, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_134 buf302 = extern_kernels.convolution(buf301, primals_135, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf302, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf303 = buf298 del buf298 buf304 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf306 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_33[grid(128)](buf302, buf303, buf304, buf306, 128, 256, num_warps=2, num_stages=1) buf307 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_34[grid(32768)](buf302, buf303, buf304, primals_136, primals_137, buf307, 32768, XBLOCK =256, num_warps=4, num_stages=1) del primals_137 buf308 = extern_kernels.convolution(buf307, buf16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf308, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf309 = buf304 del buf304 buf310 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf312 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_33[grid(128)](buf308, buf309, buf310, buf312, 128, 256, num_warps=2, num_stages=1) buf313 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_34[grid(32768)](buf308, buf309, buf310, primals_139, primals_140, buf313, 32768, XBLOCK =256, num_warps=4, num_stages=1) del primals_140 buf314 = extern_kernels.convolution(buf313, primals_141, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf314, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf315 = buf314 del buf314 triton_poi_fused_add_38[grid(131072)](buf315, buf296, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf316 = buf310 del buf310 buf317 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf319 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_36[grid(128)](buf315, buf316, buf317, buf319, 128, 1024, num_warps=8, num_stages=1) buf320 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192 ), torch.float32) triton_poi_fused_native_group_norm_relu_37[grid(131072)](buf315, buf316, buf317, primals_142, primals_143, buf320, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_143 buf321 = extern_kernels.convolution(buf320, primals_144, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf321, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf322 = buf317 del buf317 buf323 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf325 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_33[grid(128)](buf321, buf322, buf323, buf325, 128, 256, num_warps=2, num_stages=1) buf326 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_34[grid(32768)](buf321, buf322, buf323, primals_145, primals_146, buf326, 32768, XBLOCK =256, num_warps=4, num_stages=1) del primals_146 buf327 = extern_kernels.convolution(buf326, buf17, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf327, (4, 2048, 2, 2), (8192, 1, 4096, 2048)) buf328 = buf323 del buf323 buf329 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf331 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) triton_per_fused_native_group_norm_33[grid(128)](buf327, buf328, buf329, buf331, 128, 256, num_warps=2, num_stages=1) buf332 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32) triton_poi_fused_native_group_norm_relu_34[grid(32768)](buf327, buf328, buf329, primals_148, primals_149, buf332, 32768, XBLOCK =256, num_warps=4, num_stages=1) del primals_149 buf333 = extern_kernels.convolution(buf332, primals_150, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf333, (4, 8192, 2, 2), (32768, 1, 16384, 8192)) buf334 = buf333 del buf333 triton_poi_fused_add_38[grid(131072)](buf334, buf315, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf335 = reinterpret_tensor(buf329, (4, 32, 1, 1), (32, 1, 32, 32), 0) del buf329 buf336 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch .float32) buf338 = reinterpret_tensor(buf336, (4, 32, 1, 1), (32, 1, 32, 32), 0) del buf336 triton_per_fused_native_group_norm_39[grid(128)](buf338, buf334, buf335, 128, 1024, num_warps=8, num_stages=1) buf339 = empty_strided_cuda((4, 8192, 1, 1), (8192, 1, 8192, 8192), torch.float32) triton_poi_fused_mean_native_group_norm_relu_40[grid(32768)](buf334, buf335, buf338, primals_151, primals_152, buf339, 32768, XBLOCK =256, num_warps=4, num_stages=1) buf340 = extern_kernels.convolution(buf339, primals_153, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf340, (4, 21843, 1, 1), (21843, 1, 21843, 21843)) buf341 = reinterpret_tensor(buf340, (4, 21843, 1, 1), (21843, 1, 87372, 87372), 0) del buf340 triton_poi_fused_convolution_41[grid(87372)](buf341, primals_154, 87372, XBLOCK=512, num_warps=8, num_stages=1) del primals_154 return (reinterpret_tensor(buf341, (4, 21843), (21843, 1), 0), buf0, buf1, primals_3, primals_5, primals_6, primals_7, buf2, primals_10, primals_12, primals_13, primals_15, primals_16, buf3, primals_19, primals_21, primals_22, primals_24, primals_25, buf4, primals_28, primals_30, primals_31, primals_33, primals_34, buf5, primals_37, primals_39, primals_40, primals_42, primals_43, primals_44, buf6, primals_47, primals_49, primals_50, primals_52, primals_53, buf7, primals_56, primals_58, primals_59, primals_61, primals_62, buf8, primals_65, primals_67, primals_68, primals_70, primals_71, buf9, primals_74, primals_76, primals_77, primals_79, primals_80, primals_81, buf10, primals_84, primals_86, primals_87, primals_89, primals_90, buf11, primals_93, primals_95, primals_96, primals_98, primals_99, buf12, primals_102, primals_104, primals_105, primals_107, primals_108, buf13, primals_111, primals_113, primals_114, primals_116, primals_117, primals_118, buf14, primals_121, primals_123, primals_124, primals_126, primals_127, buf15, primals_130, primals_132, primals_133, primals_135, primals_136, buf16, primals_139, primals_141, primals_142, primals_144, primals_145, buf17, primals_148, primals_150, primals_151, primals_152, primals_153, buf21, buf22, buf24, buf25, buf26, reinterpret_tensor(buf27, (4, 32), (32, 1), 0), reinterpret_tensor(buf30, (4, 32), (32, 1), 0), buf31, buf33, reinterpret_tensor(buf34, (4, 32), (32, 1), 0), reinterpret_tensor( buf37, (4, 32), (32, 1), 0), buf38, buf39, reinterpret_tensor(buf40, (4, 32), (32, 1), 0), reinterpret_tensor(buf43, (4, 32), (32, 1), 0 ), buf44, buf46, reinterpret_tensor(buf47, (4, 32), (32, 1), 0), reinterpret_tensor(buf50, (4, 32), (32, 1), 0), buf51, buf52, reinterpret_tensor(buf53, (4, 32), (32, 1), 0), reinterpret_tensor( buf56, (4, 32), (32, 1), 0), buf57, buf58, reinterpret_tensor(buf59, (4, 32), (32, 1), 0), reinterpret_tensor(buf62, (4, 32), (32, 1), 0 ), buf63, buf65, reinterpret_tensor(buf66, (4, 32), (32, 1), 0), reinterpret_tensor(buf69, (4, 32), (32, 1), 0), buf70, buf71, reinterpret_tensor(buf72, (4, 32), (32, 1), 0), reinterpret_tensor( buf75, (4, 32), (32, 1), 0), buf76, buf77, reinterpret_tensor(buf78, (4, 32), (32, 1), 0), reinterpret_tensor(buf81, (4, 32), (32, 1), 0 ), buf82, buf84, reinterpret_tensor(buf85, (4, 32), (32, 1), 0), reinterpret_tensor(buf88, (4, 32), (32, 1), 0), buf89, buf90, reinterpret_tensor(buf91, (4, 32), (32, 1), 0), reinterpret_tensor( buf94, (4, 32), (32, 1), 0), buf95, buf96, reinterpret_tensor(buf97, (4, 32), (32, 1), 0), reinterpret_tensor(buf100, (4, 32), (32, 1), 0), buf101, buf103, reinterpret_tensor(buf104, (4, 32), (32, 1), 0), reinterpret_tensor(buf107, (4, 32), (32, 1), 0), buf108, buf110, reinterpret_tensor(buf111, (4, 32), (32, 1), 0), reinterpret_tensor (buf114, (4, 32), (32, 1), 0), buf115, buf116, reinterpret_tensor( buf117, (4, 32), (32, 1), 0), reinterpret_tensor(buf120, (4, 32), ( 32, 1), 0), buf121, buf123, reinterpret_tensor(buf124, (4, 32), (32, 1), 0), reinterpret_tensor(buf127, (4, 32), (32, 1), 0), buf128, buf129, reinterpret_tensor(buf130, (4, 32), (32, 1), 0), reinterpret_tensor(buf133, (4, 32), (32, 1), 0), buf134, buf135, reinterpret_tensor(buf136, (4, 32), (32, 1), 0), reinterpret_tensor (buf139, (4, 32), (32, 1), 0), buf140, buf142, reinterpret_tensor( buf143, (4, 32), (32, 1), 0), reinterpret_tensor(buf146, (4, 32), ( 32, 1), 0), buf147, buf148, reinterpret_tensor(buf149, (4, 32), (32, 1), 0), reinterpret_tensor(buf152, (4, 32), (32, 1), 0), buf153, buf154, reinterpret_tensor(buf155, (4, 32), (32, 1), 0), reinterpret_tensor(buf158, (4, 32), (32, 1), 0), buf159, buf161, reinterpret_tensor(buf162, (4, 32), (32, 1), 0), reinterpret_tensor (buf165, (4, 32), (32, 1), 0), buf166, buf167, reinterpret_tensor( buf168, (4, 32), (32, 1), 0), reinterpret_tensor(buf171, (4, 32), ( 32, 1), 0), buf172, buf173, reinterpret_tensor(buf174, (4, 32), (32, 1), 0), reinterpret_tensor(buf177, (4, 32), (32, 1), 0), buf178, buf180, reinterpret_tensor(buf181, (4, 32), (32, 1), 0), reinterpret_tensor(buf184, (4, 32), (32, 1), 0), buf185, buf187, reinterpret_tensor(buf188, (4, 32), (32, 1), 0), reinterpret_tensor (buf191, (4, 32), (32, 1), 0), buf192, buf193, reinterpret_tensor( buf194, (4, 32), (32, 1), 0), reinterpret_tensor(buf197, (4, 32), ( 32, 1), 0), buf198, buf200, reinterpret_tensor(buf201, (4, 32), (32, 1), 0), reinterpret_tensor(buf204, (4, 32), (32, 1), 0), buf205, buf206, reinterpret_tensor(buf207, (4, 32), (32, 1), 0), reinterpret_tensor(buf210, (4, 32), (32, 1), 0), buf211, buf212, reinterpret_tensor(buf213, (4, 32), (32, 1), 0), reinterpret_tensor (buf216, (4, 32), (32, 1), 0), buf217, buf219, reinterpret_tensor( buf220, (4, 32), (32, 1), 0), reinterpret_tensor(buf223, (4, 32), ( 32, 1), 0), buf224, buf225, reinterpret_tensor(buf226, (4, 32), (32, 1), 0), reinterpret_tensor(buf229, (4, 32), (32, 1), 0), buf230, buf231, reinterpret_tensor(buf232, (4, 32), (32, 1), 0), reinterpret_tensor(buf235, (4, 32), (32, 1), 0), buf236, buf238, reinterpret_tensor(buf239, (4, 32), (32, 1), 0), reinterpret_tensor (buf242, (4, 32), (32, 1), 0), buf243, buf244, reinterpret_tensor( buf245, (4, 32), (32, 1), 0), reinterpret_tensor(buf248, (4, 32), ( 32, 1), 0), buf249, buf250, reinterpret_tensor(buf251, (4, 32), (32, 1), 0), reinterpret_tensor(buf254, (4, 32), (32, 1), 0), buf255, buf257, reinterpret_tensor(buf258, (4, 32), (32, 1), 0), reinterpret_tensor(buf261, (4, 32), (32, 1), 0), buf262, buf264, reinterpret_tensor(buf265, (4, 32), (32, 1), 0), reinterpret_tensor (buf268, (4, 32), (32, 1), 0), buf269, buf270, reinterpret_tensor( buf271, (4, 32), (32, 1), 0), reinterpret_tensor(buf274, (4, 32), ( 32, 1), 0), buf275, buf277, reinterpret_tensor(buf278, (4, 32), (32, 1), 0), reinterpret_tensor(buf281, (4, 32), (32, 1), 0), buf282, buf283, reinterpret_tensor(buf284, (4, 32), (32, 1), 0), reinterpret_tensor(buf287, (4, 32), (32, 1), 0), buf288, buf289, reinterpret_tensor(buf290, (4, 32), (32, 1), 0), reinterpret_tensor (buf293, (4, 32), (32, 1), 0), buf294, buf296, reinterpret_tensor( buf297, (4, 32), (32, 1), 0), reinterpret_tensor(buf300, (4, 32), ( 32, 1), 0), buf301, buf302, reinterpret_tensor(buf303, (4, 32), (32, 1), 0), reinterpret_tensor(buf306, (4, 32), (32, 1), 0), buf307, buf308, reinterpret_tensor(buf309, (4, 32), (32, 1), 0), reinterpret_tensor(buf312, (4, 32), (32, 1), 0), buf313, buf315, reinterpret_tensor(buf316, (4, 32), (32, 1), 0), reinterpret_tensor (buf319, (4, 32), (32, 1), 0), buf320, buf321, reinterpret_tensor( buf322, (4, 32), (32, 1), 0), reinterpret_tensor(buf325, (4, 32), ( 32, 1), 0), buf326, buf327, reinterpret_tensor(buf328, (4, 32), (32, 1), 0), reinterpret_tensor(buf331, (4, 32), (32, 1), 0), buf332, buf334, buf335, buf338, buf339) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def tf2th(conv_weights): """Possibly convert HWIO to OIHW.""" if conv_weights.ndim == 4: conv_weights = conv_weights.transpose([3, 2, 0, 1]) return torch.from_numpy(conv_weights) class StdConv2d(nn.Conv2d): def forward(self, x): w = self.weight v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False) w = (w - m) / torch.sqrt(v + 1e-10) return F.conv2d(x, w, self.bias, self.stride, self.padding, self. dilation, self.groups) class PreActBottleneck(nn.Module): """Pre-activation (v2) bottleneck block. Follows the implementation of "Identity Mappings in Deep Residual Networks": https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua Except it puts the stride on 3x3 conv when available. """ def __init__(self, cin, cout=None, cmid=None, stride=1): super().__init__() cout = cout or cin cmid = cmid or cout // 4 self.gn1 = nn.GroupNorm(32, cin) self.conv1 = conv1x1(cin, cmid) self.gn2 = nn.GroupNorm(32, cmid) self.conv2 = conv3x3(cmid, cmid, stride) self.gn3 = nn.GroupNorm(32, cmid) self.conv3 = conv1x1(cmid, cout) self.relu = nn.ReLU(inplace=True) if stride != 1 or cin != cout: self.downsample = conv1x1(cin, cout, stride) def forward(self, x): out = self.relu(self.gn1(x)) residual = x if hasattr(self, 'downsample'): residual = self.downsample(out) out = self.conv1(out) out = self.conv2(self.relu(self.gn2(out))) out = self.conv3(self.relu(self.gn3(out))) return out + residual def load_from(self, weights, prefix=''): convname = 'standardized_conv2d' with torch.no_grad(): self.conv1.weight.copy_(tf2th(weights[ f'{prefix}a/{convname}/kernel'])) self.conv2.weight.copy_(tf2th(weights[ f'{prefix}b/{convname}/kernel'])) self.conv3.weight.copy_(tf2th(weights[ f'{prefix}c/{convname}/kernel'])) self.gn1.weight.copy_(tf2th(weights[f'{prefix}a/group_norm/gamma']) ) self.gn2.weight.copy_(tf2th(weights[f'{prefix}b/group_norm/gamma']) ) self.gn3.weight.copy_(tf2th(weights[f'{prefix}c/group_norm/gamma']) ) self.gn1.bias.copy_(tf2th(weights[f'{prefix}a/group_norm/beta'])) self.gn2.bias.copy_(tf2th(weights[f'{prefix}b/group_norm/beta'])) self.gn3.bias.copy_(tf2th(weights[f'{prefix}c/group_norm/beta'])) if hasattr(self, 'downsample'): w = weights[f'{prefix}a/proj/{convname}/kernel'] self.downsample.weight.copy_(tf2th(w)) class ResNetV2New(nn.Module): """Implementation of Pre-activation (v2) ResNet mode.""" def __init__(self, block_units, width_factor, head_size=21843, zero_head=False): super().__init__() wf = width_factor self.root = nn.Sequential(OrderedDict([('conv', StdConv2d(3, 64 * wf, kernel_size=7, stride=2, padding=3, bias=False)), ('pad', nn.ConstantPad2d(1, 0)), ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))])) self.body = nn.Sequential(OrderedDict([('block1', nn.Sequential( OrderedDict([('unit01', PreActBottleneck(cin=64 * wf, cout=256 * wf, cmid=64 * wf))] + [(f'unit{i:02d}', PreActBottleneck(cin= 256 * wf, cout=256 * wf, cmid=64 * wf)) for i in range(2, block_units[0] + 1)]))), ('block2', nn.Sequential(OrderedDict([ ('unit01', PreActBottleneck(cin=256 * wf, cout=512 * wf, cmid= 128 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin= 512 * wf, cout=512 * wf, cmid=128 * wf)) for i in range(2, block_units[1] + 1)]))), ('block3', nn.Sequential(OrderedDict([ ('unit01', PreActBottleneck(cin=512 * wf, cout=1024 * wf, cmid= 256 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin= 1024 * wf, cout=1024 * wf, cmid=256 * wf)) for i in range(2, block_units[2] + 1)]))), ('block4', nn.Sequential(OrderedDict([ ('unit01', PreActBottleneck(cin=1024 * wf, cout=2048 * wf, cmid =512 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin =2048 * wf, cout=2048 * wf, cmid=512 * wf)) for i in range(2, block_units[3] + 1)])))])) self.zero_head = zero_head self.head = nn.Sequential(OrderedDict([('gn', nn.GroupNorm(32, 2048 * wf)), ('relu', nn.ReLU(inplace=True)), ('avg', nn. AdaptiveAvgPool2d(output_size=1)), ('conv', nn.Conv2d(2048 * wf, head_size, kernel_size=1, bias=True))])) def load_from(self, weights, prefix='resnet/'): with torch.no_grad(): self.root.conv.weight.copy_(tf2th(weights[ f'{prefix}root_block/standardized_conv2d/kernel'])) self.head.gn.weight.copy_(tf2th(weights[ f'{prefix}group_norm/gamma'])) self.head.gn.bias.copy_(tf2th(weights[f'{prefix}group_norm/beta'])) if self.zero_head: nn.init.zeros_(self.head.conv.weight) nn.init.zeros_(self.head.conv.bias) else: self.head.conv.weight.copy_(tf2th(weights[ f'{prefix}head/conv2d/kernel'])) self.head.conv.bias.copy_(tf2th(weights[ f'{prefix}head/conv2d/bias'])) for bname, block in self.body.named_children(): for uname, unit in block.named_children(): unit.load_from(weights, prefix=f'{prefix}{bname}/{uname}/') def forward(self, input_0): primals_1 = self.root.conv.weight primals_3 = self.body.block1.unit01.gn1.weight primals_4 = self.body.block1.unit01.gn1.bias primals_6 = self.body.block1.unit01.conv1.weight primals_7 = self.body.block1.unit01.gn2.weight primals_8 = self.body.block1.unit01.gn2.bias primals_9 = self.body.block1.unit01.conv2.weight primals_10 = self.body.block1.unit01.gn3.weight primals_11 = self.body.block1.unit01.gn3.bias primals_5 = self.body.block1.unit01.conv3.weight primals_12 = self.body.block1.unit01.downsample.weight primals_13 = self.body.block1.unit02.gn1.weight primals_14 = self.body.block1.unit02.gn1.bias primals_15 = self.body.block1.unit02.conv1.weight primals_16 = self.body.block1.unit02.gn2.weight primals_17 = self.body.block1.unit02.gn2.bias primals_18 = self.body.block1.unit02.conv2.weight primals_19 = self.body.block1.unit02.gn3.weight primals_20 = self.body.block1.unit02.gn3.bias primals_21 = self.body.block1.unit02.conv3.weight primals_22 = self.body.block1.unit03.gn1.weight primals_23 = self.body.block1.unit03.gn1.bias primals_24 = self.body.block1.unit03.conv1.weight primals_25 = self.body.block1.unit03.gn2.weight primals_26 = self.body.block1.unit03.gn2.bias primals_27 = self.body.block1.unit03.conv2.weight primals_28 = self.body.block1.unit03.gn3.weight primals_29 = self.body.block1.unit03.gn3.bias primals_30 = self.body.block1.unit03.conv3.weight primals_31 = self.body.block1.unit04.gn1.weight primals_32 = self.body.block1.unit04.gn1.bias primals_33 = self.body.block1.unit04.conv1.weight primals_34 = self.body.block1.unit04.gn2.weight primals_35 = self.body.block1.unit04.gn2.bias primals_36 = self.body.block1.unit04.conv2.weight primals_37 = self.body.block1.unit04.gn3.weight primals_38 = self.body.block1.unit04.gn3.bias primals_39 = self.body.block1.unit04.conv3.weight primals_40 = self.body.block2.unit01.gn1.weight primals_41 = self.body.block2.unit01.gn1.bias primals_43 = self.body.block2.unit01.conv1.weight primals_44 = self.body.block2.unit01.gn2.weight primals_45 = self.body.block2.unit01.gn2.bias primals_46 = self.body.block2.unit01.conv2.weight primals_47 = self.body.block2.unit01.gn3.weight primals_48 = self.body.block2.unit01.gn3.bias primals_49 = self.body.block2.unit01.conv3.weight primals_42 = self.body.block2.unit01.downsample.weight primals_50 = self.body.block2.unit02.gn1.weight primals_51 = self.body.block2.unit02.gn1.bias primals_52 = self.body.block2.unit02.conv1.weight primals_53 = self.body.block2.unit02.gn2.weight primals_54 = self.body.block2.unit02.gn2.bias primals_55 = self.body.block2.unit02.conv2.weight primals_56 = self.body.block2.unit02.gn3.weight primals_57 = self.body.block2.unit02.gn3.bias primals_58 = self.body.block2.unit02.conv3.weight primals_59 = self.body.block2.unit03.gn1.weight primals_60 = self.body.block2.unit03.gn1.bias primals_61 = self.body.block2.unit03.conv1.weight primals_62 = self.body.block2.unit03.gn2.weight primals_63 = self.body.block2.unit03.gn2.bias primals_64 = self.body.block2.unit03.conv2.weight primals_65 = self.body.block2.unit03.gn3.weight primals_66 = self.body.block2.unit03.gn3.bias primals_67 = self.body.block2.unit03.conv3.weight primals_68 = self.body.block2.unit04.gn1.weight primals_69 = self.body.block2.unit04.gn1.bias primals_70 = self.body.block2.unit04.conv1.weight primals_71 = self.body.block2.unit04.gn2.weight primals_72 = self.body.block2.unit04.gn2.bias primals_73 = self.body.block2.unit04.conv2.weight primals_74 = self.body.block2.unit04.gn3.weight primals_75 = self.body.block2.unit04.gn3.bias primals_76 = self.body.block2.unit04.conv3.weight primals_77 = self.body.block3.unit01.gn1.weight primals_78 = self.body.block3.unit01.gn1.bias primals_80 = self.body.block3.unit01.conv1.weight primals_81 = self.body.block3.unit01.gn2.weight primals_82 = self.body.block3.unit01.gn2.bias primals_83 = self.body.block3.unit01.conv2.weight primals_84 = self.body.block3.unit01.gn3.weight primals_85 = self.body.block3.unit01.gn3.bias primals_86 = self.body.block3.unit01.conv3.weight primals_79 = self.body.block3.unit01.downsample.weight primals_87 = self.body.block3.unit02.gn1.weight primals_88 = self.body.block3.unit02.gn1.bias primals_89 = self.body.block3.unit02.conv1.weight primals_90 = self.body.block3.unit02.gn2.weight primals_91 = self.body.block3.unit02.gn2.bias primals_92 = self.body.block3.unit02.conv2.weight primals_93 = self.body.block3.unit02.gn3.weight primals_94 = self.body.block3.unit02.gn3.bias primals_95 = self.body.block3.unit02.conv3.weight primals_96 = self.body.block3.unit03.gn1.weight primals_97 = self.body.block3.unit03.gn1.bias primals_98 = self.body.block3.unit03.conv1.weight primals_99 = self.body.block3.unit03.gn2.weight primals_100 = self.body.block3.unit03.gn2.bias primals_101 = self.body.block3.unit03.conv2.weight primals_102 = self.body.block3.unit03.gn3.weight primals_103 = self.body.block3.unit03.gn3.bias primals_104 = self.body.block3.unit03.conv3.weight primals_105 = self.body.block3.unit04.gn1.weight primals_106 = self.body.block3.unit04.gn1.bias primals_107 = self.body.block3.unit04.conv1.weight primals_108 = self.body.block3.unit04.gn2.weight primals_109 = self.body.block3.unit04.gn2.bias primals_110 = self.body.block3.unit04.conv2.weight primals_111 = self.body.block3.unit04.gn3.weight primals_112 = self.body.block3.unit04.gn3.bias primals_113 = self.body.block3.unit04.conv3.weight primals_114 = self.body.block4.unit01.gn1.weight primals_115 = self.body.block4.unit01.gn1.bias primals_117 = self.body.block4.unit01.conv1.weight primals_118 = self.body.block4.unit01.gn2.weight primals_119 = self.body.block4.unit01.gn2.bias primals_120 = self.body.block4.unit01.conv2.weight primals_121 = self.body.block4.unit01.gn3.weight primals_122 = self.body.block4.unit01.gn3.bias primals_123 = self.body.block4.unit01.conv3.weight primals_116 = self.body.block4.unit01.downsample.weight primals_124 = self.body.block4.unit02.gn1.weight primals_125 = self.body.block4.unit02.gn1.bias primals_126 = self.body.block4.unit02.conv1.weight primals_127 = self.body.block4.unit02.gn2.weight primals_128 = self.body.block4.unit02.gn2.bias primals_129 = self.body.block4.unit02.conv2.weight primals_130 = self.body.block4.unit02.gn3.weight primals_131 = self.body.block4.unit02.gn3.bias primals_132 = self.body.block4.unit02.conv3.weight primals_133 = self.body.block4.unit03.gn1.weight primals_134 = self.body.block4.unit03.gn1.bias primals_135 = self.body.block4.unit03.conv1.weight primals_136 = self.body.block4.unit03.gn2.weight primals_137 = self.body.block4.unit03.gn2.bias primals_138 = self.body.block4.unit03.conv2.weight primals_139 = self.body.block4.unit03.gn3.weight primals_140 = self.body.block4.unit03.gn3.bias primals_141 = self.body.block4.unit03.conv3.weight primals_142 = self.body.block4.unit04.gn1.weight primals_143 = self.body.block4.unit04.gn1.bias primals_144 = self.body.block4.unit04.conv1.weight primals_145 = self.body.block4.unit04.gn2.weight primals_146 = self.body.block4.unit04.gn2.bias primals_147 = self.body.block4.unit04.conv2.weight primals_148 = self.body.block4.unit04.gn3.weight primals_149 = self.body.block4.unit04.gn3.bias primals_150 = self.body.block4.unit04.conv3.weight primals_151 = self.head.gn.weight primals_152 = self.head.gn.bias primals_153 = self.head.conv.weight primals_154 = self.head.conv.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154]) return output[0]
bethgelab/robustness
ResNetV2
false
16,458
[ "Apache-2.0" ]
67
aa0a6798fe3973bae5f47561721b59b39f126ab7
https://github.com/bethgelab/robustness/tree/aa0a6798fe3973bae5f47561721b59b39f126ab7
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xl/cxlq33nvqoe4qybjyopeuxrddy5uzid5fs5kzfhjq367a6fsdj3s.py # Topologically Sorted Source Nodes: [conv2d, hardtanh], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward] # Source node to ATen node mapping: # conv2d => convolution # hardtanh => clamp_max, clamp_min # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%convolution, 0.0), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%convolution, 0.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%convolution, 6.0), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_convolution_hardtanh_hardtanh_backward_0 = async_compile.triton('triton_poi_fused_convolution_hardtanh_hardtanh_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_hardtanh_hardtanh_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_hardtanh_hardtanh_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%clamp_max, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, hardtanh], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward] stream0 = get_raw_stream(0) triton_poi_fused_convolution_hardtanh_hardtanh_backward_0.run(buf0, primals_2, buf1, buf4, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn class MLP(nn.Module): def __init__(self, dim, hidden_dim, out_dim=None) ->None: super().__init__() out_dim = out_dim or dim self.fc1 = nn.Conv2d(dim, hidden_dim, 1, 1, 0) self.act = nn.ReLU6(True) self.fc2 = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0) def forward(self, x: 'Tensor') ->Tensor: return self.fc2(self.act(self.fc1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'hidden_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_hardtanh_hardtanh_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp9, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_convolution_hardtanh_hardtanh_backward_0[grid(256)]( buf0, primals_2, buf1, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1, buf4 class MLPNew(nn.Module): def __init__(self, dim, hidden_dim, out_dim=None) ->None: super().__init__() out_dim = out_dim or dim self.fc1 = nn.Conv2d(dim, hidden_dim, 1, 1, 0) self.act = nn.ReLU6(True) self.fc2 = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sithu31296/image_classification
MLP
false
16,459
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
BodyPoseModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_1 => convolution # input_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7z/c7zuih2ysjtir5rh5seep5ijnhokjlgkyjw2edhf257ahvz4iipr.py # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_5 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xq/cxqz2dr7nh2qabrtemj52pazmhrknj5ltcy32ka252ia6a3jgpqi.py # Topologically Sorted Source Nodes: [input_6, input_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_6 => convolution_2 # input_7 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pr/cpri5daxkfbmt5ostbhb5o2avircr64a2rmdkxfackaxyjfc7owe.py # Topologically Sorted Source Nodes: [input_10], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_10 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/of/cof37d5wbqzvtkioj7k4me7wqpvfv55rs62ytonj7gij2o3abnod.py # Topologically Sorted Source Nodes: [input_11, input_12], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_11 => convolution_4 # input_12 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mn/cmnzsv2cdbsuq2sygridqvwumzmcvknuthlumel5m25l2ajsr4ft.py # Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_19 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ic/cicsjqc3cfcjzqlztx4hz7ssqwe47ngo3g2onc6463k3vgfmt5cw.py # Topologically Sorted Source Nodes: [input_20, input_21], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_20 => convolution_8 # input_21 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rs/crsb2j7t6kjc2dizrgavde3h3rerob3nhf7iqux6o24562lkvvoe.py # Topologically Sorted Source Nodes: [input_24, input_25], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_24 => convolution_10 # input_25 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_9, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qy/cqyis4pzdzl2zcpdenz7kfyw4uxhak4ugnkkhusp7xtxj4qytdez.py # Topologically Sorted Source Nodes: [input_26, input_27], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_26 => convolution_11 # input_27 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=8] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xh/cxh5qnz7467zwx7kksukcyl5yqbimdzz2jusq6gmtz3v7ngsbddj.py # Topologically Sorted Source Nodes: [out2], Original ATen: [aten.cat] # Source node to ATen node mapping: # out2 => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_16, %convolution_21, %relu_11], 1), kwargs = {}) triton_poi_fused_cat_9 = async_compile.triton('triton_poi_fused_cat_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 47360 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 64) % 185 x0 = xindex % 64 x2 = (xindex // 11840) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 38, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x1) + (2432*x2)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 57, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (x0 + (64*((-38) + x1)) + (1216*x2)), tmp13 & xmask, other=0.0) tmp15 = tl.load(in_ptr3 + ((-38) + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 185, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tl.load(in_ptr4 + (x0 + (64*((-57) + x1)) + (8192*x2)), tmp19 & xmask, other=0.0) tmp23 = tl.where(tmp13, tmp18, tmp22) tmp24 = tl.where(tmp4, tmp9, tmp23) tl.store(out_ptr0 + (x3), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4y/c4y6uyvhmsek266ivpsqvnnoksgofgtz3h3rggm6nksziikdh57s.py # Topologically Sorted Source Nodes: [input_162], Original ATen: [aten.convolution] # Source node to ATen node mapping: # input_162 => convolution_84 # Graph fragment: # %convolution_84 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_73, %primals_170, %primals_171, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_10 = async_compile.triton('triton_poi_fused_convolution_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 64) % 38 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ce/ccekwplfoihswfouqfjqcwmfd2cg37pkjpmovikpxyaqzec4g3iq.py # Topologically Sorted Source Nodes: [input_175, input_176], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # input_175 => convolution_91 # input_176 => relu_80 # Graph fragment: # %convolution_91 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_79, %primals_184, %primals_185, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_80 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_91,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_80, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = (xindex // 64) % 19 x2 = (xindex // 1216) x3 = xindex % 1216 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x3 + (1280*x2)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154, primals_155, primals_156, primals_157, primals_158, primals_159, primals_160, primals_161, primals_162, primals_163, primals_164, primals_165, primals_166, primals_167, primals_168, primals_169, primals_170, primals_171, primals_172, primals_173, primals_174, primals_175, primals_176, primals_177, primals_178, primals_179, primals_180, primals_181, primals_182, primals_183, primals_184, primals_185 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (256, ), (1, )) assert_size_stride(primals_24, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_25, (128, ), (1, )) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128, ), (1, )) assert_size_stride(primals_28, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_29, (128, ), (1, )) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128, ), (1, )) assert_size_stride(primals_32, (512, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_33, (512, ), (1, )) assert_size_stride(primals_34, (38, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_35, (38, ), (1, )) assert_size_stride(primals_36, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_37, (128, ), (1, )) assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (128, ), (1, )) assert_size_stride(primals_40, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_41, (128, ), (1, )) assert_size_stride(primals_42, (512, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_43, (512, ), (1, )) assert_size_stride(primals_44, (19, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_45, (19, ), (1, )) assert_size_stride(primals_46, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_47, (128, ), (1, )) assert_size_stride(primals_48, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_49, (128, ), (1, )) assert_size_stride(primals_50, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_51, (128, ), (1, )) assert_size_stride(primals_52, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_53, (128, ), (1, )) assert_size_stride(primals_54, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_55, (128, ), (1, )) assert_size_stride(primals_56, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_57, (128, ), (1, )) assert_size_stride(primals_58, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_59, (38, ), (1, )) assert_size_stride(primals_60, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_61, (128, ), (1, )) assert_size_stride(primals_62, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_63, (128, ), (1, )) assert_size_stride(primals_64, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_65, (128, ), (1, )) assert_size_stride(primals_66, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_67, (128, ), (1, )) assert_size_stride(primals_68, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_69, (128, ), (1, )) assert_size_stride(primals_70, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_71, (128, ), (1, )) assert_size_stride(primals_72, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_73, (19, ), (1, )) assert_size_stride(primals_74, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_75, (128, ), (1, )) assert_size_stride(primals_76, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_77, (128, ), (1, )) assert_size_stride(primals_78, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_79, (128, ), (1, )) assert_size_stride(primals_80, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_81, (128, ), (1, )) assert_size_stride(primals_82, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_83, (128, ), (1, )) assert_size_stride(primals_84, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_85, (128, ), (1, )) assert_size_stride(primals_86, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_87, (38, ), (1, )) assert_size_stride(primals_88, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_89, (128, ), (1, )) assert_size_stride(primals_90, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_91, (128, ), (1, )) assert_size_stride(primals_92, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_93, (128, ), (1, )) assert_size_stride(primals_94, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_95, (128, ), (1, )) assert_size_stride(primals_96, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_97, (128, ), (1, )) assert_size_stride(primals_98, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_99, (128, ), (1, )) assert_size_stride(primals_100, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_101, (19, ), (1, )) assert_size_stride(primals_102, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_103, (128, ), (1, )) assert_size_stride(primals_104, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_105, (128, ), (1, )) assert_size_stride(primals_106, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_107, (128, ), (1, )) assert_size_stride(primals_108, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_109, (128, ), (1, )) assert_size_stride(primals_110, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_111, (128, ), (1, )) assert_size_stride(primals_112, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_113, (128, ), (1, )) assert_size_stride(primals_114, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_115, (38, ), (1, )) assert_size_stride(primals_116, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_117, (128, ), (1, )) assert_size_stride(primals_118, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_119, (128, ), (1, )) assert_size_stride(primals_120, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_121, (128, ), (1, )) assert_size_stride(primals_122, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_123, (128, ), (1, )) assert_size_stride(primals_124, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_125, (128, ), (1, )) assert_size_stride(primals_126, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_127, (128, ), (1, )) assert_size_stride(primals_128, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_129, (19, ), (1, )) assert_size_stride(primals_130, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_131, (128, ), (1, )) assert_size_stride(primals_132, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_133, (128, ), (1, )) assert_size_stride(primals_134, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_135, (128, ), (1, )) assert_size_stride(primals_136, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_137, (128, ), (1, )) assert_size_stride(primals_138, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_139, (128, ), (1, )) assert_size_stride(primals_140, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_141, (128, ), (1, )) assert_size_stride(primals_142, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_143, (38, ), (1, )) assert_size_stride(primals_144, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_145, (128, ), (1, )) assert_size_stride(primals_146, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_147, (128, ), (1, )) assert_size_stride(primals_148, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_149, (128, ), (1, )) assert_size_stride(primals_150, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_151, (128, ), (1, )) assert_size_stride(primals_152, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_153, (128, ), (1, )) assert_size_stride(primals_154, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_155, (128, ), (1, )) assert_size_stride(primals_156, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_157, (19, ), (1, )) assert_size_stride(primals_158, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_159, (128, ), (1, )) assert_size_stride(primals_160, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_161, (128, ), (1, )) assert_size_stride(primals_162, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_163, (128, ), (1, )) assert_size_stride(primals_164, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_165, (128, ), (1, )) assert_size_stride(primals_166, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_167, (128, ), (1, )) assert_size_stride(primals_168, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_169, (128, ), (1, )) assert_size_stride(primals_170, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_171, (38, ), (1, )) assert_size_stride(primals_172, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_173, (128, ), (1, )) assert_size_stride(primals_174, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_175, (128, ), (1, )) assert_size_stride(primals_176, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_177, (128, ), (1, )) assert_size_stride(primals_178, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_179, (128, ), (1, )) assert_size_stride(primals_180, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_181, (128, ), (1, )) assert_size_stride(primals_182, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_183, (128, ), (1, )) assert_size_stride(primals_184, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_185, (19, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [input_3, input_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [input_6], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [input_6, input_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf7, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [input_8, input_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf9, primals_9, 524288, grid=grid(524288), stream=stream0) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [input_10], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf9, buf10, buf11, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [input_11, input_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [input_13, input_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf15, primals_13, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [input_15], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 256, 16, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [input_15, input_16], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf17, primals_15, 262144, grid=grid(262144), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [input_17], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 256, 16, 1)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [input_17, input_18], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf19, primals_17, 262144, grid=grid(262144), stream=stream0) del primals_17 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.int8) # Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf19, buf20, buf21, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [input_20], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf20, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 8, 8), (32768, 64, 8, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [input_20, input_21], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf23, primals_19, 131072, grid=grid(131072), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [input_22], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 8), (32768, 64, 8, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [input_22, input_23], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf25, primals_21, 131072, grid=grid(131072), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [input_24], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 8, 8), (16384, 64, 8, 1)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [input_24, input_25], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf27, primals_23, 65536, grid=grid(65536), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [input_26], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 64, 8, 1)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [input_26, input_27], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf29, primals_25, 32768, grid=grid(32768), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [input_28], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 128, 8, 8), (8192, 64, 8, 1)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [input_28, input_29], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf31, primals_27, 32768, grid=grid(32768), stream=stream0) del primals_27 # Topologically Sorted Source Nodes: [input_30], Original ATen: [aten.convolution] buf32 = extern_kernels.convolution(buf31, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 128, 8, 8), (8192, 64, 8, 1)) buf33 = buf32; del buf32 # reuse # Topologically Sorted Source Nodes: [input_30, input_31], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf33, primals_29, 32768, grid=grid(32768), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [input_32], Original ATen: [aten.convolution] buf34 = extern_kernels.convolution(buf33, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 128, 8, 8), (8192, 64, 8, 1)) buf35 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [input_32, input_33], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf35, primals_31, 32768, grid=grid(32768), stream=stream0) del primals_31 # Topologically Sorted Source Nodes: [input_34], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 64, 8, 1)) buf37 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [input_34, input_35], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf37, primals_33, 131072, grid=grid(131072), stream=stream0) del primals_33 # Topologically Sorted Source Nodes: [input_36], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 38, 8, 8), (2432, 64, 8, 1)) # Topologically Sorted Source Nodes: [input_37], Original ATen: [aten.convolution] buf39 = extern_kernels.convolution(buf29, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 128, 8, 8), (8192, 64, 8, 1)) buf40 = buf39; del buf39 # reuse # Topologically Sorted Source Nodes: [input_37, input_38], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf40, primals_37, 32768, grid=grid(32768), stream=stream0) del primals_37 # Topologically Sorted Source Nodes: [input_39], Original ATen: [aten.convolution] buf41 = extern_kernels.convolution(buf40, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 128, 8, 8), (8192, 64, 8, 1)) buf42 = buf41; del buf41 # reuse # Topologically Sorted Source Nodes: [input_39, input_40], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf42, primals_39, 32768, grid=grid(32768), stream=stream0) del primals_39 # Topologically Sorted Source Nodes: [input_41], Original ATen: [aten.convolution] buf43 = extern_kernels.convolution(buf42, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 128, 8, 8), (8192, 64, 8, 1)) buf44 = buf43; del buf43 # reuse # Topologically Sorted Source Nodes: [input_41, input_42], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf44, primals_41, 32768, grid=grid(32768), stream=stream0) del primals_41 # Topologically Sorted Source Nodes: [input_43], Original ATen: [aten.convolution] buf45 = extern_kernels.convolution(buf44, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 512, 8, 8), (32768, 64, 8, 1)) buf46 = buf45; del buf45 # reuse # Topologically Sorted Source Nodes: [input_43, input_44], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf46, primals_43, 131072, grid=grid(131072), stream=stream0) del primals_43 # Topologically Sorted Source Nodes: [input_45], Original ATen: [aten.convolution] buf47 = extern_kernels.convolution(buf46, primals_44, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 19, 8, 8), (1216, 64, 8, 1)) buf48 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out2], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf38, primals_35, buf47, primals_45, buf29, buf48, 47360, grid=grid(47360), stream=stream0) del buf38 del buf47 del primals_35 del primals_45 # Topologically Sorted Source Nodes: [input_46], Original ATen: [aten.convolution] buf49 = extern_kernels.convolution(buf48, primals_46, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf49, (4, 128, 8, 8), (8192, 64, 8, 1)) buf50 = buf49; del buf49 # reuse # Topologically Sorted Source Nodes: [input_46, input_47], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf50, primals_47, 32768, grid=grid(32768), stream=stream0) del primals_47 # Topologically Sorted Source Nodes: [input_48], Original ATen: [aten.convolution] buf51 = extern_kernels.convolution(buf50, primals_48, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 128, 8, 8), (8192, 64, 8, 1)) buf52 = buf51; del buf51 # reuse # Topologically Sorted Source Nodes: [input_48, input_49], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf52, primals_49, 32768, grid=grid(32768), stream=stream0) del primals_49 # Topologically Sorted Source Nodes: [input_50], Original ATen: [aten.convolution] buf53 = extern_kernels.convolution(buf52, primals_50, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 128, 8, 8), (8192, 64, 8, 1)) buf54 = buf53; del buf53 # reuse # Topologically Sorted Source Nodes: [input_50, input_51], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf54, primals_51, 32768, grid=grid(32768), stream=stream0) del primals_51 # Topologically Sorted Source Nodes: [input_52], Original ATen: [aten.convolution] buf55 = extern_kernels.convolution(buf54, primals_52, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 128, 8, 8), (8192, 64, 8, 1)) buf56 = buf55; del buf55 # reuse # Topologically Sorted Source Nodes: [input_52, input_53], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf56, primals_53, 32768, grid=grid(32768), stream=stream0) del primals_53 # Topologically Sorted Source Nodes: [input_54], Original ATen: [aten.convolution] buf57 = extern_kernels.convolution(buf56, primals_54, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 128, 8, 8), (8192, 64, 8, 1)) buf58 = buf57; del buf57 # reuse # Topologically Sorted Source Nodes: [input_54, input_55], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf58, primals_55, 32768, grid=grid(32768), stream=stream0) del primals_55 # Topologically Sorted Source Nodes: [input_56], Original ATen: [aten.convolution] buf59 = extern_kernels.convolution(buf58, primals_56, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf59, (4, 128, 8, 8), (8192, 64, 8, 1)) buf60 = buf59; del buf59 # reuse # Topologically Sorted Source Nodes: [input_56, input_57], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf60, primals_57, 32768, grid=grid(32768), stream=stream0) del primals_57 # Topologically Sorted Source Nodes: [input_58], Original ATen: [aten.convolution] buf61 = extern_kernels.convolution(buf60, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf61, (4, 38, 8, 8), (2432, 64, 8, 1)) # Topologically Sorted Source Nodes: [input_59], Original ATen: [aten.convolution] buf62 = extern_kernels.convolution(buf48, primals_60, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf62, (4, 128, 8, 8), (8192, 64, 8, 1)) buf63 = buf62; del buf62 # reuse # Topologically Sorted Source Nodes: [input_59, input_60], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf63, primals_61, 32768, grid=grid(32768), stream=stream0) del primals_61 # Topologically Sorted Source Nodes: [input_61], Original ATen: [aten.convolution] buf64 = extern_kernels.convolution(buf63, primals_62, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 128, 8, 8), (8192, 64, 8, 1)) buf65 = buf64; del buf64 # reuse # Topologically Sorted Source Nodes: [input_61, input_62], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf65, primals_63, 32768, grid=grid(32768), stream=stream0) del primals_63 # Topologically Sorted Source Nodes: [input_63], Original ATen: [aten.convolution] buf66 = extern_kernels.convolution(buf65, primals_64, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf66, (4, 128, 8, 8), (8192, 64, 8, 1)) buf67 = buf66; del buf66 # reuse # Topologically Sorted Source Nodes: [input_63, input_64], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf67, primals_65, 32768, grid=grid(32768), stream=stream0) del primals_65 # Topologically Sorted Source Nodes: [input_65], Original ATen: [aten.convolution] buf68 = extern_kernels.convolution(buf67, primals_66, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf68, (4, 128, 8, 8), (8192, 64, 8, 1)) buf69 = buf68; del buf68 # reuse # Topologically Sorted Source Nodes: [input_65, input_66], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf69, primals_67, 32768, grid=grid(32768), stream=stream0) del primals_67 # Topologically Sorted Source Nodes: [input_67], Original ATen: [aten.convolution] buf70 = extern_kernels.convolution(buf69, primals_68, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 128, 8, 8), (8192, 64, 8, 1)) buf71 = buf70; del buf70 # reuse # Topologically Sorted Source Nodes: [input_67, input_68], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf71, primals_69, 32768, grid=grid(32768), stream=stream0) del primals_69 # Topologically Sorted Source Nodes: [input_69], Original ATen: [aten.convolution] buf72 = extern_kernels.convolution(buf71, primals_70, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf72, (4, 128, 8, 8), (8192, 64, 8, 1)) buf73 = buf72; del buf72 # reuse # Topologically Sorted Source Nodes: [input_69, input_70], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf73, primals_71, 32768, grid=grid(32768), stream=stream0) del primals_71 # Topologically Sorted Source Nodes: [input_71], Original ATen: [aten.convolution] buf74 = extern_kernels.convolution(buf73, primals_72, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf74, (4, 19, 8, 8), (1216, 64, 8, 1)) buf75 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out3], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf61, primals_59, buf74, primals_73, buf29, buf75, 47360, grid=grid(47360), stream=stream0) del buf61 del buf74 del primals_59 del primals_73 # Topologically Sorted Source Nodes: [input_72], Original ATen: [aten.convolution] buf76 = extern_kernels.convolution(buf75, primals_74, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf76, (4, 128, 8, 8), (8192, 64, 8, 1)) buf77 = buf76; del buf76 # reuse # Topologically Sorted Source Nodes: [input_72, input_73], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf77, primals_75, 32768, grid=grid(32768), stream=stream0) del primals_75 # Topologically Sorted Source Nodes: [input_74], Original ATen: [aten.convolution] buf78 = extern_kernels.convolution(buf77, primals_76, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf78, (4, 128, 8, 8), (8192, 64, 8, 1)) buf79 = buf78; del buf78 # reuse # Topologically Sorted Source Nodes: [input_74, input_75], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf79, primals_77, 32768, grid=grid(32768), stream=stream0) del primals_77 # Topologically Sorted Source Nodes: [input_76], Original ATen: [aten.convolution] buf80 = extern_kernels.convolution(buf79, primals_78, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf80, (4, 128, 8, 8), (8192, 64, 8, 1)) buf81 = buf80; del buf80 # reuse # Topologically Sorted Source Nodes: [input_76, input_77], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf81, primals_79, 32768, grid=grid(32768), stream=stream0) del primals_79 # Topologically Sorted Source Nodes: [input_78], Original ATen: [aten.convolution] buf82 = extern_kernels.convolution(buf81, primals_80, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf82, (4, 128, 8, 8), (8192, 64, 8, 1)) buf83 = buf82; del buf82 # reuse # Topologically Sorted Source Nodes: [input_78, input_79], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf83, primals_81, 32768, grid=grid(32768), stream=stream0) del primals_81 # Topologically Sorted Source Nodes: [input_80], Original ATen: [aten.convolution] buf84 = extern_kernels.convolution(buf83, primals_82, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf84, (4, 128, 8, 8), (8192, 64, 8, 1)) buf85 = buf84; del buf84 # reuse # Topologically Sorted Source Nodes: [input_80, input_81], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf85, primals_83, 32768, grid=grid(32768), stream=stream0) del primals_83 # Topologically Sorted Source Nodes: [input_82], Original ATen: [aten.convolution] buf86 = extern_kernels.convolution(buf85, primals_84, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 128, 8, 8), (8192, 64, 8, 1)) buf87 = buf86; del buf86 # reuse # Topologically Sorted Source Nodes: [input_82, input_83], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf87, primals_85, 32768, grid=grid(32768), stream=stream0) del primals_85 # Topologically Sorted Source Nodes: [input_84], Original ATen: [aten.convolution] buf88 = extern_kernels.convolution(buf87, primals_86, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf88, (4, 38, 8, 8), (2432, 64, 8, 1)) # Topologically Sorted Source Nodes: [input_85], Original ATen: [aten.convolution] buf89 = extern_kernels.convolution(buf75, primals_88, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf89, (4, 128, 8, 8), (8192, 64, 8, 1)) buf90 = buf89; del buf89 # reuse # Topologically Sorted Source Nodes: [input_85, input_86], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf90, primals_89, 32768, grid=grid(32768), stream=stream0) del primals_89 # Topologically Sorted Source Nodes: [input_87], Original ATen: [aten.convolution] buf91 = extern_kernels.convolution(buf90, primals_90, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf91, (4, 128, 8, 8), (8192, 64, 8, 1)) buf92 = buf91; del buf91 # reuse # Topologically Sorted Source Nodes: [input_87, input_88], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf92, primals_91, 32768, grid=grid(32768), stream=stream0) del primals_91 # Topologically Sorted Source Nodes: [input_89], Original ATen: [aten.convolution] buf93 = extern_kernels.convolution(buf92, primals_92, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf93, (4, 128, 8, 8), (8192, 64, 8, 1)) buf94 = buf93; del buf93 # reuse # Topologically Sorted Source Nodes: [input_89, input_90], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf94, primals_93, 32768, grid=grid(32768), stream=stream0) del primals_93 # Topologically Sorted Source Nodes: [input_91], Original ATen: [aten.convolution] buf95 = extern_kernels.convolution(buf94, primals_94, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf95, (4, 128, 8, 8), (8192, 64, 8, 1)) buf96 = buf95; del buf95 # reuse # Topologically Sorted Source Nodes: [input_91, input_92], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf96, primals_95, 32768, grid=grid(32768), stream=stream0) del primals_95 # Topologically Sorted Source Nodes: [input_93], Original ATen: [aten.convolution] buf97 = extern_kernels.convolution(buf96, primals_96, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf97, (4, 128, 8, 8), (8192, 64, 8, 1)) buf98 = buf97; del buf97 # reuse # Topologically Sorted Source Nodes: [input_93, input_94], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf98, primals_97, 32768, grid=grid(32768), stream=stream0) del primals_97 # Topologically Sorted Source Nodes: [input_95], Original ATen: [aten.convolution] buf99 = extern_kernels.convolution(buf98, primals_98, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf99, (4, 128, 8, 8), (8192, 64, 8, 1)) buf100 = buf99; del buf99 # reuse # Topologically Sorted Source Nodes: [input_95, input_96], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf100, primals_99, 32768, grid=grid(32768), stream=stream0) del primals_99 # Topologically Sorted Source Nodes: [input_97], Original ATen: [aten.convolution] buf101 = extern_kernels.convolution(buf100, primals_100, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf101, (4, 19, 8, 8), (1216, 64, 8, 1)) buf102 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out4], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf88, primals_87, buf101, primals_101, buf29, buf102, 47360, grid=grid(47360), stream=stream0) del buf101 del buf88 del primals_101 del primals_87 # Topologically Sorted Source Nodes: [input_98], Original ATen: [aten.convolution] buf103 = extern_kernels.convolution(buf102, primals_102, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf103, (4, 128, 8, 8), (8192, 64, 8, 1)) buf104 = buf103; del buf103 # reuse # Topologically Sorted Source Nodes: [input_98, input_99], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf104, primals_103, 32768, grid=grid(32768), stream=stream0) del primals_103 # Topologically Sorted Source Nodes: [input_100], Original ATen: [aten.convolution] buf105 = extern_kernels.convolution(buf104, primals_104, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf105, (4, 128, 8, 8), (8192, 64, 8, 1)) buf106 = buf105; del buf105 # reuse # Topologically Sorted Source Nodes: [input_100, input_101], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf106, primals_105, 32768, grid=grid(32768), stream=stream0) del primals_105 # Topologically Sorted Source Nodes: [input_102], Original ATen: [aten.convolution] buf107 = extern_kernels.convolution(buf106, primals_106, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf107, (4, 128, 8, 8), (8192, 64, 8, 1)) buf108 = buf107; del buf107 # reuse # Topologically Sorted Source Nodes: [input_102, input_103], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf108, primals_107, 32768, grid=grid(32768), stream=stream0) del primals_107 # Topologically Sorted Source Nodes: [input_104], Original ATen: [aten.convolution] buf109 = extern_kernels.convolution(buf108, primals_108, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 128, 8, 8), (8192, 64, 8, 1)) buf110 = buf109; del buf109 # reuse # Topologically Sorted Source Nodes: [input_104, input_105], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf110, primals_109, 32768, grid=grid(32768), stream=stream0) del primals_109 # Topologically Sorted Source Nodes: [input_106], Original ATen: [aten.convolution] buf111 = extern_kernels.convolution(buf110, primals_110, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf111, (4, 128, 8, 8), (8192, 64, 8, 1)) buf112 = buf111; del buf111 # reuse # Topologically Sorted Source Nodes: [input_106, input_107], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf112, primals_111, 32768, grid=grid(32768), stream=stream0) del primals_111 # Topologically Sorted Source Nodes: [input_108], Original ATen: [aten.convolution] buf113 = extern_kernels.convolution(buf112, primals_112, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf113, (4, 128, 8, 8), (8192, 64, 8, 1)) buf114 = buf113; del buf113 # reuse # Topologically Sorted Source Nodes: [input_108, input_109], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf114, primals_113, 32768, grid=grid(32768), stream=stream0) del primals_113 # Topologically Sorted Source Nodes: [input_110], Original ATen: [aten.convolution] buf115 = extern_kernels.convolution(buf114, primals_114, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf115, (4, 38, 8, 8), (2432, 64, 8, 1)) # Topologically Sorted Source Nodes: [input_111], Original ATen: [aten.convolution] buf116 = extern_kernels.convolution(buf102, primals_116, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf116, (4, 128, 8, 8), (8192, 64, 8, 1)) buf117 = buf116; del buf116 # reuse # Topologically Sorted Source Nodes: [input_111, input_112], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf117, primals_117, 32768, grid=grid(32768), stream=stream0) del primals_117 # Topologically Sorted Source Nodes: [input_113], Original ATen: [aten.convolution] buf118 = extern_kernels.convolution(buf117, primals_118, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 128, 8, 8), (8192, 64, 8, 1)) buf119 = buf118; del buf118 # reuse # Topologically Sorted Source Nodes: [input_113, input_114], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf119, primals_119, 32768, grid=grid(32768), stream=stream0) del primals_119 # Topologically Sorted Source Nodes: [input_115], Original ATen: [aten.convolution] buf120 = extern_kernels.convolution(buf119, primals_120, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf120, (4, 128, 8, 8), (8192, 64, 8, 1)) buf121 = buf120; del buf120 # reuse # Topologically Sorted Source Nodes: [input_115, input_116], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf121, primals_121, 32768, grid=grid(32768), stream=stream0) del primals_121 # Topologically Sorted Source Nodes: [input_117], Original ATen: [aten.convolution] buf122 = extern_kernels.convolution(buf121, primals_122, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf122, (4, 128, 8, 8), (8192, 64, 8, 1)) buf123 = buf122; del buf122 # reuse # Topologically Sorted Source Nodes: [input_117, input_118], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf123, primals_123, 32768, grid=grid(32768), stream=stream0) del primals_123 # Topologically Sorted Source Nodes: [input_119], Original ATen: [aten.convolution] buf124 = extern_kernels.convolution(buf123, primals_124, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf124, (4, 128, 8, 8), (8192, 64, 8, 1)) buf125 = buf124; del buf124 # reuse # Topologically Sorted Source Nodes: [input_119, input_120], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf125, primals_125, 32768, grid=grid(32768), stream=stream0) del primals_125 # Topologically Sorted Source Nodes: [input_121], Original ATen: [aten.convolution] buf126 = extern_kernels.convolution(buf125, primals_126, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf126, (4, 128, 8, 8), (8192, 64, 8, 1)) buf127 = buf126; del buf126 # reuse # Topologically Sorted Source Nodes: [input_121, input_122], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf127, primals_127, 32768, grid=grid(32768), stream=stream0) del primals_127 # Topologically Sorted Source Nodes: [input_123], Original ATen: [aten.convolution] buf128 = extern_kernels.convolution(buf127, primals_128, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf128, (4, 19, 8, 8), (1216, 64, 8, 1)) buf129 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out5], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf115, primals_115, buf128, primals_129, buf29, buf129, 47360, grid=grid(47360), stream=stream0) del buf115 del buf128 del primals_115 del primals_129 # Topologically Sorted Source Nodes: [input_124], Original ATen: [aten.convolution] buf130 = extern_kernels.convolution(buf129, primals_130, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf130, (4, 128, 8, 8), (8192, 64, 8, 1)) buf131 = buf130; del buf130 # reuse # Topologically Sorted Source Nodes: [input_124, input_125], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf131, primals_131, 32768, grid=grid(32768), stream=stream0) del primals_131 # Topologically Sorted Source Nodes: [input_126], Original ATen: [aten.convolution] buf132 = extern_kernels.convolution(buf131, primals_132, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf132, (4, 128, 8, 8), (8192, 64, 8, 1)) buf133 = buf132; del buf132 # reuse # Topologically Sorted Source Nodes: [input_126, input_127], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf133, primals_133, 32768, grid=grid(32768), stream=stream0) del primals_133 # Topologically Sorted Source Nodes: [input_128], Original ATen: [aten.convolution] buf134 = extern_kernels.convolution(buf133, primals_134, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf134, (4, 128, 8, 8), (8192, 64, 8, 1)) buf135 = buf134; del buf134 # reuse # Topologically Sorted Source Nodes: [input_128, input_129], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf135, primals_135, 32768, grid=grid(32768), stream=stream0) del primals_135 # Topologically Sorted Source Nodes: [input_130], Original ATen: [aten.convolution] buf136 = extern_kernels.convolution(buf135, primals_136, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf136, (4, 128, 8, 8), (8192, 64, 8, 1)) buf137 = buf136; del buf136 # reuse # Topologically Sorted Source Nodes: [input_130, input_131], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf137, primals_137, 32768, grid=grid(32768), stream=stream0) del primals_137 # Topologically Sorted Source Nodes: [input_132], Original ATen: [aten.convolution] buf138 = extern_kernels.convolution(buf137, primals_138, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf138, (4, 128, 8, 8), (8192, 64, 8, 1)) buf139 = buf138; del buf138 # reuse # Topologically Sorted Source Nodes: [input_132, input_133], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf139, primals_139, 32768, grid=grid(32768), stream=stream0) del primals_139 # Topologically Sorted Source Nodes: [input_134], Original ATen: [aten.convolution] buf140 = extern_kernels.convolution(buf139, primals_140, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf140, (4, 128, 8, 8), (8192, 64, 8, 1)) buf141 = buf140; del buf140 # reuse # Topologically Sorted Source Nodes: [input_134, input_135], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf141, primals_141, 32768, grid=grid(32768), stream=stream0) del primals_141 # Topologically Sorted Source Nodes: [input_136], Original ATen: [aten.convolution] buf142 = extern_kernels.convolution(buf141, primals_142, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf142, (4, 38, 8, 8), (2432, 64, 8, 1)) # Topologically Sorted Source Nodes: [input_137], Original ATen: [aten.convolution] buf143 = extern_kernels.convolution(buf129, primals_144, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf143, (4, 128, 8, 8), (8192, 64, 8, 1)) buf144 = buf143; del buf143 # reuse # Topologically Sorted Source Nodes: [input_137, input_138], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf144, primals_145, 32768, grid=grid(32768), stream=stream0) del primals_145 # Topologically Sorted Source Nodes: [input_139], Original ATen: [aten.convolution] buf145 = extern_kernels.convolution(buf144, primals_146, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf145, (4, 128, 8, 8), (8192, 64, 8, 1)) buf146 = buf145; del buf145 # reuse # Topologically Sorted Source Nodes: [input_139, input_140], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf146, primals_147, 32768, grid=grid(32768), stream=stream0) del primals_147 # Topologically Sorted Source Nodes: [input_141], Original ATen: [aten.convolution] buf147 = extern_kernels.convolution(buf146, primals_148, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf147, (4, 128, 8, 8), (8192, 64, 8, 1)) buf148 = buf147; del buf147 # reuse # Topologically Sorted Source Nodes: [input_141, input_142], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf148, primals_149, 32768, grid=grid(32768), stream=stream0) del primals_149 # Topologically Sorted Source Nodes: [input_143], Original ATen: [aten.convolution] buf149 = extern_kernels.convolution(buf148, primals_150, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf149, (4, 128, 8, 8), (8192, 64, 8, 1)) buf150 = buf149; del buf149 # reuse # Topologically Sorted Source Nodes: [input_143, input_144], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf150, primals_151, 32768, grid=grid(32768), stream=stream0) del primals_151 # Topologically Sorted Source Nodes: [input_145], Original ATen: [aten.convolution] buf151 = extern_kernels.convolution(buf150, primals_152, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf151, (4, 128, 8, 8), (8192, 64, 8, 1)) buf152 = buf151; del buf151 # reuse # Topologically Sorted Source Nodes: [input_145, input_146], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf152, primals_153, 32768, grid=grid(32768), stream=stream0) del primals_153 # Topologically Sorted Source Nodes: [input_147], Original ATen: [aten.convolution] buf153 = extern_kernels.convolution(buf152, primals_154, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf153, (4, 128, 8, 8), (8192, 64, 8, 1)) buf154 = buf153; del buf153 # reuse # Topologically Sorted Source Nodes: [input_147, input_148], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf154, primals_155, 32768, grid=grid(32768), stream=stream0) del primals_155 # Topologically Sorted Source Nodes: [input_149], Original ATen: [aten.convolution] buf155 = extern_kernels.convolution(buf154, primals_156, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf155, (4, 19, 8, 8), (1216, 64, 8, 1)) buf156 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out6], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf142, primals_143, buf155, primals_157, buf29, buf156, 47360, grid=grid(47360), stream=stream0) del buf142 del buf155 del primals_143 del primals_157 # Topologically Sorted Source Nodes: [input_150], Original ATen: [aten.convolution] buf157 = extern_kernels.convolution(buf156, primals_158, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf157, (4, 128, 8, 8), (8192, 64, 8, 1)) buf158 = buf157; del buf157 # reuse # Topologically Sorted Source Nodes: [input_150, input_151], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf158, primals_159, 32768, grid=grid(32768), stream=stream0) del primals_159 # Topologically Sorted Source Nodes: [input_152], Original ATen: [aten.convolution] buf159 = extern_kernels.convolution(buf158, primals_160, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf159, (4, 128, 8, 8), (8192, 64, 8, 1)) buf160 = buf159; del buf159 # reuse # Topologically Sorted Source Nodes: [input_152, input_153], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf160, primals_161, 32768, grid=grid(32768), stream=stream0) del primals_161 # Topologically Sorted Source Nodes: [input_154], Original ATen: [aten.convolution] buf161 = extern_kernels.convolution(buf160, primals_162, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf161, (4, 128, 8, 8), (8192, 64, 8, 1)) buf162 = buf161; del buf161 # reuse # Topologically Sorted Source Nodes: [input_154, input_155], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf162, primals_163, 32768, grid=grid(32768), stream=stream0) del primals_163 # Topologically Sorted Source Nodes: [input_156], Original ATen: [aten.convolution] buf163 = extern_kernels.convolution(buf162, primals_164, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf163, (4, 128, 8, 8), (8192, 64, 8, 1)) buf164 = buf163; del buf163 # reuse # Topologically Sorted Source Nodes: [input_156, input_157], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf164, primals_165, 32768, grid=grid(32768), stream=stream0) del primals_165 # Topologically Sorted Source Nodes: [input_158], Original ATen: [aten.convolution] buf165 = extern_kernels.convolution(buf164, primals_166, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf165, (4, 128, 8, 8), (8192, 64, 8, 1)) buf166 = buf165; del buf165 # reuse # Topologically Sorted Source Nodes: [input_158, input_159], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf166, primals_167, 32768, grid=grid(32768), stream=stream0) del primals_167 # Topologically Sorted Source Nodes: [input_160], Original ATen: [aten.convolution] buf167 = extern_kernels.convolution(buf166, primals_168, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf167, (4, 128, 8, 8), (8192, 64, 8, 1)) buf168 = buf167; del buf167 # reuse # Topologically Sorted Source Nodes: [input_160, input_161], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf168, primals_169, 32768, grid=grid(32768), stream=stream0) del primals_169 # Topologically Sorted Source Nodes: [input_162], Original ATen: [aten.convolution] buf169 = extern_kernels.convolution(buf168, primals_170, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf169, (4, 38, 8, 8), (2432, 64, 8, 1)) buf170 = buf169; del buf169 # reuse # Topologically Sorted Source Nodes: [input_162], Original ATen: [aten.convolution] triton_poi_fused_convolution_10.run(buf170, primals_171, 9728, grid=grid(9728), stream=stream0) del primals_171 # Topologically Sorted Source Nodes: [input_163], Original ATen: [aten.convolution] buf171 = extern_kernels.convolution(buf156, primals_172, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf171, (4, 128, 8, 8), (8192, 64, 8, 1)) buf172 = buf171; del buf171 # reuse # Topologically Sorted Source Nodes: [input_163, input_164], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf172, primals_173, 32768, grid=grid(32768), stream=stream0) del primals_173 # Topologically Sorted Source Nodes: [input_165], Original ATen: [aten.convolution] buf173 = extern_kernels.convolution(buf172, primals_174, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf173, (4, 128, 8, 8), (8192, 64, 8, 1)) buf174 = buf173; del buf173 # reuse # Topologically Sorted Source Nodes: [input_165, input_166], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf174, primals_175, 32768, grid=grid(32768), stream=stream0) del primals_175 # Topologically Sorted Source Nodes: [input_167], Original ATen: [aten.convolution] buf175 = extern_kernels.convolution(buf174, primals_176, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf175, (4, 128, 8, 8), (8192, 64, 8, 1)) buf176 = buf175; del buf175 # reuse # Topologically Sorted Source Nodes: [input_167, input_168], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf176, primals_177, 32768, grid=grid(32768), stream=stream0) del primals_177 # Topologically Sorted Source Nodes: [input_169], Original ATen: [aten.convolution] buf177 = extern_kernels.convolution(buf176, primals_178, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf177, (4, 128, 8, 8), (8192, 64, 8, 1)) buf178 = buf177; del buf177 # reuse # Topologically Sorted Source Nodes: [input_169, input_170], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf178, primals_179, 32768, grid=grid(32768), stream=stream0) del primals_179 # Topologically Sorted Source Nodes: [input_171], Original ATen: [aten.convolution] buf179 = extern_kernels.convolution(buf178, primals_180, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf179, (4, 128, 8, 8), (8192, 64, 8, 1)) buf180 = buf179; del buf179 # reuse # Topologically Sorted Source Nodes: [input_171, input_172], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf180, primals_181, 32768, grid=grid(32768), stream=stream0) del primals_181 # Topologically Sorted Source Nodes: [input_173], Original ATen: [aten.convolution] buf181 = extern_kernels.convolution(buf180, primals_182, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf181, (4, 128, 8, 8), (8192, 64, 8, 1)) buf182 = buf181; del buf181 # reuse # Topologically Sorted Source Nodes: [input_173, input_174], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf182, primals_183, 32768, grid=grid(32768), stream=stream0) del primals_183 # Topologically Sorted Source Nodes: [input_175], Original ATen: [aten.convolution] buf183 = extern_kernels.convolution(buf182, primals_184, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf183, (4, 19, 8, 8), (1216, 64, 8, 1)) buf184 = buf183; del buf183 # reuse buf185 = empty_strided_cuda((4, 19, 8, 8), (1280, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [input_175, input_176], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_11.run(buf184, primals_185, buf185, 4864, grid=grid(4864), stream=stream0) del primals_185 return (buf170, buf184, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, primals_48, primals_50, primals_52, primals_54, primals_56, primals_58, primals_60, primals_62, primals_64, primals_66, primals_68, primals_70, primals_72, primals_74, primals_76, primals_78, primals_80, primals_82, primals_84, primals_86, primals_88, primals_90, primals_92, primals_94, primals_96, primals_98, primals_100, primals_102, primals_104, primals_106, primals_108, primals_110, primals_112, primals_114, primals_116, primals_118, primals_120, primals_122, primals_124, primals_126, primals_128, primals_130, primals_132, primals_134, primals_136, primals_138, primals_140, primals_142, primals_144, primals_146, primals_148, primals_150, primals_152, primals_154, primals_156, primals_158, primals_160, primals_162, primals_164, primals_166, primals_168, primals_170, primals_172, primals_174, primals_176, primals_178, primals_180, primals_182, primals_184, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf27, buf29, buf31, buf33, buf35, buf37, buf40, buf42, buf44, buf46, buf48, buf50, buf52, buf54, buf56, buf58, buf60, buf63, buf65, buf67, buf69, buf71, buf73, buf75, buf77, buf79, buf81, buf83, buf85, buf87, buf90, buf92, buf94, buf96, buf98, buf100, buf102, buf104, buf106, buf108, buf110, buf112, buf114, buf117, buf119, buf121, buf123, buf125, buf127, buf129, buf131, buf133, buf135, buf137, buf139, buf141, buf144, buf146, buf148, buf150, buf152, buf154, buf156, buf158, buf160, buf162, buf164, buf166, buf168, buf172, buf174, buf176, buf178, buf180, buf182, buf185, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((512, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((38, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((38, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((512, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((19, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((19, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_48 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_49 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_50 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_51 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_52 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_53 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_54 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_55 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_56 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_57 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_58 = rand_strided((38, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_59 = rand_strided((38, ), (1, ), device='cuda:0', dtype=torch.float32) primals_60 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_61 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_62 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_63 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_64 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_65 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_66 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_67 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_68 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_69 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_70 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_71 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_72 = rand_strided((19, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_73 = rand_strided((19, ), (1, ), device='cuda:0', dtype=torch.float32) primals_74 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_75 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_76 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_77 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_78 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_79 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_80 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_81 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_82 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_83 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_84 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_85 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_86 = rand_strided((38, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_87 = rand_strided((38, ), (1, ), device='cuda:0', dtype=torch.float32) primals_88 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_89 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_90 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_91 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_92 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_93 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_94 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_95 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_96 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_97 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_98 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_99 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_100 = rand_strided((19, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_101 = rand_strided((19, ), (1, ), device='cuda:0', dtype=torch.float32) primals_102 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_103 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_104 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_105 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_106 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_107 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_108 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_109 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_110 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_111 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_112 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_113 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_114 = rand_strided((38, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_115 = rand_strided((38, ), (1, ), device='cuda:0', dtype=torch.float32) primals_116 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_117 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_118 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_119 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_120 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_121 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_122 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_123 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_124 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_125 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_126 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_127 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_128 = rand_strided((19, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_129 = rand_strided((19, ), (1, ), device='cuda:0', dtype=torch.float32) primals_130 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_131 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_132 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_133 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_134 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_135 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_136 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_137 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_138 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_139 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_140 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_141 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_142 = rand_strided((38, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_143 = rand_strided((38, ), (1, ), device='cuda:0', dtype=torch.float32) primals_144 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_145 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_146 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_147 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_148 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_149 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_150 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_151 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_152 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_153 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_154 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_155 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_156 = rand_strided((19, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_157 = rand_strided((19, ), (1, ), device='cuda:0', dtype=torch.float32) primals_158 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_159 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_160 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_161 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_162 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_163 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_164 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_165 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_166 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_167 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_168 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_169 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_170 = rand_strided((38, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_171 = rand_strided((38, ), (1, ), device='cuda:0', dtype=torch.float32) primals_172 = rand_strided((128, 185, 7, 7), (9065, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_173 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_174 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_175 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_176 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_177 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_178 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_179 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_180 = rand_strided((128, 128, 7, 7), (6272, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_181 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_182 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_183 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_184 = rand_strided((19, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_185 = rand_strided((19, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154, primals_155, primals_156, primals_157, primals_158, primals_159, primals_160, primals_161, primals_162, primals_163, primals_164, primals_165, primals_166, primals_167, primals_168, primals_169, primals_170, primals_171, primals_172, primals_173, primals_174, primals_175, primals_176, primals_177, primals_178, primals_179, primals_180, primals_181, primals_182, primals_183, primals_184, primals_185]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from collections import OrderedDict def _make_layers(block, no_relu_layers): layers = [] for layer_name, v in block.items(): if 'pool' in layer_name: layer = torch.nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = torch.nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: layers.append(('relu_' + layer_name, torch.nn.ReLU(inplace= True))) return torch.nn.Sequential(OrderedDict(layers)) class BodyPoseModel(torch.nn.Module): def __init__(self): super(BodyPoseModel, self).__init__() no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1', 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2', 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1', 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] blocks = {} block0 = OrderedDict({'conv1_1': [3, 64, 3, 1, 1], 'conv1_2': [64, 64, 3, 1, 1], 'pool1_stage1': [2, 2, 0], 'conv2_1': [64, 128, 3, 1, 1], 'conv2_2': [128, 128, 3, 1, 1], 'pool2_stage1': [2, 2, 0 ], 'conv3_1': [128, 256, 3, 1, 1], 'conv3_2': [256, 256, 3, 1, 1], 'conv3_3': [256, 256, 3, 1, 1], 'conv3_4': [256, 256, 3, 1, 1], 'pool3_stage1': [2, 2, 0], 'conv4_1': [256, 512, 3, 1, 1], 'conv4_2': [512, 512, 3, 1, 1], 'conv4_3_CPM': [512, 256, 3, 1, 1], 'conv4_4_CPM': [256, 128, 3, 1, 1]}) block1_1 = OrderedDict({'conv5_1_CPM_L1': [128, 128, 3, 1, 1], 'conv5_2_CPM_L1': [128, 128, 3, 1, 1], 'conv5_3_CPM_L1': [128, 128, 3, 1, 1], 'conv5_4_CPM_L1': [128, 512, 1, 1, 0], 'conv5_5_CPM_L1': [512, 38, 1, 1, 0]}) block1_2 = OrderedDict({'conv5_1_CPM_L2': [128, 128, 3, 1, 1], 'conv5_2_CPM_L2': [128, 128, 3, 1, 1], 'conv5_3_CPM_L2': [128, 128, 3, 1, 1], 'conv5_4_CPM_L2': [128, 512, 1, 1, 0], 'conv5_5_CPM_L2': [512, 19, 1, 1, 0]}) blocks['block1_1'] = block1_1 blocks['block1_2'] = block1_2 self.model0 = _make_layers(block0, no_relu_layers) for i in range(2, 7): blocks['block%d_1' % i] = OrderedDict({('Mconv1_stage%d_L1' % i ): [185, 128, 7, 1, 3], ('Mconv2_stage%d_L1' % i): [128, 128, 7, 1, 3], ('Mconv3_stage%d_L1' % i): [128, 128, 7, 1, 3], ('Mconv4_stage%d_L1' % i): [128, 128, 7, 1, 3], ( 'Mconv5_stage%d_L1' % i): [128, 128, 7, 1, 3], ( 'Mconv6_stage%d_L1' % i): [128, 128, 1, 1, 0], ( 'Mconv7_stage%d_L1' % i): [128, 38, 1, 1, 0]}) blocks['block%d_2' % i] = OrderedDict({('Mconv1_stage%d_L2' % i ): [185, 128, 7, 1, 3], ('Mconv2_stage%d_L2' % i): [128, 128, 7, 1, 3], ('Mconv3_stage%d_L2' % i): [128, 128, 7, 1, 3], ('Mconv4_stage%d_L2' % i): [128, 128, 7, 1, 3], ( 'Mconv5_stage%d_L2' % i): [128, 128, 7, 1, 3], ( 'Mconv6_stage%d_L2' % i): [128, 128, 1, 1, 0], ( 'Mconv7_stage%d_L2' % i): [128, 19, 1, 1, 0]}) for k in blocks.keys(): blocks[k] = _make_layers(blocks[k], no_relu_layers) self.model1_1 = blocks['block1_1'] self.model2_1 = blocks['block2_1'] self.model3_1 = blocks['block3_1'] self.model4_1 = blocks['block4_1'] self.model5_1 = blocks['block5_1'] self.model6_1 = blocks['block6_1'] self.model1_2 = blocks['block1_2'] self.model2_2 = blocks['block2_2'] self.model3_2 = blocks['block3_2'] self.model4_2 = blocks['block4_2'] self.model5_2 = blocks['block5_2'] self.model6_2 = blocks['block6_2'] def forward(self, x): out1 = self.model0(x) out1_1 = self.model1_1(out1) out1_2 = self.model1_2(out1) out2 = torch.cat([out1_1, out1_2, out1], 1) out2_1 = self.model2_1(out2) out2_2 = self.model2_2(out2) out3 = torch.cat([out2_1, out2_2, out1], 1) out3_1 = self.model3_1(out3) out3_2 = self.model3_2(out3) out4 = torch.cat([out3_1, out3_2, out1], 1) out4_1 = self.model4_1(out4) out4_2 = self.model4_2(out4) out5 = torch.cat([out4_1, out4_2, out1], 1) out5_1 = self.model5_1(out5) out5_2 = self.model5_2(out5) out6 = torch.cat([out5_1, out5_2, out1], 1) out6_1 = self.model6_1(out6) out6_2 = self.model6_2(out6) return out6_1, out6_2 def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 47360 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 64 % 185 x0 = xindex % 64 x2 = xindex // 11840 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 38, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1 + 2432 * x2), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 57, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (x0 + 64 * (-38 + x1) + 1216 * x2), tmp13 & xmask, other=0.0) tmp15 = tl.load(in_ptr3 + (-38 + x1), tmp13 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tl.full([1], 185, tl.int64) tmp22 = tl.load(in_ptr4 + (x0 + 64 * (-57 + x1) + 8192 * x2), tmp19 & xmask, other=0.0) tmp23 = tl.where(tmp13, tmp18, tmp22) tmp24 = tl.where(tmp4, tmp9, tmp23) tl.store(out_ptr0 + x3, tmp24, xmask) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 64 % 38 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = xindex // 64 % 19 x2 = xindex // 1216 x3 = xindex % 1216 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x3 + 1280 * x2), tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154, primals_155, primals_156, primals_157, primals_158, primals_159, primals_160, primals_161, primals_162, primals_163, primals_164, primals_165, primals_166, primals_167, primals_168, primals_169, primals_170, primals_171, primals_172, primals_173, primals_174, primals_175, primals_176, primals_177, primals_178, primals_179, primals_180, primals_181, primals_182, primals_183, primals_184, primals_185) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (256,), (1,)) assert_size_stride(primals_24, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_25, (128,), (1,)) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128,), (1,)) assert_size_stride(primals_28, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_29, (128,), (1,)) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128,), (1,)) assert_size_stride(primals_32, (512, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_33, (512,), (1,)) assert_size_stride(primals_34, (38, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_35, (38,), (1,)) assert_size_stride(primals_36, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_37, (128,), (1,)) assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (128,), (1,)) assert_size_stride(primals_40, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_41, (128,), (1,)) assert_size_stride(primals_42, (512, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_43, (512,), (1,)) assert_size_stride(primals_44, (19, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_45, (19,), (1,)) assert_size_stride(primals_46, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_47, (128,), (1,)) assert_size_stride(primals_48, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_49, (128,), (1,)) assert_size_stride(primals_50, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_51, (128,), (1,)) assert_size_stride(primals_52, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_53, (128,), (1,)) assert_size_stride(primals_54, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_55, (128,), (1,)) assert_size_stride(primals_56, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_57, (128,), (1,)) assert_size_stride(primals_58, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_59, (38,), (1,)) assert_size_stride(primals_60, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_61, (128,), (1,)) assert_size_stride(primals_62, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_63, (128,), (1,)) assert_size_stride(primals_64, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_65, (128,), (1,)) assert_size_stride(primals_66, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_67, (128,), (1,)) assert_size_stride(primals_68, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_69, (128,), (1,)) assert_size_stride(primals_70, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_71, (128,), (1,)) assert_size_stride(primals_72, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_73, (19,), (1,)) assert_size_stride(primals_74, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_75, (128,), (1,)) assert_size_stride(primals_76, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_77, (128,), (1,)) assert_size_stride(primals_78, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_79, (128,), (1,)) assert_size_stride(primals_80, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_81, (128,), (1,)) assert_size_stride(primals_82, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_83, (128,), (1,)) assert_size_stride(primals_84, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_85, (128,), (1,)) assert_size_stride(primals_86, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_87, (38,), (1,)) assert_size_stride(primals_88, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_89, (128,), (1,)) assert_size_stride(primals_90, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_91, (128,), (1,)) assert_size_stride(primals_92, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_93, (128,), (1,)) assert_size_stride(primals_94, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_95, (128,), (1,)) assert_size_stride(primals_96, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_97, (128,), (1,)) assert_size_stride(primals_98, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_99, (128,), (1,)) assert_size_stride(primals_100, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_101, (19,), (1,)) assert_size_stride(primals_102, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_103, (128,), (1,)) assert_size_stride(primals_104, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_105, (128,), (1,)) assert_size_stride(primals_106, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_107, (128,), (1,)) assert_size_stride(primals_108, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_109, (128,), (1,)) assert_size_stride(primals_110, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_111, (128,), (1,)) assert_size_stride(primals_112, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_113, (128,), (1,)) assert_size_stride(primals_114, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_115, (38,), (1,)) assert_size_stride(primals_116, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_117, (128,), (1,)) assert_size_stride(primals_118, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_119, (128,), (1,)) assert_size_stride(primals_120, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_121, (128,), (1,)) assert_size_stride(primals_122, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_123, (128,), (1,)) assert_size_stride(primals_124, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_125, (128,), (1,)) assert_size_stride(primals_126, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_127, (128,), (1,)) assert_size_stride(primals_128, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_129, (19,), (1,)) assert_size_stride(primals_130, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_131, (128,), (1,)) assert_size_stride(primals_132, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_133, (128,), (1,)) assert_size_stride(primals_134, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_135, (128,), (1,)) assert_size_stride(primals_136, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_137, (128,), (1,)) assert_size_stride(primals_138, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_139, (128,), (1,)) assert_size_stride(primals_140, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_141, (128,), (1,)) assert_size_stride(primals_142, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_143, (38,), (1,)) assert_size_stride(primals_144, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_145, (128,), (1,)) assert_size_stride(primals_146, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_147, (128,), (1,)) assert_size_stride(primals_148, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_149, (128,), (1,)) assert_size_stride(primals_150, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_151, (128,), (1,)) assert_size_stride(primals_152, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_153, (128,), (1,)) assert_size_stride(primals_154, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_155, (128,), (1,)) assert_size_stride(primals_156, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_157, (19,), (1,)) assert_size_stride(primals_158, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_159, (128,), (1,)) assert_size_stride(primals_160, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_161, (128,), (1,)) assert_size_stride(primals_162, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_163, (128,), (1,)) assert_size_stride(primals_164, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_165, (128,), (1,)) assert_size_stride(primals_166, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_167, (128,), (1,)) assert_size_stride(primals_168, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_169, (128,), (1,)) assert_size_stride(primals_170, (38, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_171, (38,), (1,)) assert_size_stride(primals_172, (128, 185, 7, 7), (9065, 49, 7, 1)) assert_size_stride(primals_173, (128,), (1,)) assert_size_stride(primals_174, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_175, (128,), (1,)) assert_size_stride(primals_176, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_177, (128,), (1,)) assert_size_stride(primals_178, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_179, (128,), (1,)) assert_size_stride(primals_180, (128, 128, 7, 7), (6272, 49, 7, 1)) assert_size_stride(primals_181, (128,), (1,)) assert_size_stride(primals_182, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_183, (128,), (1,)) assert_size_stride(primals_184, (19, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_185, (19,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(1048576)](buf3, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(262144)](buf3, buf4, buf5, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_2[grid(524288)](buf7, primals_7, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_2[grid(524288)](buf9, primals_9, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(131072)](buf9, buf10, buf11, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(262144)](buf13, primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_4[grid(262144)](buf15, primals_13, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 256, 16, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_4[grid(262144)](buf17, primals_15, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 256, 16, 1)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_4[grid(262144)](buf19, primals_17, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_5[grid(65536)](buf19, buf20, buf21, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf20, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 8, 8), (32768, 64, 8, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_6[grid(131072)](buf23, primals_19, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_19 buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 8), (32768, 64, 8, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_6[grid(131072)](buf25, primals_21, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_21 buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 8, 8), (16384, 64, 8, 1)) buf27 = buf26 del buf26 triton_poi_fused_convolution_relu_7[grid(65536)](buf27, primals_23, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_23 buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 64, 8, 1)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_8[grid(32768)](buf29, primals_25, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 128, 8, 8), (8192, 64, 8, 1)) buf31 = buf30 del buf30 triton_poi_fused_convolution_relu_8[grid(32768)](buf31, primals_27, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_27 buf32 = extern_kernels.convolution(buf31, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 128, 8, 8), (8192, 64, 8, 1)) buf33 = buf32 del buf32 triton_poi_fused_convolution_relu_8[grid(32768)](buf33, primals_29, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_29 buf34 = extern_kernels.convolution(buf33, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 128, 8, 8), (8192, 64, 8, 1)) buf35 = buf34 del buf34 triton_poi_fused_convolution_relu_8[grid(32768)](buf35, primals_31, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_31 buf36 = extern_kernels.convolution(buf35, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 64, 8, 1)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_6[grid(131072)](buf37, primals_33, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_33 buf38 = extern_kernels.convolution(buf37, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 38, 8, 8), (2432, 64, 8, 1)) buf39 = extern_kernels.convolution(buf29, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 128, 8, 8), (8192, 64, 8, 1)) buf40 = buf39 del buf39 triton_poi_fused_convolution_relu_8[grid(32768)](buf40, primals_37, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_37 buf41 = extern_kernels.convolution(buf40, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 128, 8, 8), (8192, 64, 8, 1)) buf42 = buf41 del buf41 triton_poi_fused_convolution_relu_8[grid(32768)](buf42, primals_39, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_39 buf43 = extern_kernels.convolution(buf42, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 128, 8, 8), (8192, 64, 8, 1)) buf44 = buf43 del buf43 triton_poi_fused_convolution_relu_8[grid(32768)](buf44, primals_41, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_41 buf45 = extern_kernels.convolution(buf44, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 512, 8, 8), (32768, 64, 8, 1)) buf46 = buf45 del buf45 triton_poi_fused_convolution_relu_6[grid(131072)](buf46, primals_43, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_43 buf47 = extern_kernels.convolution(buf46, primals_44, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 19, 8, 8), (1216, 64, 8, 1)) buf48 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch .float32) triton_poi_fused_cat_9[grid(47360)](buf38, primals_35, buf47, primals_45, buf29, buf48, 47360, XBLOCK=512, num_warps=4, num_stages=1) del buf38 del buf47 del primals_35 del primals_45 buf49 = extern_kernels.convolution(buf48, primals_46, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf49, (4, 128, 8, 8), (8192, 64, 8, 1)) buf50 = buf49 del buf49 triton_poi_fused_convolution_relu_8[grid(32768)](buf50, primals_47, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_47 buf51 = extern_kernels.convolution(buf50, primals_48, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 128, 8, 8), (8192, 64, 8, 1)) buf52 = buf51 del buf51 triton_poi_fused_convolution_relu_8[grid(32768)](buf52, primals_49, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_49 buf53 = extern_kernels.convolution(buf52, primals_50, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 128, 8, 8), (8192, 64, 8, 1)) buf54 = buf53 del buf53 triton_poi_fused_convolution_relu_8[grid(32768)](buf54, primals_51, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_51 buf55 = extern_kernels.convolution(buf54, primals_52, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 128, 8, 8), (8192, 64, 8, 1)) buf56 = buf55 del buf55 triton_poi_fused_convolution_relu_8[grid(32768)](buf56, primals_53, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_53 buf57 = extern_kernels.convolution(buf56, primals_54, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 128, 8, 8), (8192, 64, 8, 1)) buf58 = buf57 del buf57 triton_poi_fused_convolution_relu_8[grid(32768)](buf58, primals_55, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_55 buf59 = extern_kernels.convolution(buf58, primals_56, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf59, (4, 128, 8, 8), (8192, 64, 8, 1)) buf60 = buf59 del buf59 triton_poi_fused_convolution_relu_8[grid(32768)](buf60, primals_57, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_57 buf61 = extern_kernels.convolution(buf60, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf61, (4, 38, 8, 8), (2432, 64, 8, 1)) buf62 = extern_kernels.convolution(buf48, primals_60, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf62, (4, 128, 8, 8), (8192, 64, 8, 1)) buf63 = buf62 del buf62 triton_poi_fused_convolution_relu_8[grid(32768)](buf63, primals_61, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_61 buf64 = extern_kernels.convolution(buf63, primals_62, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 128, 8, 8), (8192, 64, 8, 1)) buf65 = buf64 del buf64 triton_poi_fused_convolution_relu_8[grid(32768)](buf65, primals_63, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_63 buf66 = extern_kernels.convolution(buf65, primals_64, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf66, (4, 128, 8, 8), (8192, 64, 8, 1)) buf67 = buf66 del buf66 triton_poi_fused_convolution_relu_8[grid(32768)](buf67, primals_65, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_65 buf68 = extern_kernels.convolution(buf67, primals_66, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf68, (4, 128, 8, 8), (8192, 64, 8, 1)) buf69 = buf68 del buf68 triton_poi_fused_convolution_relu_8[grid(32768)](buf69, primals_67, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_67 buf70 = extern_kernels.convolution(buf69, primals_68, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 128, 8, 8), (8192, 64, 8, 1)) buf71 = buf70 del buf70 triton_poi_fused_convolution_relu_8[grid(32768)](buf71, primals_69, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_69 buf72 = extern_kernels.convolution(buf71, primals_70, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf72, (4, 128, 8, 8), (8192, 64, 8, 1)) buf73 = buf72 del buf72 triton_poi_fused_convolution_relu_8[grid(32768)](buf73, primals_71, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_71 buf74 = extern_kernels.convolution(buf73, primals_72, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf74, (4, 19, 8, 8), (1216, 64, 8, 1)) buf75 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch .float32) triton_poi_fused_cat_9[grid(47360)](buf61, primals_59, buf74, primals_73, buf29, buf75, 47360, XBLOCK=512, num_warps=4, num_stages=1) del buf61 del buf74 del primals_59 del primals_73 buf76 = extern_kernels.convolution(buf75, primals_74, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf76, (4, 128, 8, 8), (8192, 64, 8, 1)) buf77 = buf76 del buf76 triton_poi_fused_convolution_relu_8[grid(32768)](buf77, primals_75, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_75 buf78 = extern_kernels.convolution(buf77, primals_76, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf78, (4, 128, 8, 8), (8192, 64, 8, 1)) buf79 = buf78 del buf78 triton_poi_fused_convolution_relu_8[grid(32768)](buf79, primals_77, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_77 buf80 = extern_kernels.convolution(buf79, primals_78, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf80, (4, 128, 8, 8), (8192, 64, 8, 1)) buf81 = buf80 del buf80 triton_poi_fused_convolution_relu_8[grid(32768)](buf81, primals_79, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_79 buf82 = extern_kernels.convolution(buf81, primals_80, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf82, (4, 128, 8, 8), (8192, 64, 8, 1)) buf83 = buf82 del buf82 triton_poi_fused_convolution_relu_8[grid(32768)](buf83, primals_81, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_81 buf84 = extern_kernels.convolution(buf83, primals_82, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf84, (4, 128, 8, 8), (8192, 64, 8, 1)) buf85 = buf84 del buf84 triton_poi_fused_convolution_relu_8[grid(32768)](buf85, primals_83, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_83 buf86 = extern_kernels.convolution(buf85, primals_84, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 128, 8, 8), (8192, 64, 8, 1)) buf87 = buf86 del buf86 triton_poi_fused_convolution_relu_8[grid(32768)](buf87, primals_85, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_85 buf88 = extern_kernels.convolution(buf87, primals_86, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf88, (4, 38, 8, 8), (2432, 64, 8, 1)) buf89 = extern_kernels.convolution(buf75, primals_88, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf89, (4, 128, 8, 8), (8192, 64, 8, 1)) buf90 = buf89 del buf89 triton_poi_fused_convolution_relu_8[grid(32768)](buf90, primals_89, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_89 buf91 = extern_kernels.convolution(buf90, primals_90, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf91, (4, 128, 8, 8), (8192, 64, 8, 1)) buf92 = buf91 del buf91 triton_poi_fused_convolution_relu_8[grid(32768)](buf92, primals_91, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_91 buf93 = extern_kernels.convolution(buf92, primals_92, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf93, (4, 128, 8, 8), (8192, 64, 8, 1)) buf94 = buf93 del buf93 triton_poi_fused_convolution_relu_8[grid(32768)](buf94, primals_93, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_93 buf95 = extern_kernels.convolution(buf94, primals_94, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf95, (4, 128, 8, 8), (8192, 64, 8, 1)) buf96 = buf95 del buf95 triton_poi_fused_convolution_relu_8[grid(32768)](buf96, primals_95, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_95 buf97 = extern_kernels.convolution(buf96, primals_96, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf97, (4, 128, 8, 8), (8192, 64, 8, 1)) buf98 = buf97 del buf97 triton_poi_fused_convolution_relu_8[grid(32768)](buf98, primals_97, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_97 buf99 = extern_kernels.convolution(buf98, primals_98, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf99, (4, 128, 8, 8), (8192, 64, 8, 1)) buf100 = buf99 del buf99 triton_poi_fused_convolution_relu_8[grid(32768)](buf100, primals_99, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_99 buf101 = extern_kernels.convolution(buf100, primals_100, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf101, (4, 19, 8, 8), (1216, 64, 8, 1)) buf102 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) triton_poi_fused_cat_9[grid(47360)](buf88, primals_87, buf101, primals_101, buf29, buf102, 47360, XBLOCK=512, num_warps=4, num_stages=1) del buf101 del buf88 del primals_101 del primals_87 buf103 = extern_kernels.convolution(buf102, primals_102, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf103, (4, 128, 8, 8), (8192, 64, 8, 1)) buf104 = buf103 del buf103 triton_poi_fused_convolution_relu_8[grid(32768)](buf104, primals_103, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_103 buf105 = extern_kernels.convolution(buf104, primals_104, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf105, (4, 128, 8, 8), (8192, 64, 8, 1)) buf106 = buf105 del buf105 triton_poi_fused_convolution_relu_8[grid(32768)](buf106, primals_105, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_105 buf107 = extern_kernels.convolution(buf106, primals_106, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf107, (4, 128, 8, 8), (8192, 64, 8, 1)) buf108 = buf107 del buf107 triton_poi_fused_convolution_relu_8[grid(32768)](buf108, primals_107, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_107 buf109 = extern_kernels.convolution(buf108, primals_108, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 128, 8, 8), (8192, 64, 8, 1)) buf110 = buf109 del buf109 triton_poi_fused_convolution_relu_8[grid(32768)](buf110, primals_109, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_109 buf111 = extern_kernels.convolution(buf110, primals_110, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf111, (4, 128, 8, 8), (8192, 64, 8, 1)) buf112 = buf111 del buf111 triton_poi_fused_convolution_relu_8[grid(32768)](buf112, primals_111, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_111 buf113 = extern_kernels.convolution(buf112, primals_112, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf113, (4, 128, 8, 8), (8192, 64, 8, 1)) buf114 = buf113 del buf113 triton_poi_fused_convolution_relu_8[grid(32768)](buf114, primals_113, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_113 buf115 = extern_kernels.convolution(buf114, primals_114, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf115, (4, 38, 8, 8), (2432, 64, 8, 1)) buf116 = extern_kernels.convolution(buf102, primals_116, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf116, (4, 128, 8, 8), (8192, 64, 8, 1)) buf117 = buf116 del buf116 triton_poi_fused_convolution_relu_8[grid(32768)](buf117, primals_117, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_117 buf118 = extern_kernels.convolution(buf117, primals_118, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 128, 8, 8), (8192, 64, 8, 1)) buf119 = buf118 del buf118 triton_poi_fused_convolution_relu_8[grid(32768)](buf119, primals_119, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_119 buf120 = extern_kernels.convolution(buf119, primals_120, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf120, (4, 128, 8, 8), (8192, 64, 8, 1)) buf121 = buf120 del buf120 triton_poi_fused_convolution_relu_8[grid(32768)](buf121, primals_121, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_121 buf122 = extern_kernels.convolution(buf121, primals_122, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf122, (4, 128, 8, 8), (8192, 64, 8, 1)) buf123 = buf122 del buf122 triton_poi_fused_convolution_relu_8[grid(32768)](buf123, primals_123, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_123 buf124 = extern_kernels.convolution(buf123, primals_124, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf124, (4, 128, 8, 8), (8192, 64, 8, 1)) buf125 = buf124 del buf124 triton_poi_fused_convolution_relu_8[grid(32768)](buf125, primals_125, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_125 buf126 = extern_kernels.convolution(buf125, primals_126, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf126, (4, 128, 8, 8), (8192, 64, 8, 1)) buf127 = buf126 del buf126 triton_poi_fused_convolution_relu_8[grid(32768)](buf127, primals_127, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_127 buf128 = extern_kernels.convolution(buf127, primals_128, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf128, (4, 19, 8, 8), (1216, 64, 8, 1)) buf129 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) triton_poi_fused_cat_9[grid(47360)](buf115, primals_115, buf128, primals_129, buf29, buf129, 47360, XBLOCK=512, num_warps=4, num_stages=1) del buf115 del buf128 del primals_115 del primals_129 buf130 = extern_kernels.convolution(buf129, primals_130, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf130, (4, 128, 8, 8), (8192, 64, 8, 1)) buf131 = buf130 del buf130 triton_poi_fused_convolution_relu_8[grid(32768)](buf131, primals_131, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_131 buf132 = extern_kernels.convolution(buf131, primals_132, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf132, (4, 128, 8, 8), (8192, 64, 8, 1)) buf133 = buf132 del buf132 triton_poi_fused_convolution_relu_8[grid(32768)](buf133, primals_133, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_133 buf134 = extern_kernels.convolution(buf133, primals_134, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf134, (4, 128, 8, 8), (8192, 64, 8, 1)) buf135 = buf134 del buf134 triton_poi_fused_convolution_relu_8[grid(32768)](buf135, primals_135, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_135 buf136 = extern_kernels.convolution(buf135, primals_136, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf136, (4, 128, 8, 8), (8192, 64, 8, 1)) buf137 = buf136 del buf136 triton_poi_fused_convolution_relu_8[grid(32768)](buf137, primals_137, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_137 buf138 = extern_kernels.convolution(buf137, primals_138, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf138, (4, 128, 8, 8), (8192, 64, 8, 1)) buf139 = buf138 del buf138 triton_poi_fused_convolution_relu_8[grid(32768)](buf139, primals_139, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_139 buf140 = extern_kernels.convolution(buf139, primals_140, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf140, (4, 128, 8, 8), (8192, 64, 8, 1)) buf141 = buf140 del buf140 triton_poi_fused_convolution_relu_8[grid(32768)](buf141, primals_141, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_141 buf142 = extern_kernels.convolution(buf141, primals_142, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf142, (4, 38, 8, 8), (2432, 64, 8, 1)) buf143 = extern_kernels.convolution(buf129, primals_144, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf143, (4, 128, 8, 8), (8192, 64, 8, 1)) buf144 = buf143 del buf143 triton_poi_fused_convolution_relu_8[grid(32768)](buf144, primals_145, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_145 buf145 = extern_kernels.convolution(buf144, primals_146, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf145, (4, 128, 8, 8), (8192, 64, 8, 1)) buf146 = buf145 del buf145 triton_poi_fused_convolution_relu_8[grid(32768)](buf146, primals_147, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_147 buf147 = extern_kernels.convolution(buf146, primals_148, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf147, (4, 128, 8, 8), (8192, 64, 8, 1)) buf148 = buf147 del buf147 triton_poi_fused_convolution_relu_8[grid(32768)](buf148, primals_149, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_149 buf149 = extern_kernels.convolution(buf148, primals_150, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf149, (4, 128, 8, 8), (8192, 64, 8, 1)) buf150 = buf149 del buf149 triton_poi_fused_convolution_relu_8[grid(32768)](buf150, primals_151, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_151 buf151 = extern_kernels.convolution(buf150, primals_152, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf151, (4, 128, 8, 8), (8192, 64, 8, 1)) buf152 = buf151 del buf151 triton_poi_fused_convolution_relu_8[grid(32768)](buf152, primals_153, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_153 buf153 = extern_kernels.convolution(buf152, primals_154, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf153, (4, 128, 8, 8), (8192, 64, 8, 1)) buf154 = buf153 del buf153 triton_poi_fused_convolution_relu_8[grid(32768)](buf154, primals_155, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_155 buf155 = extern_kernels.convolution(buf154, primals_156, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf155, (4, 19, 8, 8), (1216, 64, 8, 1)) buf156 = empty_strided_cuda((4, 185, 8, 8), (11840, 64, 8, 1), torch.float32) triton_poi_fused_cat_9[grid(47360)](buf142, primals_143, buf155, primals_157, buf29, buf156, 47360, XBLOCK=512, num_warps=4, num_stages=1) del buf142 del buf155 del primals_143 del primals_157 buf157 = extern_kernels.convolution(buf156, primals_158, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf157, (4, 128, 8, 8), (8192, 64, 8, 1)) buf158 = buf157 del buf157 triton_poi_fused_convolution_relu_8[grid(32768)](buf158, primals_159, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_159 buf159 = extern_kernels.convolution(buf158, primals_160, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf159, (4, 128, 8, 8), (8192, 64, 8, 1)) buf160 = buf159 del buf159 triton_poi_fused_convolution_relu_8[grid(32768)](buf160, primals_161, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_161 buf161 = extern_kernels.convolution(buf160, primals_162, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf161, (4, 128, 8, 8), (8192, 64, 8, 1)) buf162 = buf161 del buf161 triton_poi_fused_convolution_relu_8[grid(32768)](buf162, primals_163, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_163 buf163 = extern_kernels.convolution(buf162, primals_164, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf163, (4, 128, 8, 8), (8192, 64, 8, 1)) buf164 = buf163 del buf163 triton_poi_fused_convolution_relu_8[grid(32768)](buf164, primals_165, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_165 buf165 = extern_kernels.convolution(buf164, primals_166, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf165, (4, 128, 8, 8), (8192, 64, 8, 1)) buf166 = buf165 del buf165 triton_poi_fused_convolution_relu_8[grid(32768)](buf166, primals_167, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_167 buf167 = extern_kernels.convolution(buf166, primals_168, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf167, (4, 128, 8, 8), (8192, 64, 8, 1)) buf168 = buf167 del buf167 triton_poi_fused_convolution_relu_8[grid(32768)](buf168, primals_169, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_169 buf169 = extern_kernels.convolution(buf168, primals_170, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf169, (4, 38, 8, 8), (2432, 64, 8, 1)) buf170 = buf169 del buf169 triton_poi_fused_convolution_10[grid(9728)](buf170, primals_171, 9728, XBLOCK=256, num_warps=4, num_stages=1) del primals_171 buf171 = extern_kernels.convolution(buf156, primals_172, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf171, (4, 128, 8, 8), (8192, 64, 8, 1)) buf172 = buf171 del buf171 triton_poi_fused_convolution_relu_8[grid(32768)](buf172, primals_173, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_173 buf173 = extern_kernels.convolution(buf172, primals_174, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf173, (4, 128, 8, 8), (8192, 64, 8, 1)) buf174 = buf173 del buf173 triton_poi_fused_convolution_relu_8[grid(32768)](buf174, primals_175, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_175 buf175 = extern_kernels.convolution(buf174, primals_176, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf175, (4, 128, 8, 8), (8192, 64, 8, 1)) buf176 = buf175 del buf175 triton_poi_fused_convolution_relu_8[grid(32768)](buf176, primals_177, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_177 buf177 = extern_kernels.convolution(buf176, primals_178, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf177, (4, 128, 8, 8), (8192, 64, 8, 1)) buf178 = buf177 del buf177 triton_poi_fused_convolution_relu_8[grid(32768)](buf178, primals_179, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_179 buf179 = extern_kernels.convolution(buf178, primals_180, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf179, (4, 128, 8, 8), (8192, 64, 8, 1)) buf180 = buf179 del buf179 triton_poi_fused_convolution_relu_8[grid(32768)](buf180, primals_181, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_181 buf181 = extern_kernels.convolution(buf180, primals_182, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf181, (4, 128, 8, 8), (8192, 64, 8, 1)) buf182 = buf181 del buf181 triton_poi_fused_convolution_relu_8[grid(32768)](buf182, primals_183, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_183 buf183 = extern_kernels.convolution(buf182, primals_184, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf183, (4, 19, 8, 8), (1216, 64, 8, 1)) buf184 = buf183 del buf183 buf185 = empty_strided_cuda((4, 19, 8, 8), (1280, 64, 8, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_11[grid(4864)]( buf184, primals_185, buf185, 4864, XBLOCK=256, num_warps=4, num_stages=1) del primals_185 return (buf170, buf184, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, primals_48, primals_50, primals_52, primals_54, primals_56, primals_58, primals_60, primals_62, primals_64, primals_66, primals_68, primals_70, primals_72, primals_74, primals_76, primals_78, primals_80, primals_82, primals_84, primals_86, primals_88, primals_90, primals_92, primals_94, primals_96, primals_98, primals_100, primals_102, primals_104, primals_106, primals_108, primals_110, primals_112, primals_114, primals_116, primals_118, primals_120, primals_122, primals_124, primals_126, primals_128, primals_130, primals_132, primals_134, primals_136, primals_138, primals_140, primals_142, primals_144, primals_146, primals_148, primals_150, primals_152, primals_154, primals_156, primals_158, primals_160, primals_162, primals_164, primals_166, primals_168, primals_170, primals_172, primals_174, primals_176, primals_178, primals_180, primals_182, primals_184, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf27, buf29, buf31, buf33, buf35, buf37, buf40, buf42, buf44, buf46, buf48, buf50, buf52, buf54, buf56, buf58, buf60, buf63, buf65, buf67, buf69, buf71, buf73, buf75, buf77, buf79, buf81, buf83, buf85, buf87, buf90, buf92, buf94, buf96, buf98, buf100, buf102, buf104, buf106, buf108, buf110, buf112, buf114, buf117, buf119, buf121, buf123, buf125, buf127, buf129, buf131, buf133, buf135, buf137, buf139, buf141, buf144, buf146, buf148, buf150, buf152, buf154, buf156, buf158, buf160, buf162, buf164, buf166, buf168, buf172, buf174, buf176, buf178, buf180, buf182, buf185) def _make_layers(block, no_relu_layers): layers = [] for layer_name, v in block.items(): if 'pool' in layer_name: layer = torch.nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = torch.nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: layers.append(('relu_' + layer_name, torch.nn.ReLU(inplace= True))) return torch.nn.Sequential(OrderedDict(layers)) class BodyPoseModelNew(torch.nn.Module): def __init__(self): super(BodyPoseModelNew, self).__init__() no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1', 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2', 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1', 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] blocks = {} block0 = OrderedDict({'conv1_1': [3, 64, 3, 1, 1], 'conv1_2': [64, 64, 3, 1, 1], 'pool1_stage1': [2, 2, 0], 'conv2_1': [64, 128, 3, 1, 1], 'conv2_2': [128, 128, 3, 1, 1], 'pool2_stage1': [2, 2, 0 ], 'conv3_1': [128, 256, 3, 1, 1], 'conv3_2': [256, 256, 3, 1, 1], 'conv3_3': [256, 256, 3, 1, 1], 'conv3_4': [256, 256, 3, 1, 1], 'pool3_stage1': [2, 2, 0], 'conv4_1': [256, 512, 3, 1, 1], 'conv4_2': [512, 512, 3, 1, 1], 'conv4_3_CPM': [512, 256, 3, 1, 1], 'conv4_4_CPM': [256, 128, 3, 1, 1]}) block1_1 = OrderedDict({'conv5_1_CPM_L1': [128, 128, 3, 1, 1], 'conv5_2_CPM_L1': [128, 128, 3, 1, 1], 'conv5_3_CPM_L1': [128, 128, 3, 1, 1], 'conv5_4_CPM_L1': [128, 512, 1, 1, 0], 'conv5_5_CPM_L1': [512, 38, 1, 1, 0]}) block1_2 = OrderedDict({'conv5_1_CPM_L2': [128, 128, 3, 1, 1], 'conv5_2_CPM_L2': [128, 128, 3, 1, 1], 'conv5_3_CPM_L2': [128, 128, 3, 1, 1], 'conv5_4_CPM_L2': [128, 512, 1, 1, 0], 'conv5_5_CPM_L2': [512, 19, 1, 1, 0]}) blocks['block1_1'] = block1_1 blocks['block1_2'] = block1_2 self.model0 = _make_layers(block0, no_relu_layers) for i in range(2, 7): blocks['block%d_1' % i] = OrderedDict({('Mconv1_stage%d_L1' % i ): [185, 128, 7, 1, 3], ('Mconv2_stage%d_L1' % i): [128, 128, 7, 1, 3], ('Mconv3_stage%d_L1' % i): [128, 128, 7, 1, 3], ('Mconv4_stage%d_L1' % i): [128, 128, 7, 1, 3], ( 'Mconv5_stage%d_L1' % i): [128, 128, 7, 1, 3], ( 'Mconv6_stage%d_L1' % i): [128, 128, 1, 1, 0], ( 'Mconv7_stage%d_L1' % i): [128, 38, 1, 1, 0]}) blocks['block%d_2' % i] = OrderedDict({('Mconv1_stage%d_L2' % i ): [185, 128, 7, 1, 3], ('Mconv2_stage%d_L2' % i): [128, 128, 7, 1, 3], ('Mconv3_stage%d_L2' % i): [128, 128, 7, 1, 3], ('Mconv4_stage%d_L2' % i): [128, 128, 7, 1, 3], ( 'Mconv5_stage%d_L2' % i): [128, 128, 7, 1, 3], ( 'Mconv6_stage%d_L2' % i): [128, 128, 1, 1, 0], ( 'Mconv7_stage%d_L2' % i): [128, 19, 1, 1, 0]}) for k in blocks.keys(): blocks[k] = _make_layers(blocks[k], no_relu_layers) self.model1_1 = blocks['block1_1'] self.model2_1 = blocks['block2_1'] self.model3_1 = blocks['block3_1'] self.model4_1 = blocks['block4_1'] self.model5_1 = blocks['block5_1'] self.model6_1 = blocks['block6_1'] self.model1_2 = blocks['block1_2'] self.model2_2 = blocks['block2_2'] self.model3_2 = blocks['block3_2'] self.model4_2 = blocks['block4_2'] self.model5_2 = blocks['block5_2'] self.model6_2 = blocks['block6_2'] def forward(self, input_0): primals_1 = self.model0.conv1_1.weight primals_2 = self.model0.conv1_1.bias primals_4 = self.model0.conv1_2.weight primals_5 = self.model0.conv1_2.bias primals_6 = self.model0.conv2_1.weight primals_7 = self.model0.conv2_1.bias primals_8 = self.model0.conv2_2.weight primals_9 = self.model0.conv2_2.bias primals_10 = self.model0.conv3_1.weight primals_11 = self.model0.conv3_1.bias primals_12 = self.model0.conv3_2.weight primals_13 = self.model0.conv3_2.bias primals_14 = self.model0.conv3_3.weight primals_15 = self.model0.conv3_3.bias primals_16 = self.model0.conv3_4.weight primals_17 = self.model0.conv3_4.bias primals_18 = self.model0.conv4_1.weight primals_19 = self.model0.conv4_1.bias primals_20 = self.model0.conv4_2.weight primals_21 = self.model0.conv4_2.bias primals_22 = self.model0.conv4_3_CPM.weight primals_23 = self.model0.conv4_3_CPM.bias primals_24 = self.model0.conv4_4_CPM.weight primals_25 = self.model0.conv4_4_CPM.bias primals_26 = self.model1_1.conv5_1_CPM_L1.weight primals_27 = self.model1_1.conv5_1_CPM_L1.bias primals_28 = self.model1_1.conv5_2_CPM_L1.weight primals_29 = self.model1_1.conv5_2_CPM_L1.bias primals_30 = self.model1_1.conv5_3_CPM_L1.weight primals_31 = self.model1_1.conv5_3_CPM_L1.bias primals_32 = self.model1_1.conv5_4_CPM_L1.weight primals_33 = self.model1_1.conv5_4_CPM_L1.bias primals_34 = self.model1_1.conv5_5_CPM_L1.weight primals_35 = self.model1_1.conv5_5_CPM_L1.bias primals_46 = self.model2_1.Mconv1_stage2_L1.weight primals_37 = self.model2_1.Mconv1_stage2_L1.bias primals_48 = self.model2_1.Mconv2_stage2_L1.weight primals_39 = self.model2_1.Mconv2_stage2_L1.bias primals_50 = self.model2_1.Mconv3_stage2_L1.weight primals_41 = self.model2_1.Mconv3_stage2_L1.bias primals_52 = self.model2_1.Mconv4_stage2_L1.weight primals_47 = self.model2_1.Mconv4_stage2_L1.bias primals_54 = self.model2_1.Mconv5_stage2_L1.weight primals_49 = self.model2_1.Mconv5_stage2_L1.bias primals_56 = self.model2_1.Mconv6_stage2_L1.weight primals_51 = self.model2_1.Mconv6_stage2_L1.bias primals_58 = self.model2_1.Mconv7_stage2_L1.weight primals_59 = self.model2_1.Mconv7_stage2_L1.bias primals_60 = self.model3_1.Mconv1_stage3_L1.weight primals_53 = self.model3_1.Mconv1_stage3_L1.bias primals_62 = self.model3_1.Mconv2_stage3_L1.weight primals_55 = self.model3_1.Mconv2_stage3_L1.bias primals_64 = self.model3_1.Mconv3_stage3_L1.weight primals_57 = self.model3_1.Mconv3_stage3_L1.bias primals_66 = self.model3_1.Mconv4_stage3_L1.weight primals_61 = self.model3_1.Mconv4_stage3_L1.bias primals_68 = self.model3_1.Mconv5_stage3_L1.weight primals_63 = self.model3_1.Mconv5_stage3_L1.bias primals_70 = self.model3_1.Mconv6_stage3_L1.weight primals_65 = self.model3_1.Mconv6_stage3_L1.bias primals_86 = self.model3_1.Mconv7_stage3_L1.weight primals_87 = self.model3_1.Mconv7_stage3_L1.bias primals_74 = self.model4_1.Mconv1_stage4_L1.weight primals_67 = self.model4_1.Mconv1_stage4_L1.bias primals_76 = self.model4_1.Mconv2_stage4_L1.weight primals_69 = self.model4_1.Mconv2_stage4_L1.bias primals_78 = self.model4_1.Mconv3_stage4_L1.weight primals_71 = self.model4_1.Mconv3_stage4_L1.bias primals_80 = self.model4_1.Mconv4_stage4_L1.weight primals_75 = self.model4_1.Mconv4_stage4_L1.bias primals_82 = self.model4_1.Mconv5_stage4_L1.weight primals_77 = self.model4_1.Mconv5_stage4_L1.bias primals_84 = self.model4_1.Mconv6_stage4_L1.weight primals_79 = self.model4_1.Mconv6_stage4_L1.bias primals_114 = self.model4_1.Mconv7_stage4_L1.weight primals_115 = self.model4_1.Mconv7_stage4_L1.bias primals_88 = self.model5_1.Mconv1_stage5_L1.weight primals_81 = self.model5_1.Mconv1_stage5_L1.bias primals_90 = self.model5_1.Mconv2_stage5_L1.weight primals_83 = self.model5_1.Mconv2_stage5_L1.bias primals_92 = self.model5_1.Mconv3_stage5_L1.weight primals_85 = self.model5_1.Mconv3_stage5_L1.bias primals_94 = self.model5_1.Mconv4_stage5_L1.weight primals_89 = self.model5_1.Mconv4_stage5_L1.bias primals_96 = self.model5_1.Mconv5_stage5_L1.weight primals_91 = self.model5_1.Mconv5_stage5_L1.bias primals_98 = self.model5_1.Mconv6_stage5_L1.weight primals_93 = self.model5_1.Mconv6_stage5_L1.bias primals_142 = self.model5_1.Mconv7_stage5_L1.weight primals_143 = self.model5_1.Mconv7_stage5_L1.bias primals_102 = self.model6_1.Mconv1_stage6_L1.weight primals_95 = self.model6_1.Mconv1_stage6_L1.bias primals_104 = self.model6_1.Mconv2_stage6_L1.weight primals_97 = self.model6_1.Mconv2_stage6_L1.bias primals_106 = self.model6_1.Mconv3_stage6_L1.weight primals_99 = self.model6_1.Mconv3_stage6_L1.bias primals_108 = self.model6_1.Mconv4_stage6_L1.weight primals_103 = self.model6_1.Mconv4_stage6_L1.bias primals_110 = self.model6_1.Mconv5_stage6_L1.weight primals_105 = self.model6_1.Mconv5_stage6_L1.bias primals_112 = self.model6_1.Mconv6_stage6_L1.weight primals_107 = self.model6_1.Mconv6_stage6_L1.bias primals_170 = self.model6_1.Mconv7_stage6_L1.weight primals_171 = self.model6_1.Mconv7_stage6_L1.bias primals_36 = self.model1_2.conv5_1_CPM_L2.weight primals_109 = self.model1_2.conv5_1_CPM_L2.bias primals_38 = self.model1_2.conv5_2_CPM_L2.weight primals_111 = self.model1_2.conv5_2_CPM_L2.bias primals_40 = self.model1_2.conv5_3_CPM_L2.weight primals_113 = self.model1_2.conv5_3_CPM_L2.bias primals_42 = self.model1_2.conv5_4_CPM_L2.weight primals_43 = self.model1_2.conv5_4_CPM_L2.bias primals_44 = self.model1_2.conv5_5_CPM_L2.weight primals_45 = self.model1_2.conv5_5_CPM_L2.bias primals_116 = self.model2_2.Mconv1_stage2_L2.weight primals_117 = self.model2_2.Mconv1_stage2_L2.bias primals_118 = self.model2_2.Mconv2_stage2_L2.weight primals_119 = self.model2_2.Mconv2_stage2_L2.bias primals_120 = self.model2_2.Mconv3_stage2_L2.weight primals_121 = self.model2_2.Mconv3_stage2_L2.bias primals_122 = self.model2_2.Mconv4_stage2_L2.weight primals_123 = self.model2_2.Mconv4_stage2_L2.bias primals_124 = self.model2_2.Mconv5_stage2_L2.weight primals_125 = self.model2_2.Mconv5_stage2_L2.bias primals_126 = self.model2_2.Mconv6_stage2_L2.weight primals_127 = self.model2_2.Mconv6_stage2_L2.bias primals_72 = self.model2_2.Mconv7_stage2_L2.weight primals_73 = self.model2_2.Mconv7_stage2_L2.bias primals_130 = self.model3_2.Mconv1_stage3_L2.weight primals_131 = self.model3_2.Mconv1_stage3_L2.bias primals_132 = self.model3_2.Mconv2_stage3_L2.weight primals_133 = self.model3_2.Mconv2_stage3_L2.bias primals_134 = self.model3_2.Mconv3_stage3_L2.weight primals_135 = self.model3_2.Mconv3_stage3_L2.bias primals_136 = self.model3_2.Mconv4_stage3_L2.weight primals_137 = self.model3_2.Mconv4_stage3_L2.bias primals_138 = self.model3_2.Mconv5_stage3_L2.weight primals_139 = self.model3_2.Mconv5_stage3_L2.bias primals_140 = self.model3_2.Mconv6_stage3_L2.weight primals_141 = self.model3_2.Mconv6_stage3_L2.bias primals_100 = self.model3_2.Mconv7_stage3_L2.weight primals_101 = self.model3_2.Mconv7_stage3_L2.bias primals_144 = self.model4_2.Mconv1_stage4_L2.weight primals_145 = self.model4_2.Mconv1_stage4_L2.bias primals_146 = self.model4_2.Mconv2_stage4_L2.weight primals_147 = self.model4_2.Mconv2_stage4_L2.bias primals_148 = self.model4_2.Mconv3_stage4_L2.weight primals_149 = self.model4_2.Mconv3_stage4_L2.bias primals_150 = self.model4_2.Mconv4_stage4_L2.weight primals_151 = self.model4_2.Mconv4_stage4_L2.bias primals_152 = self.model4_2.Mconv5_stage4_L2.weight primals_153 = self.model4_2.Mconv5_stage4_L2.bias primals_154 = self.model4_2.Mconv6_stage4_L2.weight primals_155 = self.model4_2.Mconv6_stage4_L2.bias primals_128 = self.model4_2.Mconv7_stage4_L2.weight primals_129 = self.model4_2.Mconv7_stage4_L2.bias primals_158 = self.model5_2.Mconv1_stage5_L2.weight primals_159 = self.model5_2.Mconv1_stage5_L2.bias primals_160 = self.model5_2.Mconv2_stage5_L2.weight primals_161 = self.model5_2.Mconv2_stage5_L2.bias primals_162 = self.model5_2.Mconv3_stage5_L2.weight primals_163 = self.model5_2.Mconv3_stage5_L2.bias primals_164 = self.model5_2.Mconv4_stage5_L2.weight primals_165 = self.model5_2.Mconv4_stage5_L2.bias primals_166 = self.model5_2.Mconv5_stage5_L2.weight primals_167 = self.model5_2.Mconv5_stage5_L2.bias primals_168 = self.model5_2.Mconv6_stage5_L2.weight primals_169 = self.model5_2.Mconv6_stage5_L2.bias primals_156 = self.model5_2.Mconv7_stage5_L2.weight primals_157 = self.model5_2.Mconv7_stage5_L2.bias primals_172 = self.model6_2.Mconv1_stage6_L2.weight primals_173 = self.model6_2.Mconv1_stage6_L2.bias primals_174 = self.model6_2.Mconv2_stage6_L2.weight primals_175 = self.model6_2.Mconv2_stage6_L2.bias primals_176 = self.model6_2.Mconv3_stage6_L2.weight primals_177 = self.model6_2.Mconv3_stage6_L2.bias primals_178 = self.model6_2.Mconv4_stage6_L2.weight primals_179 = self.model6_2.Mconv4_stage6_L2.bias primals_180 = self.model6_2.Mconv5_stage6_L2.weight primals_181 = self.model6_2.Mconv5_stage6_L2.bias primals_182 = self.model6_2.Mconv6_stage6_L2.weight primals_183 = self.model6_2.Mconv6_stage6_L2.bias primals_184 = self.model6_2.Mconv7_stage6_L2.weight primals_185 = self.model6_2.Mconv7_stage6_L2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154, primals_155, primals_156, primals_157, primals_158, primals_159, primals_160, primals_161, primals_162, primals_163, primals_164, primals_165, primals_166, primals_167, primals_168, primals_169, primals_170, primals_171, primals_172, primals_173, primals_174, primals_175, primals_176, primals_177, primals_178, primals_179, primals_180, primals_181, primals_182, primals_183, primals_184, primals_185]) return output[0], output[1]
pento-group/terran
BodyPoseModel
false
16,460
[ "BSD-3-Clause" ]
62
983f18521b149749c944e3b29c86361cb1ecf3a5
https://github.com/pento-group/terran/tree/983f18521b149749c944e3b29c86361cb1ecf3a5
LASympNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/m4/cm4im4jwwbumfxfgwme4weq57wui2tnw6y37wp5yegnjl4xmn5jd.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %permute), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2, 2], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + (2*y0)), xmask & ymask) tmp1 = tl.load(in_ptr0 + (y0 + (2*x1)), xmask & ymask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x1 + (2*y0)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ts/ctshmjxiubxutvmsloys6a5fvrpex5qymvu4frsjsx7ayrcuit7l.py # Topologically Sorted Source Nodes: [p_1], Original ATen: [aten.add] # Source node to ATen node mapping: # p_1 => add_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_1, %view_1), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gw/cgwned4evusqkcqe6uszpydjo4c3ukukkcsuzx335co4gztk2er7.py # Topologically Sorted Source Nodes: [h, q_1, mul_3, q_2], Original ATen: [aten.ones_like, aten.add, aten.mul] # Source node to ATen node mapping: # h => full_default # mul_3 => mul_3 # q_1 => add_3 # q_2 => add_5 # Graph fragment: # %full_default : [num_users=6] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %slice_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %full_default), kwargs = {}) # %add_5 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_3), kwargs = {}) triton_poi_fused_add_mul_ones_like_2 = async_compile.triton('triton_poi_fused_add_mul_ones_like_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_ones_like_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_ones_like_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 x1 = (xindex // 2) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qh/cqhpnwewpwjyfgtmqk52q7nzhgxvz64em57i5zqre3aogvvgc44w.py # Topologically Sorted Source Nodes: [h, mul_2, p_2, sigmoid, mul_5, p_3, p_4], Original ATen: [aten.ones_like, aten.mul, aten.add, aten.sigmoid] # Source node to ATen node mapping: # h => full_default # mul_2 => mul_2 # mul_5 => mul_4 # p_2 => add_4 # p_3 => add_6 # p_4 => add_8 # sigmoid => sigmoid # Graph fragment: # %full_default : [num_users=6] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %full_default), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_5,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_6), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {}) # %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %view_5), kwargs = {}) triton_poi_fused_add_mul_ones_like_sigmoid_3 = async_compile.triton('triton_poi_fused_add_mul_ones_like_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_ones_like_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_ones_like_sigmoid_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x2), xmask) tmp7 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp6 = tl.sigmoid(tmp5) tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp9 + tmp10 tl.store(in_out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t3/ct325x4vh4pj6xfs7tunbgh3vtolyog55n4jmsc2wcj5mshznrby.py # Topologically Sorted Source Nodes: [h, q_3, mul_8, p_5, mul_9, q_4, sigmoid_1, mul_11, q_5], Original ATen: [aten.ones_like, aten.add, aten.mul, aten.sigmoid] # Source node to ATen node mapping: # h => full_default # mul_11 => mul_10 # mul_8 => mul_8 # mul_9 => mul_9 # p_5 => add_11 # q_3 => add_10 # q_4 => add_12 # q_5 => add_13 # sigmoid_1 => sigmoid_1 # Graph fragment: # %full_default : [num_users=6] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_7, %add_5), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_9, %full_default), kwargs = {}) # %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %mul_8), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_10, %full_default), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %mul_9), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_11,), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %primals_11), kwargs = {}) # %add_13 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %add_12), kwargs = {}) triton_poi_fused_add_mul_ones_like_sigmoid_4 = async_compile.triton('triton_poi_fused_add_mul_ones_like_sigmoid_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_ones_like_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_ones_like_sigmoid_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr0 + (x2), xmask) tmp9 = tl.load(in_ptr3 + (x2), xmask) tmp11 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = tmp5 * tmp6 tmp10 = tmp8 + tmp9 tmp12 = tmp11 * tmp2 tmp13 = tmp10 + tmp12 tmp14 = tmp7 + tmp13 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(in_out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xg/cxghibwkfdbdt37itpfv7yhstbkc3icl466hgbvxh3urpks2tguv.py # Topologically Sorted Source Nodes: [h, mul_8, p_5, p_6], Original ATen: [aten.ones_like, aten.mul, aten.add] # Source node to ATen node mapping: # h => full_default # mul_8 => mul_8 # p_5 => add_11 # p_6 => add_15 # Graph fragment: # %full_default : [num_users=6] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_9, %full_default), kwargs = {}) # %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %mul_8), kwargs = {}) # %add_15 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %view_9), kwargs = {}) triton_poi_fused_add_mul_ones_like_5 = async_compile.triton('triton_poi_fused_add_mul_ones_like_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_ones_like_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_ones_like_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/aw/caw4fa3fedeaj5jt4jem6dnfgpcadhfo7hyroeqxces62h6fa3oz.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_18, %add_19], -1), kwargs = {}) triton_poi_fused_cat_6 = async_compile.triton('triton_poi_fused_cat_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tmp9 = tmp5 + tmp8 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 4, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((2*x1) + ((-2) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + ((2*x1) + ((-2) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = tl.load(in_ptr4 + ((-2) + x0), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tmp18 * tmp7 tmp20 = tmp17 + tmp19 tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp12, tmp20, tmp21) tmp23 = tl.where(tmp4, tmp11, tmp22) tl.store(out_ptr0 + (x2), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 2), (2, 1)) assert_size_stride(primals_3, (2, 2), (2, 1)) assert_size_stride(primals_4, (2, ), (1, )) assert_size_stride(primals_5, (2, ), (1, )) assert_size_stride(primals_6, (2, ), (1, )) assert_size_stride(primals_7, (2, 2), (2, 1)) assert_size_stride(primals_8, (2, 2), (2, 1)) assert_size_stride(primals_9, (2, ), (1, )) assert_size_stride(primals_10, (2, ), (1, )) assert_size_stride(primals_11, (2, ), (1, )) assert_size_stride(primals_12, (2, 2), (2, 1)) assert_size_stride(primals_13, (2, 2), (2, 1)) assert_size_stride(primals_14, (2, ), (1, )) assert_size_stride(primals_15, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((2, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_2, buf0, 2, 2, grid=grid(2, 2), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [add, matmul], Original ATen: [aten.add, aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 2), (4, 1), 2), buf0, out=buf1) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add] triton_poi_fused_add_0.run(primals_3, buf2, 2, 2, grid=grid(2, 2), stream=stream0) del primals_3 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [p_1], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf3, primals_1, 128, grid=grid(128), stream=stream0) buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0), buf2, out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [h, q_1, mul_3, q_2], Original ATen: [aten.ones_like, aten.add, aten.mul] triton_poi_fused_add_mul_ones_like_2.run(buf5, primals_1, primals_5, 128, grid=grid(128), stream=stream0) del primals_5 buf6 = empty_strided_cuda((2, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [add_7], Original ATen: [aten.add] triton_poi_fused_add_0.run(primals_7, buf6, 2, 2, grid=grid(2, 2), stream=stream0) del primals_7 buf7 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf5, (64, 2), (2, 1), 0), buf6, out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [h, mul_2, p_2, sigmoid, mul_5, p_3, p_4], Original ATen: [aten.ones_like, aten.mul, aten.add, aten.sigmoid] triton_poi_fused_add_mul_ones_like_sigmoid_3.run(buf8, buf3, primals_4, buf5, primals_6, 128, grid=grid(128), stream=stream0) del primals_4 buf9 = empty_strided_cuda((2, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [add_9], Original ATen: [aten.add] triton_poi_fused_add_0.run(primals_8, buf9, 2, 2, grid=grid(2, 2), stream=stream0) del primals_8 buf10 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (64, 2), (2, 1), 0), buf9, out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) buf12 = reinterpret_tensor(buf10, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [h, q_3, mul_8, p_5, mul_9, q_4, sigmoid_1, mul_11, q_5], Original ATen: [aten.ones_like, aten.add, aten.mul, aten.sigmoid] triton_poi_fused_add_mul_ones_like_sigmoid_4.run(buf12, buf8, primals_9, primals_11, buf5, primals_10, buf11, 128, grid=grid(128), stream=stream0) del primals_10 buf13 = empty_strided_cuda((2, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [add_14], Original ATen: [aten.add] triton_poi_fused_add_0.run(primals_12, buf13, 2, 2, grid=grid(2, 2), stream=stream0) del primals_12 buf14 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf12, (64, 2), (2, 1), 0), buf13, out=buf14) buf15 = empty_strided_cuda((2, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [add_16], Original ATen: [aten.add] triton_poi_fused_add_0.run(primals_13, buf15, 2, 2, grid=grid(2, 2), stream=stream0) del primals_13 buf16 = reinterpret_tensor(buf14, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [h, mul_8, p_5, p_6], Original ATen: [aten.ones_like, aten.mul, aten.add] triton_poi_fused_add_mul_ones_like_5.run(buf16, buf8, primals_9, 128, grid=grid(128), stream=stream0) del primals_9 buf17 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_5], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf16, (64, 2), (2, 1), 0), buf15, out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_6.run(buf16, primals_14, buf17, buf12, primals_15, buf18, 256, grid=grid(256), stream=stream0) del buf17 del primals_14 del primals_15 return (buf18, primals_6, primals_11, buf5, buf11, reinterpret_tensor(buf16, (2, 64), (1, 2), 0), reinterpret_tensor(buf15, (2, 2), (1, 2), 0), reinterpret_tensor(buf12, (2, 64), (1, 2), 0), reinterpret_tensor(buf13, (2, 2), (1, 2), 0), reinterpret_tensor(buf8, (2, 64), (1, 2), 0), reinterpret_tensor(buf9, (2, 2), (1, 2), 0), reinterpret_tensor(buf6, (2, 2), (1, 2), 0), reinterpret_tensor(buf3, (2, 64), (1, 2), 0), reinterpret_tensor(buf2, (2, 2), (1, 2), 0), reinterpret_tensor(primals_1, (2, 64), (1, 4), 2), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn as nn class Module(torch.nn.Module): """Standard module format. """ def __init__(self): super(Module, self).__init__() self.activation = None self.initializer = None self.__device = None self.__dtype = None @property def device(self): return self.__device @property def dtype(self): return self.__dtype @device.setter def device(self, d): if d == 'cpu': self.cpu() elif d == 'gpu': self else: raise ValueError self.__device = d @dtype.setter def dtype(self, d): if d == 'float': self elif d == 'double': self else: raise ValueError self.__dtype = d @property def Device(self): if self.__device == 'cpu': return torch.device('cpu') elif self.__device == 'gpu': return torch.device('cuda') @property def Dtype(self): if self.__dtype == 'float': return torch.float32 elif self.__dtype == 'double': return torch.float64 @property def act(self): if self.activation == 'sigmoid': return torch.sigmoid elif self.activation == 'relu': return torch.relu elif self.activation == 'tanh': return torch.tanh elif self.activation == 'elu': return torch.elu else: raise NotImplementedError @property def Act(self): if self.activation == 'sigmoid': return torch.nn.Sigmoid() elif self.activation == 'relu': return torch.nn.ReLU() elif self.activation == 'tanh': return torch.nn.Tanh() elif self.activation == 'elu': return torch.nn.ELU() else: raise NotImplementedError @property def weight_init_(self): if self.initializer == 'He normal': return torch.nn.init.kaiming_normal_ elif self.initializer == 'He uniform': return torch.nn.init.kaiming_uniform_ elif self.initializer == 'Glorot normal': return torch.nn.init.xavier_normal_ elif self.initializer == 'Glorot uniform': return torch.nn.init.xavier_uniform_ elif self.initializer == 'orthogonal': return torch.nn.init.orthogonal_ elif self.initializer == 'default': if self.activation == 'relu': return torch.nn.init.kaiming_normal_ elif self.activation == 'tanh': return torch.nn.init.orthogonal_ else: return lambda x: None else: raise NotImplementedError class StructureNN(Module): """Structure-oriented neural network used as a general map based on designing architecture. """ def __init__(self): super(StructureNN, self).__init__() def predict(self, x, returnnp=False): if not isinstance(x, torch.Tensor): x = torch.tensor(x, dtype=self.Dtype, device=self.Device) return self(x).cpu().detach().numpy() if returnnp else self(x) class LinearModule(Module): """Linear symplectic module. """ def __init__(self, dim, layers): super(LinearModule, self).__init__() self.dim = dim self.layers = layers self.params = self.__init_params() def forward(self, pqh): p, q, h = pqh for i in range(self.layers): S = self.params['S{}'.format(i + 1)] if i % 2 == 0: p = p + q @ (S + S.t()) * h else: q = p @ (S + S.t()) * h + q return p + self.params['bp'] * h, q + self.params['bq'] * h def __init_params(self): """Si is distributed N(0, 0.01), and b is set to zero. """ d = int(self.dim / 2) params = nn.ParameterDict() for i in range(self.layers): params['S{}'.format(i + 1)] = nn.Parameter((torch.randn([d, d]) * 0.01).requires_grad_(True)) params['bp'] = nn.Parameter(torch.zeros([d]).requires_grad_(True)) params['bq'] = nn.Parameter(torch.zeros([d]).requires_grad_(True)) return params class ActivationModule(Module): """Activation symplectic module. """ def __init__(self, dim, activation, mode): super(ActivationModule, self).__init__() self.dim = dim self.activation = activation self.mode = mode self.params = self.__init_params() def forward(self, pqh): p, q, h = pqh if self.mode == 'up': return p + self.act(q) * self.params['a'] * h, q elif self.mode == 'low': return p, self.act(p) * self.params['a'] * h + q else: raise ValueError def __init_params(self): d = int(self.dim / 2) params = nn.ParameterDict() params['a'] = nn.Parameter((torch.randn([d]) * 0.01).requires_grad_ (True)) return params class SympNet(StructureNN): def __init__(self): super(SympNet, self).__init__() self.dim = None def predict(self, xh, steps=1, keepinitx=False, returnnp=False): dim = xh.size(-1) size = len(xh.size()) if dim == self.dim: pred = [xh] for _ in range(steps): pred.append(self(pred[-1])) else: x0, h = xh[..., :-1], xh[..., -1:] pred = [x0] for _ in range(steps): pred.append(self(torch.cat([pred[-1], h], dim=-1))) if keepinitx: steps = steps + 1 else: pred = pred[1:] res = torch.cat(pred, dim=-1).view([-1, steps, self.dim][2 - size:]) return res.cpu().detach().numpy() if returnnp else res class LASympNet(SympNet): """LA-SympNet. Input: [num, dim] or [num, dim + 1] Output: [num, dim] """ def __init__(self, dim, layers=3, sublayers=2, activation='sigmoid'): super(LASympNet, self).__init__() self.dim = dim self.layers = layers self.sublayers = sublayers self.activation = activation self.modus = self.__init_modules() def forward(self, pqh): d = int(self.dim / 2) if pqh.size(-1) == self.dim + 1: p, q, h = pqh[..., :d], pqh[..., d:-1], pqh[..., -1:] elif pqh.size(-1) == self.dim: p, q, h = pqh[..., :d], pqh[..., d:], torch.ones_like(pqh[..., -1:] ) else: raise ValueError for i in range(self.layers - 1): LinM = self.modus['LinM{}'.format(i + 1)] ActM = self.modus['ActM{}'.format(i + 1)] p, q = ActM([*LinM([p, q, h]), h]) return torch.cat(self.modus['LinMout']([p, q, h]), dim=-1) def __init_modules(self): modules = nn.ModuleDict() for i in range(self.layers - 1): modules['LinM{}'.format(i + 1)] = LinearModule(self.dim, self. sublayers) mode = 'up' if i % 2 == 0 else 'low' modules['ActM{}'.format(i + 1)] = ActivationModule(self.dim, self.activation, mode) modules['LinMout'] = LinearModule(self.dim, self.sublayers) return modules def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 2 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + 2 * y0), xmask & ymask) tmp1 = tl.load(in_ptr0 + (y0 + 2 * x1), xmask & ymask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x1 + 2 * y0), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_mul_ones_like_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 x1 = xindex // 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_mul_ones_like_sigmoid_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x2, xmask) tmp7 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp6 = tl.sigmoid(tmp5) tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp9 + tmp10 tl.store(in_out_ptr0 + x2, tmp11, xmask) @triton.jit def triton_poi_fused_add_mul_ones_like_sigmoid_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr0 + x2, xmask) tmp9 = tl.load(in_ptr3 + x2, xmask) tmp11 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = tmp5 * tmp6 tmp10 = tmp8 + tmp9 tmp12 = tmp11 * tmp2 tmp13 = tmp10 + tmp12 tmp14 = tmp7 + tmp13 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(in_out_ptr0 + x2, tmp14, xmask) @triton.jit def triton_poi_fused_add_mul_ones_like_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tmp9 = tmp5 + tmp8 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp15 = tl.load(in_ptr2 + (2 * x1 + (-2 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (2 * x1 + (-2 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = tl.load(in_ptr4 + (-2 + x0), tmp12 & xmask, eviction_policy= 'evict_last', other=0.0) tmp19 = tmp18 * tmp7 tmp20 = tmp17 + tmp19 tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp12, tmp20, tmp21) tmp23 = tl.where(tmp4, tmp11, tmp22) tl.store(out_ptr0 + x2, tmp23, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 2), (2, 1)) assert_size_stride(primals_3, (2, 2), (2, 1)) assert_size_stride(primals_4, (2,), (1,)) assert_size_stride(primals_5, (2,), (1,)) assert_size_stride(primals_6, (2,), (1,)) assert_size_stride(primals_7, (2, 2), (2, 1)) assert_size_stride(primals_8, (2, 2), (2, 1)) assert_size_stride(primals_9, (2,), (1,)) assert_size_stride(primals_10, (2,), (1,)) assert_size_stride(primals_11, (2,), (1,)) assert_size_stride(primals_12, (2, 2), (2, 1)) assert_size_stride(primals_13, (2, 2), (2, 1)) assert_size_stride(primals_14, (2,), (1,)) assert_size_stride(primals_15, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((2, 2), (2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(2, 2)](primals_2, buf0, 2, 2, XBLOCK=2, YBLOCK=2, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 2), (4, 1), 2), buf0, out=buf1) buf2 = buf0 del buf0 triton_poi_fused_add_0[grid(2, 2)](primals_3, buf2, 2, 2, XBLOCK=2, YBLOCK=2, num_warps=1, num_stages=1) del primals_3 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf1 triton_poi_fused_add_1[grid(128)](buf3, primals_1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0), buf2, out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf4 triton_poi_fused_add_mul_ones_like_2[grid(128)](buf5, primals_1, primals_5, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((2, 2), (2, 1), torch.float32) triton_poi_fused_add_0[grid(2, 2)](primals_7, buf6, 2, 2, XBLOCK=2, YBLOCK=2, num_warps=1, num_stages=1) del primals_7 buf7 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 2), (2, 1), 0), buf6, out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf7 triton_poi_fused_add_mul_ones_like_sigmoid_3[grid(128)](buf8, buf3, primals_4, buf5, primals_6, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf9 = empty_strided_cuda((2, 2), (2, 1), torch.float32) triton_poi_fused_add_0[grid(2, 2)](primals_8, buf9, 2, 2, XBLOCK=2, YBLOCK=2, num_warps=1, num_stages=1) del primals_8 buf10 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (64, 2), (2, 1), 0), buf9, out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) buf12 = reinterpret_tensor(buf10, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf10 triton_poi_fused_add_mul_ones_like_sigmoid_4[grid(128)](buf12, buf8, primals_9, primals_11, buf5, primals_10, buf11, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_10 buf13 = empty_strided_cuda((2, 2), (2, 1), torch.float32) triton_poi_fused_add_0[grid(2, 2)](primals_12, buf13, 2, 2, XBLOCK= 2, YBLOCK=2, num_warps=1, num_stages=1) del primals_12 buf14 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf12, (64, 2), (2, 1), 0), buf13, out=buf14) buf15 = empty_strided_cuda((2, 2), (2, 1), torch.float32) triton_poi_fused_add_0[grid(2, 2)](primals_13, buf15, 2, 2, XBLOCK= 2, YBLOCK=2, num_warps=1, num_stages=1) del primals_13 buf16 = reinterpret_tensor(buf14, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf14 triton_poi_fused_add_mul_ones_like_5[grid(128)](buf16, buf8, primals_9, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf17 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf16, (64, 2), (2, 1), 0), buf15, out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_cat_6[grid(256)](buf16, primals_14, buf17, buf12, primals_15, buf18, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf17 del primals_14 del primals_15 return buf18, primals_6, primals_11, buf5, buf11, reinterpret_tensor(buf16, (2, 64), (1, 2), 0), reinterpret_tensor(buf15, (2, 2), (1, 2), 0 ), reinterpret_tensor(buf12, (2, 64), (1, 2), 0), reinterpret_tensor( buf13, (2, 2), (1, 2), 0), reinterpret_tensor(buf8, (2, 64), (1, 2), 0 ), reinterpret_tensor(buf9, (2, 2), (1, 2), 0), reinterpret_tensor(buf6 , (2, 2), (1, 2), 0), reinterpret_tensor(buf3, (2, 64), (1, 2), 0 ), reinterpret_tensor(buf2, (2, 2), (1, 2), 0), reinterpret_tensor( primals_1, (2, 64), (1, 4), 2) class Module(torch.nn.Module): """Standard module format. """ def __init__(self): super(Module, self).__init__() self.activation = None self.initializer = None self.__device = None self.__dtype = None @property def device(self): return self.__device @property def dtype(self): return self.__dtype @device.setter def device(self, d): if d == 'cpu': self.cpu() elif d == 'gpu': self else: raise ValueError self.__device = d @dtype.setter def dtype(self, d): if d == 'float': self elif d == 'double': self else: raise ValueError self.__dtype = d @property def Device(self): if self.__device == 'cpu': return torch.device('cpu') elif self.__device == 'gpu': return torch.device('cuda') @property def Dtype(self): if self.__dtype == 'float': return torch.float32 elif self.__dtype == 'double': return torch.float64 @property def act(self): if self.activation == 'sigmoid': return torch.sigmoid elif self.activation == 'relu': return torch.relu elif self.activation == 'tanh': return torch.tanh elif self.activation == 'elu': return torch.elu else: raise NotImplementedError @property def Act(self): if self.activation == 'sigmoid': return torch.nn.Sigmoid() elif self.activation == 'relu': return torch.nn.ReLU() elif self.activation == 'tanh': return torch.nn.Tanh() elif self.activation == 'elu': return torch.nn.ELU() else: raise NotImplementedError @property def weight_init_(self): if self.initializer == 'He normal': return torch.nn.init.kaiming_normal_ elif self.initializer == 'He uniform': return torch.nn.init.kaiming_uniform_ elif self.initializer == 'Glorot normal': return torch.nn.init.xavier_normal_ elif self.initializer == 'Glorot uniform': return torch.nn.init.xavier_uniform_ elif self.initializer == 'orthogonal': return torch.nn.init.orthogonal_ elif self.initializer == 'default': if self.activation == 'relu': return torch.nn.init.kaiming_normal_ elif self.activation == 'tanh': return torch.nn.init.orthogonal_ else: return lambda x: None else: raise NotImplementedError class StructureNN(Module): """Structure-oriented neural network used as a general map based on designing architecture. """ def __init__(self): super(StructureNN, self).__init__() def predict(self, x, returnnp=False): if not isinstance(x, torch.Tensor): x = torch.tensor(x, dtype=self.Dtype, device=self.Device) return self(x).cpu().detach().numpy() if returnnp else self(x) class LinearModule(Module): """Linear symplectic module. """ def __init__(self, dim, layers): super(LinearModule, self).__init__() self.dim = dim self.layers = layers self.params = self.__init_params() def forward(self, pqh): p, q, h = pqh for i in range(self.layers): S = self.params['S{}'.format(i + 1)] if i % 2 == 0: p = p + q @ (S + S.t()) * h else: q = p @ (S + S.t()) * h + q return p + self.params['bp'] * h, q + self.params['bq'] * h def __init_params(self): """Si is distributed N(0, 0.01), and b is set to zero. """ d = int(self.dim / 2) params = nn.ParameterDict() for i in range(self.layers): params['S{}'.format(i + 1)] = nn.Parameter((torch.randn([d, d]) * 0.01).requires_grad_(True)) params['bp'] = nn.Parameter(torch.zeros([d]).requires_grad_(True)) params['bq'] = nn.Parameter(torch.zeros([d]).requires_grad_(True)) return params class ActivationModule(Module): """Activation symplectic module. """ def __init__(self, dim, activation, mode): super(ActivationModule, self).__init__() self.dim = dim self.activation = activation self.mode = mode self.params = self.__init_params() def forward(self, pqh): p, q, h = pqh if self.mode == 'up': return p + self.act(q) * self.params['a'] * h, q elif self.mode == 'low': return p, self.act(p) * self.params['a'] * h + q else: raise ValueError def __init_params(self): d = int(self.dim / 2) params = nn.ParameterDict() params['a'] = nn.Parameter((torch.randn([d]) * 0.01).requires_grad_ (True)) return params class SympNet(StructureNN): def __init__(self): super(SympNet, self).__init__() self.dim = None def predict(self, xh, steps=1, keepinitx=False, returnnp=False): dim = xh.size(-1) size = len(xh.size()) if dim == self.dim: pred = [xh] for _ in range(steps): pred.append(self(pred[-1])) else: x0, h = xh[..., :-1], xh[..., -1:] pred = [x0] for _ in range(steps): pred.append(self(torch.cat([pred[-1], h], dim=-1))) if keepinitx: steps = steps + 1 else: pred = pred[1:] res = torch.cat(pred, dim=-1).view([-1, steps, self.dim][2 - size:]) return res.cpu().detach().numpy() if returnnp else res class LASympNetNew(SympNet): """LA-SympNet. Input: [num, dim] or [num, dim + 1] Output: [num, dim] """ def __init__(self, dim, layers=3, sublayers=2, activation='sigmoid'): super(LASympNetNew, self).__init__() self.dim = dim self.layers = layers self.sublayers = sublayers self.activation = activation self.modus = self.__init_modules() def __init_modules(self): modules = nn.ModuleDict() for i in range(self.layers - 1): modules['LinM{}'.format(i + 1)] = LinearModule(self.dim, self. sublayers) mode = 'up' if i % 2 == 0 else 'low' modules['ActM{}'.format(i + 1)] = ActivationModule(self.dim, self.activation, mode) modules['LinMout'] = LinearModule(self.dim, self.sublayers) return modules def forward(self, input_0): primals_2 = self.modus.LinM1.params.S1 primals_3 = self.modus.LinM1.params.S2 primals_4 = self.modus.LinM1.params.bp primals_5 = self.modus.LinM1.params.bq primals_6 = self.modus.ActM1.params.a primals_7 = self.modus.LinM2.params.S1 primals_8 = self.modus.LinM2.params.S2 primals_9 = self.modus.LinM2.params.bp primals_10 = self.modus.LinM2.params.bq primals_11 = self.modus.ActM2.params.a primals_12 = self.modus.LinMout.params.S1 primals_13 = self.modus.LinMout.params.S2 primals_14 = self.modus.LinMout.params.bp primals_15 = self.modus.LinMout.params.bq primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
shushu-qin/deeponet
LASympNet
false
16,461
[ "Apache-2.0" ]
140
5bbe066279bba055ad80e04c364140363c87634a
https://github.com/shushu-qin/deeponet/tree/5bbe066279bba055ad80e04c364140363c87634a
ClassAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ey/cey4yc74rqvkmtcxtse2vt3dw6pfdi3zwtwezx7cdzkykhz4kzp7.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # q_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4i/c4ifig7r6ck2y725hll5brbiwptsykocbfmp75m5zsqzc4zwa635.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hg/chg3iq6bscxmmxv5f7tuzgwycb4mgrimwfhv2nauw5rj4tt5cmv2.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_18, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_18, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zu/czuvep3dmpmqmhiiliwubh4ghdt2qr27va67sszkua7trziinwov.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ra/crawzlrlefqew6hbeebyicdqrvbkup3ok24f4lbft23nndfraukx.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + (8*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 8), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (16, 1, 1), (1, 0, 0), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 0, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf1, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del buf1 buf8 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), out=buf8) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cls_embed_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_5 return (reinterpret_tensor(buf9, (4, 1, 4), (4, 4, 1), 0), primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn class ClassAttention(nn.Module): def __init__(self, dim, num_heads): super().__init__() self.num_heads = num_heads self.scale = (dim // num_heads) ** -0.5 self.q = nn.Linear(dim, dim, bias=False) self.kv = nn.Linear(dim, dim * 2, bias=False) self.proj = nn.Linear(dim, dim) def forward(self, x: 'Tensor') ->Tensor: B, N, C = x.shape q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, C // self. num_heads) q *= self.scale kv = self.kv(x).reshape(B, N, 2, self.num_heads, C // self.num_heads ).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) cls_embed = (attn @ v).transpose(1, 2).reshape(B, 1, C) cls_embed = self.proj(cls_embed) return cls_embed def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 8), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf1, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (16, 1, 1), (1, 0, 0), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 0, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf4 triton_poi_fused__softmax_3[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf5 triton_poi_fused_clone_4[grid(16, 4)](buf1, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf1 buf8 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf6, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), out=buf8) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf9) del primals_5 return reinterpret_tensor(buf9, (4, 1, 4), (4, 4, 1), 0 ), primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0 ), primals_4, reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 4), 0) class ClassAttentionNew(nn.Module): def __init__(self, dim, num_heads): super().__init__() self.num_heads = num_heads self.scale = (dim // num_heads) ** -0.5 self.q = nn.Linear(dim, dim, bias=False) self.kv = nn.Linear(dim, dim * 2, bias=False) self.proj = nn.Linear(dim, dim) def forward(self, input_0): primals_2 = self.q.weight primals_3 = self.kv.weight primals_4 = self.proj.weight primals_5 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sithu31296/image_classification
ClassAttention
false
16,462
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
InstanceNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2t/c2tlmlnddgofeoodf622jrs5dgndzay3j3z6iezkat4cpubm2kuk.py # Topologically Sorted Source Nodes: [mean, x, tmp, mean_1, add, tmp_1, mul_1], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add, aten.rsqrt] # Source node to ATen node mapping: # add => add # mean => mean # mean_1 => mean_1 # mul_1 => mul_1 # tmp => mul # tmp_1 => rsqrt # x => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2, 3], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [2, 3], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) triton_per_fused_add_mean_mul_rsqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_rsqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_rsqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_rsqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp7 * tmp16 tl.store(out_ptr2 + (r1 + (16*x0)), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, x, tmp, mean_1, add, tmp_1, mul_1], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add, aten.rsqrt] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_rsqrt_sub_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch from torch import nn class InstanceNorm(nn.Module): def __init__(self, epsilon=1e-08): super(InstanceNorm, self).__init__() self.epsilon = epsilon def forward(self, x): x = x - torch.mean(x, (2, 3), True) tmp = torch.mul(x, x) tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) return x * tmp def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_rsqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp7 * tmp16 tl.store(out_ptr2 + (r1 + 16 * x0), tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_mean_mul_rsqrt_sub_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 return buf2, class InstanceNormNew(nn.Module): def __init__(self, epsilon=1e-08): super(InstanceNormNew, self).__init__() self.epsilon = epsilon def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
siyuhuang/PoseStylizer
InstanceNorm
false
16,463
[ "BSD-3-Clause" ]
75
d1d832781ddfd3efde24bf32b36a4074fafebcc1
https://github.com/siyuhuang/PoseStylizer/tree/d1d832781ddfd3efde24bf32b36a4074fafebcc1