entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
PatchEmbedding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5s/c5sni7dzheaodogr5chdb3cizynndekqs4ajsctpfcvi3r5v37oa.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 256], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2304 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (256*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (768*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4c/c4ckui43udehobca2kb3vy5stpaqfztmtjwrdinx2dhmcmh73fmo.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [16, 16], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 3072 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = (yindex // 768) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (768*x2) + (12288*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (768, 3, 16, 16), (768, 256, 16, 1)) assert_size_stride(primals_2, (768, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 2304, 256, grid=grid(2304, 256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, buf0, stride=(16, 16), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768)) buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf2, primals_2, buf3, 3072, 16, grid=grid(3072, 16), stream=stream0) del buf2 del primals_2 return (reinterpret_tensor(buf3, (4, 4, 4, 768), (12288, 4, 1, 16), 0), buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((768, 3, 16, 16), (768, 256, 16, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((768, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class PatchEmbedding(nn.Module): """Image to Patch Embedding """ def __init__(self, patch_size=16, embed_dim=768): super().__init__() self.proj = nn.Conv2d(3, embed_dim, patch_size, patch_size) def forward(self, x: 'torch.Tensor'): x = self.proj(x) x = x.permute(0, 2, 3, 1) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 2304 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 256 * y3), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 768 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = yindex // 768 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 768 * x2 + 12288 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (768, 3, 16, 16), (768, 256, 16, 1)) assert_size_stride(primals_2, (768,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(2304, 256)](primals_1, buf0, 2304, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, buf0, stride=(16, 16), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768)) buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch. float32) triton_poi_fused_convolution_2[grid(3072, 16)](buf2, primals_2, buf3, 3072, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del buf2 del primals_2 return reinterpret_tensor(buf3, (4, 4, 4, 768), (12288, 4, 1, 16), 0 ), buf0, buf1 class PatchEmbeddingNew(nn.Module): """Image to Patch Embedding """ def __init__(self, patch_size=16, embed_dim=768): super().__init__() self.proj = nn.Conv2d(3, embed_dim, patch_size, patch_size) def forward(self, input_0): primals_1 = self.proj.weight primals_2 = self.proj.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sithu31296/image_classification
PatchEmbedding
false
16,464
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
PixelNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oj/cojs3rolrbuzbumcv56hzrpmpk5vjaaabxquccaenqx3ti3blyt2.py # Topologically Sorted Source Nodes: [tmp, mean, add, tmp1, mul_1], Original ATen: [aten.mul, aten.mean, aten.add, aten.rsqrt] # Source node to ATen node mapping: # add => add # mean => mean # mul_1 => mul_1 # tmp => mul # tmp1 => rsqrt # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %rsqrt), kwargs = {}) triton_poi_fused_add_mean_mul_rsqrt_0 = async_compile.triton('triton_poi_fused_add_mean_mul_rsqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_rsqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tmp, mean, add, tmp1, mul_1], Original ATen: [aten.mul, aten.mean, aten.add, aten.rsqrt] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch from torch import nn class PixelNorm(nn.Module): def __init__(self, epsilon=1e-08): super(PixelNorm, self).__init__() self.epsilon = epsilon def forward(self, x): tmp = torch.mul(x, x) tmp1 = torch.rsqrt(torch.mean(tmp, dim=1, keepdim=True) + self.epsilon) return x * tmp1 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class PixelNormNew(nn.Module): def __init__(self, epsilon=1e-08): super(PixelNormNew, self).__init__() self.epsilon = epsilon def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
siyuhuang/PoseStylizer
PixelNorm
false
16,465
[ "BSD-3-Clause" ]
75
d1d832781ddfd3efde24bf32b36a4074fafebcc1
https://github.com/siyuhuang/PoseStylizer/tree/d1d832781ddfd3efde24bf32b36a4074fafebcc1
ApplyStyle
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yg/cygzi6evso6kefobgrwgjcxh5qgbn7zouyf7to742xeh6bsflplb.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ks/cks6zm6ohlls2psiyunvuei3bidcsj24j42if3qvdr23hdob3xea.py # Topologically Sorted Source Nodes: [add, mul_2, x], Original ATen: [aten.add, aten.mul] # Source node to ATen node mapping: # add => add # mul_2 => mul_3 # x => add_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select_1, 1.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %select_3), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 4 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1 + (8*x2) + (32*((x2 % 4) // 4)) + (128*(((4*((x2 // 4) % 4)) + (x2 % 4)) // 16))), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (4 + x1 + (8*x2) + (32*((x2 % 4) // 4)) + (128*(((4*((x2 // 4) % 4)) + (x2 % 4)) // 16))), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (4 + x1), None, eviction_policy='evict_last') tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tmp1 + tmp4 tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 0.2 tmp9 = tmp5 * tmp8 tmp10 = tl.where(tmp7, tmp5, tmp9) tmp11 = tmp10 + tmp3 tmp12 = tmp0 * tmp11 tmp15 = tmp14 * tmp3 tmp16 = tmp13 + tmp15 tmp17 = tmp16 > tmp6 tmp18 = tmp16 * tmp8 tmp19 = tl.where(tmp17, tmp16, tmp18) tmp20 = tmp12 + tmp19 tl.store(out_ptr0 + (x3), tmp20, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k6/ck6hrjtdufvlbomtc3cbawgp7osoy4pwbhuveafdpa5lxgpyfg5o.py # Topologically Sorted Source Nodes: [], Original ATen: [aten.leaky_relu_backward] # Source node to ATen node mapping: # Graph fragment: # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_leaky_relu_backward_2 = async_compile.triton('triton_poi_fused_leaky_relu_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.2 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, ), (1, )) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 8), (1, 4), 0), out=buf1) del buf0 buf2 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, mul_2, x], Original ATen: [aten.add, aten.mul] triton_poi_fused_add_mul_1.run(primals_4, buf1, primals_1, buf2, 4096, grid=grid(4096), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [], Original ATen: [aten.leaky_relu_backward] triton_poi_fused_leaky_relu_backward_2.run(buf1, primals_1, buf3, 512, grid=grid(512), stream=stream0) del buf1 del primals_1 return (buf2, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch from torch import nn import torch.nn.functional as F class FC(nn.Module): def __init__(self, in_channels, out_channels, gain=2 ** 0.5, use_wscale =False, lrmul=1.0, bias=True): super(FC, self).__init__() he_std = gain * in_channels ** -0.5 if use_wscale: init_std = 1.0 / lrmul self.w_lrmul = he_std * lrmul else: init_std = he_std / lrmul self.w_lrmul = lrmul self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels) * init_std) if bias: self.bias = torch.nn.Parameter(torch.zeros(out_channels)) self.b_lrmul = lrmul else: self.bias = None def forward(self, x): if self.bias is not None: out = F.linear(x, self.weight * self.w_lrmul, self.bias * self. b_lrmul) else: out = F.linear(x, self.weight * self.w_lrmul) out = F.leaky_relu(out, 0.2, inplace=True) return out class ApplyStyle(nn.Module): def __init__(self, latent_size, channels, use_wscale): super(ApplyStyle, self).__init__() self.linear = FC(latent_size, channels * 2, gain=1.0, use_wscale= use_wscale) def forward(self, x, latent): style = self.linear(latent) shape = [-1, 2, x.size(1), 1, 1] style = style.view(shape) x = x * (style[:, 0] + 1.0) + style[:, 1] return x def get_inputs(): return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_size': 4, 'channels': 4, 'use_wscale': 1.0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 4 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x1 + 8 * x2 + 32 * (x2 % 4 // 4) + 128 * ((4 * (x2 // 4 % 4) + x2 % 4) // 16)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (4 + x1 + 8 * x2 + 32 * (x2 % 4 // 4) + 128 * ((4 * (x2 // 4 % 4) + x2 % 4) // 16)), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr2 + (4 + x1), None, eviction_policy='evict_last') tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tmp1 + tmp4 tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 0.2 tmp9 = tmp5 * tmp8 tmp10 = tl.where(tmp7, tmp5, tmp9) tmp11 = tmp10 + tmp3 tmp12 = tmp0 * tmp11 tmp15 = tmp14 * tmp3 tmp16 = tmp13 + tmp15 tmp17 = tmp16 > tmp6 tmp18 = tmp16 * tmp8 tmp19 = tl.where(tmp17, tmp16, tmp18) tmp20 = tmp12 + tmp19 tl.store(out_ptr0 + x3, tmp20, None) @triton.jit def triton_poi_fused_leaky_relu_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.2 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + x3, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8,), (1,)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(32)](primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 8), (1, 4), 0), out=buf1) del buf0 buf2 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(4096)](primals_4, buf1, primals_1, buf2, 4096, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) triton_poi_fused_leaky_relu_backward_2[grid(512)](buf1, primals_1, buf3, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_1 return buf2, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf3 class FC(nn.Module): def __init__(self, in_channels, out_channels, gain=2 ** 0.5, use_wscale =False, lrmul=1.0, bias=True): super(FC, self).__init__() he_std = gain * in_channels ** -0.5 if use_wscale: init_std = 1.0 / lrmul self.w_lrmul = he_std * lrmul else: init_std = he_std / lrmul self.w_lrmul = lrmul self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels) * init_std) if bias: self.bias = torch.nn.Parameter(torch.zeros(out_channels)) self.b_lrmul = lrmul else: self.bias = None def forward(self, x): if self.bias is not None: out = F.linear(x, self.weight * self.w_lrmul, self.bias * self. b_lrmul) else: out = F.linear(x, self.weight * self.w_lrmul) out = F.leaky_relu(out, 0.2, inplace=True) return out class ApplyStyleNew(nn.Module): def __init__(self, latent_size, channels, use_wscale): super(ApplyStyleNew, self).__init__() self.linear = FC(latent_size, channels * 2, gain=1.0, use_wscale= use_wscale) def forward(self, input_0, input_1): primals_2 = self.linear.weight primals_1 = self.linear.bias primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
siyuhuang/PoseStylizer
ApplyStyle
false
16,466
[ "BSD-3-Clause" ]
75
d1d832781ddfd3efde24bf32b36a4074fafebcc1
https://github.com/siyuhuang/PoseStylizer/tree/d1d832781ddfd3efde24bf32b36a4074fafebcc1
PatchEmbedOverlap
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5s/c5sni7dzheaodogr5chdb3cizynndekqs4ajsctpfcvi3r5v37oa.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 256], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2304 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (256*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (768*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4c/c4ckui43udehobca2kb3vy5stpaqfztmtjwrdinx2dhmcmh73fmo.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [16, 16], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 3072 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = (yindex // 768) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (768*x2) + (12288*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (768, 3, 16, 16), (768, 256, 16, 1)) assert_size_stride(primals_2, (768, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 2304, 256, grid=grid(2304, 256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, buf0, stride=(16, 16), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768)) buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf2, primals_2, buf3, 3072, 16, grid=grid(3072, 16), stream=stream0) del buf2 del primals_2 return (buf3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((768, 3, 16, 16), (768, 256, 16, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((768, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn class PatchEmbedOverlap(nn.Module): """Image to Patch Embedding with overlapping """ def __init__(self, patch_size=16, stride=16, padding=0, embed_dim=768): super().__init__() self.proj = nn.Conv2d(3, embed_dim, patch_size, stride, padding) def forward(self, x: 'torch.Tensor') ->Tensor: x = self.proj(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 2304 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 256 * y3), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 768 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = yindex // 768 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 768 * x2 + 12288 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (768, 3, 16, 16), (768, 256, 16, 1)) assert_size_stride(primals_2, (768,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(2304, 256)](primals_1, buf0, 2304, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, buf0, stride=(16, 16), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768)) buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch. float32) triton_poi_fused_convolution_2[grid(3072, 16)](buf2, primals_2, buf3, 3072, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del buf2 del primals_2 return buf3, buf0, buf1 class PatchEmbedOverlapNew(nn.Module): """Image to Patch Embedding with overlapping """ def __init__(self, patch_size=16, stride=16, padding=0, embed_dim=768): super().__init__() self.proj = nn.Conv2d(3, embed_dim, patch_size, stride, padding) def forward(self, input_0): primals_1 = self.proj.weight primals_2 = self.proj.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sithu31296/image_classification
PatchEmbedOverlap
false
16,467
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
DistillationLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/za/czam7p5yzg3ag24pqye5eihb2ugnwppvdb6jnkekl6zflddcdjcj.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 6), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.16666666666666666 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/io/cio24kjrqh6kj5szoff6rm7ytsibo64wsrimwu4tvqwjv342rnit.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax_2, sub_4 # Graph fragment: # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 6), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax_2), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.16666666666666666 tmp16 = tmp14 * tmp15 tmp17 = triton_helpers.maximum(tmp3, tmp5) tmp18 = triton_helpers.maximum(tmp17, tmp8) tmp19 = triton_helpers.maximum(tmp18, tmp11) tmp20 = tmp0 - tmp19 tl.store(out_ptr0 + (x3), tmp16, xmask) tl.store(out_ptr1 + (x3), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/w7/cw7vm5ynzcx6slgmwsk63s2px3pgkq4j3i3l46qlam3qcs2xvgxi.py # Topologically Sorted Source Nodes: [softmax, kl_div, log_softmax, loss, cross_entropy, mul_1, loss_1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.mean, aten.sum, aten.neg, aten.div, aten.add] # Source node to ATen node mapping: # cross_entropy => div_3, exp_2, log_2, mul_3, neg, sub_5, sum_3, sum_4 # kl_div => eq, full_default, full_default_1, isnan, log_1, mean, mul, mul_1, sub_3, where, where_1 # log_softmax => exp, log, sub_1, sum_1 # loss => mul_2 # loss_1 => add # mul_1 => mul_4 # softmax => div_2, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_2 : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div_2,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div_2, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %log_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_tensor_1, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %sub_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 34.199999999999996), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_3,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %arg2_1), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_4,), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, 0.050000000000000044), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_4), kwargs = {}) triton_per_fused__log_softmax__softmax_add_div_mean_mul_neg_sub_sum_xlogy_2 = async_compile.triton('triton_per_fused__log_softmax__softmax_add_div_mean_mul_neg_sub_sum_xlogy_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_add_div_mean_mul_neg_sub_sum_xlogy_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 16, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__softmax_add_div_mean_mul_neg_sub_sum_xlogy_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (r3), None) tmp18 = tl.load(in_ptr1 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (r3), None) tmp37 = tl.load(in_ptr2 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr2 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr2 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp50 = tl.load(in_ptr3 + (r3), None) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = libdevice.isnan(tmp8).to(tl.int1) tmp10 = 0.0 tmp11 = tmp8 == tmp10 tmp12 = tl_math.log(tmp8) tmp13 = tmp8 * tmp12 tmp14 = tl.where(tmp11, tmp10, tmp13) tmp15 = float("nan") tmp16 = tl.where(tmp9, tmp15, tmp14) tmp19 = tl_math.exp(tmp18) tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tl_math.log(tmp28) tmp30 = tmp17 - tmp29 tmp31 = tmp8 * tmp30 tmp32 = tmp16 - tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp38 = tl_math.exp(tmp37) tmp40 = tl_math.exp(tmp39) tmp41 = tmp38 + tmp40 tmp43 = tl_math.exp(tmp42) tmp44 = tmp41 + tmp43 tmp46 = tl_math.exp(tmp45) tmp47 = tmp44 + tmp46 tmp48 = tl_math.log(tmp47) tmp49 = tmp36 - tmp48 tmp51 = tmp49 * tmp50 tmp52 = tl.broadcast_to(tmp51, [RBLOCK]) tmp54 = triton_helpers.promote_to_tensor(tl.sum(tmp52, 0)) tmp55 = 256.0 tmp56 = tmp35 / tmp55 tmp57 = 34.199999999999996 tmp58 = tmp56 * tmp57 tmp59 = -tmp54 tmp60 = 0.015625 tmp61 = tmp59 * tmp60 tmp62 = 0.050000000000000044 tmp63 = tmp61 * tmp62 tmp64 = tmp58 + tmp63 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp64, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(arg0_1, buf2, buf4, 256, grid=grid(256), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) buf6 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [softmax, kl_div, log_softmax, loss, cross_entropy, mul_1, loss_1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.mean, aten.sum, aten.neg, aten.div, aten.add] triton_per_fused__log_softmax__softmax_add_div_mean_mul_neg_sub_sum_xlogy_2.run(buf6, buf0, buf2, buf4, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 del buf2 del buf4 return (buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn from typing import Union class DistillationLoss(nn.Module): """Distilling the Knowledge in a Neural Network https://arxiv.org/pdf/1503.02531.pdf """ def __init__(self, alpha: 'float'=0.95, temp: 'Union[float, int]'=6 ) ->None: super().__init__() self.alpha = alpha self.temp = temp self.kd_loss = nn.KLDivLoss() self.entropy_loss = nn.CrossEntropyLoss() self.log_softmax = nn.LogSoftmax(dim=1) self.softmax = nn.Softmax(dim=1) def forward(self, pred_student: 'Tensor', pred_teacher: 'Tensor', target: 'Tensor') ->Tensor: loss = self.kd_loss(self.log_softmax(pred_student / self.temp), self.softmax(pred_teacher / self.temp)) * (self.alpha * self. temp * self.temp) loss += self.entropy_loss(pred_student, target) * (1.0 - self.alpha) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn from typing import Union assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.16666666666666666 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x3, tmp17, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.16666666666666666 tmp16 = tmp14 * tmp15 tmp17 = triton_helpers.maximum(tmp3, tmp5) tmp18 = triton_helpers.maximum(tmp17, tmp8) tmp19 = triton_helpers.maximum(tmp18, tmp11) tmp20 = tmp0 - tmp19 tl.store(out_ptr0 + x3, tmp16, xmask) tl.store(out_ptr1 + x3, tmp20, xmask) @triton.jit def triton_per_fused__log_softmax__softmax_add_div_mean_mul_neg_sub_sum_xlogy_2( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr1 + r3, None) tmp18 = tl.load(in_ptr1 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr1 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr1 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr1 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp36 = tl.load(in_ptr2 + r3, None) tmp37 = tl.load(in_ptr2 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp39 = tl.load(in_ptr2 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp42 = tl.load(in_ptr2 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp45 = tl.load(in_ptr2 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp50 = tl.load(in_ptr3 + r3, None) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = libdevice.isnan(tmp8).to(tl.int1) tmp10 = 0.0 tmp11 = tmp8 == tmp10 tmp12 = tl_math.log(tmp8) tmp13 = tmp8 * tmp12 tmp14 = tl.where(tmp11, tmp10, tmp13) tmp15 = float('nan') tmp16 = tl.where(tmp9, tmp15, tmp14) tmp19 = tl_math.exp(tmp18) tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tl_math.log(tmp28) tmp30 = tmp17 - tmp29 tmp31 = tmp8 * tmp30 tmp32 = tmp16 - tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp38 = tl_math.exp(tmp37) tmp40 = tl_math.exp(tmp39) tmp41 = tmp38 + tmp40 tmp43 = tl_math.exp(tmp42) tmp44 = tmp41 + tmp43 tmp46 = tl_math.exp(tmp45) tmp47 = tmp44 + tmp46 tmp48 = tl_math.log(tmp47) tmp49 = tmp36 - tmp48 tmp51 = tmp49 * tmp50 tmp52 = tl.broadcast_to(tmp51, [RBLOCK]) tmp54 = triton_helpers.promote_to_tensor(tl.sum(tmp52, 0)) tmp55 = 256.0 tmp56 = tmp35 / tmp55 tmp57 = 34.199999999999996 tmp58 = tmp56 * tmp57 tmp59 = -tmp54 tmp60 = 0.015625 tmp61 = tmp59 * tmp60 tmp62 = 0.050000000000000044 tmp63 = tmp61 * tmp62 tmp64 = tmp58 + tmp63 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp64, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(256)](arg0_1, buf2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) buf6 = buf3 del buf3 triton_per_fused__log_softmax__softmax_add_div_mean_mul_neg_sub_sum_xlogy_2[ grid(1)](buf6, buf0, buf2, buf4, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 del buf2 del buf4 return buf6, class DistillationLossNew(nn.Module): """Distilling the Knowledge in a Neural Network https://arxiv.org/pdf/1503.02531.pdf """ def __init__(self, alpha: 'float'=0.95, temp: 'Union[float, int]'=6 ) ->None: super().__init__() self.alpha = alpha self.temp = temp self.kd_loss = nn.KLDivLoss() self.entropy_loss = nn.CrossEntropyLoss() self.log_softmax = nn.LogSoftmax(dim=1) self.softmax = nn.Softmax(dim=1) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
sithu31296/image_classification
DistillationLoss
false
16,468
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
DepthGTLoss
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/a7/ca7rwr2aqvmdahqvko2ea6jhth77r2atrh4a6xcjgrpnyf67ix5l.py # Topologically Sorted Source Nodes: [le, ge, mul, valid_mask, sub, mul_1, abs_1, loss, sum_2], Original ATen: [aten.le, aten.ge, aten.mul, aten._to_copy, aten.sub, aten.abs, aten.sum] # Source node to ATen node mapping: # abs_1 => abs_1 # ge => ge # le => le # loss => sum_1 # mul => mul # mul_1 => mul_1 # sub => sub # sum_2 => sum_2 # valid_mask => convert_element_type # Graph fragment: # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%slice_6, 1), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%slice_6, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%le, %ge), kwargs = {}) # %convert_element_type : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul, torch.float32), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %slice_6), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %convert_element_type), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) triton_per_fused__to_copy_abs_ge_le_mul_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_abs_ge_le_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_ge_le_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_abs_ge_le_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (16*r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 <= tmp1 tmp3 = 0.0 tmp4 = tmp0 >= tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5.to(tl.float32) tmp8 = tmp7 - tmp0 tmp9 = tmp8 * tmp6 tmp10 = tl_math.abs(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp6, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp13, None) tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7n/c7nlf5q4sevvmu5eelpsuk5uuajxg2peljb67st6gpoiwlkfzquy.py # Topologically Sorted Source Nodes: [clamp, loss_1, eq, eq_1, mul_2, float_2, grad_valid_mask, sub_1, abs_2, sub_2, abs_3, gradloss, mul_4, gradloss_1, sum_4, clamp_1, gradloss_2, loss_2, gt], Original ATen: [aten.clamp, aten.div, aten.eq, aten.mul, aten._to_copy, aten.sub, aten.abs, aten.add, aten.sum, aten.gt, aten.sgn] # Source node to ATen node mapping: # abs_2 => abs_2 # abs_3 => abs_3 # clamp => clamp_min # clamp_1 => clamp_min_1 # eq => eq # eq_1 => eq_1 # float_2 => convert_element_type_1 # grad_valid_mask => mul_3 # gradloss => add # gradloss_1 => sum_3 # gradloss_2 => div_1 # gt => gt # loss_1 => div # loss_2 => add_1 # mul_2 => mul_2 # mul_4 => mul_4 # sub_1 => sub_1 # sub_2 => sub_2 # sum_4 => sum_4 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_2, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %clamp_min), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%convolution_4, 0), kwargs = {}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%convolution_5, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%eq, %eq_1), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_2, torch.float32), kwargs = {}) # %mul_3 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %convert_element_type), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %convolution_2), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_1, %convolution_3), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_2, %abs_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %mul_3), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_4,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_4, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %clamp_min_1), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 10), kwargs = {}) # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub_2,), kwargs = {}) # %sign_1 : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub_1,), kwargs = {}) triton_per_fused__to_copy_abs_add_clamp_div_eq_gt_mul_sgn_sub_sum_1 = async_compile.triton('triton_per_fused__to_copy_abs_add_clamp_div_eq_gt_mul_sgn_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*i1', 12: 'i32', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {12: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=(12,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_add_clamp_div_eq_gt_mul_sgn_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_abs_add_clamp_div_eq_gt_mul_sgn_sub_sum_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp7 = tl.load(in_out_ptr0 + (r0), None) tmp9 = tl.load(in_ptr2 + (r0), None) tmp10 = tl.load(in_ptr3 + (r0), None) tmp13 = tl.load(in_ptr4 + (r0), None) tmp14 = tl.load(in_ptr5 + (r0), None) tmp38 = tl.load(in_out_ptr1 + (0)) tmp39 = tl.broadcast_to(tmp38, [XBLOCK, 1]) tmp40 = tl.load(in_ptr6 + (0)) tmp41 = tl.broadcast_to(tmp40, [XBLOCK, 1]) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = tmp3 == tmp1 tmp5 = tmp2 & tmp4 tmp6 = tmp5.to(tl.float32) tmp8 = tmp6 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp15 = tmp13 - tmp14 tmp16 = tl_math.abs(tmp15) tmp17 = tmp12 + tmp16 tmp18 = tmp17 * tmp8 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp22 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp25 = tl.full([1, 1], 0, tl.int32) tmp26 = tmp25 < tmp15 tmp27 = tmp26.to(tl.int8) tmp28 = tmp15 < tmp25 tmp29 = tmp28.to(tl.int8) tmp30 = tmp27 - tmp29 tmp31 = tmp30.to(tmp15.dtype) tmp32 = tmp25 < tmp11 tmp33 = tmp32.to(tl.int8) tmp34 = tmp11 < tmp25 tmp35 = tmp34.to(tl.int8) tmp36 = tmp33 - tmp35 tmp37 = tmp36.to(tmp11.dtype) tmp42 = 1.0 tmp43 = triton_helpers.maximum(tmp41, tmp42) tmp44 = tmp39 / tmp43 tmp45 = triton_helpers.maximum(tmp24, tmp42) tmp46 = tmp21 / tmp45 tmp47 = tmp44 + tmp46 tmp48 = 10.0 tmp49 = tmp47 > tmp48 tl.store(in_out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp8, None) tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp31, None) tl.store(out_ptr3 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp37, None) tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp47, None) tl.store(out_ptr4 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp49, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_3, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_4, (1, 1, 3, 3), (9, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [le, ge, mul, valid_mask, sub, mul_1, abs_1, loss, sum_2], Original ATen: [aten.le, aten.ge, aten.mul, aten._to_copy, aten.sub, aten.abs, aten.sum] stream0 = get_raw_stream(0) triton_per_fused__to_copy_abs_ge_le_mul_sub_sum_0.run(primals_2, primals_1, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0) # Topologically Sorted Source Nodes: [input_gradx], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 1, 1), (1, 1, 1, 1)) # Topologically Sorted Source Nodes: [input_grady], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 1, 1), (1, 1, 1, 1)) # Topologically Sorted Source Nodes: [target_gradx], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(reinterpret_tensor(primals_2, (4, 1, 1, 1), (16, 16, 4, 1), 0), primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 1, 1), (1, 1, 1, 1)) # Topologically Sorted Source Nodes: [target_grady], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(primals_2, (4, 1, 1, 1), (16, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 1, 1, 1), (1, 1, 1, 1)) # Topologically Sorted Source Nodes: [grad_maskx], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 1), (1, 1, 1, 1)) # Topologically Sorted Source Nodes: [grad_masky], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 1, 1), (1, 1, 1, 1)) buf9 = buf0; del buf0 # reuse buf13 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf12 = buf1; del buf1 # reuse buf15 = empty_strided_cuda((), (), torch.bool) # Topologically Sorted Source Nodes: [clamp, loss_1, eq, eq_1, mul_2, float_2, grad_valid_mask, sub_1, abs_2, sub_2, abs_3, gradloss, mul_4, gradloss_1, sum_4, clamp_1, gradloss_2, loss_2, gt], Original ATen: [aten.clamp, aten.div, aten.eq, aten.mul, aten._to_copy, aten.sub, aten.abs, aten.add, aten.sum, aten.gt, aten.sgn] triton_per_fused__to_copy_abs_add_clamp_div_eq_gt_mul_sgn_sub_sum_1.run(buf9, buf12, buf7, buf8, buf3, buf5, buf4, buf6, buf2, buf13, buf14, buf15, 1, 4, grid=grid(1), stream=stream0) del buf2 del buf3 del buf4 del buf5 del buf6 del buf7 del buf8 return (buf12, buf15, primals_1, primals_3, primals_4, reinterpret_tensor(primals_2, (4, 1, 1, 1), (16, 16, 4, 1), 0), buf9, buf13, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np class DepthGTLoss(torch.nn.Module): """ A simple L1 loss, but restricted to the cropped center of the image. It also does not count pixels outside of a given range of values (in target). Additionally, there is also an L1 loss on the gradient. """ def __init__(self, crop_fraction=0.25, vmin=0, vmax=1, limit=10): """ The input should be (batch x channels x height x width). We L1-penalize the inner portion of the image, with crop_fraction cut off from all borders. Keyword arguments: crop_fraction -- fraction to cut off from all sides (defaults to 0.25) vmin -- minimal (GT!) value to supervise vmax -- maximal (GT!) value to supervise limit -- anything higher than this is wrong, and should be ignored """ super().__init__() self.crop_fraction = crop_fraction """Cut-off fraction""" self.vmin = vmin """Lower bound for valid target pixels""" self.vmax = vmax """Upper bound for valid target pixels""" self.sobel_x = torch.nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) self.sobel_x.weight = torch.nn.Parameter(torch.from_numpy(np.array( [[1, 0, -1], [2, 0, -2], [1, 0, -1]]) / 8.0).float().unsqueeze( 0).unsqueeze(0)) self.sobel_y = torch.nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) self.sobel_y.weight = torch.nn.Parameter(torch.from_numpy(np.array( [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) / 8.0).float().unsqueeze( 0).unsqueeze(0)) torch.device('cuda') self.sobel_x = self.sobel_x self.sobel_y = self.sobel_y self.limit = limit def forward(self, input, target): height = input.size(2) heightcrop = int(height * self.crop_fraction) width = input.size(3) widthcrop = int(width * self.crop_fraction) if self.crop_fraction > 0: input_crop = input[:, :, heightcrop:height - heightcrop, widthcrop:width - widthcrop] target_crop = target[:, :, heightcrop:height - heightcrop, widthcrop:width - widthcrop] else: input_crop = input target_crop = target valid_mask = (target_crop.le(self.vmax) * target_crop.ge(self.vmin) ).float() loss = torch.abs((input_crop - target_crop) * valid_mask).sum() loss = loss / valid_mask.sum().clamp(min=1) input_gradx = self.sobel_x(input_crop) input_grady = self.sobel_y(input_crop) target_gradx = self.sobel_x(target_crop) target_grady = self.sobel_y(target_crop) grad_maskx = self.sobel_x(valid_mask) grad_masky = self.sobel_y(valid_mask) grad_valid_mask = (grad_maskx.eq(0) * grad_masky.eq(0)).float( ) * valid_mask gradloss = torch.abs(input_gradx - target_gradx) + torch.abs( input_grady - target_grady) gradloss = (gradloss * grad_valid_mask).sum() gradloss = gradloss / grad_valid_mask.sum().clamp(min=1) loss = loss + gradloss if self.limit is not None and loss > self.limit: loss = torch.clamp(loss, max=self.limit) if loss.ne(loss).item(): None return loss def get_inputs(): return [torch.rand([4, 1, 1, 1]), torch.rand([4, 1, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__to_copy_abs_ge_le_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 16 * r0, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 <= tmp1 tmp3 = 0.0 tmp4 = tmp0 >= tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5.to(tl.float32) tmp8 = tmp7 - tmp0 tmp9 = tmp8 * tmp6 tmp10 = tl_math.abs(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp6, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp13, None) tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) @triton.jit def triton_per_fused__to_copy_abs_add_clamp_div_eq_gt_mul_sgn_sub_sum_1( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp7 = tl.load(in_out_ptr0 + r0, None) tmp9 = tl.load(in_ptr2 + r0, None) tmp10 = tl.load(in_ptr3 + r0, None) tmp13 = tl.load(in_ptr4 + r0, None) tmp14 = tl.load(in_ptr5 + r0, None) tmp38 = tl.load(in_out_ptr1 + 0) tmp39 = tl.broadcast_to(tmp38, [XBLOCK, 1]) tmp40 = tl.load(in_ptr6 + 0) tmp41 = tl.broadcast_to(tmp40, [XBLOCK, 1]) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = tmp3 == tmp1 tmp5 = tmp2 & tmp4 tmp6 = tmp5.to(tl.float32) tmp8 = tmp6 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp15 = tmp13 - tmp14 tmp16 = tl_math.abs(tmp15) tmp17 = tmp12 + tmp16 tmp18 = tmp17 * tmp8 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp22 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp25 = tl.full([1, 1], 0, tl.int32) tmp26 = tmp25 < tmp15 tmp27 = tmp26.to(tl.int8) tmp28 = tmp15 < tmp25 tmp29 = tmp28.to(tl.int8) tmp30 = tmp27 - tmp29 tmp31 = tmp30.to(tmp15.dtype) tmp32 = tmp25 < tmp11 tmp33 = tmp32.to(tl.int8) tmp34 = tmp11 < tmp25 tmp35 = tmp34.to(tl.int8) tmp36 = tmp33 - tmp35 tmp37 = tmp36.to(tmp11.dtype) tmp42 = 1.0 tmp43 = triton_helpers.maximum(tmp41, tmp42) tmp44 = tmp39 / tmp43 tmp45 = triton_helpers.maximum(tmp24, tmp42) tmp46 = tmp21 / tmp45 tmp47 = tmp44 + tmp46 tmp48 = 10.0 tmp49 = tmp47 > tmp48 tl.store(in_out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp8, None) tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp31, None) tl.store(out_ptr3 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp37, None) tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp47, None) tl.store(out_ptr4 + tl.full([XBLOCK, 1], 0, tl.int32), tmp49, None) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_3, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_4, (1, 1, 3, 3), (9, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused__to_copy_abs_ge_le_mul_sub_sum_0[grid(1)](primals_2, primals_1, buf0, buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf3 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 1, 1), (1, 1, 1, 1)) buf4 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 1, 1), (1, 1, 1, 1)) buf5 = extern_kernels.convolution(reinterpret_tensor(primals_2, (4, 1, 1, 1), (16, 16, 4, 1), 0), primals_3, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 1, 1), (1, 1, 1, 1)) buf6 = extern_kernels.convolution(reinterpret_tensor(primals_2, (4, 1, 1, 1), (16, 16, 4, 1), 0), primals_4, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 1, 1, 1), (1, 1, 1, 1)) buf7 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 1), (1, 1, 1, 1)) buf8 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 1, 1), (1, 1, 1, 1)) buf9 = buf0 del buf0 buf13 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) buf12 = buf1 del buf1 buf15 = empty_strided_cuda((), (), torch.bool) triton_per_fused__to_copy_abs_add_clamp_div_eq_gt_mul_sgn_sub_sum_1[ grid(1)](buf9, buf12, buf7, buf8, buf3, buf5, buf4, buf6, buf2, buf13, buf14, buf15, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf2 del buf3 del buf4 del buf5 del buf6 del buf7 del buf8 return buf12, buf15, primals_1, primals_3, primals_4, reinterpret_tensor( primals_2, (4, 1, 1, 1), (16, 16, 4, 1), 0), buf9, buf13, buf14 class DepthGTLossNew(torch.nn.Module): """ A simple L1 loss, but restricted to the cropped center of the image. It also does not count pixels outside of a given range of values (in target). Additionally, there is also an L1 loss on the gradient. """ def __init__(self, crop_fraction=0.25, vmin=0, vmax=1, limit=10): """ The input should be (batch x channels x height x width). We L1-penalize the inner portion of the image, with crop_fraction cut off from all borders. Keyword arguments: crop_fraction -- fraction to cut off from all sides (defaults to 0.25) vmin -- minimal (GT!) value to supervise vmax -- maximal (GT!) value to supervise limit -- anything higher than this is wrong, and should be ignored """ super().__init__() self.crop_fraction = crop_fraction """Cut-off fraction""" self.vmin = vmin """Lower bound for valid target pixels""" self.vmax = vmax """Upper bound for valid target pixels""" self.sobel_x = torch.nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) self.sobel_x.weight = torch.nn.Parameter(torch.from_numpy(np.array( [[1, 0, -1], [2, 0, -2], [1, 0, -1]]) / 8.0).float().unsqueeze( 0).unsqueeze(0)) self.sobel_y = torch.nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) self.sobel_y.weight = torch.nn.Parameter(torch.from_numpy(np.array( [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) / 8.0).float().unsqueeze( 0).unsqueeze(0)) torch.device('cuda') self.sobel_x = self.sobel_x self.sobel_y = self.sobel_y self.limit = limit def forward(self, input_0, input_1): primals_3 = self.sobel_x.weight primals_4 = self.sobel_y.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
simon-donne/defusr
DepthGTLoss
false
16,469
[ "MIT" ]
65
fa4275070af4024eea128e99d7c6df2358d129a5
https://github.com/simon-donne/defusr/tree/fa4275070af4024eea128e99d7c6df2358d129a5
FC
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fl/cflw6zjzdk2wqtau7m6nsei5vavjfijzxhb37zaa3xp4yxpw5yb2.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xl/cxlks5rvjsbzynadhfsy4kar6dwm54cn6srrf6h4nfgsmy6v4ps4.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.leaky_relu, aten.view, aten.leaky_relu_backward] # Source node to ATen node mapping: # out_1 => gt, mul_2, view_3, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul_2), kwargs = {}) # %view_3 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_2, [4, 4, 4, 4]), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_8, 0), kwargs = {}) triton_poi_fused_leaky_relu_leaky_relu_backward_view_1 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_view_1(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.2 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + (x4), tmp9, xmask) tl.store(out_ptr1 + (x4), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.leaky_relu, aten.view, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_view_1.run(buf2, primals_1, buf3, buf4, 256, grid=grid(256), stream=stream0) del buf2 del primals_1 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch from torch import nn import torch.nn.functional as F class FC(nn.Module): def __init__(self, in_channels, out_channels, gain=2 ** 0.5, use_wscale =False, lrmul=1.0, bias=True): super(FC, self).__init__() he_std = gain * in_channels ** -0.5 if use_wscale: init_std = 1.0 / lrmul self.w_lrmul = he_std * lrmul else: init_std = he_std / lrmul self.w_lrmul = lrmul self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels) * init_std) if bias: self.bias = torch.nn.Parameter(torch.zeros(out_channels)) self.b_lrmul = lrmul else: self.bias = None def forward(self, x): if self.bias is not None: out = F.linear(x, self.weight * self.w_lrmul, self.bias * self. b_lrmul) else: out = F.linear(x, self.weight * self.w_lrmul) out = F.leaky_relu(out, 0.2, inplace=True) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_view_1(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.2 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + x4, tmp9, xmask) tl.store(out_ptr1 + x4, tmp10, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_leaky_relu_backward_view_1[grid(256)](buf2, primals_1, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del primals_1 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4 class FCNew(nn.Module): def __init__(self, in_channels, out_channels, gain=2 ** 0.5, use_wscale =False, lrmul=1.0, bias=True): super(FCNew, self).__init__() he_std = gain * in_channels ** -0.5 if use_wscale: init_std = 1.0 / lrmul self.w_lrmul = he_std * lrmul else: init_std = he_std / lrmul self.w_lrmul = lrmul self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels) * init_std) if bias: self.bias = torch.nn.Parameter(torch.zeros(out_channels)) self.b_lrmul = lrmul else: self.bias = None def forward(self, input_0): primals_2 = self.weight primals_1 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
siyuhuang/PoseStylizer
FC
false
16,470
[ "BSD-3-Clause" ]
75
d1d832781ddfd3efde24bf32b36a4074fafebcc1
https://github.com/siyuhuang/PoseStylizer/tree/d1d832781ddfd3efde24bf32b36a4074fafebcc1
FCUDown
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xr/cxrxkhknnmqboqvb3m3mjmm4siolsh3ku22r7a466e4aw3hotnhv.py # Topologically Sorted Source Nodes: [x, avg_pool2d], Original ATen: [aten.convolution, aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%squeeze, [1, 1], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_convolution_0 = async_compile.triton('triton_poi_fused_avg_pool2d_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_convolution_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/av/cavwfegqgu5wpdijlis6ki35f7i3eciv4f4s6up3lvnzhi4lllrj.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add, clone, rsqrt, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr1 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sz/cszqoetc5h77ez4a7xxqisjxr7wumihc5w3yeytxqfsyjswutuy2.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bw/cbwtlqzhq6a5mzatoyulbqvr3fm6cit6icib4drikbzdamoa2b23.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_4 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_1, %mul_4], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x0 = xindex % 4 x2 = (xindex // 20) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 5, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x0) + (16*x2) + ((-1) + x1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = 0.7071067811865476 tmp13 = tmp9 * tmp12 tmp14 = libdevice.erf(tmp13) tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp11 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp6, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tl.store(out_ptr0 + (x3), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, avg_pool2d], Original ATen: [aten.convolution, aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_convolution_0.run(buf1, primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_2 buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf2, buf3, buf4, primals_4, primals_5, buf5, 64, grid=grid(64), stream=stream0) del buf3 del buf4 buf6 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(primals_6, buf5, buf6, 80, grid=grid(80), stream=stream0) del buf5 del primals_6 return (buf6, primals_1, primals_4, primals_5, reinterpret_tensor(primals_3, (1, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class FCUDown(nn.Module): def __init__(self, c1, c2, dw_stride): super().__init__() self.conv_project = nn.Conv2d(c1, c2, 1, 1, 0) self.sample_pooling = nn.AvgPool2d(dw_stride, dw_stride) self.ln = nn.LayerNorm(c2) self.act = nn.GELU() def forward(self, x, x_t): x = self.conv_project(x) x = self.sample_pooling(x).flatten(2).transpose(1, 2) x = self.ln(x) x = self.act(x) x = torch.cat([x_t[:, 0][:, None, :], x], dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'c1': 4, 'c2': 4, 'dw_stride': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_convolution_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr1 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x0 = xindex % 4 x2 = xindex // 20 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 5, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x0 + 16 * x2 + (-1 + x1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = 0.7071067811865476 tmp13 = tmp9 * tmp12 tmp14 = libdevice.erf(tmp13) tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp11 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp6, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tl.store(out_ptr0 + x3, tmp20, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_convolution_0[grid(64)](buf1, primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) triton_poi_fused_native_layer_norm_2[grid(64)](buf2, buf3, buf4, primals_4, primals_5, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 del buf4 buf6 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32) triton_poi_fused_cat_3[grid(80)](primals_6, buf5, buf6, 80, XBLOCK= 128, num_warps=4, num_stages=1) del buf5 del primals_6 return buf6, primals_1, primals_4, primals_5, reinterpret_tensor(primals_3, (1, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4 ), (16, 4, 1), 0), buf2 class FCUDownNew(nn.Module): def __init__(self, c1, c2, dw_stride): super().__init__() self.conv_project = nn.Conv2d(c1, c2, 1, 1, 0) self.sample_pooling = nn.AvgPool2d(dw_stride, dw_stride) self.ln = nn.LayerNorm(c2) self.act = nn.GELU() def forward(self, input_0, input_1): primals_1 = self.conv_project.weight primals_2 = self.conv_project.bias primals_4 = self.ln.weight primals_5 = self.ln.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
sithu31296/image_classification
FCUDown
false
16,471
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
LocalNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/we/cwerb6bh4wkw66tuuogvvdhshhz6u3cw5s3a4jqb23ftxyfx5pg2.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gd/cgdqnufkmolkhmahgpirghlilfdhf2tzbnkmaswr2jaio34ke2tp.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4h/c4hp7y3t3avb7y4kdpd3qny63wnyjqlzzqqpgqgesca5dwxpwjbq.py # Topologically Sorted Source Nodes: [conv2d, x, pad_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d => convolution # pad_1 => _unsafe_index_2, _unsafe_index_3 # x => mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x4 = (xindex // 36) x2 = (xindex // 36) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x4)), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x4)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 0.01 tmp5 = tmp3 * tmp4 tmp6 = tl.where(tmp0, tmp3, tmp5) tl.store(out_ptr0 + (x5), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tz/ctz2qoenjoyo6tyt4vbajmakep7el2x5bm5bjwz5dxrqesj5uyf2.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.01), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_2, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 6, 6), (576, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 2304, grid=grid(2304), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, 4096, grid=grid(4096), stream=stream0) buf3 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x, pad_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2.run(buf2, buf1, primals_3, buf3, 9216, grid=grid(9216), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 4, 4), (1024, 16, 4, 1)) buf5 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) buf6 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf4, primals_5, buf5, buf6, 4096, grid=grid(4096), stream=stream0) del buf4 del primals_5 return (buf6, primals_2, primals_4, buf0, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LocalNet(nn.Module): def forward(self, x_in): """Defines a double convolution :param x_in: input convolutional features :returns: convolutional features :rtype: Tensor """ x = self.lrelu(self.conv1(self.refpad(x_in))) x = self.lrelu(self.conv2(self.refpad(x))) return x def __init__(self, in_channels=16, out_channels=64): """Initialisation function :param in_channels: number of input channels :param out_channels: number of output channels :returns: N/A :rtype: N/A """ super(LocalNet, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, 0, 1) self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 0, 1) self.lrelu = nn.LeakyReLU() self.refpad = nn.ReflectionPad2d(1) def get_inputs(): return [torch.rand([4, 16, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x4 = xindex // 36 x2 = xindex // 36 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 0.01 tmp5 = tmp3 * tmp4 tmp6 = tl.where(tmp0, tmp3, tmp5) tl.store(out_ptr0 + x5, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_2, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 6, 6), (576, 36, 6, 1), torch.float32 ) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(2304)](primals_1, buf0, 2304, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_1[grid(4096)](buf1, primals_3, buf2, 4096, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2[grid(9216)]( buf2, buf1, primals_3, buf3, 9216, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 4, 4), (1024, 16, 4, 1)) buf5 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) buf6 = buf1 del buf1 triton_poi_fused_convolution_leaky_relu_3[grid(4096)](buf4, primals_5, buf5, buf6, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_5 return buf6, primals_2, primals_4, buf0, buf2, buf3, buf5 class LocalNetNew(nn.Module): def __init__(self, in_channels=16, out_channels=64): """Initialisation function :param in_channels: number of input channels :param out_channels: number of output channels :returns: N/A :rtype: N/A """ super(LocalNetNew, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, 0, 1) self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 0, 1) self.lrelu = nn.LeakyReLU() self.refpad = nn.ReflectionPad2d(1) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sjmoran/CURL
LocalNet
false
16,472
[ "BSD-3-Clause" ]
125
919e519717b66e14d92ac6fa404c328ee3f254a5
https://github.com/sjmoran/CURL/tree/919e519717b66e14d92ac6fa404c328ee3f254a5
MidNet4
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dl/cdl5lse44xdzrizubj67ug5s3wmtva33w7qokf7z6zcm6xxeepcr.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [4, 4], [4, 4], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rl/crlihktcxlelztj3nlaeiylpet5sp6oio26pbfd7oslmyooxhgan.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [1, 1], [4, 4], [4, 4], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 16, 64, 64), (65536, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf8 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf6, primals_7, buf7, buf8, 1048576, grid=grid(1048576), stream=stream0) del buf6 del primals_7 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf10, primals_9, 1048576, grid=grid(1048576), stream=stream0) del primals_9 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf4, buf5, buf7, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 16, 64, 64), (65536, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MidNet4(nn.Module): def forward(self, x_in): """Network with dilation rate 4 :param x_in: input convolutional features :returns: processed convolutional features :rtype: Tensor """ x = self.lrelu(self.conv1(x_in)) x = self.lrelu(self.conv2(x)) x = self.lrelu(self.conv3(x)) x = self.conv4(x) return x def __init__(self, in_channels=16): """FIXME! briefly describe function :param in_channels: Input channels :returns: N/A :rtype: N/A """ super(MidNet4, self).__init__() self.lrelu = nn.LeakyReLU() self.conv1 = nn.Conv2d(in_channels, 64, 3, 1, 4, 4) self.conv2 = nn.Conv2d(64, 64, 3, 1, 4, 4) self.conv3 = nn.Conv2d(64, 64, 3, 1, 4, 4) self.conv4 = nn.Conv2d(64, 64, 3, 1, 4, 4) def get_inputs(): return [torch.rand([4, 16, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 16, 64, 64), (65536, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(1048576)](buf0, primals_2, buf1, buf2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_convolution_leaky_relu_0[grid(1048576)](buf3, primals_5, buf4, buf5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf8 = buf3 del buf3 triton_poi_fused_convolution_leaky_relu_0[grid(1048576)](buf6, primals_7, buf7, buf8, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 del primals_7 buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = buf9 del buf9 triton_poi_fused_convolution_1[grid(1048576)](buf10, primals_9, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf4, buf5, buf7, buf8) class MidNet4New(nn.Module): def __init__(self, in_channels=16): """FIXME! briefly describe function :param in_channels: Input channels :returns: N/A :rtype: N/A """ super(MidNet4New, self).__init__() self.lrelu = nn.LeakyReLU() self.conv1 = nn.Conv2d(in_channels, 64, 3, 1, 4, 4) self.conv2 = nn.Conv2d(64, 64, 3, 1, 4, 4) self.conv3 = nn.Conv2d(64, 64, 3, 1, 4, 4) self.conv4 = nn.Conv2d(64, 64, 3, 1, 4, 4) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
sjmoran/CURL
MidNet4
false
16,473
[ "BSD-3-Clause" ]
125
919e519717b66e14d92ac6fa404c328ee3f254a5
https://github.com/sjmoran/CURL/tree/919e519717b66e14d92ac6fa404c328ee3f254a5
XCA
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/g4/cg4hmdc2cxaaojpo3brlmmd3kvv5hwvfsnfjli7wdp5zz2moyjgh.py # Topologically Sorted Source Nodes: [q_2, matmul], Original ATen: [aten.div, aten.clone] # Source node to ATen node mapping: # matmul => clone # q_2 => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_2, %expand), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_div_0 = async_compile.triton('triton_poi_fused_clone_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (12 + y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (36 + y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2 + (4*y3)), tmp15, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ug/cugrt6hmhgywaxywglqz7ycuz4fgjxqxrazkcdrnzd4rzq7veedb.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (28 + y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (40 + y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2 + (4*y3)), tmp15, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7w/c7w5gih6f26bxrk7xxm3o6u6au5n774fa3mlzobsjnb3tdyxg7ie.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div_2, exp, sum_3 # Graph fragment: # %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False}) # %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_4, 0), kwargs = {}) # %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %where_self), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %primals_4), kwargs = {}) # %mul_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_3), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = 0.0 tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tmp7 - tmp7 tmp9 = tmp6 * tmp1 tmp10 = tmp8 * tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = tmp11 / tmp11 tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zg/czgmtvgsd7kopydztreqy37lzmgs3c62hzunxmxy4okrf3maj2hp.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_5,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_1 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_9,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sz/csz5twnkhe2zz3eaafwmgidmezpgvs3favuuva73uud6rs7ouhj6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add] # Source node to ATen node mapping: # x_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_6), kwargs = {}) triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_2, matmul], Original ATen: [aten.div, aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_div_0.run(buf0, buf1, 16, 4, grid=grid(16, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, buf2, 16, 4, grid=grid(16, 4), stream=stream0) buf3 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 0), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, primals_4, buf4, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf0, buf5, 16, 4, grid=grid(16, 4), stream=stream0) buf6 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf6, buf7, 16, 4, grid=grid(16, 4), stream=stream0) buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add] triton_poi_fused_add_5.run(buf9, primals_6, 64, grid=grid(64), stream=stream0) del primals_6 return (buf9, primals_4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 1, 4), (48, 1, 1, 12), 0), reinterpret_tensor(buf0, (4, 4, 1, 4), (48, 1, 1, 12), 4), buf3, buf4, reinterpret_tensor(buf7, (16, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf2, (16, 1, 4), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn from torch.nn import functional as F class XCA(nn.Module): """ Cross-Covariance Attention (XCA) operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax normalized) Cross-covariance matrix (Q^T K \\in d_h \\times d_h) """ def __init__(self, dim: 'int', heads: 'int'): super().__init__() self.num_heads = heads self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) self.qkv = nn.Linear(dim, dim * 3) self.proj = nn.Linear(dim, dim) def forward(self, x: 'Tensor') ->Tensor: B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self. num_heads).permute(2, 0, 3, 1, 4) q, k, v = q.transpose(-2, -1), k.transpose(-2, -1), v.transpose(-2, -1) q = F.normalize(q, dim=-1) k = F.normalize(k, dim=-1) attn = q @ k.transpose(-2, -1) * self.temperature attn = attn.softmax(dim=-1) x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) x = self.proj(x) return x @torch.jit.ignore def no_weight_decay(self): return {'temperature'} def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (12 + y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (36 + y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2 + 4 * y3), tmp15, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (28 + y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (40 + y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2 + 4 * y3), tmp15, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = 0.0 tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tmp7 - tmp7 tmp9 = tmp6 * tmp1 tmp10 = tmp8 * tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = tmp11 / tmp11 tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_div_0[grid(16, 4)](buf0, buf1, 16, 4, XBLOCK =4, YBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf0, buf2, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 0), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused__softmax_2[grid(16)](buf3, primals_4, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(16, 4)](buf0, buf5, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf4, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf6, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0) del buf6 extern_kernels.mm(reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0) del buf8 triton_poi_fused_add_5[grid(64)](buf9, primals_6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_6 return buf9, primals_4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 1, 4), (48, 1, 1, 12), 0 ), reinterpret_tensor(buf0, (4, 4, 1, 4), (48, 1, 1, 12), 4 ), buf3, buf4, reinterpret_tensor(buf7, (16, 4), (4, 1), 0 ), primals_5, reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf2, (16, 1, 4), (4, 1, 1), 0) class XCANew(nn.Module): """ Cross-Covariance Attention (XCA) operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax normalized) Cross-covariance matrix (Q^T K \\in d_h \\times d_h) """ def __init__(self, dim: 'int', heads: 'int'): super().__init__() self.num_heads = heads self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) self.qkv = nn.Linear(dim, dim * 3) self.proj = nn.Linear(dim, dim) @torch.jit.ignore def no_weight_decay(self): return {'temperature'} def forward(self, input_0): primals_4 = self.temperature primals_2 = self.qkv.weight primals_3 = self.qkv.bias primals_5 = self.proj.weight primals_6 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
sithu31296/image_classification
XCA
false
16,474
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
ConvBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zx/czxlhx4s6te5f22sga2xc2brf4uagtr2xkl46odyfqb25nksyekm.py # Topologically Sorted Source Nodes: [conv2d, img_out], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # img_out => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, img_out], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 64, grid=grid(64), stream=stream0) del buf0 del primals_2 return (buf2, primals_1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Block(nn.Module): def __init__(self): """Initialisation for a lower-level DeepLPF conv block :returns: N/A :rtype: N/A """ super(Block, self).__init__() def conv3x3(self, in_channels, out_channels, stride=1): """Represents a convolution of shape 3x3 :param in_channels: number of input channels :param out_channels: number of output channels :param stride: the convolution stride :returns: convolution function with the specified parameterisation :rtype: function """ return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride= stride, padding=1, bias=True) class ConvBlock(Block, nn.Module): def __init__(self, num_in_channels, num_out_channels, stride=1): """Initialise function for the higher level convolution block :param in_channels: :param out_channels: :param stride: :param padding: :returns: :rtype: """ super(Block, self).__init__() self.conv = self.conv3x3(num_in_channels, num_out_channels, stride=2) self.lrelu = nn.LeakyReLU() def forward(self, x): """ Forward function for the higher level convolution block :param x: Tensor representing the input BxCxWxH, where B is the batch size, C is the number of channels, W and H are the width and image height :returns: Tensor representing the output of the block :rtype: Tensor """ img_out = self.lrelu(self.conv(x)) return img_out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in_channels': 4, 'num_out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(64)](buf0, primals_2, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_2 return buf2, primals_1, primals_3, buf1 class Block(nn.Module): def __init__(self): """Initialisation for a lower-level DeepLPF conv block :returns: N/A :rtype: N/A """ super(Block, self).__init__() def conv3x3(self, in_channels, out_channels, stride=1): """Represents a convolution of shape 3x3 :param in_channels: number of input channels :param out_channels: number of output channels :param stride: the convolution stride :returns: convolution function with the specified parameterisation :rtype: function """ return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride= stride, padding=1, bias=True) class ConvBlockNew(Block, nn.Module): def __init__(self, num_in_channels, num_out_channels, stride=1): """Initialise function for the higher level convolution block :param in_channels: :param out_channels: :param stride: :param padding: :returns: :rtype: """ super(Block, self).__init__() self.conv = self.conv3x3(num_in_channels, num_out_channels, stride=2) self.lrelu = nn.LeakyReLU() def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sjmoran/CURL
ConvBlock
false
16,475
[ "BSD-3-Clause" ]
125
919e519717b66e14d92ac6fa404c328ee3f254a5
https://github.com/sjmoran/CURL/tree/919e519717b66e14d92ac6fa404c328ee3f254a5
PoolFormerBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dr/cdrbbq25gaacwdmuqqn76ytppvbzlwbqwo7aazovogwtjetsi3kf.py # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm => add, add_1, mul_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_7), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_4), kwargs = {}) triton_per_fused_native_group_norm_0 = async_compile.triton('triton_per_fused_native_group_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask) tl.store(out_ptr3 + (x0), tmp22, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ou/coupyg345piz42etl5al6lwpef5kkccwwnxo3krwbluktyaryaxz.py # Topologically Sorted Source Nodes: [avg_pool2d, group_norm_1], Original ATen: [aten.avg_pool2d, aten.native_group_norm] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # group_norm_1 => add_3, add_4, mul_4, rsqrt_1, var_mean_1 # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%add_1, [3, 3], [1, 1], [1, 1], False, False), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_15), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %unsqueeze_12), kwargs = {}) triton_per_fused_avg_pool2d_native_group_norm_1 = async_compile.triton('triton_per_fused_avg_pool2d_native_group_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_avg_pool2d_native_group_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 14, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_avg_pool2d_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = (rindex // 4) % 4 r1 = rindex % 4 r6 = rindex x0 = xindex r3 = (rindex // 16) tmp54 = tl.load(in_ptr1 + (r6 + (64*x0)), xmask, other=0.0) tmp55 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr0 + (r6 + (64*x0)), xmask, other=0.0) tmp83 = tl.load(in_ptr3 + (r3), None, eviction_policy='evict_last') tmp85 = tl.load(in_ptr4 + (r3), None, eviction_policy='evict_last') tmp0 = (-1) + r2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + r1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + r6 + (64*x0)), tmp10 & xmask, other=0.0) tmp12 = r1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + r6 + (64*x0)), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + r1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + r6 + (64*x0)), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = r2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + r6 + (64*x0)), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (r6 + (64*x0)), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + r6 + (64*x0)), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + r2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + r6 + (64*x0)), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + r6 + (64*x0)), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + r6 + (64*x0)), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (((0) * ((0) >= ((-1) + r1)) + ((-1) + r1) * (((-1) + r1) > (0)))*((0) * ((0) >= ((-1) + r2)) + ((-1) + r2) * (((-1) + r2) > (0)))) + (((4) * ((4) <= (2 + r1)) + (2 + r1) * ((2 + r1) < (4)))*((4) * ((4) <= (2 + r2)) + (2 + r2) * ((2 + r2) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + r1)) + ((-1) + r1) * (((-1) + r1) > (0)))*((4) * ((4) <= (2 + r2)) + (2 + r2) * ((2 + r2) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + r2)) + ((-1) + r2) * (((-1) + r2) > (0)))*((4) * ((4) <= (2 + r1)) + (2 + r1) * ((2 + r1) < (4)))) tmp53 = tmp51 / tmp52 tmp57 = tmp53 - tmp56 tmp58 = tmp55 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tmp62 = tl.where(xmask, tmp60, 0) tmp63 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp65 = tl.where(xmask, tmp63, 0) tmp66 = tl.sum(tmp65, 1)[:, None] tmp67 = tl.full([XBLOCK, 1], 64, tl.int32) tmp68 = tmp67.to(tl.float32) tmp69 = tmp66 / tmp68 tmp70 = tmp60 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.where(xmask, tmp72, 0) tmp75 = tl.sum(tmp74, 1)[:, None] tmp76 = tmp59 - tmp69 tmp77 = 64.0 tmp78 = tmp75 / tmp77 tmp79 = 1e-05 tmp80 = tmp78 + tmp79 tmp81 = libdevice.rsqrt(tmp80) tmp82 = tmp76 * tmp81 tmp84 = tmp82 * tmp83 tmp86 = tmp84 + tmp85 tl.store(out_ptr0 + (r6 + (64*x0)), tmp53, xmask) tl.store(out_ptr3 + (r6 + (64*x0)), tmp86, xmask) tl.store(out_ptr4 + (x0), tmp81, xmask) tl.store(out_ptr1 + (x0), tmp69, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kv/ckvq6t7emcm7sbgswmzyopykm6n3jk62mr64y3juedkwm66boonw.py # Topologically Sorted Source Nodes: [conv2d, hardtanh], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward] # Source node to ATen node mapping: # conv2d => convolution # hardtanh => clamp_max, clamp_min # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%convolution, 0.0), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%convolution, 0.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%convolution, 6.0), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_convolution_hardtanh_hardtanh_backward_2 = async_compile.triton('triton_poi_fused_convolution_hardtanh_hardtanh_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_hardtanh_hardtanh_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_hardtanh_hardtanh_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 16 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2s/c2sr6yssngw5ceeda7lntygiwg4bblf5mrmsznbnzvcgr3mzmwrc.py # Topologically Sorted Source Nodes: [sub, mul, x, conv2d_1, mul_1, x_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # mul => mul_2 # mul_1 => mul_5 # sub => sub_1 # x => add_2 # x_1 => add_5 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %add_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %sub_1), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %mul_2), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%clamp_max, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_9, %convolution_1), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_5), kwargs = {}) triton_poi_fused_add_convolution_mul_sub_3 = async_compile.triton('triton_poi_fused_add_convolution_mul_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_sub_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x3), xmask) tmp6 = tl.load(in_ptr4 + (x3), xmask) tmp10 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp7 = tmp5 - tmp6 tmp8 = tmp4 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] stream0 = get_raw_stream(0) triton_per_fused_native_group_norm_0.run(primals_4, primals_2, primals_3, buf0, buf3, buf16, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d, group_norm_1], Original ATen: [aten.avg_pool2d, aten.native_group_norm] triton_per_fused_avg_pool2d_native_group_norm_1.run(buf3, primals_4, primals_1, primals_6, primals_7, buf4, buf5, buf8, buf9, 4, 64, grid=grid(4), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 4, 4), (256, 16, 4, 1)) buf11 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) buf15 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, hardtanh], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward] triton_poi_fused_convolution_hardtanh_hardtanh_backward_2.run(buf10, primals_9, buf11, buf15, 1024, grid=grid(1024), stream=stream0) del buf10 del primals_9 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1)) buf13 = buf12; del buf12 # reuse buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, x, conv2d_1, mul_1, x_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.convolution] triton_poi_fused_add_convolution_mul_sub_3.run(buf13, primals_11, primals_4, primals_1, buf4, buf3, primals_5, buf14, 256, grid=grid(256), stream=stream0) del primals_11 return (buf14, primals_1, primals_4, primals_5, primals_6, primals_8, primals_10, buf3, buf4, buf8, reinterpret_tensor(buf5, (4, 1), (1, 1), 0), reinterpret_tensor(buf9, (4, 1), (1, 1), 0), buf11, buf13, buf15, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf16, (4, 1, 1), (1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Copied from timm This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ def __init__(self, p: 'float'=None): super().__init__() self.p = p def forward(self, x: 'Tensor') ->Tensor: if self.p == 0.0 or not self.training: return x kp = 1 - self.p shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = kp + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() return x.div(kp) * random_tensor class MLP(nn.Module): def __init__(self, dim, hidden_dim, out_dim=None) ->None: super().__init__() out_dim = out_dim or dim self.fc1 = nn.Conv2d(dim, hidden_dim, 1, 1, 0) self.act = nn.ReLU6(True) self.fc2 = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0) def forward(self, x: 'Tensor') ->Tensor: return self.fc2(self.act(self.fc1(x))) class Pooling(nn.Module): def __init__(self, pool_size=3) ->None: super().__init__() self.pool = nn.AvgPool2d(pool_size, 1, pool_size // 2, count_include_pad=False) def forward(self, x: 'Tensor') ->Tensor: return self.pool(x) - x class PoolFormerBlock(nn.Module): def __init__(self, dim, pool_size=3, dpr=0.0, layer_scale_init_value=1e-05 ): super().__init__() self.norm1 = nn.GroupNorm(1, dim) self.token_mixer = Pooling(pool_size) self.norm2 = nn.GroupNorm(1, dim) self.drop_path = DropPath(dpr) if dpr > 0.0 else nn.Identity() self.mlp = MLP(dim, int(dim * 4)) self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch. ones(dim), requires_grad=True) self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch. ones(dim), requires_grad=True) def forward(self, x: 'Tensor') ->Tensor: x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(- 1) * self.token_mixer(self.norm1(x))) x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(- 1) * self.mlp(self.norm2(x))) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import Tensor from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask) tl.store(out_ptr3 + x0, tmp22, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_per_fused_avg_pool2d_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex // 4 % 4 r1 = rindex % 4 r6 = rindex x0 = xindex r3 = rindex // 16 tmp54 = tl.load(in_ptr1 + (r6 + 64 * x0), xmask, other=0.0) tmp55 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr0 + (r6 + 64 * x0), xmask, other=0.0) tmp83 = tl.load(in_ptr3 + r3, None, eviction_policy='evict_last') tmp85 = tl.load(in_ptr4 + r3, None, eviction_policy='evict_last') tmp0 = -1 + r2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + r1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + r6 + 64 * x0), tmp10 & xmask, other=0.0) tmp12 = r1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + r6 + 64 * x0), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + r1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + r6 + 64 * x0), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = r2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + r6 + 64 * x0), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (r6 + 64 * x0), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + r6 + 64 * x0), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + r2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + r6 + 64 * x0), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + r6 + 64 * x0), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + r6 + 64 * x0), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (0 * (0 >= -1 + r1) + (-1 + r1) * (-1 + r1 > 0)) * (0 * (0 >= - 1 + r2) + (-1 + r2) * (-1 + r2 > 0)) + (4 * (4 <= 2 + r1) + (2 + r1 ) * (2 + r1 < 4)) * (4 * (4 <= 2 + r2) + (2 + r2) * (2 + r2 < 4) ) + -1 * (0 * (0 >= -1 + r1) + (-1 + r1) * (-1 + r1 > 0)) * (4 * (4 <= 2 + r2) + (2 + r2) * (2 + r2 < 4)) + -1 * (0 * (0 >= -1 + r2) + (-1 + r2) * (-1 + r2 > 0)) * (4 * (4 <= 2 + r1) + (2 + r1) * (2 + r1 < 4)) tmp53 = tmp51 / tmp52 tmp57 = tmp53 - tmp56 tmp58 = tmp55 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tl.where(xmask, tmp60, 0) tmp63 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp65 = tl.where(xmask, tmp63, 0) tmp66 = tl.sum(tmp65, 1)[:, None] tmp67 = tl.full([XBLOCK, 1], 64, tl.int32) tmp68 = tmp67.to(tl.float32) tmp69 = tmp66 / tmp68 tmp70 = tmp60 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.where(xmask, tmp72, 0) tmp75 = tl.sum(tmp74, 1)[:, None] tmp76 = tmp59 - tmp69 tmp77 = 64.0 tmp78 = tmp75 / tmp77 tmp79 = 1e-05 tmp80 = tmp78 + tmp79 tmp81 = libdevice.rsqrt(tmp80) tmp82 = tmp76 * tmp81 tmp84 = tmp82 * tmp83 tmp86 = tmp84 + tmp85 tl.store(out_ptr0 + (r6 + 64 * x0), tmp53, xmask) tl.store(out_ptr3 + (r6 + 64 * x0), tmp86, xmask) tl.store(out_ptr4 + x0, tmp81, xmask) tl.store(out_ptr1 + x0, tmp69, xmask) @triton.jit def triton_poi_fused_convolution_hardtanh_hardtanh_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp9, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_sub_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x3, xmask) tmp6 = tl.load(in_ptr4 + x3, xmask) tmp10 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp7 = tmp5 - tmp6 tmp8 = tmp4 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) get_raw_stream(0) triton_per_fused_native_group_norm_0[grid(4)](primals_4, primals_2, primals_3, buf0, buf3, buf16, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) triton_per_fused_avg_pool2d_native_group_norm_1[grid(4)](buf3, primals_4, primals_1, primals_6, primals_7, buf4, buf5, buf8, buf9, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 4, 4), (256, 16, 4, 1)) buf11 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch. float32) buf15 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.bool) triton_poi_fused_convolution_hardtanh_hardtanh_backward_2[grid(1024)]( buf10, primals_9, buf11, buf15, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf10 del primals_9 buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1)) buf13 = buf12 del buf12 buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_mul_sub_3[grid(256)](buf13, primals_11, primals_4, primals_1, buf4, buf3, primals_5, buf14, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 return (buf14, primals_1, primals_4, primals_5, primals_6, primals_8, primals_10, buf3, buf4, buf8, reinterpret_tensor(buf5, (4, 1), (1, 1), 0), reinterpret_tensor(buf9, (4, 1), (1, 1), 0), buf11, buf13, buf15, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf16, (4, 1, 1), (1, 1, 1), 0)) class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Copied from timm This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ def __init__(self, p: 'float'=None): super().__init__() self.p = p def forward(self, x: 'Tensor') ->Tensor: if self.p == 0.0 or not self.training: return x kp = 1 - self.p shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = kp + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() return x.div(kp) * random_tensor class MLP(nn.Module): def __init__(self, dim, hidden_dim, out_dim=None) ->None: super().__init__() out_dim = out_dim or dim self.fc1 = nn.Conv2d(dim, hidden_dim, 1, 1, 0) self.act = nn.ReLU6(True) self.fc2 = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0) def forward(self, x: 'Tensor') ->Tensor: return self.fc2(self.act(self.fc1(x))) class Pooling(nn.Module): def __init__(self, pool_size=3) ->None: super().__init__() self.pool = nn.AvgPool2d(pool_size, 1, pool_size // 2, count_include_pad=False) def forward(self, x: 'Tensor') ->Tensor: return self.pool(x) - x class PoolFormerBlockNew(nn.Module): def __init__(self, dim, pool_size=3, dpr=0.0, layer_scale_init_value=1e-05 ): super().__init__() self.norm1 = nn.GroupNorm(1, dim) self.token_mixer = Pooling(pool_size) self.norm2 = nn.GroupNorm(1, dim) self.drop_path = DropPath(dpr) if dpr > 0.0 else nn.Identity() self.mlp = MLP(dim, int(dim * 4)) self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch. ones(dim), requires_grad=True) self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch. ones(dim), requires_grad=True) def forward(self, input_0): primals_1 = self.layer_scale_1 primals_2 = self.layer_scale_2 primals_3 = self.norm1.weight primals_5 = self.norm1.bias primals_6 = self.norm2.weight primals_7 = self.norm2.bias primals_8 = self.mlp.fc1.weight primals_9 = self.mlp.fc1.bias primals_10 = self.mlp.fc2.weight primals_11 = self.mlp.fc2.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
sithu31296/image_classification
PoolFormerBlock
false
16,476
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
stack_pool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mh/cmhoygvatdndbo2urprw34fxbqxigbkprfxpma4eso7ktldw5spf.py # Topologically Sorted Source Nodes: [x1, pad], Original ATen: [aten.max_pool2d_with_indices, aten.replication_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # x1 => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_replication_pad2d_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_replication_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) % 3 x2 = (xindex // 9) x3 = xindex tmp0 = tl.load(in_ptr0 + ((2*((1) * ((1) <= (x0)) + (x0) * ((x0) < (1)))) + (8*((1) * ((1) <= (x1)) + (x1) * ((x1) < (1)))) + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*((1) * ((1) <= (x0)) + (x0) * ((x0) < (1)))) + (8*((1) * ((1) <= (x1)) + (x1) * ((x1) < (1)))) + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*((1) * ((1) <= (x0)) + (x0) * ((x0) < (1)))) + (8*((1) * ((1) <= (x1)) + (x1) * ((x1) < (1)))) + (16*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*((1) * ((1) <= (x0)) + (x0) * ((x0) < (1)))) + (8*((1) * ((1) <= (x1)) + (x1) * ((x1) < (1)))) + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/za/czakhmsulztwf7pxr4hzejnq2bung6ciqo2vcce5jpzgjgwrpinp.py # Topologically Sorted Source Nodes: [x1, pad, x2], Original ATen: [aten.max_pool2d_with_indices, aten.replication_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # x1 => _low_memory_max_pool2d_with_offsets # x2 => _low_memory_max_pool2d_with_offsets_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {}) # %_low_memory_max_pool2d_with_offsets_1 : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%_unsafe_index_1, [2, 2], [1, 1], [0, 0], [1, 1], False), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_replication_pad2d_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_replication_pad2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_replication_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_replication_pad2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 2 x2 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (3*x1) + (9*x2)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (3*x1) + (9*x2)), xmask) tmp3 = tl.load(in_ptr0 + (3 + x0 + (3*x1) + (9*x2)), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + (3*x1) + (9*x2)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6e/c6eaxkrmxzi4itmfvx26z4gnn5t2gtll7xndhiefotqqfyotxckg.py # Topologically Sorted Source Nodes: [x1, pad, x2, x3, add, add_1, y], Original ATen: [aten.max_pool2d_with_indices, aten.replication_pad2d, aten.add, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # pad => _unsafe_index, _unsafe_index_1 # x1 => _low_memory_max_pool2d_with_offsets # x2 => _low_memory_max_pool2d_with_offsets_1 # x3 => _low_memory_max_pool2d_with_offsets_2 # y => div # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {}) # %_low_memory_max_pool2d_with_offsets_1 : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%_unsafe_index_1, [2, 2], [1, 1], [0, 0], [1, 1], False), kwargs = {}) # %_low_memory_max_pool2d_with_offsets_2 : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%getitem_2, [3, 3], [1, 1], [1, 1], [1, 1], False), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %getitem_4), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, 3.0), kwargs = {}) triton_poi_fused_add_div_max_pool2d_with_indices_replication_pad2d_2 = async_compile.triton('triton_poi_fused_add_div_max_pool2d_with_indices_replication_pad2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_max_pool2d_with_indices_replication_pad2d_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 14, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_max_pool2d_with_indices_replication_pad2d_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x4 = xindex x3 = (xindex // 2) tmp52 = tl.load(in_ptr1 + ((2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp53 = tl.load(in_ptr1 + (1 + (2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp55 = tl.load(in_ptr1 + (4 + (2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr1 + (5 + (2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp59 = tl.load(in_ptr0 + (x4), xmask) tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-3) + x4), tmp10 & xmask, other=float("-inf")) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-2) + x4), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-1) + x4), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + x4), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x4), tmp33 & xmask, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1 + x4), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2 + x4), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (3 + x4), tmp49 & xmask, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp54 = triton_helpers.maximum(tmp53, tmp52) tmp56 = triton_helpers.maximum(tmp55, tmp54) tmp58 = triton_helpers.maximum(tmp57, tmp56) tmp60 = tmp58 + tmp59 tmp61 = tmp60 + tmp51 tmp62 = 0.3333333333333333 tmp63 = tmp61 * tmp62 tl.store(in_out_ptr0 + (x4), tmp63, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [x1, pad], Original ATen: [aten.max_pool2d_with_indices, aten.replication_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_replication_pad2d_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x1, pad, x2], Original ATen: [aten.max_pool2d_with_indices, aten.replication_pad2d] triton_poi_fused_max_pool2d_with_indices_replication_pad2d_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0) del buf0 buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x1, pad, x2, x3, add, add_1, y], Original ATen: [aten.max_pool2d_with_indices, aten.replication_pad2d, aten.add, aten.div] triton_poi_fused_add_div_max_pool2d_with_indices_replication_pad2d_2.run(buf3, buf1, arg0_1, 64, grid=grid(64), stream=stream0) del arg0_1 del buf1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class stack_pool(nn.Module): def __init__(self): super(stack_pool, self).__init__() self.pool2 = nn.MaxPool2d(2, stride=2) self.pool2s1 = nn.MaxPool2d(2, stride=1) self.pool3s1 = nn.MaxPool2d(3, stride=1, padding=1) self.padding = nn.ReplicationPad2d((0, 1, 0, 1)) def forward(self, x): x1 = self.pool2(x) x2 = self.pool2s1(self.padding(x1)) x3 = self.pool3s1(x2) y = (x1 + x2 + x3) / 3.0 return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 % 3 x2 = xindex // 9 x3 = xindex tmp0 = tl.load(in_ptr0 + (2 * (1 * (1 <= x0) + x0 * (x0 < 1)) + 8 * (1 * (1 <= x1) + x1 * (x1 < 1)) + 16 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * (1 * (1 <= x0) + x0 * (x0 < 1)) + 8 * (1 * (1 <= x1) + x1 * (x1 < 1)) + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * (1 * (1 <= x0) + x0 * (x0 < 1)) + 8 * (1 * (1 <= x1) + x1 * (x1 < 1)) + 16 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * (1 * (1 <= x0) + x0 * (x0 < 1)) + 8 * (1 * (1 <= x1) + x1 * (x1 < 1)) + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_replication_pad2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 2 x2 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 3 * x1 + 9 * x2), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 3 * x1 + 9 * x2), xmask) tmp3 = tl.load(in_ptr0 + (3 + x0 + 3 * x1 + 9 * x2), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + 3 * x1 + 9 * x2), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_add_div_max_pool2d_with_indices_replication_pad2d_2( in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x4 = xindex x3 = xindex // 2 tmp52 = tl.load(in_ptr1 + (2 * x0 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp53 = tl.load(in_ptr1 + (1 + 2 * x0 + 8 * x3), xmask, eviction_policy ='evict_last') tmp55 = tl.load(in_ptr1 + (4 + 2 * x0 + 8 * x3), xmask, eviction_policy ='evict_last') tmp57 = tl.load(in_ptr1 + (5 + 2 * x0 + 8 * x3), xmask, eviction_policy ='evict_last') tmp59 = tl.load(in_ptr0 + x4, xmask) tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-3 + x4), tmp10 & xmask, other=float('-inf')) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-2 + x4), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-1 + x4), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x4, tmp33 & xmask, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1 + x4), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2 + x4), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (3 + x4), tmp49 & xmask, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp54 = triton_helpers.maximum(tmp53, tmp52) tmp56 = triton_helpers.maximum(tmp55, tmp54) tmp58 = triton_helpers.maximum(tmp57, tmp56) tmp60 = tmp58 + tmp59 tmp61 = tmp60 + tmp51 tmp62 = 0.3333333333333333 tmp63 = tmp61 * tmp62 tl.store(in_out_ptr0 + x4, tmp63, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_replication_pad2d_0[grid(144) ](arg0_1, buf0, 144, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_replication_pad2d_1[grid(64)]( buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf3 = buf2 del buf2 triton_poi_fused_add_div_max_pool2d_with_indices_replication_pad2d_2[ grid(64)](buf3, buf1, arg0_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del buf1 return buf3, class stack_poolNew(nn.Module): def __init__(self): super(stack_poolNew, self).__init__() self.pool2 = nn.MaxPool2d(2, stride=2) self.pool2s1 = nn.MaxPool2d(2, stride=1) self.pool3s1 = nn.MaxPool2d(3, stride=1, padding=1) self.padding = nn.ReplicationPad2d((0, 1, 0, 1)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
siyuhuang/crowdcount-stackedpool
stack_pool
false
16,477
[ "MIT" ]
93
bbba3d9e91a5a89642b4bd3638ae8e68801ea7bf
https://github.com/siyuhuang/crowdcount-stackedpool/tree/bbba3d9e91a5a89642b4bd3638ae8e68801ea7bf
multi_pool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rg/crgiawcmyqe6sfk7cdruaahdqt6v7mzrssoebpffrj7d5youuev2.py # Topologically Sorted Source Nodes: [x1, x2, add, add_1, y], Original ATen: [aten.max_pool2d_with_indices, aten.add, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # x1 => _low_memory_max_pool2d_with_offsets # x2 => _low_memory_max_pool2d_with_offsets_1 # y => div # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_low_memory_max_pool2d_with_offsets_1 : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [4, 4], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %getitem_4), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, 3.0), kwargs = {}) triton_poi_fused_add_div_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_add_div_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_max_pool2d_with_indices_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 21, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_max_pool2d_with_indices_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x3 = (xindex // 2) x4 = xindex tmp81 = tl.load(in_ptr0 + ((2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp82 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp84 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp86 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x3)), xmask, eviction_policy='evict_last') tmp89 = tl.load(in_ptr1 + (x4), xmask) tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x3)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = 2*x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x3)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + (2*x0) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x3)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 + (2*x0) tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp5 & tmp29 tmp31 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x3)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = 2*x1 tmp34 = tmp33 >= tmp1 tmp35 = tmp33 < tmp3 tmp36 = tmp34 & tmp35 tmp37 = tmp36 & tmp9 tmp38 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x3)), tmp37 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = tmp36 & tmp15 tmp41 = tl.load(in_ptr0 + ((2*x0) + (8*x3)), tmp40 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp42 = triton_helpers.maximum(tmp41, tmp39) tmp43 = tmp36 & tmp22 tmp44 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x3)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp42) tmp46 = tmp36 & tmp29 tmp47 = tl.load(in_ptr0 + (2 + (2*x0) + (8*x3)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = 1 + (2*x1) tmp50 = tmp49 >= tmp1 tmp51 = tmp49 < tmp3 tmp52 = tmp50 & tmp51 tmp53 = tmp52 & tmp9 tmp54 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x3)), tmp53 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp55 = triton_helpers.maximum(tmp54, tmp48) tmp56 = tmp52 & tmp15 tmp57 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x3)), tmp56 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp58 = triton_helpers.maximum(tmp57, tmp55) tmp59 = tmp52 & tmp22 tmp60 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x3)), tmp59 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp61 = triton_helpers.maximum(tmp60, tmp58) tmp62 = tmp52 & tmp29 tmp63 = tl.load(in_ptr0 + (6 + (2*x0) + (8*x3)), tmp62 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp64 = triton_helpers.maximum(tmp63, tmp61) tmp65 = 2 + (2*x1) tmp66 = tmp65 >= tmp1 tmp67 = tmp65 < tmp3 tmp68 = tmp66 & tmp67 tmp69 = tmp68 & tmp9 tmp70 = tl.load(in_ptr0 + (7 + (2*x0) + (8*x3)), tmp69 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp71 = triton_helpers.maximum(tmp70, tmp64) tmp72 = tmp68 & tmp15 tmp73 = tl.load(in_ptr0 + (8 + (2*x0) + (8*x3)), tmp72 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp74 = triton_helpers.maximum(tmp73, tmp71) tmp75 = tmp68 & tmp22 tmp76 = tl.load(in_ptr0 + (9 + (2*x0) + (8*x3)), tmp75 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp77 = triton_helpers.maximum(tmp76, tmp74) tmp78 = tmp68 & tmp29 tmp79 = tl.load(in_ptr0 + (10 + (2*x0) + (8*x3)), tmp78 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp80 = triton_helpers.maximum(tmp79, tmp77) tmp83 = triton_helpers.maximum(tmp82, tmp81) tmp85 = triton_helpers.maximum(tmp84, tmp83) tmp87 = triton_helpers.maximum(tmp86, tmp85) tmp88 = tmp87 + tmp80 tmp90 = tmp88 + tmp89 tmp91 = 0.3333333333333333 tmp92 = tmp90 * tmp91 tl.store(in_out_ptr0 + (x4), tmp92, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.max_pool2d_with_indices] buf1 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [8, 8], [2, 2], [3, 3]) buf2 = buf1[0] del buf1 buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x1, x2, add, add_1, y], Original ATen: [aten.max_pool2d_with_indices, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_max_pool2d_with_indices_0.run(buf4, arg0_1, buf2, 64, grid=grid(64), stream=stream0) del arg0_1 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class multi_pool(nn.Module): def __init__(self): super(multi_pool, self).__init__() self.pool2 = nn.MaxPool2d(2, stride=2) self.pool4 = nn.MaxPool2d(4, stride=2, padding=1) self.pool8 = nn.MaxPool2d(8, stride=2, padding=3) def forward(self, x): x1 = self.pool2(x) x2 = self.pool4(x) x3 = self.pool8(x) y = (x1 + x2 + x3) / 3.0 return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_max_pool2d_with_indices_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x3 = xindex // 2 x4 = xindex tmp81 = tl.load(in_ptr0 + (2 * x0 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp82 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x3), xmask, eviction_policy ='evict_last') tmp84 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x3), xmask, eviction_policy ='evict_last') tmp86 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x3), xmask, eviction_policy ='evict_last') tmp89 = tl.load(in_ptr1 + x4, xmask) tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x3), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x3), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + 2 * x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x3), tmp23 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 + 2 * x0 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp5 & tmp29 tmp31 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x3), tmp30 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = 2 * x1 tmp34 = tmp33 >= tmp1 tmp35 = tmp33 < tmp3 tmp36 = tmp34 & tmp35 tmp37 = tmp36 & tmp9 tmp38 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x3), tmp37 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = tmp36 & tmp15 tmp41 = tl.load(in_ptr0 + (2 * x0 + 8 * x3), tmp40 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp42 = triton_helpers.maximum(tmp41, tmp39) tmp43 = tmp36 & tmp22 tmp44 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x3), tmp43 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp42) tmp46 = tmp36 & tmp29 tmp47 = tl.load(in_ptr0 + (2 + 2 * x0 + 8 * x3), tmp46 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = 1 + 2 * x1 tmp50 = tmp49 >= tmp1 tmp51 = tmp49 < tmp3 tmp52 = tmp50 & tmp51 tmp53 = tmp52 & tmp9 tmp54 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x3), tmp53 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp55 = triton_helpers.maximum(tmp54, tmp48) tmp56 = tmp52 & tmp15 tmp57 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x3), tmp56 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp58 = triton_helpers.maximum(tmp57, tmp55) tmp59 = tmp52 & tmp22 tmp60 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x3), tmp59 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp61 = triton_helpers.maximum(tmp60, tmp58) tmp62 = tmp52 & tmp29 tmp63 = tl.load(in_ptr0 + (6 + 2 * x0 + 8 * x3), tmp62 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp64 = triton_helpers.maximum(tmp63, tmp61) tmp65 = 2 + 2 * x1 tmp66 = tmp65 >= tmp1 tmp67 = tmp65 < tmp3 tmp68 = tmp66 & tmp67 tmp69 = tmp68 & tmp9 tmp70 = tl.load(in_ptr0 + (7 + 2 * x0 + 8 * x3), tmp69 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp71 = triton_helpers.maximum(tmp70, tmp64) tmp72 = tmp68 & tmp15 tmp73 = tl.load(in_ptr0 + (8 + 2 * x0 + 8 * x3), tmp72 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp74 = triton_helpers.maximum(tmp73, tmp71) tmp75 = tmp68 & tmp22 tmp76 = tl.load(in_ptr0 + (9 + 2 * x0 + 8 * x3), tmp75 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp77 = triton_helpers.maximum(tmp76, tmp74) tmp78 = tmp68 & tmp29 tmp79 = tl.load(in_ptr0 + (10 + 2 * x0 + 8 * x3), tmp78 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp80 = triton_helpers.maximum(tmp79, tmp77) tmp83 = triton_helpers.maximum(tmp82, tmp81) tmp85 = triton_helpers.maximum(tmp84, tmp83) tmp87 = triton_helpers.maximum(tmp86, tmp85) tmp88 = tmp87 + tmp80 tmp90 = tmp88 + tmp89 tmp91 = 0.3333333333333333 tmp92 = tmp90 * tmp91 tl.store(in_out_ptr0 + x4, tmp92, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [8, 8 ], [2, 2], [3, 3]) buf2 = buf1[0] del buf1 buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_div_max_pool2d_with_indices_0[grid(64)](buf4, arg0_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del buf2 return buf4, class multi_poolNew(nn.Module): def __init__(self): super(multi_poolNew, self).__init__() self.pool2 = nn.MaxPool2d(2, stride=2) self.pool4 = nn.MaxPool2d(4, stride=2, padding=1) self.pool8 = nn.MaxPool2d(8, stride=2, padding=3) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
siyuhuang/crowdcount-stackedpool
multi_pool
false
16,478
[ "MIT" ]
93
bbba3d9e91a5a89642b4bd3638ae8e68801ea7bf
https://github.com/siyuhuang/crowdcount-stackedpool/tree/bbba3d9e91a5a89642b4bd3638ae8e68801ea7bf
ClipLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l4/cl4tubtxyw5ee5xzznmwlohggffmq2we62eygecmxpgmibijhpes.py # Topologically Sorted Source Nodes: [norms, data], Original ATen: [aten.linalg_vector_norm, aten.mul] # Source node to ATen node mapping: # data => mul_1 # norms => pow_1, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %view_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %mul_1), kwargs = {}) triton_per_fused_linalg_vector_norm_mul_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mul_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_linalg_vector_norm_mul_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.full([1, 1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = 1.0 tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = tmp0 * tmp12 tl.store(out_ptr2 + (r1 + (64*x0)), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [norms, data], Original ATen: [aten.linalg_vector_norm, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_linalg_vector_norm_mul_0.run(arg0_1, arg0_1, 4, 64, grid=grid(4), stream=stream0) return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def clip_data(data, max_norm): norms = torch.norm(data.reshape(data.shape[0], -1), dim=-1) scale = (max_norm / norms).clamp(max=1.0) data *= scale.reshape(-1, 1, 1, 1) return data class ClipLayer(nn.Module): def __init__(self, max_norm): super(ClipLayer, self).__init__() self.max_norm = max_norm def forward(self, x): return clip_data(x, self.max_norm) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'max_norm': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_per_fused_linalg_vector_norm_mul_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.full([1, 1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = 1.0 tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = tmp0 * tmp12 tl.store(out_ptr2 + (r1 + 64 * x0), tmp13, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_per_fused_linalg_vector_norm_mul_0[grid(4)](arg0_1, arg0_1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) return arg0_1, def clip_data(data, max_norm): norms = torch.norm(data.reshape(data.shape[0], -1), dim=-1) scale = (max_norm / norms).clamp(max=1.0) data *= scale.reshape(-1, 1, 1, 1) return data class ClipLayerNew(nn.Module): def __init__(self, max_norm): super(ClipLayerNew, self).__init__() self.max_norm = max_norm def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
skat00sh/Handcrafted-DP
ClipLayer
false
16,479
[ "MIT" ]
48
d1f8bc004adc240d5c424a10bdcc30fc266c8218
https://github.com/skat00sh/Handcrafted-DP/tree/d1f8bc004adc240d5c424a10bdcc30fc266c8218
MidNet2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dl/cdl5lse44xdzrizubj67ug5s3wmtva33w7qokf7z6zcm6xxeepcr.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [2, 2], [2, 2], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rl/crlihktcxlelztj3nlaeiylpet5sp6oio26pbfd7oslmyooxhgan.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [1, 1], [2, 2], [2, 2], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 16, 64, 64), (65536, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf8 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf6, primals_7, buf7, buf8, 1048576, grid=grid(1048576), stream=stream0) del buf6 del primals_7 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf10, primals_9, 1048576, grid=grid(1048576), stream=stream0) del primals_9 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf4, buf5, buf7, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 16, 64, 64), (65536, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MidNet2(nn.Module): def forward(self, x_in): """Network with dilation rate 2 :param x_in: input convolutional features :returns: processed convolutional features :rtype: Tensor """ x = self.lrelu(self.conv1(x_in)) x = self.lrelu(self.conv2(x)) x = self.lrelu(self.conv3(x)) x = self.conv4(x) return x def __init__(self, in_channels=16): """FIXME! briefly describe function :param in_channels: Input channels :returns: N/A :rtype: N/A """ super(MidNet2, self).__init__() self.lrelu = nn.LeakyReLU() self.conv1 = nn.Conv2d(in_channels, 64, 3, 1, 2, 2) self.conv2 = nn.Conv2d(64, 64, 3, 1, 2, 2) self.conv3 = nn.Conv2d(64, 64, 3, 1, 2, 2) self.conv4 = nn.Conv2d(64, 64, 3, 1, 2, 2) def get_inputs(): return [torch.rand([4, 16, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 16, 64, 64), (65536, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(1048576)](buf0, primals_2, buf1, buf2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_convolution_leaky_relu_0[grid(1048576)](buf3, primals_5, buf4, buf5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf8 = buf3 del buf3 triton_poi_fused_convolution_leaky_relu_0[grid(1048576)](buf6, primals_7, buf7, buf8, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 del primals_7 buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = buf9 del buf9 triton_poi_fused_convolution_1[grid(1048576)](buf10, primals_9, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf4, buf5, buf7, buf8) class MidNet2New(nn.Module): def __init__(self, in_channels=16): """FIXME! briefly describe function :param in_channels: Input channels :returns: N/A :rtype: N/A """ super(MidNet2New, self).__init__() self.lrelu = nn.LeakyReLU() self.conv1 = nn.Conv2d(in_channels, 64, 3, 1, 2, 2) self.conv2 = nn.Conv2d(64, 64, 3, 1, 2, 2) self.conv3 = nn.Conv2d(64, 64, 3, 1, 2, 2) self.conv4 = nn.Conv2d(64, 64, 3, 1, 2, 2) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
sjmoran/CURL
MidNet2
false
16,480
[ "BSD-3-Clause" ]
125
919e519717b66e14d92ac6fa404c328ee3f254a5
https://github.com/sjmoran/CURL/tree/919e519717b66e14d92ac6fa404c328ee3f254a5
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py # Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # a => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/cp/ccp5m5apf7ka2skqyfxhf2df54c52qocprpycry7jrzoptyjvbti.py # Topologically Sorted Source Nodes: [tanh, mul], Original ATen: [aten.tanh, aten.mul] # Source node to ATen node mapping: # mul => mul # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {}) triton_poi_fused_mul_tanh_1 = async_compile.triton('triton_poi_fused_mul_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (4, 256), (256, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 16384, grid=grid(16384), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, mul], Original ATen: [aten.tanh, aten.mul] triton_poi_fused_mul_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), buf4, primals_6, buf6, primals_4, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Actor(nn.Module): """Initialize parameters and build model. An nn.Module contains layers, and a method forward(input)that returns the output. Weights (learnable params) are inherently defined here. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action max_action (float): highest action to take Return: action output of network with tanh activation """ def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.fc1 = nn.Linear(state_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, action_dim) self.max_action = max_action def forward(self, state): a = F.relu(self.fc1(state)) a = F.relu(self.fc2(a)) return self.max_action * torch.tanh(self.fc3(a)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'max_action': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (4, 256), (256, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf7, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf3, primals_5, buf6, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 256), (256, 1), 0 ), reinterpret_tensor(buf3, (64, 256), (256, 1), 0 ), buf4, primals_6, buf6, primals_4, buf7 class ActorNew(nn.Module): """Initialize parameters and build model. An nn.Module contains layers, and a method forward(input)that returns the output. Weights (learnable params) are inherently defined here. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action max_action (float): highest action to take Return: action output of network with tanh activation """ def __init__(self, state_dim, action_dim, max_action): super(ActorNew, self).__init__() self.fc1 = nn.Linear(state_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, action_dim) self.max_action = max_action def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
sofya-pugach/spot_mini_mini
Actor
false
16,481
[ "MIT" ]
323
42770145e91ed2625ccc7e4f4d7016ce14a61464
https://github.com/sofya-pugach/spot_mini_mini/tree/42770145e91ed2625ccc7e4f4d7016ce14a61464
CA
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/47/c47qlgtbgxvghtp5yx74ql2djqca2dapapgednjg6w6eu27im6n4.py # Topologically Sorted Source Nodes: [mul, sum_1, attn_cls_1], Original ATen: [aten.mul, aten.sum, aten._softmax] # Source node to ATen node mapping: # attn_cls_1 => exp, sum_2 # mul => mul # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_3, %select_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_mul_sum_0 = async_compile.triton('triton_poi_fused__softmax_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (48*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (48*x1)), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + (48*x1)), xmask) tmp9 = tl.load(in_ptr0 + (28 + x0 + (48*x1)), xmask) tmp13 = tl.load(in_ptr0 + (40 + x0 + (48*x1)), xmask) tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp0 * tmp5 tmp7 = tmp6 * tmp3 tmp8 = triton_helpers.maximum(tmp4, tmp7) tmp10 = tmp0 * tmp9 tmp11 = tmp10 * tmp3 tmp12 = triton_helpers.maximum(tmp8, tmp11) tmp14 = tmp0 * tmp13 tmp15 = tmp14 * tmp3 tmp16 = triton_helpers.maximum(tmp12, tmp15) tmp17 = tmp4 - tmp16 tmp18 = tmp17 * tmp3 tmp19 = tl_math.exp(tmp18) tmp20 = tmp7 - tmp16 tmp21 = tmp20 * tmp3 tmp22 = tl_math.exp(tmp21) tmp23 = tmp19 + tmp22 tmp24 = tmp11 - tmp16 tmp25 = tmp24 * tmp3 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp15 - tmp16 tmp29 = tmp28 * tmp3 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tl.store(out_ptr0 + (x2), tmp16, xmask) tl.store(out_ptr1 + (x2), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vc/cvchf3vpztbrjl6bsficenjfa3ykibhj4lsj2m42hp2ptvuqftok.py # Topologically Sorted Source Nodes: [mul, sum_1, attn_cls_1], Original ATen: [aten.mul, aten.sum, aten._softmax] # Source node to ATen node mapping: # attn_cls_1 => div, exp # mul => mul # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_3, %select_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) triton_poi_fused__softmax_mul_sum_1 = async_compile.triton('triton_poi_fused__softmax_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y0 = yindex % 4 y1 = (yindex // 4) x2 = xindex y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (48*y1)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (y3), ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp3 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(out_ptr0 + (x2 + (4*y3)), tmp10, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vd/cvdrpdl26qqjgigmqf3ei6xnz24p66anmft76dsqvkap3yhxh66s.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5o/c5obgkr2qdqklhb2kdtdyqmzwoez3kbhoofzxl77567p7x7lr2io.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_8, %slice_5], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 4, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (4 + x0 + (4*((-1) + x1)) + (16*x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [mul, sum_1, attn_cls_1], Original ATen: [aten.mul, aten.sum, aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_mul_sum_0.run(buf0, buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sum_1, attn_cls_1], Original ATen: [aten.mul, aten.sum, aten._softmax] triton_poi_fused__softmax_mul_sum_1.run(buf0, buf1, buf2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf0, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [cls_token_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf6, primals_1, buf7, 64, grid=grid(64), stream=stream0) del buf6 return (buf7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4, 1), (48, 1, 12, 1), 4), reinterpret_tensor(buf0, (4, 4, 1, 1), (48, 1, 12, 1), 0), buf3, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn class CA(nn.Module): """ClassAttention as in CaiT """ def __init__(self, dim: 'int', heads: 'int'): super().__init__() self.num_heads = heads self.scale = (dim // heads) ** -0.5 self.qkv = nn.Linear(dim, dim * 3) self.proj = nn.Linear(dim, dim) def forward(self, x: 'Tensor') ->Tensor: B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self. num_heads).permute(2, 0, 3, 1, 4) qc = q[:, :, :1] attn_cls = (qc * k).sum(dim=-1) * self.scale attn_cls = attn_cls.softmax(dim=-1) cls_token = (attn_cls.unsqueeze(2) @ v).transpose(1, 2).reshape(B, 1, C ) cls_token = self.proj(cls_token) x = torch.cat([cls_token, x[:, 1:]], dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_mul_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 48 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 48 * x1), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + 48 * x1), xmask) tmp9 = tl.load(in_ptr0 + (28 + x0 + 48 * x1), xmask) tmp13 = tl.load(in_ptr0 + (40 + x0 + 48 * x1), xmask) tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp0 * tmp5 tmp7 = tmp6 * tmp3 tmp8 = triton_helpers.maximum(tmp4, tmp7) tmp10 = tmp0 * tmp9 tmp11 = tmp10 * tmp3 tmp12 = triton_helpers.maximum(tmp8, tmp11) tmp14 = tmp0 * tmp13 tmp15 = tmp14 * tmp3 tmp16 = triton_helpers.maximum(tmp12, tmp15) tmp17 = tmp4 - tmp16 tmp18 = tmp17 * tmp3 tmp19 = tl_math.exp(tmp18) tmp20 = tmp7 - tmp16 tmp21 = tmp20 * tmp3 tmp22 = tl_math.exp(tmp21) tmp23 = tmp19 + tmp22 tmp24 = tmp11 - tmp16 tmp25 = tmp24 * tmp3 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp15 - tmp16 tmp29 = tmp28 * tmp3 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tl.store(out_ptr0 + x2, tmp16, xmask) tl.store(out_ptr1 + x2, tmp31, xmask) @triton.jit def triton_poi_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y0 = yindex % 4 y1 = yindex // 4 x2 = xindex y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 48 * y1), ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (4 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp3 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(out_ptr0 + (x2 + 4 * y3), tmp10, xmask & ymask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp9 = tl.load(in_ptr1 + (4 + x0 + 4 * (-1 + x1) + 16 * x2), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_mul_sum_0[grid(16)](buf0, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_mul_sum_1[grid(16, 4)](buf0, buf1, buf2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_2[grid(16, 4)](buf0, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0) del buf1 extern_kernels.addmm(primals_5, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf6) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_cat_3[grid(64)](buf6, primals_1, buf7, 64, XBLOCK= 64, num_warps=1, num_stages=1) del buf6 return buf7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4, 1), (48, 1, 12, 1), 4 ), reinterpret_tensor(buf0, (4, 4, 1, 1), (48, 1, 12, 1), 0 ), buf3, reinterpret_tensor(buf5, (4, 4), (4, 1), 0 ), primals_4, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0) class CANew(nn.Module): """ClassAttention as in CaiT """ def __init__(self, dim: 'int', heads: 'int'): super().__init__() self.num_heads = heads self.scale = (dim // heads) ** -0.5 self.qkv = nn.Linear(dim, dim * 3) self.proj = nn.Linear(dim, dim) def forward(self, input_0): primals_2 = self.qkv.weight primals_3 = self.qkv.bias primals_4 = self.proj.weight primals_5 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sithu31296/image_classification
CA
false
16,482
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
OutlookAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6x/c6xdtz2w5en5fsdbgutlchlfsh4q7a2byarfiaglzh45nn222wce.py # Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col] # Source node to ATen node mapping: # unfold => add # Graph fragment: # %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) triton_poi_fused_im2col_0 = async_compile.triton('triton_poi_fused_im2col_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_im2col_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_im2col_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 + x1 tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7h/c7howbh27c6wmleecf2uzap4cbx7ucljylpyhqy6ghbnqufvr5po.py # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%permute_4, [1, 1], [1, 1], [0, 0], True), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/72/c722aummoy2unz7kcsmvjtksk2qufvn34p3r2d4yihkr7joco7of.py # Topologically Sorted Source Nodes: [attn_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_3 => amax, clone_1, div, exp, sub, sum_1 # Graph fragment: # %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_9,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4096, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 2304 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r4 = rindex x0 = xindex % 9 x1 = (xindex // 9) % 4 x2 = (xindex // 36) % 16 x3 = (xindex // 576) x6 = xindex tmp0 = tl.load(in_ptr0 + (r4 + (9*x0) + (81*x1) + (81*((r4 + (9*x0)) // 81)) + (324*x2) + (2592*((x2 % 4) // 4)) + (5184*x3) + (5184*(triton_helpers.div_floor_integer((4*(x2 // 4)) + (x2 % 4), 16)))), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r4 + (9*x0) + (81*x1) + (81*((r4 + (9*x0)) // 81))), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(rmask & xmask, tmp5, float("-inf")) tmp8 = triton_helpers.max2(tmp7, 1)[:, None] tmp9 = tmp4 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.where(rmask & xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tmp15 = tmp10 / tmp14 tl.store(out_ptr2 + (r4 + (9*x0) + (81*x2) + (1312*x1) + (5248*x3)), tmp15, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5r/c5rssi353wkd2scirr2i3cdjitakcddf5xxkaiysfvnfwz4wbx4l.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 9 x1 = (xindex // 9) % 16 x2 = (xindex // 144) % 4 x3 = (xindex // 576) x5 = xindex tmp0 = tl.load(in_ptr0 + ((4*(x0 // 3)) + (x1 // 4)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + ((4*(x0 % 3)) + (x1 % 4)), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 6") tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert(((0 <= tmp9) & (tmp9 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp9 < 6") tmp11 = (-1) + tmp4 tmp12 = tl.full([1], 0, tl.int64) tmp13 = tmp11 >= tmp12 tmp14 = tl.full([1], 4, tl.int64) tmp15 = tmp11 < tmp14 tmp16 = (-1) + tmp9 tmp17 = tmp16 >= tmp12 tmp18 = tmp16 < tmp14 tmp19 = tmp13 & tmp15 tmp20 = tmp19 & tmp17 tmp21 = tmp20 & tmp18 tmp22 = tl.load(in_ptr1 + ((-20) + x2 + (4*tmp9) + (16*tmp4) + (64*x3)), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x5), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ya/cyaau7d2v6nud7wiegjd72lx2uhv7wc6gc6x5o3epgg6odllcau7.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] # Source node to ATen node mapping: # matmul => bmm # Graph fragment: # %bmm : [num_users=1] = call_function[target=torch.ops.aten.bmm.default](args = (%view_15, %view_16), kwargs = {}) triton_poi_fused_bmm_4 = async_compile.triton('triton_poi_fused_bmm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20736 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 81 x1 = (xindex // 81) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (81*(x1 % 16)) + (1312*(x1 // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tv/ctvlqogy5r6ohjndwmx3qbdwvnnrjj2qm7iknoh6f6ckrtehwqir.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.col2im] # Source node to ATen node mapping: # x_1 => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 6, 6], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_col2im_5 = async_compile.triton('triton_poi_fused_col2im_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_col2im_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_col2im_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ih/cihl6moqjmq37jz7lm5yhuwfyf6mbpckcqjigxxaznjgffp3y5ca.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.col2im] # Source node to ATen node mapping: # x_1 => index_put # Graph fragment: # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put.default](args = (%full_default, [None, None, %unsqueeze_5, %add], %permute_12, True), kwargs = {}) triton_poi_fused_col2im_6 = async_compile.triton('triton_poi_fused_col2im_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_col2im_6', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_col2im_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 576 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y5 = (yindex // 3) % 12 x4 = xindex y0 = yindex % 3 y1 = (yindex // 3) % 4 y2 = (yindex // 12) % 3 y3 = (yindex // 36) tmp0 = tl.load(in_ptr0 + (y5), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (x4 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (y0 + (3*y2) + (9*x4) + (36*y1) + (144*y3) + (144*((y0 + (3*y2)) // 9))), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK, YBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 6)) | ~(ymask), "index out of bounds: 0 <= tmp4 < 6") tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert(((0 <= tmp9) & (tmp9 < 6)) | ~(xmask & ymask), "index out of bounds: 0 <= tmp9 < 6") tl.atomic_add(out_ptr0 + (tl.broadcast_to(tmp9 + (6*tmp4) + (36*y3), [XBLOCK, YBLOCK])), tmp11, xmask & ymask, sem='relaxed') ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6j/c6j6zr7wslvz3frvfzwveytngq4nfxv75gmqi2vju57tya4iykk7.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_2 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_13,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y1 = (yindex // 4) % 4 y0 = yindex % 4 x3 = xindex y2 = (yindex // 16) y5 = yindex tmp0 = 1 + y1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 6, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 1 + y0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (7 + y0 + (6*y1) + (36*x3) + (144*y2)), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x3 + (4*y5)), tmp11, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wv/cwvxucyxlsbx6r4eu4pwwxtgq2adykv2e5ulhy576dumppymjdrc.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_4 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_21, %primals_6), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (324, 4), (4, 1)) assert_size_stride(primals_4, (324, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((3, 4), (4, 1), torch.int64) # Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col] stream0 = get_raw_stream(0) triton_poi_fused_im2col_0.run(buf1, 12, grid=grid(12), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(primals_1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 324), (324, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 324), (1, 4), 0), out=buf3) del primals_3 buf6 = empty_strided_cuda((4, 4, 16, 9, 9), (5248, 1312, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_3], Original ATen: [aten._softmax] triton_per_fused__softmax_2.run(buf3, primals_4, buf6, 2304, 9, grid=grid(2304), stream=stream0) del primals_4 buf7 = empty_strided_cuda((4, 4, 16, 9, 1), (576, 144, 9, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf1, buf0, buf7, 2304, grid=grid(2304), stream=stream0) buf8 = reinterpret_tensor(buf3, (256, 9, 9), (81, 9, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] triton_poi_fused_bmm_4.run(buf6, buf8, 20736, grid=grid(20736), stream=stream0) buf9 = empty_strided_cuda((256, 9, 1), (9, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(buf8, reinterpret_tensor(buf7, (256, 9, 1), (9, 1, 0), 0), out=buf9) del buf8 buf10 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.col2im] triton_poi_fused_col2im_5.run(buf10, 576, grid=grid(576), stream=stream0) buf11 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.col2im] triton_poi_fused_col2im_5.run(buf11, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.col2im] triton_poi_fused_col2im_6.run(buf1, buf9, buf11, 576, 4, grid=grid(576, 4), stream=stream0) del buf9 buf13 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] triton_poi_fused_clone_7.run(buf11, buf13, 64, 4, grid=grid(64, 4), stream=stream0) del buf11 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf14) buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf15, primals_6, 256, grid=grid(256), stream=stream0) del primals_6 return (buf15, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf6, buf10, reinterpret_tensor(buf13, (64, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf7, (256, 1, 9), (9, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((324, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((324, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor from torch import nn from torch.nn import functional as F class OutlookAttention(nn.Module): def __init__(self, dim, num_heads, k=3, s=1, p=1): super().__init__() self.s = s self.k = k self.p = p self.num_heads = num_heads self.scale = (dim // num_heads) ** -0.5 self.v = nn.Linear(dim, dim, bias=False) self.attn = nn.Linear(dim, k ** 4 * num_heads) self.proj = nn.Linear(dim, dim) self.unfold = nn.Unfold(k, padding=p, stride=s) self.pool = nn.AvgPool2d(s, s, ceil_mode=True) def forward(self, x: 'Tensor') ->Tensor: B, H, W, C = x.shape v = self.v(x).permute(0, 3, 1, 2) h, w = math.ceil(H / self.s), math.ceil(W / self.s) v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads, self.k * self.k, h * w).permute(0, 1, 4, 3, 2) attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) attn = self.attn(attn).reshape(B, h * w, self.num_heads, self.k * self.k, self.k * self.k).permute(0, 2, 1, 3, 4) attn *= self.scale attn = attn.softmax(dim=-1) x = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self.k * self. k, h * w) x = F.fold(x, (H, W), self.k, padding=self.p, stride=self.s) x = self.proj(x.permute(0, 2, 3, 1)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_im2col_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 + x1 tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__softmax_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 2304 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r4 = rindex x0 = xindex % 9 x1 = xindex // 9 % 4 x2 = xindex // 36 % 16 x3 = xindex // 576 tmp0 = tl.load(in_ptr0 + (r4 + 9 * x0 + 81 * x1 + 81 * ((r4 + 9 * x0) // 81) + 324 * x2 + 2592 * (x2 % 4 // 4) + 5184 * x3 + 5184 * triton_helpers.div_floor_integer(4 * (x2 // 4) + x2 % 4, 16)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r4 + 9 * x0 + 81 * x1 + 81 * ((r4 + 9 * x0) // 81)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(rmask & xmask, tmp5, float('-inf')) tmp8 = triton_helpers.max2(tmp7, 1)[:, None] tmp9 = tmp4 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.where(rmask & xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tmp15 = tmp10 / tmp14 tl.store(out_ptr2 + (r4 + 9 * x0 + 81 * x2 + 1312 * x1 + 5248 * x3), tmp15, rmask & xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 9 x1 = xindex // 9 % 16 x2 = xindex // 144 % 4 x3 = xindex // 576 x5 = xindex tmp0 = tl.load(in_ptr0 + (4 * (x0 // 3) + x1 // 4), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (4 * (x0 % 3) + x1 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 6) | ~xmask, 'index out of bounds: 0 <= tmp4 < 6') tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert((0 <= tmp9) & (tmp9 < 6) | ~xmask, 'index out of bounds: 0 <= tmp9 < 6') tmp11 = -1 + tmp4 tmp12 = tl.full([1], 0, tl.int64) tmp13 = tmp11 >= tmp12 tmp14 = tl.full([1], 4, tl.int64) tmp15 = tmp11 < tmp14 tmp16 = -1 + tmp9 tmp17 = tmp16 >= tmp12 tmp18 = tmp16 < tmp14 tmp19 = tmp13 & tmp15 tmp20 = tmp19 & tmp17 tmp21 = tmp20 & tmp18 tmp22 = tl.load(in_ptr1 + (-20 + x2 + 4 * tmp9 + 16 * tmp4 + 64 * x3), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + x5, tmp22, xmask) @triton.jit def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 20736 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 81 x1 = xindex // 81 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 81 * (x1 % 16) + 1312 * (x1 // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_col2im_5(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_col2im_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 576 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y5 = yindex // 3 % 12 x4 = xindex y0 = yindex % 3 y1 = yindex // 3 % 4 y2 = yindex // 12 % 3 y3 = yindex // 36 tmp0 = tl.load(in_ptr0 + y5, ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (x4 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr1 + (y0 + 3 * y2 + 9 * x4 + 36 * y1 + 144 * y3 + 144 * ((y0 + 3 * y2) // 9)), xmask & ymask, eviction_policy= 'evict_last') tmp1 = tl.full([XBLOCK, YBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 6) | ~ymask, 'index out of bounds: 0 <= tmp4 < 6') tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert((0 <= tmp9) & (tmp9 < 6) | ~(xmask & ymask), 'index out of bounds: 0 <= tmp9 < 6') tl.atomic_add(out_ptr0 + tl.broadcast_to(tmp9 + 6 * tmp4 + 36 * y3, [ XBLOCK, YBLOCK]), tmp11, xmask & ymask, sem='relaxed') @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y1 = yindex // 4 % 4 y0 = yindex % 4 x3 = xindex y2 = yindex // 16 y5 = yindex tmp0 = 1 + y1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 6, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 1 + y0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (7 + y0 + 6 * y1 + 36 * x3 + 144 * y2), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x3 + 4 * y5), tmp11, xmask & ymask) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (324, 4), (4, 1)) assert_size_stride(primals_4, (324,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((3, 4), (4, 1), torch.int64) get_raw_stream(0) triton_poi_fused_im2col_0[grid(12)](buf1, 12, XBLOCK=16, num_warps= 1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_avg_pool2d_1[grid(256)](primals_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 324), (324, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 324), (1, 4), 0), out=buf3) del primals_3 buf6 = empty_strided_cuda((4, 4, 16, 9, 9), (5248, 1312, 81, 9, 1), torch.float32) triton_per_fused__softmax_2[grid(2304)](buf3, primals_4, buf6, 2304, 9, XBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf7 = empty_strided_cuda((4, 4, 16, 9, 1), (576, 144, 9, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(2304)](buf1, buf0, buf7, 2304, XBLOCK =256, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf3, (256, 9, 9), (81, 9, 1), 0) del buf3 triton_poi_fused_bmm_4[grid(20736)](buf6, buf8, 20736, XBLOCK=256, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((256, 9, 1), (9, 1, 1), torch.float32) extern_kernels.bmm(buf8, reinterpret_tensor(buf7, (256, 9, 1), (9, 1, 0), 0), out=buf9) del buf8 buf10 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32 ) triton_poi_fused_col2im_5[grid(576)](buf10, 576, XBLOCK=256, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32 ) triton_poi_fused_col2im_5[grid(576)](buf11, 576, XBLOCK=256, num_warps=4, num_stages=1) triton_poi_fused_col2im_6[grid(576, 4)](buf1, buf9, buf11, 576, 4, XBLOCK=1, YBLOCK=256, num_warps=4, num_stages=1) del buf9 buf13 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_7[grid(64, 4)](buf11, buf13, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del buf11 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf14) buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf14 triton_poi_fused_add_8[grid(256)](buf15, primals_6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 return buf15, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf6, buf10, reinterpret_tensor(buf13, (64, 4), (4, 1), 0 ), primals_5, reinterpret_tensor(buf7, (256, 1, 9), (9, 1, 1), 0) class OutlookAttentionNew(nn.Module): def __init__(self, dim, num_heads, k=3, s=1, p=1): super().__init__() self.s = s self.k = k self.p = p self.num_heads = num_heads self.scale = (dim // num_heads) ** -0.5 self.v = nn.Linear(dim, dim, bias=False) self.attn = nn.Linear(dim, k ** 4 * num_heads) self.proj = nn.Linear(dim, dim) self.unfold = nn.Unfold(k, padding=p, stride=s) self.pool = nn.AvgPool2d(s, s, ceil_mode=True) def forward(self, input_0): primals_2 = self.v.weight primals_3 = self.attn.weight primals_4 = self.attn.bias primals_5 = self.proj.weight primals_6 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
sithu31296/image_classification
OutlookAttention
false
16,483
[ "MIT" ]
57
6b8cbce96100225621cee3166a73e852ba216cc3
https://github.com/sithu31296/image_classification/tree/6b8cbce96100225621cee3166a73e852ba216cc3
GlobalAvgPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.mean] # Source node to ATen node mapping: # inputs => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils class GlobalAvgPool2d(nn.Module): def __init__(self): """Global average pooling over the input's spatial dimensions""" super(GlobalAvgPool2d, self).__init__() def forward(self, inputs): in_size = inputs.size() inputs = inputs.view((in_size[0], in_size[1], -1)).mean(dim=2) inputs = inputs.view(in_size[0], in_size[1], 1, 1) return inputs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), class GlobalAvgPool2dNew(nn.Module): def __init__(self): """Global average pooling over the input's spatial dimensions""" super(GlobalAvgPool2dNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
songzijiang/FasterSeg
GlobalAvgPool2d
false
16,484
[ "MIT" ]
334
1a14ef6dd665afd229a16ab43b532b5a406512f8
https://github.com/songzijiang/FasterSeg/tree/1a14ef6dd665afd229a16ab43b532b5a406512f8
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat] # Source node to ATen node mapping: # sa => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py # Topologically Sorted Source Nodes: [q1], Original ATen: [aten.relu] # Source node to ATen node mapping: # q1 => relu # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (256, 8), (8, 1)) assert_size_stride(primals_4, (256, ), (1, )) assert_size_stride(primals_5, (256, 256), (256, 1)) assert_size_stride(primals_6, (256, ), (1, )) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1, ), (1, )) assert_size_stride(primals_9, (256, 8), (8, 1)) assert_size_stride(primals_10, (256, ), (1, )) assert_size_stride(primals_11, (256, 256), (256, 1)) assert_size_stride(primals_12, (256, ), (1, )) assert_size_stride(primals_13, (1, 256), (256, 1)) assert_size_stride(primals_14, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [q1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, primals_4, 1024, grid=grid(1024), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), (1, 256), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [q1_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf4, primals_6, 1024, grid=grid(1024), stream=stream0) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [q1_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_8 buf7 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 256), (1, 8), 0), out=buf7) del primals_9 buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [q2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf8, primals_10, 1024, grid=grid(1024), stream=stream0) del primals_10 buf9 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (256, 256), (1, 256), 0), out=buf9) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [q2_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf10, primals_12, 1024, grid=grid(1024), stream=stream0) del primals_12 buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [q2_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(primals_13, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf12) del primals_14 return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13, primals_11, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Critic(nn.Module): """Initialize parameters and build model. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action Return: value output of network """ def __init__(self, state_dim, action_dim): super(Critic, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) self.fc4 = nn.Linear(state_dim + action_dim, 256) self.fc5 = nn.Linear(256, 256) self.fc6 = nn.Linear(256, 1) def forward(self, state, action): sa = torch.cat([state, action], 1) q1 = F.relu(self.fc1(sa)) q1 = F.relu(self.fc2(q1)) q1 = self.fc3(q1) q2 = F.relu(self.fc4(sa)) q2 = F.relu(self.fc5(q2)) q2 = self.fc6(q2) return q1, q2 def Q1(self, state, action): sa = torch.cat([state, action], 1) q1 = F.relu(self.fc1(sa)) q1 = F.relu(self.fc2(q1)) q1 = self.fc3(q1) return q1 def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (256, 8), (8, 1)) assert_size_stride(primals_4, (256,), (1,)) assert_size_stride(primals_5, (256, 256), (256, 1)) assert_size_stride(primals_6, (256,), (1,)) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1,), (1,)) assert_size_stride(primals_9, (256, 8), (8, 1)) assert_size_stride(primals_10, (256,), (1,)) assert_size_stride(primals_11, (256, 256), (256, 1)) assert_size_stride(primals_12, (256,), (1,)) assert_size_stride(primals_13, (1, 256), (256, 1)) assert_size_stride(primals_14, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_relu_1[grid(1024)](buf2, primals_4, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), ( 1, 256), 0), out=buf3) buf4 = buf3 del buf3 triton_poi_fused_relu_1[grid(1024)](buf4, primals_6, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_8 buf7 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 256), (1, 8), 0), out=buf7) del primals_9 buf8 = buf7 del buf7 triton_poi_fused_relu_1[grid(1024)](buf8, primals_10, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_10 buf9 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (256, 256), (1, 256), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_relu_1[grid(1024)](buf10, primals_12, 1024, XBLOCK =256, num_warps=4, num_stages=1) del primals_12 buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_14, buf10, reinterpret_tensor( primals_13, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf12) del primals_14 return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13, primals_11, primals_7, primals_5) class CriticNew(nn.Module): """Initialize parameters and build model. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action Return: value output of network """ def __init__(self, state_dim, action_dim): super(CriticNew, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) self.fc4 = nn.Linear(state_dim + action_dim, 256) self.fc5 = nn.Linear(256, 256) self.fc6 = nn.Linear(256, 1) def Q1(self, state, action): sa = torch.cat([state, action], 1) q1 = F.relu(self.fc1(sa)) q1 = F.relu(self.fc2(q1)) q1 = self.fc3(q1) return q1 def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_9 = self.fc4.weight primals_10 = self.fc4.bias primals_11 = self.fc5.weight primals_12 = self.fc5.bias primals_13 = self.fc6.weight primals_14 = self.fc6.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0], output[1]
sofya-pugach/spot_mini_mini
Critic
false
16,485
[ "MIT" ]
323
42770145e91ed2625ccc7e4f4d7016ce14a61464
https://github.com/sofya-pugach/spot_mini_mini/tree/42770145e91ed2625ccc7e4f4d7016ce14a61464
USConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %slice_2, %slice_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (buf1, primals_3, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils def make_divisible(v, divisor=8, min_value=1): """ forked from slim: https://github.com/tensorflow/models/blob/ 0344c5503ee55e24f0de7f37336a6e08f10976fd/ research/slim/nets/mobilenet/mobilenet.py#L62-L69 """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class USConv2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, depthwise=False, bias=True, width_mult_list=[1.0]): super(USConv2d, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.depthwise = depthwise self.in_channels_max = in_channels self.out_channels_max = out_channels self.width_mult_list = width_mult_list self.ratio = 1.0, 1.0 def set_ratio(self, ratio): self.ratio = ratio def forward(self, input): assert self.ratio[0] in self.width_mult_list, str(self.ratio[0] ) + ' in? ' + str(self.width_mult_list) self.in_channels = make_divisible(self.in_channels_max * self.ratio[0]) assert self.ratio[1] in self.width_mult_list, str(self.ratio[1] ) + ' in? ' + str(self.width_mult_list) self.out_channels = make_divisible(self.out_channels_max * self. ratio[1]) self.groups = self.in_channels if self.depthwise else 1 weight = self.weight[:self.out_channels, :self.in_channels, :, :] if self.bias is not None: bias = self.bias[:self.out_channels] else: bias = self.bias y = nn.functional.conv2d(input, weight, bias, self.stride, self. padding, self.dilation, self.groups) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf1, primals_3, primals_1 def make_divisible(v, divisor=8, min_value=1): """ forked from slim: https://github.com/tensorflow/models/blob/ 0344c5503ee55e24f0de7f37336a6e08f10976fd/ research/slim/nets/mobilenet/mobilenet.py#L62-L69 """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class USConv2dNew(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, depthwise=False, bias=True, width_mult_list=[1.0]): super(USConv2dNew, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.depthwise = depthwise self.in_channels_max = in_channels self.out_channels_max = out_channels self.width_mult_list = width_mult_list self.ratio = 1.0, 1.0 def set_ratio(self, ratio): self.ratio = ratio def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
songzijiang/FasterSeg
USConv2d
false
16,486
[ "MIT" ]
334
1a14ef6dd665afd229a16ab43b532b5a406512f8
https://github.com/songzijiang/FasterSeg/tree/1a14ef6dd665afd229a16ab43b532b5a406512f8
PolicyNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rm/crmfikkxblrhxfynyknfm2x3wwcwtibkjkkbyhzwmxqi4kmwkosl.py # Topologically Sorted Source Nodes: [log_std_1], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # log_std_1 => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_9, -20), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_9, -20), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_9, 2), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_1 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -20.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 2.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 >= tmp3 tmp8 = tmp2 <= tmp5 tmp9 = tmp7 & tmp8 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf12, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf11, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf6, primals_9, buf10, 256, grid=grid(256), stream=stream0) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [log_std_1], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] triton_poi_fused_clamp_ge_le_logical_and_1.run(buf7, primals_11, buf8, buf9, 256, grid=grid(256), stream=stream0) del buf7 del primals_11 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf6, (64, 4), (4, 1), 0), buf9, primals_10, buf10, primals_8, primals_6, buf11, primals_4, buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal class PolicyNetwork(nn.Module): def __init__(self, num_inputs, num_actions, hidden_size, init_w=0.003, log_std_min=-20, log_std_max=2): super(PolicyNetwork, self).__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.linear1 = nn.Linear(num_inputs, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.mean_linear = nn.Linear(hidden_size, num_actions) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear1 = nn.Linear(hidden_size, hidden_size) self.log_std_linear2 = nn.Linear(hidden_size, num_actions) self.log_std_linear2.weight.data.uniform_(-init_w, init_w) self.log_std_linear2.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear2(F.relu(self.log_std_linear1(x))) log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) return mean, log_std def evaluate(self, state, epsilon=1e-06): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.rsample() action = torch.tanh(z) log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon) log_prob = log_prob.sum(-1, keepdim=True) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.detach().cpu().numpy() return action[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'num_actions': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.distributions import Normal assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -20.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 2.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 >= tmp3 tmp8 = tmp2 <= tmp5 tmp9 = tmp7 & tmp8 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf6, primals_9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_clamp_ge_le_logical_and_1[grid(256)](buf7, primals_11, buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf7 del primals_11 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf6, (64, 4), (4, 1), 0 ), buf9, primals_10, buf10, primals_8, primals_6, buf11, primals_4, buf12 class PolicyNetworkNew(nn.Module): def __init__(self, num_inputs, num_actions, hidden_size, init_w=0.003, log_std_min=-20, log_std_max=2): super(PolicyNetworkNew, self).__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.linear1 = nn.Linear(num_inputs, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.mean_linear = nn.Linear(hidden_size, num_actions) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear1 = nn.Linear(hidden_size, hidden_size) self.log_std_linear2 = nn.Linear(hidden_size, num_actions) self.log_std_linear2.weight.data.uniform_(-init_w, init_w) self.log_std_linear2.bias.data.uniform_(-init_w, init_w) def evaluate(self, state, epsilon=1e-06): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.rsample() action = torch.tanh(z) log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon) log_prob = log_prob.sum(-1, keepdim=True) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.detach().cpu().numpy() return action[0] def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.mean_linear.weight primals_7 = self.mean_linear.bias primals_8 = self.log_std_linear1.weight primals_9 = self.log_std_linear1.bias primals_10 = self.log_std_linear2.weight primals_11 = self.log_std_linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1]
sofya-pugach/spot_mini_mini
PolicyNetwork
false
16,487
[ "MIT" ]
323
42770145e91ed2625ccc7e4f4d7016ce14a61464
https://github.com/sofya-pugach/spot_mini_mini/tree/42770145e91ed2625ccc7e4f4d7016ce14a61464
SplitAndConcat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dm/cdm7gguqbidi2lqrahwmmne3zoqbx3zistzz33duvcyyqdkluky6.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1],), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 32) x0 = xindex % 32 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x1)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*((-4) + x1))), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class SplitAndConcat(nn.Module): """Split the data from split_dim and concatenate in concat_dim. @param split_dim from which axis the data will be chunk @param concat_dim to which axis the data will be concatenated @param chunk size of the data to be chunk/concatenated """ def __init__(self, split_dim: 'int'=1, concat_dim: 'int'=0, chunk: 'int'=2 ): super(SplitAndConcat, self).__init__() self.split_dim = split_dim self.concat_dim = concat_dim self.chunk = chunk def forward(self, x): x = torch.chunk(x, self.chunk, dim=self.split_dim) x = torch.cat(x, dim=self.concat_dim) return x def extra_repr(self): return ( f'split_dim={self.split_dim}, concat_dim={self.concat_dim}, chunk={self.chunk}' ) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 32 x0 = xindex % 32 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * (-4 + x1)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SplitAndConcatNew(nn.Module): """Split the data from split_dim and concatenate in concat_dim. @param split_dim from which axis the data will be chunk @param concat_dim to which axis the data will be concatenated @param chunk size of the data to be chunk/concatenated """ def __init__(self, split_dim: 'int'=1, concat_dim: 'int'=0, chunk: 'int'=2 ): super(SplitAndConcatNew, self).__init__() self.split_dim = split_dim self.concat_dim = concat_dim self.chunk = chunk def extra_repr(self): return ( f'split_dim={self.split_dim}, concat_dim={self.concat_dim}, chunk={self.chunk}' ) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
sstsai-adl/d2go
SplitAndConcat
false
16,488
[ "Apache-2.0" ]
687
6cff773797b14698043589afe57ea67cd76286f9
https://github.com/sstsai-adl/d2go/tree/6cff773797b14698043589afe57ea67cd76286f9
conv_head_pooling
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cls_token], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return (buf1, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_3, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class conv_head_pooling(nn.Module): def __init__(self, in_feature, out_feature, stride, conv_type, padding_mode='zeros', dilation=1): super(conv_head_pooling, self).__init__() if conv_type == 'depthwise': _groups = in_feature else: _groups = 1 None self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=3, padding=dilation, dilation=dilation, stride=stride, padding_mode=padding_mode, groups=_groups) self.fc = nn.Linear(in_feature, out_feature) def forward(self, x, cls_token): x = self.conv(x) cls_token = self.fc(cls_token) return x, cls_token def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_feature': 4, 'out_feature': 4, 'stride': 1, 'conv_type': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return buf1, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, primals_3, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0) class conv_head_poolingNew(nn.Module): def __init__(self, in_feature, out_feature, stride, conv_type, padding_mode='zeros', dilation=1): super(conv_head_poolingNew, self).__init__() if conv_type == 'depthwise': _groups = in_feature else: _groups = 1 None self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=3, padding=dilation, dilation=dilation, stride=stride, padding_mode=padding_mode, groups=_groups) self.fc = nn.Linear(in_feature, out_feature) def forward(self, input_0, input_1): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.fc.weight primals_5 = self.fc.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
sstsai-adl/d2go
conv_head_pooling
false
16,489
[ "Apache-2.0" ]
687
6cff773797b14698043589afe57ea67cd76286f9
https://github.com/sstsai-adl/d2go/tree/6cff773797b14698043589afe57ea67cd76286f9
GCNLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3c/c3cges7k3zdnx6scdhdeqhcqqynyjsjlckyi3nbjsungf4hobgsj.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone, aten._unsafe_view] # Source node to ATen node mapping: # x_1 => clone, view # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [64, 4]), kwargs = {}) triton_poi_fused__unsafe_view_clone_0 = async_compile.triton('triton_poi_fused__unsafe_view_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_view_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_view_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*(x1 % 4)) + (16*(x1 // 16)) + (64*((x1 // 4) % 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vh/cvh6gxywassczepy76ts33auysvqgowpmjyqqhwibtiypogwgxis.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_2 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bm/cbmt2bp3gdm6swnbdoir5cl5wwceitg5wlwh6mjm7xl7dppam4h7.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_4 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone, aten._unsafe_view] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_view_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm] extern_kernels.mm(buf0, primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_2, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf1 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (16, 64, 4, 1), 0); del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (16, 64, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf4, buf5, reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GCNLayer(nn.Module): def __init__(self, input_dim, output_dim, prop_depth=1, act=torch.relu, dropout=0.0, layer_i=0): super(GCNLayer, self).__init__() self.prop_depth = 1 self.weight = nn.Parameter(torch.empty(input_dim, output_dim, dtype =torch.float), requires_grad=True) nn.init.xavier_uniform_(self.weight.data) self.act = act self.dropout = nn.Dropout(p=dropout) self.layer_i = layer_i self.last_layer_flag = False def layer(self, x, adj_batch): x = x.transpose(0, 1) adj_batch = adj_batch[:, 1, :, :] x = torch.matmul(x, self.weight) x = torch.matmul(adj_batch, x) x = x.transpose(0, 1) return x def forward(self, x, adj_batch): x = self.layer(x, adj_batch) x = self.act(x) x = self.dropout(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__unsafe_view_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x1 % 4) + 16 * (x1 // 16) + 64 * ( x1 // 4 % 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_view_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](primals_2, buf2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf1 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (16, 64, 4, 1), 0) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (16, 64, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf4, buf5, reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf0, (4, 64), (1, 4), 0) class GCNLayerNew(nn.Module): def __init__(self, input_dim, output_dim, prop_depth=1, act=torch.relu, dropout=0.0, layer_i=0): super(GCNLayerNew, self).__init__() self.prop_depth = 1 self.weight = nn.Parameter(torch.empty(input_dim, output_dim, dtype =torch.float), requires_grad=True) nn.init.xavier_uniform_(self.weight.data) self.act = act self.dropout = nn.Dropout(p=dropout) self.layer_i = layer_i self.last_layer_flag = False def layer(self, x, adj_batch): x = x.transpose(0, 1) adj_batch = adj_batch[:, 1, :, :] x = torch.matmul(x, self.weight) x = torch.matmul(adj_batch, x) x = x.transpose(0, 1) return x def forward(self, input_0, input_1): primals_3 = self.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
snap-stanford/distance-encoding
GCNLayer
false
16,490
[ "MIT" ]
177
b9ccb1b59422b11b40883d0284d7fc9ba88efdb6
https://github.com/snap-stanford/distance-encoding/tree/b9ccb1b59422b11b40883d0284d7fc9ba88efdb6
SigmoidFocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ny/cny2lybv3eo5gjecnhptlj5fm6l572ym36s5acsilpa4ilaczkmy.py # Topologically Sorted Source Nodes: [pred_sigmoid, sub, pow_1, ne, mask, mul_1, sub_1, pos_part, mul_4, pow_2, neg, max_val, neg_1, exp, neg_2, sub_2, exp_1, add, log, add_1, neg_part, mul_5, add_2, sum_1, neg_3, loss, loss_1], Original ATen: [aten.sigmoid, aten.rsub, aten.pow, aten.ne, aten._to_copy, aten.mul, aten.sub, aten.neg, aten.clamp, aten.exp, aten.add, aten.log, aten.sum, aten.mean] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # exp => exp # exp_1 => exp_1 # log => log # loss => mul_6 # loss_1 => mean # mask => convert_element_type # max_val => clamp_min # mul_1 => mul_1 # mul_4 => mul_4 # mul_5 => mul_5 # ne => ne # neg => neg # neg_1 => neg_1 # neg_2 => neg_2 # neg_3 => neg_3 # neg_part => mul_3 # pos_part => mul_2 # pow_1 => pow_1 # pow_2 => pow_2 # pred_sigmoid => sigmoid # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sum_1 => sum_1 # Graph fragment: # %sigmoid : [num_users=6] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2.0), kwargs = {}) # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%view_1, 4), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.float32), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %view_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %sub_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, 0.25), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sigmoid, 2.0), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sigmoid,), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%neg, 0), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_min,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sigmoid,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg_2, %clamp_min), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, %exp_1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, %log), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, %add_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, 0.75), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_2, [-1]), kwargs = {}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_3, %convert_element_type), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_6,), kwargs = {}) triton_per_fused__to_copy_add_clamp_exp_log_mean_mul_ne_neg_pow_rsub_sigmoid_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_clamp_exp_log_mean_mul_ne_neg_pow_rsub_sigmoid_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_clamp_exp_log_mean_mul_ne_neg_pow_rsub_sigmoid_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_clamp_exp_log_mean_mul_ne_neg_pow_rsub_sigmoid_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp3 * tmp3 tmp6 = 4.0 tmp7 = tmp5 != tmp6 tmp8 = tmp7.to(tl.float32) tmp9 = tmp8 * tmp5 tmp10 = tmp1 * tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp4 * tmp11 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp1 * tmp1 tmp16 = -tmp1 tmp17 = 0.0 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = -tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp16 - tmp18 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tl_math.log(tmp23) tmp25 = tmp18 + tmp24 tmp26 = tmp15 * tmp25 tmp27 = 0.75 tmp28 = tmp26 * tmp27 tmp29 = tmp14 + tmp28 tmp30 = -tmp29 tmp31 = tmp30 * tmp8 tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK]) tmp34 = tl.sum(tmp32, 1)[:, None] tmp35 = 64.0 tmp36 = tmp34 / tmp35 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp36, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [pred_sigmoid, sub, pow_1, ne, mask, mul_1, sub_1, pos_part, mul_4, pow_2, neg, max_val, neg_1, exp, neg_2, sub_2, exp_1, add, log, add_1, neg_part, mul_5, add_2, sum_1, neg_3, loss, loss_1], Original ATen: [aten.sigmoid, aten.rsub, aten.pow, aten.ne, aten._to_copy, aten.mul, aten.sub, aten.neg, aten.clamp, aten.exp, aten.add, aten.log, aten.sum, aten.mean] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_clamp_exp_log_mean_mul_ne_neg_pow_rsub_sigmoid_sub_sum_0.run(buf2, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils class SigmoidFocalLoss(nn.Module): def __init__(self, ignore_label, gamma=2.0, alpha=0.25, reduction='mean'): super(SigmoidFocalLoss, self).__init__() self.ignore_label = ignore_label self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, pred, target): b, _h, _w = target.size() pred = pred.view(b, -1, 1) pred_sigmoid = pred.sigmoid() target = target.view(b, -1).float() mask = target.ne(self.ignore_label).float() target = mask * target onehot = target.view(b, -1, 1) max_val = (-pred_sigmoid).clamp(min=0) pos_part = (1 - pred_sigmoid) ** self.gamma * (pred_sigmoid - pred_sigmoid * onehot) neg_part = pred_sigmoid ** self.gamma * (max_val + ((-max_val).exp( ) + (-pred_sigmoid - max_val).exp()).log()) loss = -(self.alpha * pos_part + (1 - self.alpha) * neg_part).sum(dim =-1) * mask if self.reduction == 'mean': loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 16]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'ignore_label': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_add_clamp_exp_log_mean_mul_ne_neg_pow_rsub_sigmoid_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp3 * tmp3 tmp6 = 4.0 tmp7 = tmp5 != tmp6 tmp8 = tmp7.to(tl.float32) tmp9 = tmp8 * tmp5 tmp10 = tmp1 * tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp4 * tmp11 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp1 * tmp1 tmp16 = -tmp1 tmp17 = 0.0 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = -tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp16 - tmp18 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tl_math.log(tmp23) tmp25 = tmp18 + tmp24 tmp26 = tmp15 * tmp25 tmp27 = 0.75 tmp28 = tmp26 * tmp27 tmp29 = tmp14 + tmp28 tmp30 = -tmp29 tmp31 = tmp30 * tmp8 tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK]) tmp34 = tl.sum(tmp32, 1)[:, None] tmp35 = 64.0 tmp36 = tmp34 / tmp35 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp36, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused__to_copy_add_clamp_exp_log_mean_mul_ne_neg_pow_rsub_sigmoid_sub_sum_0[ grid(1)](buf2, arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class SigmoidFocalLossNew(nn.Module): def __init__(self, ignore_label, gamma=2.0, alpha=0.25, reduction='mean'): super(SigmoidFocalLossNew, self).__init__() self.ignore_label = ignore_label self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, input_0, input_1): arg1_1 = input_0 arg0_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
songzijiang/FasterSeg
SigmoidFocalLoss
false
16,491
[ "MIT" ]
334
1a14ef6dd665afd229a16ab43b532b5a406512f8
https://github.com/songzijiang/FasterSeg/tree/1a14ef6dd665afd229a16ab43b532b5a406512f8
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.tanh] # Source node to ATen node mapping: # y => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ck/cckjpdpmic6qnntoa6ulx74zb7id2talmefx53xv5wytcnhcttdk.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/i2/ci2fsntgecheeii2vwti37e4qsnphahnfkhn7dbemm24wvvcucdb.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 4), (4, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf2, buf3, 128, grid=grid(128), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf3, buf4, 128, grid=grid(128), stream=stream0) del buf3 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import random import torch import numpy as np from torch import nn class MLP(nn.Module): def __init__(self, kernels, num_features, num_hiddens, normalize=True, num_updates=3000, batch_size=128, weight_decay=0.0001, soft_preds=False ): super().__init__() self.kernels = kernels num_kernels = len(kernels) self.linear_1 = nn.Linear(num_features, num_hiddens) self.act = nn.Tanh() self.linear_2 = nn.Linear(num_hiddens, num_kernels) self.softmax = nn.LogSoftmax(dim=1) self.mean = None self.std = None self._normalize = normalize self.num_updates = num_updates self.batch_size = batch_size self.soft_preds = soft_preds self.weight_decay = weight_decay def forward(self, x): y1 = self.linear_1.forward(x) y = self.act.forward(y1) y = self.linear_2.forward(y) return self.softmax.forward(y) def normalize(self, X): if self._normalize: return (X - self.mean) / self.std return X def predict_proba(self, x): x = self.normalize(x) tx = torch.from_numpy(x).float() y = self.forward(tx) return np.exp(y.detach().numpy()) def predict(self, x): y = self.predict_proba(x) return y.argmax(axis=1) def fit(self, X, y): if self._normalize: self.mean = X.mean(axis=0, keepdims=True) self.std = X.std(axis=0, keepdims=True) self.std[self.std < 0.0001] = 0.0001 X = self.normalize(X) updates = 0 optimizer = torch.optim.AdamW(self.parameters(), lr=0.001, weight_decay=self.weight_decay) loss = torch.nn.KLDivLoss(reduction='batchmean' ) if self.soft_preds else torch.nn.NLLLoss() indices = list(range(X.shape[0])) num_batches = len(indices) // self.batch_size prev_loss = None num_iter_no_impr = 0 while updates < self.num_updates: random.shuffle(indices) total_loss = 0 batches_seen = 0 for bnum in range(num_batches): bb = self.batch_size * bnum be = bb + self.batch_size Xb = X[indices[bb:be]] yb = y[indices[bb:be]] tx = torch.from_numpy(Xb).float() if self.soft_preds: ty = torch.from_numpy(yb).float() else: ty = torch.from_numpy(yb).long() optimizer.zero_grad() z = self.forward(tx) loss_val = loss(z, ty) loss_val.backward() optimizer.step() sloss = loss_val.detach().numpy() total_loss += sloss updates += 1 batches_seen += 1 if updates > self.num_updates: break total_loss /= batches_seen if prev_loss is not None: impr = (prev_loss - total_loss) / prev_loss if impr < 0.0001: num_iter_no_impr += 1 else: num_iter_no_impr = 0 prev_loss = total_loss if num_iter_no_impr > 4: break def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'kernels': [4, 4], 'num_features': 4, 'num_hiddens': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import random import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 4), (4, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(128)](buf2, buf3, 128, XBLOCK= 128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf2 triton_poi_fused__log_softmax_2[grid(128)](buf3, buf4, 128, XBLOCK= 128, num_warps=4, num_stages=1) del buf3 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf4, primals_4 class MLPNew(nn.Module): def __init__(self, kernels, num_features, num_hiddens, normalize=True, num_updates=3000, batch_size=128, weight_decay=0.0001, soft_preds=False ): super().__init__() self.kernels = kernels num_kernels = len(kernels) self.linear_1 = nn.Linear(num_features, num_hiddens) self.act = nn.Tanh() self.linear_2 = nn.Linear(num_hiddens, num_kernels) self.softmax = nn.LogSoftmax(dim=1) self.mean = None self.std = None self._normalize = normalize self.num_updates = num_updates self.batch_size = batch_size self.soft_preds = soft_preds self.weight_decay = weight_decay def normalize(self, X): if self._normalize: return (X - self.mean) / self.std return X def predict_proba(self, x): x = self.normalize(x) tx = torch.from_numpy(x).float() y = self.forward(tx) return np.exp(y.detach().numpy()) def predict(self, x): y = self.predict_proba(x) return y.argmax(axis=1) def fit(self, X, y): if self._normalize: self.mean = X.mean(axis=0, keepdims=True) self.std = X.std(axis=0, keepdims=True) self.std[self.std < 0.0001] = 0.0001 X = self.normalize(X) updates = 0 optimizer = torch.optim.AdamW(self.parameters(), lr=0.001, weight_decay=self.weight_decay) loss = torch.nn.KLDivLoss(reduction='batchmean' ) if self.soft_preds else torch.nn.NLLLoss() indices = list(range(X.shape[0])) num_batches = len(indices) // self.batch_size prev_loss = None num_iter_no_impr = 0 while updates < self.num_updates: random.shuffle(indices) total_loss = 0 batches_seen = 0 for bnum in range(num_batches): bb = self.batch_size * bnum be = bb + self.batch_size Xb = X[indices[bb:be]] yb = y[indices[bb:be]] tx = torch.from_numpy(Xb).float() if self.soft_preds: ty = torch.from_numpy(yb).float() else: ty = torch.from_numpy(yb).long() optimizer.zero_grad() z = self.forward(tx) loss_val = loss(z, ty) loss_val.backward() optimizer.step() sloss = loss_val.detach().numpy() total_loss += sloss updates += 1 batches_seen += 1 if updates > self.num_updates: break total_loss /= batches_seen if prev_loss is not None: impr = (prev_loss - total_loss) / prev_loss if impr < 0.0001: num_iter_no_impr += 1 else: num_iter_no_impr = 0 prev_loss = total_loss if num_iter_no_impr > 4: break def forward(self, input_0): primals_1 = self.linear_1.weight primals_2 = self.linear_1.bias primals_4 = self.linear_2.weight primals_5 = self.linear_2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
snipsco/tract
MLP
false
16,492
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
588
7a54972764292bccf1737ff8bbcfa1e1736e3fad
https://github.com/snipsco/tract/tree/7a54972764292bccf1737ff8bbcfa1e1736e3fad
Residual_Covolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [dow1, dow1_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # dow1 => convolution # dow1_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [12, 12], [12, 12], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [seg], Original ATen: [aten.convolution] # Source node to ATen node mapping: # seg => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [12, 12], [12, 12], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tr/ctr6ssoy3ohhjpgpoxiqv2ojm7yzgqk5hgm4lemyjegkqr4ohtne.py # Topologically Sorted Source Nodes: [inc1, relu_1, add1], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] # Source node to ATen node mapping: # add1 => add # inc1 => convolution_2 # relu_1 => relu_1 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %relu_1), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [dow1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(12, 12), dilation=(12, 12), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [dow1, dow1_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [seg], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(12, 12), dilation=(12, 12), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [seg], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [inc1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [inc1, relu_1, add1], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_2.run(buf1, buf4, primals_7, buf5, buf9, 256, grid=grid(256), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [inc2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf4; del buf4 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [inc2, relu_2, out], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_2.run(primals_3, buf6, primals_9, buf7, buf8, 256, grid=grid(256), stream=stream0) del buf6 del primals_9 return (buf7, buf3, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf8, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Residual_Covolution(nn.Module): def __init__(self, icol, ocol, num_classes): super(Residual_Covolution, self).__init__() self.conv1 = nn.Conv2d(icol, ocol, kernel_size=3, stride=1, padding =12, dilation=12, bias=True) self.conv2 = nn.Conv2d(ocol, num_classes, kernel_size=3, stride=1, padding=12, dilation=12, bias=True) self.conv3 = nn.Conv2d(num_classes, ocol, kernel_size=1, stride=1, padding=0, dilation=1, bias=True) self.conv4 = nn.Conv2d(ocol, icol, kernel_size=1, stride=1, padding =0, dilation=1, bias=True) self.relu = nn.ReLU(inplace=True) def forward(self, x): dow1 = self.conv1(x) dow1 = self.relu(dow1) seg = self.conv2(dow1) inc1 = self.conv3(seg) add1 = dow1 + self.relu(inc1) inc2 = self.conv4(add1) out = x + self.relu(inc2) return out, seg def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'icol': 4, 'ocol': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(12, 12), dilation=(12, 12), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(12, 12), dilation=(12, 12), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_2[grid(256)]( buf1, buf4, primals_7, buf5, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf4 del buf4 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_2[grid(256)]( primals_3, buf6, primals_9, buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_9 return (buf7, buf3, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf8, buf9) class Residual_CovolutionNew(nn.Module): def __init__(self, icol, ocol, num_classes): super(Residual_CovolutionNew, self).__init__() self.conv1 = nn.Conv2d(icol, ocol, kernel_size=3, stride=1, padding =12, dilation=12, bias=True) self.conv2 = nn.Conv2d(ocol, num_classes, kernel_size=3, stride=1, padding=12, dilation=12, bias=True) self.conv3 = nn.Conv2d(num_classes, ocol, kernel_size=1, stride=1, padding=0, dilation=1, bias=True) self.conv4 = nn.Conv2d(ocol, icol, kernel_size=1, stride=1, padding =0, dilation=1, bias=True) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
speedinghzl/Pytorch-Deeplab
Residual_Covolution
false
16,493
[ "MIT" ]
310
14f2b81c676a6eb19f34940efb1297855f8fa05e
https://github.com/speedinghzl/Pytorch-Deeplab/tree/14f2b81c676a6eb19f34940efb1297855f8fa05e
MyWcploss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/gq/cgqgttcaforxeilychpgsjtgb47w4vmtneygtlumo2arjyia4s2g.py # Topologically Sorted Source Nodes: [sum_1, mul, count_pos, sub, sum_2, count_neg, add_1, beta_back, binary_cross_entropy_with_logits, beta, loss], Original ATen: [aten.sum, aten.mul, aten.add, aten.rsub, aten.div, aten.binary_cross_entropy_with_logits] # Source node to ATen node mapping: # add_1 => add_1 # beta => div # beta_back => div_1 # binary_cross_entropy_with_logits => abs_1, add_2, exp, full_default, log1p, mean, minimum, mul_2, mul_3, mul_4, neg, sub_1, sub_2, sub_3, sub_4 # count_neg => mul_1 # count_pos => add # loss => mul_5 # mul => mul # sub => sub # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 1.0), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-10), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, 1.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %arg0_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %sub_3), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_4,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %mean), kwargs = {}) triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp4 = 1.0 tmp5 = tmp4 - tmp0 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp10 = tmp5 * tmp9 tmp11 = tmp8 * tmp4 tmp12 = tmp3 * tmp4 tmp13 = 1e-10 tmp14 = tmp12 + tmp13 tmp15 = tmp11 / tmp14 tmp16 = tmp15 - tmp4 tmp17 = tmp16 * tmp0 tmp18 = tmp17 + tmp4 tmp19 = 0.0 tmp20 = triton_helpers.minimum(tmp19, tmp9) tmp21 = tl_math.abs(tmp9) tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = libdevice.log1p(tmp23) tmp25 = tmp20 - tmp24 tmp26 = tmp18 * tmp25 tmp27 = tmp10 - tmp26 tmp28 = tl.broadcast_to(tmp27, [RBLOCK]) tmp30 = triton_helpers.promote_to_tensor(tl.sum(tmp28, 0)) tmp31 = tmp14 + tmp11 tmp32 = tmp14 / tmp31 tmp33 = 256.0 tmp34 = tmp30 / tmp33 tmp35 = tmp32 * tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp35, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [sum_1, mul, count_pos, sub, sum_2, count_neg, add_1, beta_back, binary_cross_entropy_with_logits, beta, loss], Original ATen: [aten.sum, aten.mul, aten.add, aten.rsub, aten.div, aten.binary_cross_entropy_with_logits] stream0 = get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class MyWcploss(nn.Module): def __init__(self): super(MyWcploss, self).__init__() def forward(self, pred, gt): eposion = 1e-10 torch.sigmoid(pred) count_pos = torch.sum(gt) * 1.0 + eposion count_neg = torch.sum(1.0 - gt) * 1.0 beta = count_neg / count_pos beta_back = count_pos / (count_pos + count_neg) bce1 = nn.BCEWithLogitsLoss(pos_weight=beta) loss = beta_back * bce1(pred, gt) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp4 = 1.0 tmp5 = tmp4 - tmp0 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp10 = tmp5 * tmp9 tmp11 = tmp8 * tmp4 tmp12 = tmp3 * tmp4 tmp13 = 1e-10 tmp14 = tmp12 + tmp13 tmp15 = tmp11 / tmp14 tmp16 = tmp15 - tmp4 tmp17 = tmp16 * tmp0 tmp18 = tmp17 + tmp4 tmp19 = 0.0 tmp20 = triton_helpers.minimum(tmp19, tmp9) tmp21 = tl_math.abs(tmp9) tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = libdevice.log1p(tmp23) tmp25 = tmp20 - tmp24 tmp26 = tmp18 * tmp25 tmp27 = tmp10 - tmp26 tmp28 = tl.broadcast_to(tmp27, [RBLOCK]) tmp30 = triton_helpers.promote_to_tensor(tl.sum(tmp28, 0)) tmp31 = tmp14 + tmp11 tmp32 = tmp14 / tmp31 tmp33 = 256.0 tmp34 = tmp30 / tmp33 tmp35 = tmp32 * tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp35, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0[ grid(1)](buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class MyWcplossNew(nn.Module): def __init__(self): super(MyWcplossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
stevewongv/DSC-PyTorch
MyWcploss
false
16,494
[ "MIT" ]
75
4318225ce4fa5343db2cc723d8bcae4c884b23f4
https://github.com/stevewongv/DSC-PyTorch/tree/4318225ce4fa5343db2cc723d8bcae4c884b23f4
DistanceNetwork
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/io/ciob4kb36gg4wx77qlmocg7jy3y7sntoa4fvgm3oato4xhh5cpe4.py # Topologically Sorted Source Nodes: [similarities], Original ATen: [aten.stack] # Source node to ATen node mapping: # similarities => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mul, %mul_1, %mul_2, %mul_3],), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (4*x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp6 * tmp6 tmp8 = tl.load(in_ptr1 + (1 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = tl.load(in_ptr1 + (2 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tl.load(in_ptr1 + (3 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = 1e-10 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = float("inf") tmp20 = triton_helpers.minimum(tmp18, tmp19) tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp5 * tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp4, tmp22, tmp23) tmp25 = tmp0 >= tmp3 tmp26 = tl.full([1], 8, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tl.load(in_ptr2 + ((-4) + x0), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + (16 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp30 * tmp30 tmp32 = tl.load(in_ptr1 + (17 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp32 * tmp32 tmp34 = tmp31 + tmp33 tmp35 = tl.load(in_ptr1 + (18 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp38 = tl.load(in_ptr1 + (19 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp41 = triton_helpers.maximum(tmp40, tmp17) tmp42 = triton_helpers.minimum(tmp41, tmp19) tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp29 * tmp43 tmp45 = tl.full(tmp44.shape, 0.0, tmp44.dtype) tmp46 = tl.where(tmp28, tmp44, tmp45) tmp47 = tmp0 >= tmp26 tmp48 = tl.full([1], 12, tl.int64) tmp49 = tmp0 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tl.load(in_ptr3 + ((-8) + x0), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp52 = tl.load(in_ptr1 + (32 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp52 * tmp52 tmp54 = tl.load(in_ptr1 + (33 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tmp54 * tmp54 tmp56 = tmp53 + tmp55 tmp57 = tl.load(in_ptr1 + (34 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tl.load(in_ptr1 + (35 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp63 = triton_helpers.maximum(tmp62, tmp17) tmp64 = triton_helpers.minimum(tmp63, tmp19) tmp65 = libdevice.rsqrt(tmp64) tmp66 = tmp51 * tmp65 tmp67 = tl.full(tmp66.shape, 0.0, tmp66.dtype) tmp68 = tl.where(tmp50, tmp66, tmp67) tmp69 = tmp0 >= tmp48 tmp70 = tl.full([1], 16, tl.int64) tmp71 = tmp0 < tmp70 tmp72 = tl.load(in_ptr4 + ((-12) + x0), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp73 = tl.load(in_ptr1 + (48 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tmp73 * tmp73 tmp75 = tl.load(in_ptr1 + (49 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tmp75 * tmp75 tmp77 = tmp74 + tmp76 tmp78 = tl.load(in_ptr1 + (50 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 * tmp78 tmp80 = tmp77 + tmp79 tmp81 = tl.load(in_ptr1 + (51 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tmp81 * tmp81 tmp83 = tmp80 + tmp82 tmp84 = triton_helpers.maximum(tmp83, tmp17) tmp85 = triton_helpers.minimum(tmp84, tmp19) tmp86 = libdevice.rsqrt(tmp85) tmp87 = tmp72 * tmp86 tmp88 = tl.full(tmp87.shape, 0.0, tmp87.dtype) tmp89 = tl.where(tmp69, tmp87, tmp88) tmp90 = tl.where(tmp50, tmp68, tmp89) tmp91 = tl.where(tmp28, tmp46, tmp90) tmp92 = tl.where(tmp4, tmp24, tmp91) tl.store(out_ptr0 + (x0), tmp92, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 16), out=buf1) buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 32), out=buf2) buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 48), out=buf3) del arg1_1 buf4 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [similarities], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(buf0, arg0_1, buf1, buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) del arg0_1 del buf0 del buf1 del buf2 del buf3 return (reinterpret_tensor(buf4, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DistanceNetwork(nn.Module): def __init__(self): super(DistanceNetwork, self).__init__() def forward(self, support_set, input_image): """ Produces pdfs over the support set classes for the target set image. :param support_set: The embeddings of the support set images, tensor of shape [sequence_length, batch_size, 64] :param input_image: The embedding of the target image, tensor of shape [batch_size, 64] :return: Softmax pdf. Tensor with cosine similarities of shape [batch_size, sequence_length] """ eps = 1e-10 similarities = [] for support_image in support_set: sum_support = torch.sum(torch.pow(support_image, 2), 1) support_magnitude = sum_support.clamp(eps, float('inf')).rsqrt() dot_product = input_image.unsqueeze(1).bmm(support_image. unsqueeze(2)).squeeze() cosine_similarity = dot_product * support_magnitude similarities.append(cosine_similarity) similarities = torch.stack(similarities) return similarities def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + 4 * x0, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp6 * tmp6 tmp8 = tl.load(in_ptr1 + (1 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = tl.load(in_ptr1 + (2 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tl.load(in_ptr1 + (3 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = 1e-10 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = float('inf') tmp20 = triton_helpers.minimum(tmp18, tmp19) tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp5 * tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp4, tmp22, tmp23) tmp25 = tmp0 >= tmp3 tmp26 = tl.full([1], 8, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tl.load(in_ptr2 + (-4 + x0), tmp28 & xmask, eviction_policy= 'evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + (16 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp30 * tmp30 tmp32 = tl.load(in_ptr1 + (17 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp32 * tmp32 tmp34 = tmp31 + tmp33 tmp35 = tl.load(in_ptr1 + (18 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp38 = tl.load(in_ptr1 + (19 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp41 = triton_helpers.maximum(tmp40, tmp17) tmp42 = triton_helpers.minimum(tmp41, tmp19) tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp29 * tmp43 tmp45 = tl.full(tmp44.shape, 0.0, tmp44.dtype) tmp46 = tl.where(tmp28, tmp44, tmp45) tmp47 = tmp0 >= tmp26 tmp48 = tl.full([1], 12, tl.int64) tmp49 = tmp0 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tl.load(in_ptr3 + (-8 + x0), tmp50 & xmask, eviction_policy= 'evict_last', other=0.0) tmp52 = tl.load(in_ptr1 + (32 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp52 * tmp52 tmp54 = tl.load(in_ptr1 + (33 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tmp54 * tmp54 tmp56 = tmp53 + tmp55 tmp57 = tl.load(in_ptr1 + (34 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tl.load(in_ptr1 + (35 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp63 = triton_helpers.maximum(tmp62, tmp17) tmp64 = triton_helpers.minimum(tmp63, tmp19) tmp65 = libdevice.rsqrt(tmp64) tmp66 = tmp51 * tmp65 tmp67 = tl.full(tmp66.shape, 0.0, tmp66.dtype) tmp68 = tl.where(tmp50, tmp66, tmp67) tmp69 = tmp0 >= tmp48 tl.full([1], 16, tl.int64) tmp72 = tl.load(in_ptr4 + (-12 + x0), tmp69 & xmask, eviction_policy= 'evict_last', other=0.0) tmp73 = tl.load(in_ptr1 + (48 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tmp73 * tmp73 tmp75 = tl.load(in_ptr1 + (49 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tmp75 * tmp75 tmp77 = tmp74 + tmp76 tmp78 = tl.load(in_ptr1 + (50 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 * tmp78 tmp80 = tmp77 + tmp79 tmp81 = tl.load(in_ptr1 + (51 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tmp81 * tmp81 tmp83 = tmp80 + tmp82 tmp84 = triton_helpers.maximum(tmp83, tmp17) tmp85 = triton_helpers.minimum(tmp84, tmp19) tmp86 = libdevice.rsqrt(tmp85) tmp87 = tmp72 * tmp86 tmp88 = tl.full(tmp87.shape, 0.0, tmp87.dtype) tmp89 = tl.where(tmp69, tmp87, tmp88) tmp90 = tl.where(tmp50, tmp68, tmp89) tmp91 = tl.where(tmp28, tmp46, tmp90) tmp92 = tl.where(tmp4, tmp24, tmp91) tl.store(out_ptr0 + x0, tmp92, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 16), out=buf1) buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 32), out=buf2) buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 48), out=buf3) del arg1_1 buf4 = empty_strided_cuda((16,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(16)](buf0, arg0_1, buf1, buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del buf0 del buf1 del buf2 del buf3 return reinterpret_tensor(buf4, (4, 4), (4, 1), 0), class DistanceNetworkNew(nn.Module): def __init__(self): super(DistanceNetworkNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
stamatiad/MatchingNetworks
DistanceNetwork
false
16,495
[ "MIT" ]
316
07c4567c15578664a550903c222c7eaa2abfe113
https://github.com/stamatiad/MatchingNetworks/tree/07c4567c15578664a550903c222c7eaa2abfe113
ConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zv/czvfpj3ah2lefbwpcuw4esv23bxs5a3ab63ply3ntgbsdktepd5v.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 784) % 6 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = (xindex // 14) x2 = (xindex // 1176) x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask) tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xe/cxelxvpw3asckozc53rh36773aohp5hqpbp2nos5ymcdqhxvo4bl.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xc/cxc6b6yaoqrxygbhhvqslfh3evd2idz6ndtwi246ntlpvok4xlz7.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1000 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6, ), (1, )) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (1000, 400), (400, 1)) assert_size_stride(primals_7, (1000, ), (1, )) assert_size_stride(primals_8, (10, 1000), (1000, 1)) assert_size_stride(primals_9, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0) buf8 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 1000), (1, 400), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 4000, grid=grid(4000), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (1000, 10), (1, 1000), 0), alpha=1, beta=1, out=buf10) del primals_9 return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1000, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1000, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 1000), (1000, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim import torch.nn as nn import torch.nn.functional as F class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 1000) self.fc2 = nn.Linear(1000, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.optim import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1000 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (1000, 400), (400, 1)) assert_size_stride(primals_7, (1000,), (1,)) assert_size_stride(primals_8, (10, 1000), (1000, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 1000), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(4000)](buf9, primals_7, 4000, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (1000, 10), (1, 1000), 0), alpha=1, beta=1, out=buf10) del primals_9 return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, primals_8, primals_6) class ConvNetNew(nn.Module): def __init__(self): super(ConvNetNew, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 1000) self.fc2 = nn.Linear(1000, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
stanbiryukov/PyTorch-LBFGS
ConvNet
false
16,496
[ "MIT" ]
451
ea0ca553797b38d47682ce8ff553a4f53ec8c15c
https://github.com/stanbiryukov/PyTorch-LBFGS/tree/ea0ca553797b38d47682ce8ff553a4f53ec8c15c
ShallowCombination
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py # Topologically Sorted Source Nodes: [embs_combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # embs_combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xd/cxd4uci6rjegwbywzsx6cw3kvglstmvbzbgt3umstqvdwi7esmj5.py # Topologically Sorted Source Nodes: [a, mul, sub, mul_1, add], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # a => sigmoid # add => add # mul => mul # mul_1 => mul_1 # sub => sub # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp6 = tl.load(in_ptr2 + (x2), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 8), (8, 1)) assert_size_stride(primals_4, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [embs_combined], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0) buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a, mul, sub, mul_1, add], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_1.run(buf2, primals_1, primals_2, buf3, 256, grid=grid(256), stream=stream0) return (buf3, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class ShallowCombination(nn.Module): """This Module can be used to generate a shallow combination from two embeddings using a gate.""" def __init__(self, bertram_config: 'BertramConfig'): super(ShallowCombination, self).__init__() self.linear = nn.Linear(2 * bertram_config.output_size, 1) self.sigmoid = torch.nn.Sigmoid() self.mode = bertram_config.mode def forward(self, embs1, embs2): embs_combined = torch.cat([embs1, embs2], dim=-1) a = self.sigmoid(self.linear(embs_combined)) return a * embs1 + (1 - a) * embs2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'bertram_config': _mock_config(output_size=4, mode=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + x2, xmask) tmp6 = tl.load(in_ptr2 + x2, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 8), (8, 1)) assert_size_stride(primals_4, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), ( 8, 1), 0), reinterpret_tensor(primals_3, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_1[grid(256)](buf2, primals_1, primals_2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf3, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf2 class ShallowCombinationNew(nn.Module): """This Module can be used to generate a shallow combination from two embeddings using a gate.""" def __init__(self, bertram_config: 'BertramConfig'): super(ShallowCombinationNew, self).__init__() self.linear = nn.Linear(2 * bertram_config.output_size, 1) self.sigmoid = torch.nn.Sigmoid() self.mode = bertram_config.mode def forward(self, input_0, input_1): primals_3 = self.linear.weight primals_4 = self.linear.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
stefan-it/bertram
ShallowCombination
false
16,497
[ "Apache-2.0" ]
50
2e449cdc677577d1ca8b9daf852f324be4074940
https://github.com/stefan-it/bertram/tree/2e449cdc677577d1ca8b9daf852f324be4074940
PEGCNLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/iz/cizz6ss3edwe5sqtiutecfhylcpgeujo6fpvtn6tdggto25ofwlo.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.repeat] # Source node to ATen node mapping: # x => repeat # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [1, 1, 1, 1]), kwargs = {}) triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7q/c7qgwbp7h2p2gm2mjyswszqjvgaiq3hw6ul3ljm3kx5kacqyu56x.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_2 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/es/cesqwrlqm5vcmirpqmbudpf2z2xw3mpg4n4qezmonqpgmst5hzjh.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_5 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_1,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ta/ctag3dsvr2xrooo2d4hz5x5icm3gs73vhdsqjda2bdtlbgtufuww.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_7 => add, clone_2, rsqrt, var_mean # Graph fragment: # %clone_2 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%relu,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone_2, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_3 = async_compile.triton('triton_poi_fused_native_layer_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/l6/cl6ifgkv2632czultsbgs7ucq6yhx5acc5lftpw22bzjffavkmgu.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_7 => add, add_1, clone_2, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone_2 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%relu,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone_2, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_2, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) triton_poi_fused_native_layer_norm_4 = async_compile.triton('triton_poi_fused_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 4) x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1)), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.repeat] stream0 = get_raw_stream(0) triton_poi_fused_repeat_0.run(primals_2, buf0, 64, grid=grid(64), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (4, 4, 4), (0, 4, 1), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf2 buf4 = reinterpret_tensor(buf1, (4, 4, 4), (4, 16, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0) del buf3 buf5 = empty_strided_cuda((4, 4, 1), (1, 4, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 1), (1, 4, 16), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_3.run(buf4, buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_4.run(buf4, buf5, buf6, primals_4, primals_5, buf7, 64, grid=grid(64), stream=stream0) del buf5 del buf6 del primals_5 return (buf7, primals_4, buf4, reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PEGCNLayer(nn.Module): def __init__(self, input_dim, output_dim, prop_depth, act=torch.relu, dropout=0.0, layer_i=0): super(PEGCNLayer, self).__init__() self.prop_depth = prop_depth self.act = act self.weight = nn.Parameter(torch.empty(1, prop_depth, input_dim, output_dim, dtype=torch.float), requires_grad=True) nn.init.uniform_(self.weight.data) self.dropout = nn.Dropout(p=dropout) self.layer_norm = nn.LayerNorm(output_dim) self.layer_i = layer_i self.last_layer_flag = False def layer(self, x, adj_batch): if adj_batch.dim() < 4: adj_batch = adj_batch.unsqueeze(0) x = x.transpose(0, 1).unsqueeze(dim=1).repeat(1, self.prop_depth, 1, 1) x = torch.matmul(x, self.weight) x = torch.matmul(adj_batch, x) x = x.sum(dim=1) x = x.transpose(0, 1) return x def forward(self, x, adj_batch): x = self.layer(x, adj_batch) x = self.act(x) x = self.dropout(x) x = self.layer_norm(x) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4, 'prop_depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_relu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 4 x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1), tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_repeat_0[grid(64)](primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (4, 4, 4), (0, 4, 1), 0), out =buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf2 buf4 = reinterpret_tensor(buf1, (4, 4, 4), (4, 16, 1), 0) del buf1 triton_poi_fused_relu_2[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 buf5 = empty_strided_cuda((4, 4, 1), (1, 4, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 1), (1, 4, 16), torch.float32) triton_poi_fused_native_layer_norm_3[grid(16)](buf4, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_4[grid(64)](buf4, buf5, buf6, primals_4, primals_5, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf5 del buf6 del primals_5 return buf7, primals_4, buf4, reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0) class PEGCNLayerNew(nn.Module): def __init__(self, input_dim, output_dim, prop_depth, act=torch.relu, dropout=0.0, layer_i=0): super(PEGCNLayerNew, self).__init__() self.prop_depth = prop_depth self.act = act self.weight = nn.Parameter(torch.empty(1, prop_depth, input_dim, output_dim, dtype=torch.float), requires_grad=True) nn.init.uniform_(self.weight.data) self.dropout = nn.Dropout(p=dropout) self.layer_norm = nn.LayerNorm(output_dim) self.layer_i = layer_i self.last_layer_flag = False def layer(self, x, adj_batch): if adj_batch.dim() < 4: adj_batch = adj_batch.unsqueeze(0) x = x.transpose(0, 1).unsqueeze(dim=1).repeat(1, self.prop_depth, 1, 1) x = torch.matmul(x, self.weight) x = torch.matmul(adj_batch, x) x = x.sum(dim=1) x = x.transpose(0, 1) return x def forward(self, input_0, input_1): primals_3 = self.weight primals_4 = self.layer_norm.weight primals_5 = self.layer_norm.bias primals_2 = input_0 primals_1 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
snap-stanford/distance-encoding
PEGCNLayer
false
16,498
[ "MIT" ]
177
b9ccb1b59422b11b40883d0284d7fc9ba88efdb6
https://github.com/snap-stanford/distance-encoding/tree/b9ccb1b59422b11b40883d0284d7fc9ba88efdb6
Predict
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vg/cvgzll7advxze7fwtfxuvvxp6awpd565f4oliajayj6ukdru5c2v.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 32, 64, 64), (131072, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 32, 64, 64), (131072, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Predict(nn.Module): def __init__(self, in_planes=32, out_planes=1, kernel_size=1): super(Predict, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size) def forward(self, x): y = self.conv(x) return y def get_inputs(): return [torch.rand([4, 32, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 32, 64, 64), (131072, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16384)](buf1, primals_2, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class PredictNew(nn.Module): def __init__(self, in_planes=32, out_planes=1, kernel_size=1): super(PredictNew, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
stevewongv/DSC-PyTorch
Predict
false
16,499
[ "MIT" ]
75
4318225ce4fa5343db2cc723d8bcae4c884b23f4
https://github.com/stevewongv/DSC-PyTorch/tree/4318225ce4fa5343db2cc723d8bcae4c884b23f4
LearnedPositionalEmbedding1D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/i5/ci5qztmjm5trfof5nnr4q6zfdgt5kz3i6kpes2s3qrkgziadh2ag.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class LearnedPositionalEmbedding1D(nn.Module): """Adds (optionally learned) positional embeddings to the inputs.""" def __init__(self, seq_len, dim): super().__init__() self.pos_embedding = nn.Parameter(torch.zeros(1, seq_len, dim)) def forward(self, x): """Input has shape `(batch_size, seq_len, emb_dim)`""" return x + self.pos_embedding def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'seq_len': 4, 'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class LearnedPositionalEmbedding1DNew(nn.Module): """Adds (optionally learned) positional embeddings to the inputs.""" def __init__(self, seq_len, dim): super().__init__() self.pos_embedding = nn.Parameter(torch.zeros(1, seq_len, dim)) def forward(self, input_0): primals_1 = self.pos_embedding primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
styler00dollar/Colab-animesion
LearnedPositionalEmbedding1D
false
16,500
[ "MIT" ]
67
0fa603689fec3ed4ede098fd7c15b519dbb76a09
https://github.com/styler00dollar/Colab-animesion/tree/0fa603689fec3ed4ede098fd7c15b519dbb76a09
CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [x_conv], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_conv => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lx/clxxtk35ttmxbuivv4wkpl5u5hhog6kz6u3ggf3gadk2az3rgwyd.py # Topologically Sorted Source Nodes: [x_conv, x_conv_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_conv => convolution # x_conv_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 2) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/72/c72chstmbil2pcbrz2o4rtctjkpzhz5ulc63ew5qaf7wjleelrl2.py # Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool1d => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 2], [1, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr1 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 5), (20, 5, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_conv], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [x_conv], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2), (8, 2, 1)) del buf0 buf2 = buf1; del buf1 # reuse buf5 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [x_conv, x_conv_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_3, buf5, 32, grid=grid(32), stream=stream0) del primals_3 buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.int8) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_2.run(buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) return (reinterpret_tensor(buf4, (4, 4), (4, 1), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (4, 4, 1, 2), (8, 2, 2, 1), 0), buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 5), (20, 5, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils class CNN(nn.Module): def __init__(self, e_char, filters, padding=1, kernel_size=5): super(CNN, self).__init__() self.e_char = e_char self.filters = filters self.padding = padding self.k = kernel_size self.conv1d = None self.maxpool = None self.conv1d = nn.Conv1d(in_channels=self.e_char, out_channels=self. filters, kernel_size=self.k, stride=1, padding=self.padding, padding_mode='zeros', bias=True) def forward(self, xemb: 'torch.Tensor'): m_word = xemb.shape[1] x_reshaped = xemb.permute(0, 2, 1) x_conv = self.conv1d(x_reshaped) x_conv = F.relu(x_conv) maxpool = nn.MaxPool1d(kernel_size=m_word + 2 * self.padding - self .k + 1) x_conv_out = maxpool(x_conv).squeeze(2) return x_conv_out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'e_char': 4, 'filters': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 2 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr1 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 5), (20, 5, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2), (8, 2, 1)) del buf0 buf2 = buf1 del buf1 buf5 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(32)](buf2, primals_3, buf5, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_3 buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.int8) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) triton_poi_fused_max_pool2d_with_indices_2[grid(16)](buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) return reinterpret_tensor(buf4, (4, 4), (4, 1), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf2, (4, 4, 1, 2), (8, 2, 2, 1), 0), buf3, buf5 class CNNNew(nn.Module): def __init__(self, e_char, filters, padding=1, kernel_size=5): super(CNNNew, self).__init__() self.e_char = e_char self.filters = filters self.padding = padding self.k = kernel_size self.conv1d = None self.maxpool = None self.conv1d = nn.Conv1d(in_channels=self.e_char, out_channels=self. filters, kernel_size=self.k, stride=1, padding=self.padding, padding_mode='zeros', bias=True) def forward(self, input_0): primals_2 = self.conv1d.weight primals_3 = self.conv1d.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
stxxllbu/CS224n-winter-together
CNN
false
16,501
[ "Apache-2.0" ]
468
eae158ed8e88dc7c8638e25bac4c4fc8eeddcc8c
https://github.com/stxxllbu/CS224n-winter-together/tree/eae158ed8e88dc7c8638e25bac4c4fc8eeddcc8c
ScoreNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/s2/cs2vmjy3gwiqw57esaaq3kwydp5zw2zsfbrltwyirrivlfgfl7c7.py # Topologically Sorted Source Nodes: [add, hidden], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # hidden => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, %primals_1), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 256) x4 = xindex % 64 x0 = xindex % 4 x5 = xindex % 256 x6 = xindex tmp0 = tl.load(in_ptr0 + (x4 + (64*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = libdevice.tanh(tmp4) tl.store(out_ptr0 + (x6), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, hidden], Original ATen: [aten.add, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_add_tanh_0.run(buf0, primals_3, primals_1, buf1, 1024, grid=grid(1024), stream=stream0) del primals_1 del primals_3 buf3 = reinterpret_tensor(buf0, (256, 1), (1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (256, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return (reinterpret_tensor(buf3, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf1, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch.nn import Tanh from torch.nn import Linear class ScoreNetwork(Module): """ An optimized single hidden layer neural network for attention scores. The optimization idea behind this network is that projection of keys can performed only once without concatenation with query. It's allows to avoid unnecessary extra computations when attending every time-step over the same key-value pairs. """ def __init__(self, query_dim, hidden_dim, non_linearity=Tanh()): super(ScoreNetwork, self).__init__() self.query_dim = query_dim self.hidden_dim = hidden_dim self.query_proj = Linear(query_dim, hidden_dim, bias=True) self.non_lin = non_linearity self.hidden_to_out_proj = Linear(hidden_dim, 1) def forward(self, query, key): """ :param query: [batch_size, query_dim] :param key: [batch_size, seq_len, hidden_dim] :return: out: [batch_size, seq_len, 1] """ assert key.size(2) == self.hidden_dim query = self.query_proj(query) hidden = self.non_lin(query.unsqueeze(1) + key) out = self.hidden_to_out_proj(hidden) return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'query_dim': 4, 'hidden_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch.nn import Tanh from torch.nn import Linear assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 256 x4 = xindex % 64 x0 = xindex % 4 x5 = xindex % 256 x6 = xindex tmp0 = tl.load(in_ptr0 + (x4 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = libdevice.tanh(tmp4) tl.store(out_ptr0 + x6, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_tanh_0[grid(1024)](buf0, primals_3, primals_1, buf1, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_3 buf3 = reinterpret_tensor(buf0, (256, 1), (1, 1), 0) del buf0 extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (256, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return reinterpret_tensor(buf3, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0 ), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf1, primals_5 class ScoreNetworkNew(Module): """ An optimized single hidden layer neural network for attention scores. The optimization idea behind this network is that projection of keys can performed only once without concatenation with query. It's allows to avoid unnecessary extra computations when attending every time-step over the same key-value pairs. """ def __init__(self, query_dim, hidden_dim, non_linearity=Tanh()): super(ScoreNetworkNew, self).__init__() self.query_dim = query_dim self.hidden_dim = hidden_dim self.query_proj = Linear(query_dim, hidden_dim, bias=True) self.non_lin = non_linearity self.hidden_to_out_proj = Linear(hidden_dim, 1) def forward(self, input_0, input_1): primals_2 = self.query_proj.weight primals_3 = self.query_proj.bias primals_5 = self.hidden_to_out_proj.weight primals_6 = self.hidden_to_out_proj.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
stungkit/Copycat-abstractive-opinion-summarizer
ScoreNetwork
false
16,502
[ "MIT" ]
51
04fe5393a7bb6883516766b762f6a0c530e95375
https://github.com/stungkit/Copycat-abstractive-opinion-summarizer/tree/04fe5393a7bb6883516766b762f6a0c530e95375
ContrastiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/lh/clhtaboxxs526aw4bqcb7s6xoig5vzwco55tfg6waaga3ao3elgd.py # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] # Source node to ATen node mapping: # euclidean_distance => add, pow_1, pow_2, sub, sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused_add_norm_sub_0 = async_compile.triton('triton_poi_fused_add_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + (x0), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2l/c2l2efhstxzxtce6u6qjwkvh7vawevxafq4szecegv75l7dernch.py # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, loss_contrastive], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.mean] # Source node to ATen node mapping: # add => add_1 # clamp => clamp_min # loss_contrastive => mean # mul => mul # mul_1 => mul_1 # pow_1 => pow_3 # pow_2 => pow_4 # sub => sub_1 # sub_1 => sub_2 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %pow_3), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %pow_2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_clamp_mean_mul_pow_rsub_1 = async_compile.triton('triton_per_fused_add_clamp_mean_mul_pow_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_mul_pow_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mean_mul_pow_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None) tmp3 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] stream0 = get_raw_stream(0) triton_poi_fused_add_norm_sub_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, loss_contrastive], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.mean] triton_per_fused_add_clamp_mean_mul_pow_rsub_1.run(buf2, arg2_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class ContrastiveLoss(torch.nn.Module): """ Contrastive loss function. Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf """ def __init__(self, margin=2.0): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2) loss_contrastive = torch.mean((1 - label) * torch.pow( euclidean_distance, 2) + label * torch.pow(torch.clamp(self. margin - euclidean_distance, min=0.0), 2)) return loss_contrastive def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x0, tmp24, xmask) @triton.jit def triton_per_fused_add_clamp_mean_mul_pow_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_add_clamp_mean_mul_pow_rsub_1[grid(1)](buf2, arg2_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 return buf2, class ContrastiveLossNew(torch.nn.Module): """ Contrastive loss function. Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf """ def __init__(self, margin=2.0): super(ContrastiveLossNew, self).__init__() self.margin = margin def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
sugi-chan/project_pendragon
ContrastiveLoss
false
16,503
[ "MIT" ]
56
267624365f25964fece1952e6dcde629bbc2ee5b
https://github.com/sugi-chan/project_pendragon/tree/267624365f25964fece1952e6dcde629bbc2ee5b
Highway
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/au/cau6qypw2vz4drppp6yr6chutchyhnniousxhhlq2y5r3yu3gep5.py # Topologically Sorted Source Nodes: [x_proj], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_proj => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yn/cynkq6wyjv7523fpzsg3fegcbi2ai3v57hyj24ad4pyj3m7vwy2b.py # Topologically Sorted Source Nodes: [x_gate, mul, sub, mul_1, x_highway], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # sub => sub # x_gate => sigmoid # x_highway => add # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %relu), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_proj], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_gate_pre], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_gate, mul, sub, mul_1, x_highway], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_1.run(buf2, buf1, primals_3, buf3, 256, grid=grid(256), stream=stream0) return (buf3, primals_3, buf1, buf2, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.utils class Highway(nn.Module): def __init__(self, eword_size): super(Highway, self).__init__() self.eword_size = eword_size self.w_proj = nn.Linear(self.eword_size, self.eword_size, bias=True) self.w_gate = nn.Linear(self.eword_size, self.eword_size, bias=True) self.highway_ReLU = nn.ReLU() def forward(self, x_conv: 'torch.Tensor'): x_proj_pre = self.w_proj(x_conv) x_proj = self.highway_ReLU(x_proj_pre) x_gate_pre = self.w_gate(x_proj) x_gate = torch.sigmoid(x_gate_pre) x_highway = x_gate * x_proj + (1 - x_gate) * x_conv return x_highway def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'eword_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_1[grid(256)](buf2, buf1, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf3, primals_3, buf1, buf2, primals_4 class HighwayNew(nn.Module): def __init__(self, eword_size): super(HighwayNew, self).__init__() self.eword_size = eword_size self.w_proj = nn.Linear(self.eword_size, self.eword_size, bias=True) self.w_gate = nn.Linear(self.eword_size, self.eword_size, bias=True) self.highway_ReLU = nn.ReLU() def forward(self, input_0): primals_1 = self.w_proj.weight primals_2 = self.w_proj.bias primals_4 = self.w_gate.weight primals_5 = self.w_gate.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
stxxllbu/CS224n-winter-together
Highway
false
16,504
[ "Apache-2.0" ]
468
eae158ed8e88dc7c8638e25bac4c4fc8eeddcc8c
https://github.com/stxxllbu/CS224n-winter-together/tree/eae158ed8e88dc7c8638e25bac4c4fc8eeddcc8c
MyKernelTorch
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yb/cybsjfmgf75kwyq3kyez46wzwjgjffwtsqe2uwa7bdzwlb6l22gt.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 20), (20, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 1280, grid=grid(1280), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 20), (20, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MyKernelTorch(nn.Module): def __init__(self, n_features: 'int'): super().__init__() self.dense1 = nn.Linear(n_features, 20) self.dense2 = nn.Linear(20, 2) def forward(self, x: 'torch.Tensor') ->torch.Tensor: x = nn.ReLU()(self.dense1(x)) return self.dense2(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 20), (20, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1280)](buf1, primals_2, buf3, 1280, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 20), (20, 1), 0), primals_4, buf3 class MyKernelTorchNew(nn.Module): def __init__(self, n_features: 'int'): super().__init__() self.dense1 = nn.Linear(n_features, 20) self.dense2 = nn.Linear(20, 2) def forward(self, input_0): primals_1 = self.dense1.weight primals_2 = self.dense1.bias primals_4 = self.dense2.weight primals_5 = self.dense2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sugatoray/alibi-detect
MyKernelTorch
false
16,505
[ "Apache-2.0" ]
1,227
66d7873c248c0be1a1d836e6fe1ef59351b802d9
https://github.com/sugatoray/alibi-detect/tree/66d7873c248c0be1a1d836e6fe1ef59351b802d9
S_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fa/cfa6bszpns5yhug32unm5jaaxp7nppo2yfrmvmrfxoj6vtium6fq.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.smooth_l1_loss] # Source node to ATen node mapping: # loss => abs_1, div, lt, mean, mul, pow_1, sub, sub_1, where # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) triton_per_fused_smooth_l1_loss_0 = async_compile.triton('triton_per_fused_smooth_l1_loss_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_smooth_l1_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_smooth_l1_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = tmp3 * tmp3 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = tmp8 * tmp4 tmp10 = tmp3 - tmp7 tmp11 = tl.where(tmp5, tmp9, tmp10) tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.smooth_l1_loss] stream0 = get_raw_stream(0) triton_per_fused_smooth_l1_loss_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn class S_Loss(nn.Module): def __init__(self): super(S_Loss, self).__init__() def forward(self, x, label): loss = F.smooth_l1_loss(x, label) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_smooth_l1_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = tmp3 * tmp3 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = tmp8 * tmp4 tmp10 = tmp3 - tmp7 tmp11 = tl.where(tmp5, tmp9, tmp10) tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_smooth_l1_loss_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class S_LossNew(nn.Module): def __init__(self): super(S_LossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
suyukun666/UFO
S_Loss
false
16,506
[ "MIT" ]
122
e57016948b03cd2f75155d2958cea69b6e4b56f8
https://github.com/suyukun666/UFO/tree/e57016948b03cd2f75155d2958cea69b6e4b56f8
PtModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yb/cybsjfmgf75kwyq3kyez46wzwjgjffwtsqe2uwa7bdzwlb6l22gt.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 20), (20, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 1280, grid=grid(1280), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 4), (1, 20), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 20), (20, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PtModel(nn.Module): def __init__(self, n_features, n_labels, softmax=False, dropout=False): super().__init__() self.dense1 = nn.Linear(n_features, 20) self.dense2 = nn.Linear(20, n_labels) self.dropout = nn.Dropout(0.5) if dropout else lambda x: x self.softmax = nn.Softmax() if softmax else lambda x: x def forward(self, x: 'torch.Tensor') ->torch.Tensor: x = nn.ReLU()(self.dense1(x)) x = self.dropout(x) x = self.dense2(x) x = self.softmax(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_features': 4, 'n_labels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 20), (20, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1280)](buf1, primals_2, buf3, 1280, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 4), (1, 20), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 20), (20, 1), 0), primals_4, buf3 class PtModelNew(nn.Module): def __init__(self, n_features, n_labels, softmax=False, dropout=False): super().__init__() self.dense1 = nn.Linear(n_features, 20) self.dense2 = nn.Linear(20, n_labels) self.dropout = nn.Dropout(0.5) if dropout else lambda x: x self.softmax = nn.Softmax() if softmax else lambda x: x def forward(self, input_0): primals_1 = self.dense1.weight primals_2 = self.dense1.bias primals_4 = self.dense2.weight primals_5 = self.dense2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sugatoray/alibi-detect
PtModel
false
16,507
[ "Apache-2.0" ]
1,227
66d7873c248c0be1a1d836e6fe1ef59351b802d9
https://github.com/sugatoray/alibi-detect/tree/66d7873c248c0be1a1d836e6fe1ef59351b802d9
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/g3/cg3el2gn3jo2uczn6kvxebxonhlsgf4gykdxpouwhsyjf55b5gdg.py # Topologically Sorted Source Nodes: [t_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # t_2 => relu # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gi/cgikzytmesedinj4z3rqn6b5jwviamhgswfmfwdcordkia2bbyno.py # Topologically Sorted Source Nodes: [t_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # t_4 => relu_1 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ta/ctadkhhtrzgkcqrpiklb4lubyzabtmsldemj7ajsxkcjz6gi2u5s.py # Topologically Sorted Source Nodes: [t_6], Original ATen: [aten.relu] # Source node to ATen node mapping: # t_6 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (500, 784), (784, 1)) assert_size_stride(primals_3, (500, ), (1, )) assert_size_stride(primals_4, (200, 500), (500, 1)) assert_size_stride(primals_5, (200, ), (1, )) assert_size_stride(primals_6, (100, 200), (200, 1)) assert_size_stride(primals_7, (100, ), (1, )) assert_size_stride(primals_8, (10, 100), (100, 1)) assert_size_stride(primals_9, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 500), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [t_2], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 2000, grid=grid(2000), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 200), (200, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 200), (1, 500), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [t_4], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 800, grid=grid(800), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (200, 100), (1, 200), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [t_6], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf5, primals_7, 400, grid=grid(400), stream=stream0) del primals_7 buf6 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [t_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8, (100, 10), (1, 100), 0), alpha=1, beta=1, out=buf6) del primals_9 return (buf6, primals_1, buf1, buf3, buf5, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((500, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((200, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((100, 200), (200, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.fc1 = nn.Linear(in_features=28 * 28, out_features=500) self.fc2 = nn.Linear(in_features=500, out_features=200) self.fc3 = nn.Linear(in_features=200, out_features=100) self.out = nn.Linear(in_features=100, out_features=10) def forward(self, t): t = t.view(-1, 28 * 28) t = self.fc1(t) t = F.relu(t) t = self.fc2(t) t = F.relu(t) t = self.fc3(t) t = F.relu(t) t = self.out(t) return t def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (500, 784), (784, 1)) assert_size_stride(primals_3, (500,), (1,)) assert_size_stride(primals_4, (200, 500), (500, 1)) assert_size_stride(primals_5, (200,), (1,)) assert_size_stride(primals_6, (100, 200), (200, 1)) assert_size_stride(primals_7, (100,), (1,)) assert_size_stride(primals_8, (10, 100), (100, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 500), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(2000)](buf1, primals_3, 2000, XBLOCK= 256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 200), (200, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 200), ( 1, 500), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(800)](buf3, primals_5, 800, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 100), (100, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (200, 100), ( 1, 200), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_2[grid(400)](buf5, primals_7, 400, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8, (100, 10), (1, 100), 0), alpha=1, beta=1, out=buf6) del primals_9 return buf6, primals_1, buf1, buf3, buf5, primals_8, primals_6, primals_4 class MLPNew(nn.Module): def __init__(self): super(MLPNew, self).__init__() self.fc1 = nn.Linear(in_features=28 * 28, out_features=500) self.fc2 = nn.Linear(in_features=500, out_features=200) self.fc3 = nn.Linear(in_features=200, out_features=100) self.out = nn.Linear(in_features=100, out_features=10) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.out.weight primals_9 = self.out.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
stjordanis/ml-cheatsheet
MLP
false
16,508
[ "MIT" ]
1,031
d34e096032b7ae826868be8808aee01699cec491
https://github.com/stjordanis/ml-cheatsheet/tree/d34e096032b7ae826868be8808aee01699cec491
ToRGB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vr/cvrgc72niy47uu4muqy3y7prbo42ep4nyny4fgoymcc3xmcsnzn6.py # Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_2 => mul_2 # weight => mul_3 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 48 x0 = xindex % 4 x2 = (xindex // 48) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/a3/ca3w72bbjj5b2ss3nm6e7ez3d62fbmrnuu6fvmbnzfgzdoivurt7.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add] # Source node to ATen node mapping: # out_3 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 12, 4, 1, 1), (48, 4, 1, 1, 1)) assert_size_stride(primals_6, (1, 12, 1, 1), (12, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_3, buf1, 4, grid=grid(4), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, out], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 buf3 = empty_strided_cuda((4, 12, 4, 1, 1), (48, 4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_5, buf2, buf3, 192, grid=grid(192), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (48, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (1, 48, 4, 4), (768, 16, 4, 1)) buf5 = reinterpret_tensor(buf4, (4, 12, 4, 4), (192, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf5, primals_6, 768, grid=grid(768), stream=stream0) del primals_6 return (buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (48, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 12, 4, 1, 1), (48, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 12, 1, 1), (12, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import math import torch import torch.nn as nn import torch.nn.functional as F def upsample(in_tens, out_H=64): in_H = in_tens.shape[2] scale_factor = 1.0 * out_H / in_H return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): if input.device.type == 'cpu': rest_dim = [1] * (input.ndim - bias.ndim - 1) return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2) * scale else: return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) def get_haar_wavelet(in_channels): haar_wav_l = 1 / 2 ** 0.5 * torch.ones(1, 2) haar_wav_h = 1 / 2 ** 0.5 * torch.ones(1, 2) haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0] haar_wav_ll = haar_wav_l.T * haar_wav_l haar_wav_lh = haar_wav_h.T * haar_wav_l haar_wav_hl = haar_wav_l.T * haar_wav_h haar_wav_hh = haar_wav_h.T * haar_wav_h return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx. up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1, ctx.pad_y0, ctx.pad_y1) gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape _batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = out_h, out_w ctx.up = up_x, up_y ctx.down = down_x, down_y ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1 g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply(grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size) return grad_input, None, None, None, None class Upsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) * factor ** 2 self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = pad0, pad1 def forward(self, input): out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad= self.pad) return out class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * upsample_factor ** 2 self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = 1 / math.sqrt(in_dim) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class ModulatedConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1]): super().__init__() self.eps = 1e-08 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = len(blur_kernel) - factor - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor =factor) if downsample: factor = 2 p = len(blur_kernel) - factor + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view(batch * self.out_channel, in_channel, self. kernel_size, self.kernel_size) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view(batch, self.out_channel, in_channel, self. kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class HaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer('ll', ll) self.register_buffer('lh', lh) self.register_buffer('hl', hl) self.register_buffer('hh', hh) def forward(self, input): ll = upfirdn2d(input, self.ll, down=2) lh = upfirdn2d(input, self.lh, down=2) hl = upfirdn2d(input, self.hl, down=2) hh = upfirdn2d(input, self.hh, down=2) return torch.cat((ll, lh, hl, hh), 1) class InverseHaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer('ll', ll) self.register_buffer('lh', -lh) self.register_buffer('hl', -hl) self.register_buffer('hh', hh) def forward(self, input): ll, lh, hl, hh = input.chunk(4, 1) ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0)) lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0)) hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0)) hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0)) return ll + lh + hl + hh class ToRGB(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.iwt = InverseHaarTransform(3) self.upsample = Upsample(blur_kernel) self.dwt = HaarTransform(3) self.conv = ModulatedConv2d(in_channel, 3 * 4, 1, style_dim, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, 3 * 4, 1, 1)) def forward(self, input, style, skip=None): out = self.conv(input, style) out = out + self.bias if skip is not None: skip = self.iwt(skip) skip = self.upsample(skip) skip = self.dwt(skip) out = out + skip return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'style_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.autograd import Function import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 48 x0 = xindex % 4 x2 = xindex // 48 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 12 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 12, 4, 1, 1), (48, 4, 1, 1, 1)) assert_size_stride(primals_6, (1, 12, 1, 1), (12, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_3, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 buf3 = empty_strided_cuda((4, 12, 4, 1, 1), (48, 4, 1, 1, 1), torch .float32) triton_poi_fused_mul_2[grid(192)](primals_5, buf2, buf3, 192, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (48, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (1, 48, 4, 4), (768, 16, 4, 1)) buf5 = reinterpret_tensor(buf4, (4, 12, 4, 4), (192, 16, 4, 1), 0) del buf4 triton_poi_fused_add_3[grid(768)](buf5, primals_6, 768, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 return buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (48, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0) def upsample(in_tens, out_H=64): in_H = in_tens.shape[2] scale_factor = 1.0 * out_H / in_H return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): if input.device.type == 'cpu': rest_dim = [1] * (input.ndim - bias.ndim - 1) return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2) * scale else: return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) def get_haar_wavelet(in_channels): haar_wav_l = 1 / 2 ** 0.5 * torch.ones(1, 2) haar_wav_h = 1 / 2 ** 0.5 * torch.ones(1, 2) haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0] haar_wav_ll = haar_wav_l.T * haar_wav_l haar_wav_lh = haar_wav_h.T * haar_wav_l haar_wav_hl = haar_wav_l.T * haar_wav_h haar_wav_hh = haar_wav_h.T * haar_wav_h return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx. up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1, ctx.pad_y0, ctx.pad_y1) gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape _batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = out_h, out_w ctx.up = up_x, up_y ctx.down = down_x, down_y ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1 g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply(grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size) return grad_input, None, None, None, None class Upsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) * factor ** 2 self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = pad0, pad1 def forward(self, input): out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad= self.pad) return out class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * upsample_factor ** 2 self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = 1 / math.sqrt(in_dim) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class ModulatedConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1]): super().__init__() self.eps = 1e-08 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = len(blur_kernel) - factor - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor =factor) if downsample: factor = 2 p = len(blur_kernel) - factor + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view(batch * self.out_channel, in_channel, self. kernel_size, self.kernel_size) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view(batch, self.out_channel, in_channel, self. kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class HaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer('ll', ll) self.register_buffer('lh', lh) self.register_buffer('hl', hl) self.register_buffer('hh', hh) def forward(self, input): ll = upfirdn2d(input, self.ll, down=2) lh = upfirdn2d(input, self.lh, down=2) hl = upfirdn2d(input, self.hl, down=2) hh = upfirdn2d(input, self.hh, down=2) return torch.cat((ll, lh, hl, hh), 1) class InverseHaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer('ll', ll) self.register_buffer('lh', -lh) self.register_buffer('hl', -hl) self.register_buffer('hh', hh) def forward(self, input): ll, lh, hl, hh = input.chunk(4, 1) ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0)) lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0)) hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0)) hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0)) return ll + lh + hl + hh class ToRGBNew(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.iwt = InverseHaarTransform(3) self.upsample = Upsample(blur_kernel) self.dwt = HaarTransform(3) self.conv = ModulatedConv2d(in_channel, 3 * 4, 1, style_dim, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, 3 * 4, 1, 1)) def forward(self, input_0, input_1): primals_6 = self.bias primals_5 = self.conv.weight primals_2 = self.conv.modulation.weight primals_3 = self.conv.modulation.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
songquanpeng/BlendGAN
ToRGB
false
16,509
[ "MIT", "BSD-2-Clause", "Apache-2.0" ]
67
cbf7225c50c548ee955614715ae3f8fa4d68ee13
https://github.com/songquanpeng/BlendGAN/tree/cbf7225c50c548ee955614715ae3f8fa4d68ee13
SoftCrossEntropyLoss2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ne/cneuoe5ed43ex5ojv524lcm6efihmzp4tx5sn3qedrcityjvt6pz.py # Topologically Sorted Source Nodes: [log_softmax, inputs], Original ATen: [aten._log_softmax, aten.neg] # Source node to ATen node mapping: # inputs => neg # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %neg : [num_users=4] = call_function[target=torch.ops.aten.neg.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__log_softmax_neg_1 = async_compile.triton('triton_poi_fused__log_softmax_neg_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_neg_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_neg_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp14 = -tmp13 tl.store(out_ptr0 + (x3), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hm/chmjikblxn7fogqton2wplz4p5ubizfnslw2y2jskup5crqiglsi.py # Topologically Sorted Source Nodes: [getitem], Original ATen: [aten.index] # Source node to ATen node mapping: # getitem => index # Graph fragment: # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%neg, [%full_default]), kwargs = {}) triton_poi_fused_index_2 = async_compile.triton('triton_poi_fused_index_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + (16*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xg/cxgyo7qw6gisgut6u4bocabj7jkiaw3bydso4hzgts7qjaia74xe.py # Topologically Sorted Source Nodes: [getitem_2], Original ATen: [aten.index] # Source node to ATen node mapping: # getitem_2 => index_2 # Graph fragment: # %index_2 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%neg, [%full_default_2]), kwargs = {}) triton_poi_fused_index_3 = async_compile.triton('triton_poi_fused_index_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (64 + x1 + (16*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/iq/ciq2g5midlhlq7225k24quvfyfki7oejp5vufoszhy2i3ktzwl66.py # Topologically Sorted Source Nodes: [getitem_4], Original ATen: [aten.index] # Source node to ATen node mapping: # getitem_4 => index_4 # Graph fragment: # %index_4 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%neg, [%full_default_4]), kwargs = {}) triton_poi_fused_index_4 = async_compile.triton('triton_poi_fused_index_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (128 + x1 + (16*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uw/cuwcbkvcc6zyei2rc3jzebdq4rl7s3nyyw3nqvslxd7f2o7txngx.py # Topologically Sorted Source Nodes: [getitem_6], Original ATen: [aten.index] # Source node to ATen node mapping: # getitem_6 => index_6 # Graph fragment: # %index_6 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%neg, [%full_default_6]), kwargs = {}) triton_poi_fused_index_5 = async_compile.triton('triton_poi_fused_index_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (192 + x1 + (16*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zz/czzlytqgjwzprkdc572dfyzk5vpiocqqctt74eadeo2aq54ezkih.py # Topologically Sorted Source Nodes: [truediv, loss, truediv_1, loss_1, truediv_2, loss_2, truediv_3, loss_3], Original ATen: [aten.div, aten.add] # Source node to ATen node mapping: # loss => add # loss_1 => add_1 # loss_2 => add_2 # loss_3 => add_3 # truediv => div # truediv_1 => div_1 # truediv_2 => div_2 # truediv_3 => div_3 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution, 16), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 0), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution_1, 16), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %div_1), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution_2, 16), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %div_2), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution_3, 16), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %div_3), kwargs = {}) triton_poi_fused_add_div_6 = async_compile.triton('triton_poi_fused_add_div_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp10 = tl.load(in_out_ptr0 + (0)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr2 + (0)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp2 = 0.0625 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = tmp3 + tmp4 tmp8 = tmp7 * tmp2 tmp9 = tmp5 + tmp8 tmp12 = tmp11 * tmp2 tmp13 = tmp9 + tmp12 tmp16 = tmp15 * tmp2 tmp17 = tmp13 + tmp16 tl.store(in_out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax, inputs], Original ATen: [aten._log_softmax, aten.neg] triton_poi_fused__log_softmax_neg_1.run(buf0, buf1, 256, grid=grid(256), stream=stream0) del buf0 buf2 = empty_strided_cuda((1, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [getitem], Original ATen: [aten.index] triton_poi_fused_index_2.run(buf1, buf2, 4, 16, grid=grid(4, 16), stream=stream0) buf3 = empty_strided_cuda((1, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [getitem_1], Original ATen: [aten.index] triton_poi_fused_index_2.run(arg1_1, buf3, 4, 16, grid=grid(4, 16), stream=stream0) # Topologically Sorted Source Nodes: [getitem, getitem_1, conv2d], Original ATen: [aten.index, aten.convolution] buf4 = extern_kernels.convolution(buf2, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 1, 1, 1), (1, 1, 1, 1)) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [getitem_2], Original ATen: [aten.index] triton_poi_fused_index_3.run(buf1, buf5, 4, 16, grid=grid(4, 16), stream=stream0) buf6 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [getitem_3], Original ATen: [aten.index] triton_poi_fused_index_3.run(arg1_1, buf6, 4, 16, grid=grid(4, 16), stream=stream0) # Topologically Sorted Source Nodes: [getitem_2, getitem_3, conv2d_1], Original ATen: [aten.index, aten.convolution] buf7 = extern_kernels.convolution(buf5, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (1, 1, 1, 1), (1, 1, 1, 1)) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [getitem_4], Original ATen: [aten.index] triton_poi_fused_index_4.run(buf1, buf8, 4, 16, grid=grid(4, 16), stream=stream0) buf9 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [getitem_5], Original ATen: [aten.index] triton_poi_fused_index_4.run(arg1_1, buf9, 4, 16, grid=grid(4, 16), stream=stream0) # Topologically Sorted Source Nodes: [getitem_4, getitem_5, conv2d_2], Original ATen: [aten.index, aten.convolution] buf10 = extern_kernels.convolution(buf8, buf9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (1, 1, 1, 1), (1, 1, 1, 1)) buf11 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [getitem_6], Original ATen: [aten.index] triton_poi_fused_index_5.run(buf1, buf11, 4, 16, grid=grid(4, 16), stream=stream0) del buf1 buf12 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [getitem_7], Original ATen: [aten.index] triton_poi_fused_index_5.run(arg1_1, buf12, 4, 16, grid=grid(4, 16), stream=stream0) del arg1_1 # Topologically Sorted Source Nodes: [getitem_6, getitem_7, conv2d_3], Original ATen: [aten.index, aten.convolution] buf13 = extern_kernels.convolution(buf11, buf12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (1, 1, 1, 1), (1, 1, 1, 1)) del buf11 del buf12 buf14 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [truediv, loss, truediv_1, loss_1, truediv_2, loss_2, truediv_3, loss_3], Original ATen: [aten.div, aten.add] triton_poi_fused_add_div_6.run(buf14, buf4, buf7, buf13, 1, grid=grid(1), stream=stream0) del buf13 del buf4 del buf7 return (buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils class SoftCrossEntropyLoss2d(nn.Module): def __init__(self): super(SoftCrossEntropyLoss2d, self).__init__() def forward(self, inputs, targets): loss = 0 inputs = -F.log_softmax(inputs, dim=1) for index in range(inputs.size()[0]): loss += F.conv2d(inputs[range(index, index + 1)], targets[range (index, index + 1)]) / (targets.size()[2] * targets.size()[3]) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_neg_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp14 = -tmp13 tl.store(out_ptr0 + x3, tmp14, xmask) @triton.jit def triton_poi_fused_index_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + 16 * y0), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 4 * x1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_index_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (64 + x1 + 16 * y0), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 4 * x1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_index_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (128 + x1 + 16 * y0), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 4 * x1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_index_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (192 + x1 + 16 * y0), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 4 * x1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_div_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp10 = tl.load(in_out_ptr0 + 0) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr2 + 0) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp2 = 0.0625 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = tmp3 + tmp4 tmp8 = tmp7 * tmp2 tmp9 = tmp5 + tmp8 tmp12 = tmp11 * tmp2 tmp13 = tmp9 + tmp12 tmp16 = tmp15 * tmp2 tmp17 = tmp13 + tmp16 tl.store(in_out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_neg_1[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 buf2 = empty_strided_cuda((1, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_index_2[grid(4, 16)](buf1, buf2, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((1, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_index_2[grid(4, 16)](arg1_1, buf3, 4, 16, XBLOCK= 16, YBLOCK=4, num_warps=1, num_stages=1) buf4 = extern_kernels.convolution(buf2, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 1, 1, 1), (1, 1, 1, 1)) buf5 = buf3 del buf3 triton_poi_fused_index_3[grid(4, 16)](buf1, buf5, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf6 = buf2 del buf2 triton_poi_fused_index_3[grid(4, 16)](arg1_1, buf6, 4, 16, XBLOCK= 16, YBLOCK=4, num_warps=1, num_stages=1) buf7 = extern_kernels.convolution(buf5, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (1, 1, 1, 1), (1, 1, 1, 1)) buf8 = buf6 del buf6 triton_poi_fused_index_4[grid(4, 16)](buf1, buf8, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf9 = buf5 del buf5 triton_poi_fused_index_4[grid(4, 16)](arg1_1, buf9, 4, 16, XBLOCK= 16, YBLOCK=4, num_warps=1, num_stages=1) buf10 = extern_kernels.convolution(buf8, buf9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (1, 1, 1, 1), (1, 1, 1, 1)) buf11 = buf9 del buf9 triton_poi_fused_index_5[grid(4, 16)](buf1, buf11, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) del buf1 buf12 = buf8 del buf8 triton_poi_fused_index_5[grid(4, 16)](arg1_1, buf12, 4, 16, XBLOCK= 16, YBLOCK=4, num_warps=1, num_stages=1) del arg1_1 buf13 = extern_kernels.convolution(buf11, buf12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (1, 1, 1, 1), (1, 1, 1, 1)) del buf11 del buf12 buf14 = buf10 del buf10 triton_poi_fused_add_div_6[grid(1)](buf14, buf4, buf7, buf13, 1, XBLOCK=1, num_warps=1, num_stages=1) del buf13 del buf4 del buf7 return buf14, class SoftCrossEntropyLoss2dNew(nn.Module): def __init__(self): super(SoftCrossEntropyLoss2dNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
songzijiang/FasterSeg
SoftCrossEntropyLoss2d
false
16,510
[ "MIT" ]
334
1a14ef6dd665afd229a16ab43b532b5a406512f8
https://github.com/songzijiang/FasterSeg/tree/1a14ef6dd665afd229a16ab43b532b5a406512f8
BinaryTreeLeafModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ar/carsx47vhxrmqohogjqabgqyphkufdpeaimsvtq3ws4zh3pcj53m.py # Topologically Sorted Source Nodes: [o, tanh, h], Original ATen: [aten.sigmoid, aten.tanh, aten.mul] # Source node to ATen node mapping: # h => mul # o => sigmoid # tanh => tanh # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) triton_poi_fused_mul_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [c], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [o, tanh, h], Original ATen: [aten.sigmoid, aten.tanh, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_tanh_0.run(buf1, buf0, buf2, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.onnx class BinaryTreeLeafModule(nn.Module): """ local input = nn.Identity()() local c = nn.Linear(self.in_dim, self.mem_dim)(input) local h if self.gate_output then local o = nn.Sigmoid()(nn.Linear(self.in_dim, self.mem_dim)(input)) h = nn.CMulTable(){o, nn.Tanh()(c)} else h = nn.Tanh()(c) end local leaf_module = nn.gModule({input}, {c, h}) """ def __init__(self, cuda, in_dim, mem_dim): super(BinaryTreeLeafModule, self).__init__() self.cudaFlag = cuda self.in_dim = in_dim self.mem_dim = mem_dim self.cx = nn.Linear(self.in_dim, self.mem_dim) self.ox = nn.Linear(self.in_dim, self.mem_dim) if self.cudaFlag: self.cx = self.cx self.ox = self.ox def forward(self, input): c = self.cx(input) o = F.sigmoid(self.ox(input)) h = o * F.tanh(c) return c, h def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'cuda': False, 'in_dim': 4, 'mem_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sigmoid_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_tanh_0[grid(256)](buf1, buf0, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf1 class BinaryTreeLeafModuleNew(nn.Module): """ local input = nn.Identity()() local c = nn.Linear(self.in_dim, self.mem_dim)(input) local h if self.gate_output then local o = nn.Sigmoid()(nn.Linear(self.in_dim, self.mem_dim)(input)) h = nn.CMulTable(){o, nn.Tanh()(c)} else h = nn.Tanh()(c) end local leaf_module = nn.gModule({input}, {c, h}) """ def __init__(self, cuda, in_dim, mem_dim): super(BinaryTreeLeafModuleNew, self).__init__() self.cudaFlag = cuda self.in_dim = in_dim self.mem_dim = mem_dim self.cx = nn.Linear(self.in_dim, self.mem_dim) self.ox = nn.Linear(self.in_dim, self.mem_dim) if self.cudaFlag: self.cx = self.cx self.ox = self.ox def forward(self, input_0): primals_1 = self.cx.weight primals_2 = self.cx.bias primals_4 = self.ox.weight primals_5 = self.ox.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
supunab/Lantern
BinaryTreeLeafModule
false
16,511
[ "BSD-3-Clause" ]
158
932a031816617d71c46653f3b2245129a6a8a7c8
https://github.com/supunab/Lantern/tree/932a031816617d71c46653f3b2245129a6a8a7c8
VAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/w5/cw5uk6btsvkto64bmw2lpl5k7d73fiq25vyyyralhjkflzfysj5j.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu] # Source node to ATen node mapping: # z => relu # Graph fragment: # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 750 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xx/cxxwiv3vxijx7wz5wwa2iaefvj37vze4rdhpzdqhdurhkpvrfuku.py # Topologically Sorted Source Nodes: [log_std, std], Original ATen: [aten.clamp, aten.exp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # log_std => clamp_max, clamp_min # std => exp # Graph fragment: # %add_tensor_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_10), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_tensor_2, -4), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%clamp_max,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_tensor_2, -4), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add_tensor_2, 15), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le_2), kwargs = {}) triton_poi_fused_clamp_exp_ge_le_logical_and_2 = async_compile.triton('triton_poi_fused_clamp_exp_ge_le_logical_and_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_exp_ge_le_logical_and_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_exp_ge_le_logical_and_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -4.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 >= tmp3 tmp9 = tmp2 <= tmp5 tmp10 = tmp8 & tmp9 tl.store(out_ptr0 + (x2), tmp7, xmask) tl.store(out_ptr1 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bg/cbgry77jiwmao4v2vcbhdjv3yywrgxv467pnsv4lw22qbwfrrjt4.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %add], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.load(in_ptr3 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 * tmp11 tmp13 = tmp9 + tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ft/cftuthuoe4whjgyemhb2x6xgozsdgk3jhnjtiiu425gfrgnhmwon.py # Topologically Sorted Source Nodes: [tanh, u], Original ATen: [aten.tanh, aten.mul] # Source node to ATen node mapping: # tanh => tanh # u => mul_1 # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm_6,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {}) triton_poi_fused_mul_tanh_4 = async_compile.triton('triton_poi_fused_mul_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_tanh_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (750, 8), (8, 1)) assert_size_stride(primals_4, (750, ), (1, )) assert_size_stride(primals_5, (750, 750), (750, 1)) assert_size_stride(primals_6, (750, ), (1, )) assert_size_stride(primals_7, (4, 750), (750, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 750), (750, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (750, 8), (8, 1)) assert_size_stride(primals_12, (750, ), (1, )) assert_size_stride(primals_13, (750, 750), (750, 1)) assert_size_stride(primals_14, (750, ), (1, )) assert_size_stride(primals_15, (4, 750), (750, 1)) assert_size_stride(primals_16, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 750), (750, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 750), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, primals_4, 3000, grid=grid(3000), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 750), (750, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (750, 750), (1, 750), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf4, primals_6, 3000, grid=grid(3000), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (750, 4), (1, 750), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_9, (750, 4), (1, 750), 0), out=buf6) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [log_std, std], Original ATen: [aten.clamp, aten.exp, aten.ge, aten.le, aten.logical_and] triton_poi_fused_clamp_exp_ge_le_logical_and_2.run(buf6, primals_10, buf7, buf17, 16, grid=grid(16), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [randn_like], Original ATen: [aten.randn_like] buf8 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf9 = buf8 del buf8 buf10 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(primals_1, buf5, buf7, buf9, buf10, 32, grid=grid(32), stream=stream0) del primals_1 buf11 = empty_strided_cuda((4, 750), (750, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf10, reinterpret_tensor(primals_11, (8, 750), (1, 8), 0), out=buf11) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf12, primals_12, 3000, grid=grid(3000), stream=stream0) del primals_12 buf13 = empty_strided_cuda((4, 750), (750, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf12, reinterpret_tensor(primals_13, (750, 750), (1, 750), 0), out=buf13) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf14, primals_14, 3000, grid=grid(3000), stream=stream0) del primals_14 buf15 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [a_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_16, buf14, reinterpret_tensor(primals_15, (750, 4), (1, 750), 0), alpha=1, beta=1, out=buf15) del primals_16 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, u], Original ATen: [aten.tanh, aten.mul] triton_poi_fused_mul_tanh_4.run(buf15, buf16, 16, grid=grid(16), stream=stream0) return (buf16, buf5, buf7, buf0, buf2, buf4, buf7, buf9, buf10, buf12, buf14, buf15, primals_15, primals_13, primals_11, buf17, primals_9, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((750, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((750, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((750, 750), (750, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((750, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 750), (750, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 750), (750, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((750, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((750, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((750, 750), (750, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((750, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 750), (750, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from abc import ABC from abc import abstractmethod import torch.nn.functional as F from torch.functional import F from torch import nn from typing import * from torch.nn import functional as F def to_array_as(x, y): if isinstance(x, torch.Tensor) and isinstance(y, np.ndarray): return x.detach().cpu().numpy().astype(y.dtype) elif isinstance(x, np.ndarray) and isinstance(y, torch.Tensor): return torch.tensor(x) else: return x class BasePolicy(ABC): @abstractmethod def policy_infer(self, obs): pass def get_action(self, obs): obs_tensor = torch.tensor(obs, device=next(self.parameters()). device, dtype=torch.float32) act = to_array_as(self.policy_infer(obs_tensor), obs) return act class VAE(nn.Module, BasePolicy): def __init__(self, state_dim, action_dim, latent_dim, max_action, hidden_size=750): super(VAE, self).__init__() self.e1 = nn.Linear(state_dim + action_dim, hidden_size) self.e2 = nn.Linear(hidden_size, hidden_size) self.mean = nn.Linear(hidden_size, latent_dim) self.log_std = nn.Linear(hidden_size, latent_dim) self.d1 = nn.Linear(state_dim + latent_dim, hidden_size) self.d2 = nn.Linear(hidden_size, hidden_size) self.d3 = nn.Linear(hidden_size, action_dim) self.max_action = max_action self.latent_dim = latent_dim self._actor = None def forward(self, state, action): z = F.relu(self.e1(torch.cat([state, action], 1))) z = F.relu(self.e2(z)) mean = self.mean(z) log_std = self.log_std(z).clamp(-4, 15) std = torch.exp(log_std) z = mean + std * torch.randn_like(std) u = self.decode(state, z) return u, mean, std def decode(self, state, z=None, clip=None, raw=False): if z is None: z = torch.randn((state.shape[0], self.latent_dim)) if clip is not None: z = z.clamp(-clip, clip) a = F.relu(self.d1(torch.cat([state, z], 1))) a = F.relu(self.d2(a)) a = self.d3(a) if raw: return a return self.max_action * torch.tanh(a) def policy_infer(self, obs): return self.decode(obs, z=self._actor(obs)[0]) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'latent_dim': 4, 'max_action': 4}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np from abc import ABC from abc import abstractmethod import torch.nn.functional as F from torch.functional import F from torch import nn from typing import * from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 3000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 750 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_clamp_exp_ge_le_logical_and_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -4.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 >= tmp3 tmp9 = tmp2 <= tmp5 tmp10 = tmp8 & tmp9 tl.store(out_ptr0 + x2, tmp7, xmask) tl.store(out_ptr1 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.load(in_ptr3 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 * tmp11 tmp13 = tmp9 + tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_mul_tanh_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (750, 8), (8, 1)) assert_size_stride(primals_4, (750,), (1,)) assert_size_stride(primals_5, (750, 750), (750, 1)) assert_size_stride(primals_6, (750,), (1,)) assert_size_stride(primals_7, (4, 750), (750, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 750), (750, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (750, 8), (8, 1)) assert_size_stride(primals_12, (750,), (1,)) assert_size_stride(primals_13, (750, 750), (750, 1)) assert_size_stride(primals_14, (750,), (1,)) assert_size_stride(primals_15, (4, 750), (750, 1)) assert_size_stride(primals_16, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 750), (750, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 750), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_relu_1[grid(3000)](buf2, primals_4, 3000, XBLOCK= 256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 750), (750, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (750, 750), ( 1, 750), 0), out=buf3) buf4 = buf3 del buf3 triton_poi_fused_relu_1[grid(3000)](buf4, primals_6, 3000, XBLOCK= 256, num_warps=4, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (750, 4), (1, 750), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_9, (750, 4), (1, 750), 0), out=buf6) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_clamp_exp_ge_le_logical_and_2[grid(16)](buf6, primals_10, buf7, buf17, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_10 buf8 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf9 = buf8 del buf8 buf10 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_3[grid(32)](primals_1, buf5, buf7, buf9, buf10, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf11 = empty_strided_cuda((4, 750), (750, 1), torch.float32) extern_kernels.mm(buf10, reinterpret_tensor(primals_11, (8, 750), ( 1, 8), 0), out=buf11) buf12 = buf11 del buf11 triton_poi_fused_relu_1[grid(3000)](buf12, primals_12, 3000, XBLOCK =256, num_warps=4, num_stages=1) del primals_12 buf13 = empty_strided_cuda((4, 750), (750, 1), torch.float32) extern_kernels.mm(buf12, reinterpret_tensor(primals_13, (750, 750), (1, 750), 0), out=buf13) buf14 = buf13 del buf13 triton_poi_fused_relu_1[grid(3000)](buf14, primals_14, 3000, XBLOCK =256, num_warps=4, num_stages=1) del primals_14 buf15 = buf6 del buf6 extern_kernels.addmm(primals_16, buf14, reinterpret_tensor( primals_15, (750, 4), (1, 750), 0), alpha=1, beta=1, out=buf15) del primals_16 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mul_tanh_4[grid(16)](buf15, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) return (buf16, buf5, buf7, buf0, buf2, buf4, buf7, buf9, buf10, buf12, buf14, buf15, primals_15, primals_13, primals_11, buf17, primals_9, primals_7, primals_5) def to_array_as(x, y): if isinstance(x, torch.Tensor) and isinstance(y, np.ndarray): return x.detach().cpu().numpy().astype(y.dtype) elif isinstance(x, np.ndarray) and isinstance(y, torch.Tensor): return torch.tensor(x) else: return x class BasePolicy(ABC): @abstractmethod def policy_infer(self, obs): pass def get_action(self, obs): obs_tensor = torch.tensor(obs, device=next(self.parameters()). device, dtype=torch.float32) act = to_array_as(self.policy_infer(obs_tensor), obs) return act class VAENew(nn.Module, BasePolicy): def __init__(self, state_dim, action_dim, latent_dim, max_action, hidden_size=750): super(VAENew, self).__init__() self.e1 = nn.Linear(state_dim + action_dim, hidden_size) self.e2 = nn.Linear(hidden_size, hidden_size) self.mean = nn.Linear(hidden_size, latent_dim) self.log_std = nn.Linear(hidden_size, latent_dim) self.d1 = nn.Linear(state_dim + latent_dim, hidden_size) self.d2 = nn.Linear(hidden_size, hidden_size) self.d3 = nn.Linear(hidden_size, action_dim) self.max_action = max_action self.latent_dim = latent_dim self._actor = None def decode(self, state, z=None, clip=None, raw=False): if z is None: z = torch.randn((state.shape[0], self.latent_dim)) if clip is not None: z = z.clamp(-clip, clip) a = F.relu(self.d1(torch.cat([state, z], 1))) a = F.relu(self.d2(a)) a = self.d3(a) if raw: return a return self.max_action * torch.tanh(a) def policy_infer(self, obs): return self.decode(obs, z=self._actor(obs)[0]) def forward(self, input_0, input_1): primals_3 = self.e1.weight primals_4 = self.e1.bias primals_5 = self.e2.weight primals_6 = self.e2.bias primals_7 = self.mean.weight primals_8 = self.mean.bias primals_9 = self.log_std.weight primals_10 = self.log_std.bias primals_11 = self.d1.weight primals_12 = self.d1.bias primals_13 = self.d2.weight primals_14 = self.d2.bias primals_15 = self.d3.weight primals_16 = self.d3.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16]) return output[0], output[1], output[2]
ssimonc/NeoRL
VAE
false
16,512
[ "Apache-2.0" ]
50
098c58c8e4c3e43e67803f6384619d3bfe7fce5d
https://github.com/ssimonc/NeoRL/tree/098c58c8e4c3e43e67803f6384619d3bfe7fce5d
Weighed_Bce_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/s4/cs4o2lcuqj744wvz5iovwwf36imi2act6kr5vkyfcbesmj4lljxe.py # Topologically Sorted Source Nodes: [loss, w, eq, label_t, sum_1, sum_2, eq_1, label_f, sum_3, add, p, setitem, sub, setitem_1], Original ATen: [aten.binary_cross_entropy, aten.zeros_like, aten.eq, aten._to_copy, aten.sum, aten.add, aten.div, aten.index_put, aten.rsub] # Source node to ATen node mapping: # add => add # eq => eq # eq_1 => eq_1 # label_f => convert_element_type_1 # label_t => convert_element_type # loss => full_default_1, full_default_2, log, log1p, maximum, maximum_1, mean, mul, mul_1, mul_2, neg, sub_1, sub_2 # p => div # setitem => index_put # setitem_1 => index_put_1 # sub => sub # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # w => full_default # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, 1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %maximum), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view,), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %maximum_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([16, 1, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_1, 1), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_1, 0), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq_1, torch.float32), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [%eq_2], %div), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %index_put_1 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put, [%eq_3], %sub), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %expand_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_2,), kwargs = {}) triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_rsub_sum_zeros_like_0 = async_compile.triton('triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_rsub_sum_zeros_like_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_rsub_sum_zeros_like_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_rsub_sum_zeros_like_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp19 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 0.0 tmp8 = tmp0 == tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = tmp6 + tmp12 tmp14 = tmp6 / tmp13 tmp15 = tl.where(tmp2, tmp14, tmp7) tmp16 = tmp1 - tmp14 tmp17 = tl.where(tmp8, tmp16, tmp15) tmp18 = tmp0 - tmp1 tmp20 = -tmp19 tmp21 = libdevice.log1p(tmp20) tmp22 = -100.0 tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tmp18 * tmp23 tmp25 = tl_math.log(tmp19) tmp26 = triton_helpers.maximum(tmp25, tmp22) tmp27 = tmp0 * tmp26 tmp28 = tmp24 - tmp27 tmp29 = tmp28 * tmp17 tmp30 = tl.broadcast_to(tmp29, [RBLOCK]) tmp32 = triton_helpers.promote_to_tensor(tl.sum(tmp30, 0)) tmp33 = 256.0 tmp34 = tmp32 / tmp33 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp34, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((), (), torch.float32) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [loss, w, eq, label_t, sum_1, sum_2, eq_1, label_f, sum_3, add, p, setitem, sub, setitem_1], Original ATen: [aten.binary_cross_entropy, aten.zeros_like, aten.eq, aten._to_copy, aten.sum, aten.add, aten.div, aten.index_put, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_rsub_sum_zeros_like_0.run(buf6, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn class Weighed_Bce_Loss(nn.Module): def __init__(self): super(Weighed_Bce_Loss, self).__init__() def forward(self, x, label): x = x.view(-1, 1, x.shape[1], x.shape[2]) label = label.view(-1, 1, label.shape[1], label.shape[2]) label_t = (label == 1).float() label_f = (label == 0).float() p = torch.sum(label_t) / (torch.sum(label_t) + torch.sum(label_f)) w = torch.zeros_like(label) w[label == 1] = p w[label == 0] = 1 - p loss = F.binary_cross_entropy(x, label, weight=w) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_rsub_sum_zeros_like_0( in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp19 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 0.0 tmp8 = tmp0 == tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = tmp6 + tmp12 tmp14 = tmp6 / tmp13 tmp15 = tl.where(tmp2, tmp14, tmp7) tmp16 = tmp1 - tmp14 tmp17 = tl.where(tmp8, tmp16, tmp15) tmp18 = tmp0 - tmp1 tmp20 = -tmp19 tmp21 = libdevice.log1p(tmp20) tmp22 = -100.0 tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tmp18 * tmp23 tmp25 = tl_math.log(tmp19) tmp26 = triton_helpers.maximum(tmp25, tmp22) tmp27 = tmp0 * tmp26 tmp28 = tmp24 - tmp27 tmp29 = tmp28 * tmp17 tmp30 = tl.broadcast_to(tmp29, [RBLOCK]) tmp32 = triton_helpers.promote_to_tensor(tl.sum(tmp30, 0)) tmp33 = 256.0 tmp34 = tmp32 / tmp33 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp34, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((), (), torch.float32) buf6 = buf5 del buf5 get_raw_stream(0) triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_rsub_sum_zeros_like_0[ grid(1)](buf6, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf6, class Weighed_Bce_LossNew(nn.Module): def __init__(self): super(Weighed_Bce_LossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
suyukun666/UFO
Weighed_Bce_Loss
false
16,513
[ "MIT" ]
122
e57016948b03cd2f75155d2958cea69b6e4b56f8
https://github.com/suyukun666/UFO/tree/e57016948b03cd2f75155d2958cea69b6e4b56f8
Conv2dWithConstraint
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yh/cyh4pryu2jgarzqowy7e5deko7a55m4ec467wn5xfn4z5apvtnbn.py # Topologically Sorted Source Nodes: [renorm], Original ATen: [aten.renorm] # Source node to ATen node mapping: # renorm => add, full_default, gt, mul, mul_1, pow_1, pow_2, reciprocal, sum_1, where # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2, 3], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%pow_2, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-07), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %full_default), kwargs = {}) # %mul_1 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %where), kwargs = {}) triton_per_fused_renorm_0 = async_compile.triton('triton_per_fused_renorm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_renorm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_renorm_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = 1.0 tmp8 = tmp6 > tmp7 tmp9 = 1e-07 tmp10 = tmp6 + tmp9 tmp11 = tl.full([1, 1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = tmp12 * tmp7 tmp14 = tl.where(tmp8, tmp13, tmp7) tmp15 = tmp0 * tmp14 tl.store(out_ptr1 + (r1 + (64*x0)), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5a/c5akibbug5lics4mwbiuq6exp2vbsmrjui7arezogi5dyxv3ptat.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %mul_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [renorm], Original ATen: [aten.renorm] stream0 = get_raw_stream(0) triton_per_fused_renorm_0.run(primals_1, buf1, 4, 64, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_2, buf3, 16, grid=grid(16), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [], Original ATen: [] buf4 = torch.ops.aten.set_.source_Tensor(primals_1, buf1) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) del buf2 del primals_1 return (buf3, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as th from torch import nn class Conv2dWithConstraint(nn.Conv2d): def __init__(self, *args, max_norm=1, **kwargs): self.max_norm = max_norm super(Conv2dWithConstraint, self).__init__(*args, **kwargs) def forward(self, x): self.weight.data = th.renorm(self.weight.data, p=2, dim=0, maxnorm= self.max_norm) return super(Conv2dWithConstraint, self).forward(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_renorm_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl .constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = 1.0 tmp8 = tmp6 > tmp7 tmp9 = 1e-07 tmp10 = tmp6 + tmp9 tmp11 = tl.full([1, 1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = tmp12 * tmp7 tmp14 = tl.where(tmp8, tmp13, tmp7) tmp15 = tmp0 * tmp14 tl.store(out_ptr1 + (r1 + 64 * x0), tmp15, xmask) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_renorm_0[grid(4)](primals_1, buf1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(primals_3, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_convolution_1[grid(16)](buf2, primals_2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = torch.ops.aten.set_.source_Tensor(primals_1, buf1) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) del buf2 del primals_1 return buf3, primals_3, buf1 class Conv2dWithConstraintNew(nn.Conv2d): def __init__(self, *args, max_norm=1, **kwargs): self.max_norm = max_norm super(Conv2dWithConstraintNew, self).__init__(*args, **kwargs) def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sylvchev/braindecode
Conv2dWithConstraint
false
16,514
[ "BSD-3-Clause" ]
260
c37ace8fcb90eee0d447c97d1c0a06ce58e8f6ad
https://github.com/sylvchev/braindecode/tree/c37ace8fcb90eee0d447c97d1c0a06ce58e8f6ad
Unet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rv/crvxjxabnh2k3i3u5bskna5q423guwirdsncuzca3mliii57nbni.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 17424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x2 = (xindex // 4356) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c3/cc3ejikdgg37jlpahqykdzpldkyp2norvthi2gdaleknwxjxc4q3.py # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_1 => convolution # x_2 => gt, mul, where # x_3 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 139392 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x4 = (xindex // 4356) x2 = (xindex // 4356) % 8 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/m3/cm37swzs42albsqlra7cyj2fim3xri7vagugjnvseqv5lenngdcj.py # Topologically Sorted Source Nodes: [x_4, iadd, x_5], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # iadd => add # x_4 => convolution_1 # x_5 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %primals_1), kwargs = {}) # %slice_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor, %add, 3, 0, 9223372036854775807), kwargs = {}) # %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_1, %slice_scatter_default, 1, 0, 1), kwargs = {}) # %slice_scatter_default_2 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %slice_12, 1, 0, 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%slice_scatter_default_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_scatter_default_2, 0.01), kwargs = {}) # %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %slice_scatter_default_2, %mul_1), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 8 x3 = xindex x0 = xindex % 4096 x2 = (xindex // 32768) tmp21 = tl.load(in_out_ptr0 + (x3), None) tmp22 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1], 1, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tmp2 & tmp2 tmp4 = tl.load(in_out_ptr0 + (x3), tmp3, other=0.0) tmp5 = tl.load(in_ptr0 + (x1), tmp3, eviction_policy='evict_last', other=0.0) tmp6 = tmp4 + tmp5 tmp7 = tl.load(in_ptr1 + (x0 + (4096*x2)), tmp3, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp3, tmp8, tmp9) tmp11 = tl.load(in_out_ptr0 + (x3), tmp2, other=0.0) tmp12 = tl.load(in_ptr0 + (x1), tmp2, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.where(tmp2, tmp10, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp2, tmp14, tmp15) tmp17 = tl.load(in_ptr1 + (x0 + (4096*x2)), tmp2, eviction_policy='evict_last', other=0.0) tmp18 = tmp13 + tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp2, tmp18, tmp19) tmp23 = tmp21 + tmp22 tmp24 = tl.where(tmp2, tmp20, tmp23) tmp25 = tl.where(tmp2, tmp16, tmp24) tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 0.01 tmp29 = tmp25 * tmp28 tmp30 = tl.where(tmp27, tmp25, tmp29) tl.store(in_out_ptr0 + (x3), tmp30, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ru/crubhpipappoyhakq5mrl737jr3v52kosbgz5oss6tswwglfuphj.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] # Source node to ATen node mapping: # x_6 => avg_pool2d # x_7 => _unsafe_index_4, _unsafe_index_5 # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [2, 2], [2, 2]), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_avg_pool2d_reflection_pad2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_reflection_pad2d_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_reflection_pad2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36992 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x2 = (xindex // 1156) x3 = xindex tmp0 = tl.load(in_ptr0 + (4030 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4031 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4094 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4095 + ((-128)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/l4/cl4v22usd7jmo7b3nmceizuylhmx3yzqbs4dmd2mp6gxfxfqqjnh.py # Topologically Sorted Source Nodes: [x_8, x_9, x_10], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_10 => _unsafe_index_6, _unsafe_index_7 # x_8 => convolution_2 # x_9 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.01), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_2, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hi/chi5n55t3u2grjty6tbx3bsv26wbxxwufhp5hrn7xokcvad5gfpu.py # Topologically Sorted Source Nodes: [x_6, x_11, iadd_1, x_12], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # iadd_1 => add_1 # x_11 => convolution_3 # x_12 => gt_3, mul_3, where_3 # x_6 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [2, 2], [2, 2]), kwargs = {}) # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_39, %avg_pool2d), kwargs = {}) # %slice_scatter_default_3 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor_1, %add_1, 3, 0, 9223372036854775807), kwargs = {}) # %slice_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_3, %slice_scatter_default_3, 1, 0, 8), kwargs = {}) # %slice_scatter_default_5 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %slice_49, 1, 0, 8), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%slice_scatter_default_5, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_scatter_default_5, 0.01), kwargs = {}) # %where_3 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %slice_scatter_default_5, %mul_3), kwargs = {}) triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1024) % 16 x5 = xindex x0 = xindex % 32 x3 = (xindex // 16384) x6 = (xindex // 32) % 512 tmp18 = tl.load(in_out_ptr0 + (x5), None) tmp19 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 8, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + (x5), tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + (x2), tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + ((2*x0) + (128*x6) + (32768*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + (2*x0) + (128*x6) + (32768*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (64 + (2*x0) + (128*x6) + (32768*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (65 + (2*x0) + (128*x6) + (32768*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (x5), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bd/cbd44mjxmkti4ldhr4l6z6regqd4cpvpkqsnxhh4vcdsh4x4hm5o.py # Topologically Sorted Source Nodes: [x_13, x_14], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] # Source node to ATen node mapping: # x_13 => avg_pool2d_1 # x_14 => _unsafe_index_8, _unsafe_index_9 # Graph fragment: # %avg_pool2d_1 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [2, 2], [2, 2]), kwargs = {}) # %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d_1, [None, None, %sub_17, None]), kwargs = {}) # %_unsafe_index_9 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_8, [None, None, None, %sub_17]), kwargs = {}) triton_poi_fused_avg_pool2d_reflection_pad2d_6 = async_compile.triton('triton_poi_fused_avg_pool2d_reflection_pad2d_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_reflection_pad2d_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20736 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = (xindex // 18) % 18 x2 = (xindex // 324) x3 = xindex tmp0 = tl.load(in_ptr0 + (990 + ((-64)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + (1024*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (991 + ((-64)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + (1024*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1022 + ((-64)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + (1024*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1023 + ((-64)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + (1024*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lf/clfgmykbbvlchbenprn73lti4wrnl4yncywllw4gf66bvupsayhe.py # Topologically Sorted Source Nodes: [x_15, x_16, x_17], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_15 => convolution_4 # x_16 => gt_4, mul_4, where_4 # x_17 => _unsafe_index_10, _unsafe_index_11 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_9, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.01), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {}) # %_unsafe_index_10 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_4, [None, None, %sub_17, None]), kwargs = {}) # %_unsafe_index_11 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_10, [None, None, None, %sub_17]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = (xindex // 18) % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4v/c4v2gppnxm6y3stzfph3hmy4aws6dp36ieevkkxu274wcttffwii.py # Topologically Sorted Source Nodes: [x_13, x_18, iadd_2, x_19], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # iadd_2 => add_2 # x_13 => avg_pool2d_1 # x_18 => convolution_5 # x_19 => gt_5, mul_5, where_5 # Graph fragment: # %avg_pool2d_1 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [2, 2], [2, 2]), kwargs = {}) # %convolution_5 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_11, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_76, %avg_pool2d_1), kwargs = {}) # %slice_scatter_default_6 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor_2, %add_2, 3, 0, 9223372036854775807), kwargs = {}) # %slice_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_5, %slice_scatter_default_6, 1, 0, 16), kwargs = {}) # %slice_scatter_default_8 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_7, %slice_86, 1, 0, 16), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%slice_scatter_default_8, 0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_scatter_default_8, 0.01), kwargs = {}) # %where_5 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %slice_scatter_default_8, %mul_5), kwargs = {}) triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_8 = async_compile.triton('triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 256) % 32 x5 = xindex x0 = xindex % 16 x3 = (xindex // 8192) x6 = (xindex // 16) % 512 tmp18 = tl.load(in_out_ptr0 + (x5), None) tmp19 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 16, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + (x5), tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + (x2), tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + ((2*x0) + (64*x6) + (16384*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + (2*x0) + (64*x6) + (16384*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (32 + (2*x0) + (64*x6) + (16384*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (33 + (2*x0) + (64*x6) + (16384*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (x5), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xf/cxfzo7hhbikcfmvhhnqvu7vcj2ujy57nncm2j6aim52h7go3dbrr.py # Topologically Sorted Source Nodes: [x_20, x_21], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] # Source node to ATen node mapping: # x_20 => avg_pool2d_2 # x_21 => _unsafe_index_12, _unsafe_index_13 # Graph fragment: # %avg_pool2d_2 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_5, [2, 2], [2, 2]), kwargs = {}) # %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d_2, [None, None, %sub_25, None]), kwargs = {}) # %_unsafe_index_13 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_12, [None, None, None, %sub_25]), kwargs = {}) triton_poi_fused_avg_pool2d_reflection_pad2d_9 = async_compile.triton('triton_poi_fused_avg_pool2d_reflection_pad2d_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_reflection_pad2d_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = (xindex // 10) % 10 x2 = (xindex // 100) x3 = xindex tmp0 = tl.load(in_ptr0 + (238 + ((-32)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + (256*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (239 + ((-32)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + (256*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (254 + ((-32)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + (256*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (255 + ((-32)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + (256*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qi/cqivok62llq4kaetbwrup4raursw25zfxw22behhxzx67zqroutt.py # Topologically Sorted Source Nodes: [x_22, x_23, x_24], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_22 => convolution_6 # x_23 => gt_6, mul_6, where_6 # x_24 => _unsafe_index_14, _unsafe_index_15 # Graph fragment: # %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.01), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_6, %mul_6), kwargs = {}) # %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_6, [None, None, %sub_25, None]), kwargs = {}) # %_unsafe_index_15 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_14, [None, None, None, %sub_25]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_10 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = (xindex // 10) % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uw/cuw3p5p63o2xbpza64xwp4mrar4wysnmocoslm6zzm3fjejblj67.py # Topologically Sorted Source Nodes: [x_20, x_25, iadd_3, x_26], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # iadd_3 => add_3 # x_20 => avg_pool2d_2 # x_25 => convolution_7 # x_26 => gt_7, mul_7, where_7 # Graph fragment: # %avg_pool2d_2 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_5, [2, 2], [2, 2]), kwargs = {}) # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_15, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_113, %avg_pool2d_2), kwargs = {}) # %slice_scatter_default_9 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor_3, %add_3, 3, 0, 9223372036854775807), kwargs = {}) # %slice_scatter_default_10 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_7, %slice_scatter_default_9, 1, 0, 32), kwargs = {}) # %slice_scatter_default_11 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_10, %slice_123, 1, 0, 32), kwargs = {}) # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%slice_scatter_default_11, 0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_scatter_default_11, 0.01), kwargs = {}) # %where_7 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %slice_scatter_default_11, %mul_7), kwargs = {}) triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_11 = async_compile.triton('triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_11(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 64) % 64 x5 = xindex x0 = xindex % 8 x3 = (xindex // 4096) x6 = (xindex // 8) % 512 tmp18 = tl.load(in_out_ptr0 + (x5), None) tmp19 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 32, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + (x5), tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + (x2), tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + ((2*x0) + (32*x6) + (8192*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + (2*x0) + (32*x6) + (8192*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (16 + (2*x0) + (32*x6) + (8192*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (17 + (2*x0) + (32*x6) + (8192*x3)), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (x5), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qt/cqtf75ervu4fzqgrwost5iv6jv7uzppqt7xmv6sqlxpo76qsweno.py # Topologically Sorted Source Nodes: [x_27, x_28], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] # Source node to ATen node mapping: # x_27 => avg_pool2d_3 # x_28 => _unsafe_index_16, _unsafe_index_17 # Graph fragment: # %avg_pool2d_3 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_7, [2, 2], [2, 2]), kwargs = {}) # %_unsafe_index_16 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d_3, [None, None, %sub_33, None]), kwargs = {}) # %_unsafe_index_17 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_16, [None, None, None, %sub_33]), kwargs = {}) triton_poi_fused_avg_pool2d_reflection_pad2d_12 = async_compile.triton('triton_poi_fused_avg_pool2d_reflection_pad2d_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_reflection_pad2d_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_12(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (54 + ((-16)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (55 + ((-16)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (62 + ((-16)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + ((-16)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + ((-2)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kh/ckhu5ucdtixyiw4a7zy5dfh3mpguloiqhqn7mlx5tbyb53j7kh25.py # Topologically Sorted Source Nodes: [x_29, x_30, x_31], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_29 => convolution_8 # x_30 => gt_8, mul_8, where_8 # x_31 => _unsafe_index_18, _unsafe_index_19 # Graph fragment: # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_8 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.01), kwargs = {}) # %where_8 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %convolution_8, %mul_8), kwargs = {}) # %_unsafe_index_18 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_8, [None, None, %sub_33, None]), kwargs = {}) # %_unsafe_index_19 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_18, [None, None, None, %sub_33]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_13 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x4 = (xindex // 36) x2 = (xindex // 36) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mp/cmpzjjh4jx3wljl4k6lbuncggie6msdv7pjzexkpza6sgxruhhfk.py # Topologically Sorted Source Nodes: [x_27, x_32, iadd_4, x_33], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # iadd_4 => add_4 # x_27 => avg_pool2d_3 # x_32 => convolution_9 # x_33 => gt_9, mul_9, where_9 # Graph fragment: # %avg_pool2d_3 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_7, [2, 2], [2, 2]), kwargs = {}) # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_9, %avg_pool2d_3), kwargs = {}) # %gt_9 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_4, 0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 0.01), kwargs = {}) # %where_9 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %add_4, %mul_9), kwargs = {}) # %gt_30 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_9, 0), kwargs = {}) triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_leaky_relu_backward_14 = async_compile.triton('triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_leaky_relu_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_leaky_relu_backward_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_leaky_relu_backward_14(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x4 = xindex x2 = (xindex // 16) % 64 x0 = xindex % 4 x5 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x4), None) tmp1 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + ((2*x0) + (16*x5)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (2*x0) + (16*x5)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (8 + (2*x0) + (16*x5)), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (9 + (2*x0) + (16*x5)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp4 + tmp3 tmp7 = tmp6 + tmp5 tmp9 = tmp8 + tmp7 tmp10 = 0.25 tmp11 = tmp9 * tmp10 tmp12 = tmp2 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.01 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tmp17 > tmp13 tl.store(in_out_ptr0 + (x4), tmp12, None) tl.store(out_ptr0 + (x4), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4u/c4uirfk34dj32grm64gz5eymbvawtxehiy65qo7vxwy52t73avtn.py # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_34 => iota_20 # Graph fragment: # %iota_20 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_15 = async_compile.triton('triton_poi_fused_arange_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_15(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sn/csnaveckvjqbnnczbdolfkwqlv3hymowasimsmkagr63pk64env2.py # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_34 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) triton_poi_fused__to_copy_16 = async_compile.triton('triton_poi_fused__to_copy_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_16(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/at/catxpo75iag5z5ijgo5nael26vyxzli4647k3ukpvg4kqy2ef4ab.py # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_34 => add_6, clamp_max # Graph fragment: # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_6, 3), kwargs = {}) triton_poi_fused_add_clamp_17 = async_compile.triton('triton_poi_fused_add_clamp_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_17(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/li/clicj5ckcellkcw2e74zpg4oduaepmd7pqzra22nu6xcvp6zanph.py # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_34 => add_5, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, mul_10, sub_40, sub_42 # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_20, torch.float32), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {}) # %sub_40 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_10, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_40, 0.0), kwargs = {}) # %sub_42 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_42, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_clamp_mul_sub_18 = async_compile.triton('triton_poi_fused__to_copy_add_clamp_mul_sub_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_clamp_mul_sub_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_18(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tf/ctfr2ew65audllt4omdycqp2z6bipepqf34ceebevoxopblgbpoh.py # Topologically Sorted Source Nodes: [x_33, x_34], Original ATen: [aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # x_33 => gt_9, mul_9, where_9 # x_34 => _unsafe_index_20, _unsafe_index_21, add_9, mul_12, sub_43 # Graph fragment: # %gt_9 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_4, 0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 0.01), kwargs = {}) # %where_9 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %add_4, %mul_9), kwargs = {}) # %_unsafe_index_20 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_9, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_21 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_9, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %sub_43 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_21, %_unsafe_index_20), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_43, %clamp_max_2), kwargs = {}) # %add_9 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_20, %mul_12), kwargs = {}) triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_19 = async_compile.triton('triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*i64', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_19(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (4*tmp4) + (16*x2)), None, eviction_policy='evict_last') tmp10 = 0.0 tmp11 = tmp9 > tmp10 tmp12 = 0.01 tmp13 = tmp9 * tmp12 tmp14 = tl.where(tmp11, tmp9, tmp13) tmp16 = tmp15 + tmp1 tmp17 = tmp15 < 0 tmp18 = tl.where(tmp17, tmp16, tmp15) tmp19 = tl.load(in_ptr2 + (tmp18 + (4*tmp4) + (16*x2)), None, eviction_policy='evict_last') tmp20 = tmp19 > tmp10 tmp21 = tmp19 * tmp12 tmp22 = tl.where(tmp20, tmp19, tmp21) tmp23 = tmp22 - tmp14 tmp25 = tmp23 * tmp24 tmp26 = tmp14 + tmp25 tl.store(out_ptr0 + (x4), tmp26, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xx/cxxge2yksxk6uhsurnihjhhcqiylulf3hqrva735ddkx3cdjeh4f.py # Topologically Sorted Source Nodes: [x_35], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_35 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_11, %where_7], 1), kwargs = {}) triton_poi_fused_cat_20 = async_compile.triton('triton_poi_fused_cat_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_20(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 64) % 128 x3 = (xindex // 8192) x4 = xindex % 64 x1 = (xindex // 8) % 8 x0 = xindex % 8 x5 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + (64*x2) + (4096*x3)), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([XBLOCK], 4, tl.int32) tmp8 = tmp6 + tmp7 tmp9 = tmp6 < 0 tmp10 = tl.where(tmp9, tmp8, tmp6) tmp11 = tl.load(in_ptr2 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tmp15 = tl.load(in_ptr3 + (tmp14 + (4*tmp10) + (16*x2) + (1024*x3)), tmp4, eviction_policy='evict_last', other=0.0) tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.01 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.load(in_ptr4 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 + tmp7 tmp23 = tmp21 < 0 tmp24 = tl.where(tmp23, tmp22, tmp21) tmp25 = tl.load(in_ptr3 + (tmp24 + (4*tmp10) + (16*x2) + (1024*x3)), tmp4, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp16 tmp27 = tmp25 * tmp18 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tmp28 - tmp20 tmp30 = tl.load(in_ptr5 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 * tmp30 tmp32 = tmp20 + tmp31 tmp33 = tmp32 - tmp5 tmp34 = tl.load(in_ptr6 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp35 = tmp33 * tmp34 tmp36 = tmp5 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tmp40 = tl.full([1], 128, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr7 + (x4 + (64*((-64) + x2)) + (4096*x3)), tmp39, other=0.0) tmp43 = tl.where(tmp4, tmp38, tmp42) tl.store(out_ptr0 + (x5), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/cu/ccuexlmwmhoipb2657h7xyb2gnzxuh5e6aoeqxmtrnctc77bfzu3.py # Topologically Sorted Source Nodes: [x_36], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x_36 => _unsafe_index_24, _unsafe_index_25 # Graph fragment: # %_unsafe_index_24 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%cat, [None, None, %sub_25, None]), kwargs = {}) # %_unsafe_index_25 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_24, [None, None, None, %sub_25]), kwargs = {}) triton_poi_fused_reflection_pad2d_21 = async_compile.triton('triton_poi_fused_reflection_pad2d_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_21(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 51200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = (xindex // 10) % 10 x2 = (xindex // 100) x3 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qu/cquc25fod226vbnkfhxuenpp3xtbitjhxefrgbtfzqqh3ongfevr.py # Topologically Sorted Source Nodes: [x_37, x_38, x_39], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_37 => convolution_10 # x_38 => gt_10, mul_15, where_10 # x_39 => _unsafe_index_26, _unsafe_index_27 # Graph fragment: # %convolution_10 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_25, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_10 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_10, 0), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_10, 0.01), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_10, %convolution_10, %mul_15), kwargs = {}) # %_unsafe_index_26 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_10, [None, None, %sub_25, None]), kwargs = {}) # %_unsafe_index_27 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_26, [None, None, None, %sub_25]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_22 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = (xindex // 10) % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xi/cxidv5x6azr3tirazz53rxewhi7ejh4skwevrayjrhjnunk54msa.py # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_42 => iota_26 # Graph fragment: # %iota_26 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_23 = async_compile.triton('triton_poi_fused_arange_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_23(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mi/cmiwjqieuspwn256jnrugfvht2dt7ofln2psibayqc3twrtpkngi.py # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_42 => convert_element_type_5 # Graph fragment: # %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {}) triton_poi_fused__to_copy_24 = async_compile.triton('triton_poi_fused__to_copy_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ki/ckith5u474vepvwaijseaqbn665u5jpg5stc4cj42bnzsgj6uexm.py # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_42 => add_14, clamp_max_4 # Graph fragment: # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_14, 7), kwargs = {}) triton_poi_fused_add_clamp_25 = async_compile.triton('triton_poi_fused_add_clamp_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 7, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ld/cldyh4tmi7ptv7s6mkhobejawrqroe3kffxhs5dmwakibjmr5xij.py # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_42 => add_13, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, mul_17, sub_55, sub_57 # Graph fragment: # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_26, torch.float32), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, 0.5), kwargs = {}) # %sub_55 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_17, 0.5), kwargs = {}) # %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_55, 0.0), kwargs = {}) # %sub_57 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_57, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_clamp_mul_sub_26 = async_compile.triton('triton_poi_fused__to_copy_add_clamp_mul_sub_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_clamp_mul_sub_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zh/czhtjc7bwrcef6izvb2jimaoi5frwawus7anul276jxeveedeamb.py # Topologically Sorted Source Nodes: [x_40, iadd_5, x_41, x_42], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul] # Source node to ATen node mapping: # iadd_5 => add_12 # x_40 => convolution_11 # x_41 => gt_11, mul_16, where_11 # x_42 => _unsafe_index_28, _unsafe_index_29, _unsafe_index_30, _unsafe_index_31, add_17, add_18, mul_19, mul_20, mul_21, sub_58, sub_59, sub_61 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_12 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_11, %slice_181), kwargs = {}) # %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_12, 0), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, 0.01), kwargs = {}) # %where_11 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_11, %add_12, %mul_16), kwargs = {}) # %_unsafe_index_28 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_29 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %_unsafe_index_30 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_31 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {}) # %sub_58 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_29, %_unsafe_index_28), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_58, %clamp_max_6), kwargs = {}) # %add_17 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_28, %mul_19), kwargs = {}) # %sub_59 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_31, %_unsafe_index_30), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_59, %clamp_max_6), kwargs = {}) # %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_30, %mul_20), kwargs = {}) # %sub_61 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_18, %add_17), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_61, %clamp_max_7), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*i64', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i64', 8: '*i64', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 16 x0 = xindex % 16 x5 = (xindex // 256) x2 = (xindex // 256) % 32 x3 = (xindex // 8192) x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (8*tmp4) + (64*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr4 + (tmp8 + (8*tmp4) + (64*x2) + (8192*x3)), None, eviction_policy='evict_last') tmp13 = tmp11 + tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.01 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tmp20 = tmp19 + tmp1 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tmp23 = tl.load(in_ptr2 + (tmp8 + (8*tmp22) + (64*x5)), None, eviction_policy='evict_last') tmp24 = tmp23 + tmp10 tmp25 = tl.load(in_ptr4 + (tmp8 + (8*tmp22) + (64*x2) + (8192*x3)), None, eviction_policy='evict_last') tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp14 tmp28 = tmp26 * tmp16 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp33 + (8*tmp22) + (64*x5)), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tl.load(in_ptr4 + (tmp33 + (8*tmp22) + (64*x2) + (8192*x3)), None, eviction_policy='evict_last') tmp37 = tmp35 + tmp36 tmp38 = tmp37 > tmp14 tmp39 = tmp37 * tmp16 tmp40 = tl.where(tmp38, tmp37, tmp39) tmp41 = tmp40 - tmp29 tmp43 = tmp41 * tmp42 tmp44 = tmp29 + tmp43 tmp45 = tl.load(in_ptr2 + (tmp33 + (8*tmp4) + (64*x5)), None, eviction_policy='evict_last') tmp46 = tmp45 + tmp10 tmp47 = tl.load(in_ptr4 + (tmp33 + (8*tmp4) + (64*x2) + (8192*x3)), None, eviction_policy='evict_last') tmp48 = tmp46 + tmp47 tmp49 = tmp48 > tmp14 tmp50 = tmp48 * tmp16 tmp51 = tl.where(tmp49, tmp48, tmp50) tmp52 = tmp51 - tmp18 tmp53 = tmp52 * tmp42 tmp54 = tmp18 + tmp53 tmp55 = tmp54 - tmp44 tmp57 = tmp55 * tmp56 tl.store(in_out_ptr0 + (x6), tmp44, None) tl.store(in_out_ptr1 + (x6), tmp57, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ip/cipevxjj43rxdat66iwic6eugo6vmnygw7a5zatvt6uqlmk63eoo.py # Topologically Sorted Source Nodes: [x_43, x_44], Original ATen: [aten.cat, aten.reflection_pad2d] # Source node to ATen node mapping: # x_43 => cat_1 # x_44 => _unsafe_index_32, _unsafe_index_33 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_19, %where_5], 1), kwargs = {}) # %_unsafe_index_32 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%cat_1, [None, None, %sub_17, None]), kwargs = {}) # %_unsafe_index_33 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_32, [None, None, None, %sub_17]), kwargs = {}) triton_poi_fused_cat_reflection_pad2d_28 = async_compile.triton('triton_poi_fused_cat_reflection_pad2d_28', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_reflection_pad2d_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_reflection_pad2d_28(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 324) % 64 x0 = xindex % 18 x1 = (xindex // 18) % 18 x3 = (xindex // 20736) x4 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2) + (8192*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2) + (8192*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 64, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr2 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*((-32) + x2)) + (8192*x3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gl/cglelyzupeix5mzjn2c5ugymplhcqslunj7ftl35twswzeszxipj.py # Topologically Sorted Source Nodes: [x_45, x_46, x_47], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_45 => convolution_12 # x_46 => gt_12, mul_22, where_12 # x_47 => _unsafe_index_34, _unsafe_index_35 # Graph fragment: # %convolution_12 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_33, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_12, 0), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_12, 0.01), kwargs = {}) # %where_12 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %convolution_12, %mul_22), kwargs = {}) # %_unsafe_index_34 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_12, [None, None, %sub_17, None]), kwargs = {}) # %_unsafe_index_35 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_34, [None, None, None, %sub_17]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_29 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_29', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_29(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20736 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = (xindex // 18) % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oq/coq4aiudp2jbz7d6n42wsqpwb5qcuhe7zr4hwi2wpagx45nfwe7y.py # Topologically Sorted Source Nodes: [x_48, iadd_6, x_49], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # iadd_6 => add_20 # x_48 => convolution_13 # x_49 => gt_13, mul_23, where_13 # Graph fragment: # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_35, %primals_28, %primals_29, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_20 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_13, %slice_210), kwargs = {}) # %gt_13 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_20, 0), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_20, 0.01), kwargs = {}) # %where_13 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_13, %add_20, %mul_23), kwargs = {}) # %gt_26 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_13, 0), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_30 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_30', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_30', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_30(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 16 x0 = xindex % 256 x2 = (xindex // 4096) tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = x1 tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = tl.full([1], 32, tl.int64) tmp7 = tmp3 < tmp6 tmp8 = tl.load(in_ptr1 + (x0 + (256*x1) + (8192*x2)), tmp7, other=0.0) tmp9 = tl.load(in_ptr2 + (x0 + (256*x1) + (8192*x2)), tmp7, other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp7, tmp10, tmp11) tmp13 = tmp3 >= tmp6 tmp14 = tl.full([1], 64, tl.int64) tmp15 = tmp3 < tmp14 tmp16 = tl.load(in_ptr3 + (x0 + (256*((-32) + x1)) + (8192*x2)), tmp13, other=0.0) tmp17 = tl.where(tmp7, tmp12, tmp16) tmp18 = tmp2 + tmp17 tmp19 = 0.0 tmp20 = tmp18 > tmp19 tmp21 = 0.01 tmp22 = tmp18 * tmp21 tmp23 = tl.where(tmp20, tmp18, tmp22) tmp24 = tmp23 > tmp19 tl.store(in_out_ptr0 + (x3), tmp18, None) tl.store(out_ptr0 + (x3), tmp24, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tx/ctxyg4h57gng75qpulf4hqtkedsjdngo7lc53wozrcl6o2vnztxx.py # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_50 => iota_32 # Graph fragment: # %iota_32 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_31 = async_compile.triton('triton_poi_fused_arange_31', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_31(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ia/ciaikr3rr7msxyebyapop4r4eivqbru5nmo5pdfvzqrkip4z56le.py # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_50 => convert_element_type_9 # Graph fragment: # %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {}) triton_poi_fused__to_copy_32 = async_compile.triton('triton_poi_fused__to_copy_32', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_32(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/we/cwesynrt5334vlmhhn5q2hfvcbatlmahjd4aiynxhrduuale4qsg.py # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_50 => add_22, clamp_max_8 # Graph fragment: # %add_22 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {}) # %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_22, 15), kwargs = {}) triton_poi_fused_add_clamp_33 = async_compile.triton('triton_poi_fused_add_clamp_33', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_33', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_33(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3m/c3mqah54j3m6vbodj3feettvz2azeoizmjea4zlcvazqk42h73cj.py # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_50 => add_21, clamp_max_10, clamp_min_10, clamp_min_8, convert_element_type_8, mul_24, sub_70, sub_72 # Graph fragment: # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_32, torch.float32), kwargs = {}) # %add_21 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.5), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_21, 0.5), kwargs = {}) # %sub_70 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_24, 0.5), kwargs = {}) # %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_70, 0.0), kwargs = {}) # %sub_72 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {}) # %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_72, 0.0), kwargs = {}) # %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_clamp_mul_sub_34 = async_compile.triton('triton_poi_fused__to_copy_add_clamp_mul_sub_34', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_clamp_mul_sub_34', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_34(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/l4/cl4li6foulrqi2dtg5ciaxeecuoyqwhjdbinp5mwmwpjleii44z6.py # Topologically Sorted Source Nodes: [x_49, x_50], Original ATen: [aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # x_49 => gt_13, mul_23, where_13 # x_50 => _unsafe_index_36, _unsafe_index_37, add_25, mul_26, sub_73 # Graph fragment: # %gt_13 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_20, 0), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_20, 0.01), kwargs = {}) # %where_13 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_13, %add_20, %mul_23), kwargs = {}) # %_unsafe_index_36 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {}) # %_unsafe_index_37 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {}) # %sub_73 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_37, %_unsafe_index_36), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_73, %clamp_max_10), kwargs = {}) # %add_25 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_36, %mul_26), kwargs = {}) triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_35 = async_compile.triton('triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_35', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*i64', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_35', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 32 x0 = xindex % 32 x2 = (xindex // 1024) x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (16*tmp4) + (256*x2)), None, eviction_policy='evict_last') tmp10 = 0.0 tmp11 = tmp9 > tmp10 tmp12 = 0.01 tmp13 = tmp9 * tmp12 tmp14 = tl.where(tmp11, tmp9, tmp13) tmp16 = tmp15 + tmp1 tmp17 = tmp15 < 0 tmp18 = tl.where(tmp17, tmp16, tmp15) tmp19 = tl.load(in_ptr2 + (tmp18 + (16*tmp4) + (256*x2)), None, eviction_policy='evict_last') tmp20 = tmp19 > tmp10 tmp21 = tmp19 * tmp12 tmp22 = tl.where(tmp20, tmp19, tmp21) tmp23 = tmp22 - tmp14 tmp25 = tmp23 * tmp24 tmp26 = tmp14 + tmp25 tl.store(out_ptr0 + (x4), tmp26, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dp/cdprcewbjvbzdxihknygbgyzmjjcqkka6rbvnynuymqxhdv4mwst.py # Topologically Sorted Source Nodes: [x_51], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_51 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_27, %where_3], 1), kwargs = {}) triton_poi_fused_cat_36 = async_compile.triton('triton_poi_fused_cat_36', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_36(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1024) % 32 x3 = (xindex // 32768) x4 = xindex % 1024 x1 = (xindex // 32) % 32 x0 = xindex % 32 x5 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + (1024*x2) + (16384*x3)), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([XBLOCK], 16, tl.int32) tmp8 = tmp6 + tmp7 tmp9 = tmp6 < 0 tmp10 = tl.where(tmp9, tmp8, tmp6) tmp11 = tl.load(in_ptr2 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tmp15 = tl.load(in_ptr3 + (tmp14 + (16*tmp10) + (256*x2) + (4096*x3)), tmp4, eviction_policy='evict_last', other=0.0) tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.01 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.load(in_ptr4 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 + tmp7 tmp23 = tmp21 < 0 tmp24 = tl.where(tmp23, tmp22, tmp21) tmp25 = tl.load(in_ptr3 + (tmp24 + (16*tmp10) + (256*x2) + (4096*x3)), tmp4, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp16 tmp27 = tmp25 * tmp18 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tmp28 - tmp20 tmp30 = tl.load(in_ptr5 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 * tmp30 tmp32 = tmp20 + tmp31 tmp33 = tmp32 - tmp5 tmp34 = tl.load(in_ptr6 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp35 = tmp33 * tmp34 tmp36 = tmp5 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tmp40 = tl.full([1], 32, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr7 + (x4 + (1024*((-16) + x2)) + (16384*x3)), tmp39, other=0.0) tmp43 = tl.where(tmp4, tmp38, tmp42) tl.store(out_ptr0 + (x5), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b6/cb6jcj65lm6kbgasqd57bfaaqbbc2snz6bflfdi4duwtki257hxh.py # Topologically Sorted Source Nodes: [x_52], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x_52 => _unsafe_index_40, _unsafe_index_41 # Graph fragment: # %_unsafe_index_40 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%cat_2, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_41 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_40, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_reflection_pad2d_37 = async_compile.triton('triton_poi_fused_reflection_pad2d_37', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_37', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_37(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x2 = (xindex // 1156) x3 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5c/c5c5rd2p567aymlvqvknxzkicf3z5durxlvkvavioftepqd44bsv.py # Topologically Sorted Source Nodes: [x_53, x_54, x_55], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_53 => convolution_14 # x_54 => gt_14, mul_29, where_14 # x_55 => _unsafe_index_42, _unsafe_index_43 # Graph fragment: # %convolution_14 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_41, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_14 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_14, 0), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_14, 0.01), kwargs = {}) # %where_14 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_14, %convolution_14, %mul_29), kwargs = {}) # %_unsafe_index_42 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_14, [None, None, %sub_9, None]), kwargs = {}) # %_unsafe_index_43 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_42, [None, None, None, %sub_9]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_38 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_38', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_38', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_38(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36992 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 8 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x5), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/on/conxbemxgirridmdapj42bkx52h3lvpknod3erbmrvhodzizlo3a.py # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_58 => iota_38 # Graph fragment: # %iota_38 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_39 = async_compile.triton('triton_poi_fused_arange_39', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_39', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_39(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fw/cfws7gx2gwcm5p4d42vf5lhupe56cdbbhnefbo7iqtranu24ob4i.py # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_58 => convert_element_type_13 # Graph fragment: # %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {}) triton_poi_fused__to_copy_40 = async_compile.triton('triton_poi_fused__to_copy_40', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_40', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_40(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ml/cmllbkzwwnqwuxvyqpzkcf3ibnsn65uiapevq5las7yo75e2yd5v.py # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_58 => add_30, clamp_max_12 # Graph fragment: # %add_30 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {}) # %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_30, 31), kwargs = {}) triton_poi_fused_add_clamp_41 = async_compile.triton('triton_poi_fused_add_clamp_41', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_41', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_41(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uw/cuwucgv2tmiwbbpxv5ut6czxq67qpj4qy7jo4sbqkeuvoxysq5u7.py # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_58 => add_29, clamp_max_14, clamp_min_12, clamp_min_14, convert_element_type_12, mul_31, sub_85, sub_87 # Graph fragment: # %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_38, torch.float32), kwargs = {}) # %add_29 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.5), kwargs = {}) # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_29, 0.5), kwargs = {}) # %sub_85 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_31, 0.5), kwargs = {}) # %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_85, 0.0), kwargs = {}) # %sub_87 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {}) # %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_87, 0.0), kwargs = {}) # %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_clamp_mul_sub_42 = async_compile.triton('triton_poi_fused__to_copy_add_clamp_mul_sub_42', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_clamp_mul_sub_42', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_42(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/e2/ce23kk66xrc4k3h6yd2gmzm3nkh7zq6f7rsz56rth756gcdcdxl5.py # Topologically Sorted Source Nodes: [x_56, iadd_7, x_57, x_58], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul] # Source node to ATen node mapping: # iadd_7 => add_28 # x_56 => convolution_15 # x_57 => gt_15, mul_30, where_15 # x_58 => _unsafe_index_44, _unsafe_index_45, _unsafe_index_46, _unsafe_index_47, add_33, add_34, mul_33, mul_34, mul_35, sub_88, sub_89, sub_91 # Graph fragment: # %convolution_15 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_43, %primals_32, %primals_33, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_28 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_15, %slice_239), kwargs = {}) # %gt_15 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_28, 0), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_28, 0.01), kwargs = {}) # %where_15 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_15, %add_28, %mul_30), kwargs = {}) # %_unsafe_index_44 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {}) # %_unsafe_index_45 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {}) # %_unsafe_index_46 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {}) # %_unsafe_index_47 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {}) # %sub_88 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_45, %_unsafe_index_44), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_88, %clamp_max_14), kwargs = {}) # %add_33 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_44, %mul_33), kwargs = {}) # %sub_89 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_47, %_unsafe_index_46), kwargs = {}) # %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_89, %clamp_max_14), kwargs = {}) # %add_34 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_46, %mul_34), kwargs = {}) # %sub_91 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_34, %add_33), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_91, %clamp_max_15), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_43 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_43', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*i64', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i64', 8: '*i64', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_43', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_43(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = (xindex // 4096) x2 = (xindex // 4096) % 8 x3 = (xindex // 32768) x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr4 + (tmp8 + (32*tmp4) + (1024*x2) + (32768*x3)), None, eviction_policy='evict_last') tmp13 = tmp11 + tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.01 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tmp20 = tmp19 + tmp1 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tmp23 = tl.load(in_ptr2 + (tmp8 + (32*tmp22) + (1024*x5)), None, eviction_policy='evict_last') tmp24 = tmp23 + tmp10 tmp25 = tl.load(in_ptr4 + (tmp8 + (32*tmp22) + (1024*x2) + (32768*x3)), None, eviction_policy='evict_last') tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp14 tmp28 = tmp26 * tmp16 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp33 + (32*tmp22) + (1024*x5)), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tl.load(in_ptr4 + (tmp33 + (32*tmp22) + (1024*x2) + (32768*x3)), None, eviction_policy='evict_last') tmp37 = tmp35 + tmp36 tmp38 = tmp37 > tmp14 tmp39 = tmp37 * tmp16 tmp40 = tl.where(tmp38, tmp37, tmp39) tmp41 = tmp40 - tmp29 tmp43 = tmp41 * tmp42 tmp44 = tmp29 + tmp43 tmp45 = tl.load(in_ptr2 + (tmp33 + (32*tmp4) + (1024*x5)), None, eviction_policy='evict_last') tmp46 = tmp45 + tmp10 tmp47 = tl.load(in_ptr4 + (tmp33 + (32*tmp4) + (1024*x2) + (32768*x3)), None, eviction_policy='evict_last') tmp48 = tmp46 + tmp47 tmp49 = tmp48 > tmp14 tmp50 = tmp48 * tmp16 tmp51 = tl.where(tmp49, tmp48, tmp50) tmp52 = tmp51 - tmp18 tmp53 = tmp52 * tmp42 tmp54 = tmp18 + tmp53 tmp55 = tmp54 - tmp44 tmp57 = tmp55 * tmp56 tl.store(in_out_ptr0 + (x6), tmp44, None) tl.store(in_out_ptr1 + (x6), tmp57, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ib/cibycootnwnskalfsgxxk3ocpwlboykq52uq3jnzam43uvc4lbjq.py # Topologically Sorted Source Nodes: [x_59, x_60], Original ATen: [aten.cat, aten.reflection_pad2d] # Source node to ATen node mapping: # x_59 => cat_3 # x_60 => _unsafe_index_48, _unsafe_index_49 # Graph fragment: # %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_35, %where_1], 1), kwargs = {}) # %_unsafe_index_48 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%cat_3, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_49 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_48, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_cat_reflection_pad2d_44 = async_compile.triton('triton_poi_fused_cat_reflection_pad2d_44', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_reflection_pad2d_44', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_reflection_pad2d_44(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 4356) % 16 x0 = xindex % 66 x1 = (xindex // 66) % 66 x3 = (xindex // 69696) x4 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2) + (32768*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2) + (32768*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 16, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr2 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*((-8) + x2)) + (32768*x3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ug/cug2qelr2zm4kpl47utjvq54xgs4uxtqaamg4q6m7hg4zaejk5dr.py # Topologically Sorted Source Nodes: [x_61, x_62, x_63], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_61 => convolution_16 # x_62 => gt_16, mul_36, where_16 # x_63 => _unsafe_index_50, _unsafe_index_51 # Graph fragment: # %convolution_16 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_49, %primals_34, %primals_35, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_16 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_16, 0), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_16, 0.01), kwargs = {}) # %where_16 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_16, %convolution_16, %mul_36), kwargs = {}) # %_unsafe_index_50 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_16, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_51 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_50, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 17424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x2 = (xindex // 4356) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/be/cbehy5uaz6mf7xpxmzpqbpa57dimm6xvwnqbw3weecfrbude7hlz.py # Topologically Sorted Source Nodes: [x_64, iadd_8, x_65, x_70, iadd_9, x_71, x_72], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # iadd_8 => add_36 # iadd_9 => add_37 # x_64 => convolution_17 # x_65 => gt_17, mul_37, where_17 # x_70 => convolution_19 # x_71 => gt_19, mul_39, where_19 # x_72 => add_38 # Graph fragment: # %convolution_17 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_51, %primals_36, %primals_37, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_36 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_17, %slice_268), kwargs = {}) # %gt_17 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_36, 0), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_36, 0.01), kwargs = {}) # %where_17 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_17, %add_36, %mul_37), kwargs = {}) # %convolution_19 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_55, %primals_40, %primals_41, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_37 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_19, %primals_1), kwargs = {}) # %gt_19 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_37, 0), kwargs = {}) # %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_37, 0.01), kwargs = {}) # %where_19 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_19, %add_37, %mul_39), kwargs = {}) # %add_38 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_17, %where_19), kwargs = {}) # %gt_20 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_19, 0), kwargs = {}) # %gt_22 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_17, 0), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_46 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_46', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i1', 10: '*i1', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_46', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_46(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 x1 = (xindex // 4096) tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp24 = tl.load(in_ptr4 + (x2), None) tmp25 = tl.load(in_ptr5 + (0)) tmp26 = tl.broadcast_to(tmp25, [XBLOCK]) tmp28 = tl.load(in_ptr6 + (x2), None) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp4 >= tmp4 tmp6 = tl.full([1], 8, tl.int64) tmp7 = tmp4 < tmp6 tmp8 = tl.load(in_ptr1 + (x0 + (4096*0) + (32768*x1)), tmp7, other=0.0) tmp9 = tl.load(in_ptr2 + (x0 + (4096*0) + (32768*x1)), tmp7, other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp7, tmp10, tmp11) tmp13 = tmp4 >= tmp6 tmp14 = tl.full([1], 16, tl.int64) tmp15 = tmp4 < tmp14 tmp16 = tl.load(in_ptr3 + (x0 + (4096*(-8)) + (32768*x1)), tmp13, other=0.0) tmp17 = tl.where(tmp7, tmp12, tmp16) tmp18 = tmp3 + tmp17 tmp19 = 0.0 tmp20 = tmp18 > tmp19 tmp21 = 0.01 tmp22 = tmp18 * tmp21 tmp23 = tl.where(tmp20, tmp18, tmp22) tmp27 = tmp24 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tmp29 > tmp19 tmp31 = tmp29 * tmp21 tmp32 = tl.where(tmp30, tmp29, tmp31) tmp33 = tmp23 + tmp32 tmp34 = tmp32 > tmp19 tmp35 = tmp23 > tmp19 tl.store(out_ptr0 + (x2), tmp33, None) tl.store(out_ptr1 + (x2), tmp34, None) tl.store(out_ptr2 + (x2), tmp35, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/44/c444gnxdrj74yvjaln6hvv6goxyuqpdgz5istol6j6h66hxkdcqh.py # Topologically Sorted Source Nodes: [x_67, x_68], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_67 => convolution_18 # x_68 => gt_18, mul_38, where_18 # Graph fragment: # %convolution_18 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_38, %primals_39, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_18 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_18, 0), kwargs = {}) # %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_18, 0.01), kwargs = {}) # %where_18 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_18, %convolution_18, %mul_38), kwargs = {}) # %gt_21 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_18, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = tmp8 > tmp4 tl.store(out_ptr0 + (x0), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zd/czdpctxn4htg6xrdwxnk64a4pu7qzrj5ecqeh7dxqxadqq77xcld.py # Topologically Sorted Source Nodes: [x_56, iadd_7, x_57], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # iadd_7 => add_28 # x_56 => convolution_15 # x_57 => gt_15, mul_30, where_15 # Graph fragment: # %convolution_15 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_43, %primals_32, %primals_33, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_28 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_15, %slice_239), kwargs = {}) # %gt_15 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_28, 0), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_28, 0.01), kwargs = {}) # %where_15 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_15, %add_28, %mul_30), kwargs = {}) # %gt_24 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_15, 0), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_48 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_48', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_48', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_48(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 8 x2 = (xindex // 8192) x4 = xindex % 8192 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4 + (32768*x2)), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.01 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/y3/cy3xm2ttsdgal56xkwh7yecizf4wprubv7gx5xjs5yln6ue5baee.py # Topologically Sorted Source Nodes: [x_53, x_54], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_53 => convolution_14 # x_54 => gt_14, mul_29, where_14 # Graph fragment: # %convolution_14 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_41, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_14 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_14, 0), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_14, 0.01), kwargs = {}) # %where_14 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_14, %convolution_14, %mul_29), kwargs = {}) # %gt_25 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_14, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_49 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_49', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_49', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_49(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 8 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vy/cvybs6shwym2p4d77qpvfuqfkxx3d53n3uclv2txtf3p4pmxzdkc.py # Topologically Sorted Source Nodes: [x_45, x_46], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_45 => convolution_12 # x_46 => gt_12, mul_22, where_12 # Graph fragment: # %convolution_12 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_33, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_12, 0), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_12, 0.01), kwargs = {}) # %where_12 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %convolution_12, %mul_22), kwargs = {}) # %gt_27 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_12, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_50 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_50', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_50', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_50(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 16 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ya/cyasyie6ffu4a3lzedt7wkpzn3u7aubrprne7onf22au5bu4owsx.py # Topologically Sorted Source Nodes: [x_40, iadd_5, x_41], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # iadd_5 => add_12 # x_40 => convolution_11 # x_41 => gt_11, mul_16, where_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_12 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_11, %slice_181), kwargs = {}) # %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_12, 0), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, 0.01), kwargs = {}) # %where_11 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_11, %add_12, %mul_16), kwargs = {}) # %gt_28 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_11, 0), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_51 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_51', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_51', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_51(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x4 = xindex % 2048 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4 + (8192*x2)), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.01 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2k/c2khezoxeemkarifcncrc2wbe7fotdqbiof7wapwegwst5sbptsz.py # Topologically Sorted Source Nodes: [x_37, x_38], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_37 => convolution_10 # x_38 => gt_10, mul_15, where_10 # Graph fragment: # %convolution_10 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_25, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_10 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_10, 0), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_10, 0.01), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_10, %convolution_10, %mul_15), kwargs = {}) # %gt_29 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_10, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_52 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_52', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_52', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_52(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ex/cexij6gdv74vspesxqipunbg2hrdrumemwnwwvad5gg7ex6k25od.py # Topologically Sorted Source Nodes: [x_29, x_30], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_29 => convolution_8 # x_30 => gt_8, mul_8, where_8 # Graph fragment: # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_8 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.01), kwargs = {}) # %where_8 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %convolution_8, %mul_8), kwargs = {}) # %gt_31 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_8, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_53 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_53', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_53', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_53(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/el/celrapaagrhjbh6rtnkkfxvzjf33nv4shxjuibikv6qkfpplf34y.py # Topologically Sorted Source Nodes: [x_22, x_23], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_22 => convolution_6 # x_23 => gt_6, mul_6, where_6 # Graph fragment: # %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.01), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_6, %mul_6), kwargs = {}) # %gt_33 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_6, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_54 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_54', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_54', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_54(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vo/cvod56dk5r2dd5oczhlnxnxjqyvlusjgrsv2zooaemjkp6ys6ay2.py # Topologically Sorted Source Nodes: [x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_15 => convolution_4 # x_16 => gt_4, mul_4, where_4 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_9, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.01), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {}) # %gt_35 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_4, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_55 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_55', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_55', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_55(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2j/c2jfruljdvn26arjd7rphkwhzyd27br75xdn2papgpltx2hfw4ud.py # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_8 => convolution_2 # x_9 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.01), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %gt_37 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_2, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_56 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_56', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_56', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_56(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 16 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qq/cqqqjg2mclxy4fyt7nahn42efxvwcmqdnhlxfn32pukhlotk3a2u.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_1 => convolution # x_2 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) # %gt_39 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_57 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_57', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_57', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_57(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 8 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41 = args args.clear() assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_2, (8, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (8, ), (1, )) assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32, ), (1, )) assert_size_stride(primals_14, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64, ), (1, )) assert_size_stride(primals_22, (32, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (32, ), (1, )) assert_size_stride(primals_24, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_25, (32, ), (1, )) assert_size_stride(primals_26, (16, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (16, ), (1, )) assert_size_stride(primals_28, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_29, (16, ), (1, )) assert_size_stride(primals_30, (8, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_31, (8, ), (1, )) assert_size_stride(primals_32, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_33, (8, ), (1, )) assert_size_stride(primals_34, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_35, (1, ), (1, )) assert_size_stride(primals_36, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_37, (1, ), (1, )) assert_size_stride(primals_38, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_39, (1, ), (1, )) assert_size_stride(primals_40, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_41, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 17424, grid=grid(17424), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf2 = empty_strided_cuda((4, 8, 66, 66), (34848, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1.run(buf1, primals_3, buf2, 139392, grid=grid(139392), stream=stream0) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_4, iadd, x_5], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_convolution_leaky_relu_2.run(buf4, primals_5, primals_1, 131072, grid=grid(131072), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 8, 34, 34), (9248, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] triton_poi_fused_avg_pool2d_reflection_pad2d_3.run(buf4, buf5, 36992, grid=grid(36992), stream=stream0) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf7 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_8, x_9, x_10], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4.run(buf6, primals_7, buf7, 73984, grid=grid(73984), stream=stream0) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf9 = buf8; del buf8 # reuse buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [x_6, x_11, iadd_1, x_12], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5.run(buf10, primals_9, buf4, 65536, grid=grid(65536), stream=stream0) del primals_9 buf11 = empty_strided_cuda((4, 16, 18, 18), (5184, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_13, x_14], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] triton_poi_fused_avg_pool2d_reflection_pad2d_6.run(buf10, buf11, 20736, grid=grid(20736), stream=stream0) # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 16, 16), (8192, 256, 16, 1)) buf13 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_15, x_16, x_17], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_7.run(buf12, primals_11, buf13, 41472, grid=grid(41472), stream=stream0) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 32, 16, 16), (8192, 256, 16, 1)) buf15 = buf14; del buf14 # reuse buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [x_13, x_18, iadd_2, x_19], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_8.run(buf16, primals_13, buf10, 32768, grid=grid(32768), stream=stream0) del primals_13 buf17 = empty_strided_cuda((4, 32, 10, 10), (3200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_20, x_21], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] triton_poi_fused_avg_pool2d_reflection_pad2d_9.run(buf16, buf17, 12800, grid=grid(12800), stream=stream0) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 8, 8), (4096, 64, 8, 1)) buf19 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_22, x_23, x_24], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_10.run(buf18, primals_15, buf19, 25600, grid=grid(25600), stream=stream0) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 8, 8), (4096, 64, 8, 1)) buf21 = buf20; del buf20 # reuse buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [x_20, x_25, iadd_3, x_26], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_11.run(buf22, primals_17, buf16, 16384, grid=grid(16384), stream=stream0) del primals_17 buf23 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_27, x_28], Original ATen: [aten.avg_pool2d, aten.reflection_pad2d] triton_poi_fused_avg_pool2d_reflection_pad2d_12.run(buf22, buf23, 9216, grid=grid(9216), stream=stream0) # Topologically Sorted Source Nodes: [x_29], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 4, 4), (1024, 16, 4, 1)) buf25 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_29, x_30, x_31], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_13.run(buf24, primals_19, buf25, 9216, grid=grid(9216), stream=stream0) # Topologically Sorted Source Nodes: [x_32], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 64, 4, 4), (1024, 16, 4, 1)) buf27 = buf26; del buf26 # reuse buf100 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_27, x_32, iadd_4, x_33], Original ATen: [aten.avg_pool2d, aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_leaky_relu_backward_14.run(buf27, primals_21, buf22, buf100, 4096, grid=grid(4096), stream=stream0) del primals_21 buf28 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.arange] triton_poi_fused_arange_15.run(buf28, 8, grid=grid(8), stream=stream0) buf29 = empty_strided_cuda((8, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_16.run(buf29, 8, grid=grid(8), stream=stream0) buf30 = empty_strided_cuda((8, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_17.run(buf30, 8, grid=grid(8), stream=stream0) buf31 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_16.run(buf31, 8, grid=grid(8), stream=stream0) buf32 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_17.run(buf32, 8, grid=grid(8), stream=stream0) buf33 = empty_strided_cuda((8, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_18.run(buf33, 8, grid=grid(8), stream=stream0) buf34 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_33, x_34], Original ATen: [aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_19.run(buf29, buf31, buf27, buf32, buf33, buf34, 16384, grid=grid(16384), stream=stream0) buf35 = empty_strided_cuda((8, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_18.run(buf35, 8, grid=grid(8), stream=stream0) buf36 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_35], Original ATen: [aten.cat] triton_poi_fused_cat_20.run(buf34, buf30, buf31, buf27, buf32, buf33, buf35, buf22, buf36, 32768, grid=grid(32768), stream=stream0) del buf27 del buf34 buf37 = empty_strided_cuda((4, 128, 10, 10), (12800, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_36], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_21.run(buf36, buf37, 51200, grid=grid(51200), stream=stream0) # Topologically Sorted Source Nodes: [x_37], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 32, 8, 8), (2048, 64, 8, 1)) buf39 = empty_strided_cuda((4, 32, 10, 10), (3200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_37, x_38, x_39], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_22.run(buf38, primals_23, buf39, 12800, grid=grid(12800), stream=stream0) # Topologically Sorted Source Nodes: [x_40], Original ATen: [aten.convolution] buf40 = extern_kernels.convolution(buf39, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 32, 8, 8), (2048, 64, 8, 1)) buf41 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten.arange] triton_poi_fused_arange_23.run(buf41, 16, grid=grid(16), stream=stream0) buf42 = empty_strided_cuda((16, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_24.run(buf42, 16, grid=grid(16), stream=stream0) buf43 = empty_strided_cuda((16, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_25.run(buf43, 16, grid=grid(16), stream=stream0) buf44 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_24.run(buf44, 16, grid=grid(16), stream=stream0) buf45 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_25.run(buf45, 16, grid=grid(16), stream=stream0) buf48 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_26.run(buf48, 16, grid=grid(16), stream=stream0) buf50 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_42], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_26.run(buf50, 16, grid=grid(16), stream=stream0) buf47 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf46 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf49 = buf46; del buf46 # reuse buf51 = buf47; del buf47 # reuse # Topologically Sorted Source Nodes: [x_40, iadd_5, x_41, x_42], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27.run(buf49, buf51, buf43, buf44, buf40, primals_25, buf36, buf42, buf45, buf48, buf50, 32768, grid=grid(32768), stream=stream0) buf52 = empty_strided_cuda((4, 64, 18, 18), (20736, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_43, x_44], Original ATen: [aten.cat, aten.reflection_pad2d] triton_poi_fused_cat_reflection_pad2d_28.run(buf49, buf51, buf16, buf52, 82944, grid=grid(82944), stream=stream0) # Topologically Sorted Source Nodes: [x_45], Original ATen: [aten.convolution] buf53 = extern_kernels.convolution(buf52, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 16, 16, 16), (4096, 256, 16, 1)) buf54 = empty_strided_cuda((4, 16, 18, 18), (5184, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_45, x_46, x_47], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_29.run(buf53, primals_27, buf54, 20736, grid=grid(20736), stream=stream0) # Topologically Sorted Source Nodes: [x_48], Original ATen: [aten.convolution] buf55 = extern_kernels.convolution(buf54, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 16, 16, 16), (4096, 256, 16, 1)) buf56 = buf55; del buf55 # reuse buf96 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x_48, iadd_6, x_49], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_30.run(buf56, primals_29, buf49, buf51, buf16, buf96, 16384, grid=grid(16384), stream=stream0) del buf49 del buf51 del primals_29 buf57 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten.arange] triton_poi_fused_arange_31.run(buf57, 32, grid=grid(32), stream=stream0) buf58 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_32.run(buf58, 32, grid=grid(32), stream=stream0) buf59 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_33.run(buf59, 32, grid=grid(32), stream=stream0) buf60 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_32.run(buf60, 32, grid=grid(32), stream=stream0) buf61 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_33.run(buf61, 32, grid=grid(32), stream=stream0) buf62 = empty_strided_cuda((32, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_34.run(buf62, 32, grid=grid(32), stream=stream0) buf63 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x_49, x_50], Original ATen: [aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_35.run(buf58, buf60, buf56, buf61, buf62, buf63, 65536, grid=grid(65536), stream=stream0) buf64 = empty_strided_cuda((32, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_50], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_34.run(buf64, 32, grid=grid(32), stream=stream0) buf65 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x_51], Original ATen: [aten.cat] triton_poi_fused_cat_36.run(buf63, buf59, buf60, buf56, buf61, buf62, buf64, buf10, buf65, 131072, grid=grid(131072), stream=stream0) del buf63 buf66 = empty_strided_cuda((4, 32, 34, 34), (36992, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_52], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_37.run(buf65, buf66, 147968, grid=grid(147968), stream=stream0) # Topologically Sorted Source Nodes: [x_53], Original ATen: [aten.convolution] buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 8, 32, 32), (8192, 1024, 32, 1)) buf68 = empty_strided_cuda((4, 8, 34, 34), (9248, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_53, x_54, x_55], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_38.run(buf67, primals_31, buf68, 36992, grid=grid(36992), stream=stream0) # Topologically Sorted Source Nodes: [x_56], Original ATen: [aten.convolution] buf69 = extern_kernels.convolution(buf68, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf69, (4, 8, 32, 32), (8192, 1024, 32, 1)) buf70 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.arange] triton_poi_fused_arange_39.run(buf70, 64, grid=grid(64), stream=stream0) buf71 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_40.run(buf71, 64, grid=grid(64), stream=stream0) buf72 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_41.run(buf72, 64, grid=grid(64), stream=stream0) buf73 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_40.run(buf73, 64, grid=grid(64), stream=stream0) buf74 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_41.run(buf74, 64, grid=grid(64), stream=stream0) buf77 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_42.run(buf77, 64, grid=grid(64), stream=stream0) buf79 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_clamp_mul_sub_42.run(buf79, 64, grid=grid(64), stream=stream0) buf76 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf75 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf78 = buf75; del buf75 # reuse buf80 = buf76; del buf76 # reuse # Topologically Sorted Source Nodes: [x_56, iadd_7, x_57, x_58], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_43.run(buf78, buf80, buf72, buf73, buf69, primals_33, buf65, buf71, buf74, buf77, buf79, 131072, grid=grid(131072), stream=stream0) buf81 = empty_strided_cuda((4, 16, 66, 66), (69696, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_59, x_60], Original ATen: [aten.cat, aten.reflection_pad2d] triton_poi_fused_cat_reflection_pad2d_44.run(buf78, buf80, buf4, buf81, 278784, grid=grid(278784), stream=stream0) # Topologically Sorted Source Nodes: [x_61], Original ATen: [aten.convolution] buf82 = extern_kernels.convolution(buf81, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf82, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf83 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_61, x_62, x_63], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45.run(buf82, primals_35, buf83, 17424, grid=grid(17424), stream=stream0) # Topologically Sorted Source Nodes: [x_64], Original ATen: [aten.convolution] buf84 = extern_kernels.convolution(buf83, primals_36, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf84, (4, 1, 64, 64), (4096, 4096, 64, 1)) # Topologically Sorted Source Nodes: [x_67], Original ATen: [aten.convolution] buf86 = extern_kernels.convolution(buf0, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf87 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_67, x_68, x_69], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d] triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45.run(buf86, primals_39, buf87, 17424, grid=grid(17424), stream=stream0) # Topologically Sorted Source Nodes: [x_70], Original ATen: [aten.convolution] buf88 = extern_kernels.convolution(buf87, primals_40, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf88, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf85 = reinterpret_tensor(buf84, (4, 1, 64, 64), (4096, 16384, 64, 1), 0); del buf84 # reuse buf89 = reinterpret_tensor(buf56, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf56 # reuse buf90 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) buf92 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_64, iadd_8, x_65, x_70, iadd_9, x_71, x_72], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_46.run(buf85, primals_37, buf78, buf80, buf4, buf88, primals_41, primals_1, buf89, buf90, buf92, 16384, grid=grid(16384), stream=stream0) del buf78 del buf80 del buf85 del buf88 del primals_1 del primals_37 del primals_41 buf91 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_67, x_68], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47.run(buf86, primals_39, buf91, 16384, grid=grid(16384), stream=stream0) del buf86 del primals_39 buf93 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_61, x_62], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47.run(buf82, primals_35, buf93, 16384, grid=grid(16384), stream=stream0) del buf82 del primals_35 buf94 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_56, iadd_7, x_57], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_48.run(buf69, primals_33, buf65, buf94, 32768, grid=grid(32768), stream=stream0) del buf65 del buf69 del primals_33 buf95 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_53, x_54], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_49.run(buf67, primals_31, buf95, 32768, grid=grid(32768), stream=stream0) del buf67 del primals_31 buf97 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x_45, x_46], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_50.run(buf53, primals_27, buf97, 16384, grid=grid(16384), stream=stream0) del buf53 del primals_27 buf98 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [x_40, iadd_5, x_41], Original ATen: [aten.convolution, aten.add, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_51.run(buf40, primals_25, buf36, buf98, 8192, grid=grid(8192), stream=stream0) del buf36 del buf40 del primals_25 buf99 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [x_37, x_38], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_52.run(buf38, primals_23, buf99, 8192, grid=grid(8192), stream=stream0) del buf38 del primals_23 buf101 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_29, x_30], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_53.run(buf24, primals_19, buf101, 4096, grid=grid(4096), stream=stream0) del buf24 del primals_19 buf102 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [x_22, x_23], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_54.run(buf18, primals_15, buf102, 16384, grid=grid(16384), stream=stream0) del buf18 del primals_15 buf103 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_55.run(buf12, primals_11, buf103, 32768, grid=grid(32768), stream=stream0) del buf12 del primals_11 buf104 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_56.run(buf6, primals_7, buf104, 65536, grid=grid(65536), stream=stream0) del buf6 del primals_7 buf105 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_57.run(buf1, primals_3, buf105, 131072, grid=grid(131072), stream=stream0) del buf1 del primals_3 return (buf89, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, buf0, buf2, buf4, buf5, buf7, buf10, buf11, buf13, buf16, buf17, buf19, buf22, buf23, buf25, buf28, buf29, buf30, buf31, buf32, buf33, buf35, buf37, buf39, buf41, buf42, buf43, buf44, buf45, buf48, buf50, buf52, buf54, buf57, buf58, buf59, buf60, buf61, buf62, buf64, buf66, buf68, buf70, buf71, buf72, buf73, buf74, buf77, buf79, buf81, buf83, buf87, buf90, buf91, buf92, buf93, buf94, buf95, buf96, buf97, buf98, buf99, buf100, buf101, buf102, buf103, buf104, buf105, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((32, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((16, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((8, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((1, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, dropout=False, norm=None, residual=True, activation='leakyrelu', in_place_activation=True, transpose=False, reflectpad=True): super(ConvBlock, self).__init__() self.dropout = dropout self.residual = residual self.activation = activation self.transpose = transpose self.reflectpad = reflectpad if self.dropout: self.dropout1 = nn.Dropout2d(p=0.05) self.dropout2 = nn.Dropout2d(p=0.05) self.norm1 = None self.norm2 = None if norm is not None: if norm == 'batch': self.norm1 = nn.BatchNorm2d(out_channels) self.norm2 = nn.BatchNorm2d(out_channels) elif norm == 'instance': self.norm1 = nn.InstanceNorm2d(out_channels, affine=True) self.norm2 = nn.InstanceNorm2d(out_channels, affine=True) if self.transpose: self.conv1 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) else: self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size= 3, padding=0 if self.reflectpad else 1) if self.activation == 'relu': self.actfun1 = nn.ReLU(inplace=in_place_activation) self.actfun2 = nn.ReLU(inplace=in_place_activation) elif self.activation == 'leakyrelu': self.actfun1 = nn.LeakyReLU(inplace=in_place_activation) self.actfun2 = nn.LeakyReLU(inplace=in_place_activation) elif self.activation == 'elu': self.actfun1 = nn.ELU(inplace=in_place_activation) self.actfun2 = nn.ELU(inplace=in_place_activation) elif self.activation == 'selu': self.actfun1 = nn.SELU(inplace=in_place_activation) self.actfun2 = nn.SELU(inplace=in_place_activation) if self.reflectpad: self.rpad1 = nn.ReflectionPad2d(1) self.rpad2 = nn.ReflectionPad2d(1) def forward(self, x): ox = x if self.reflectpad: x = self.rpad1(x) x = self.conv1(x) if self.dropout: x = self.dropout1(x) x = self.actfun1(x) if self.norm1: x = self.norm1(x) if self.reflectpad: x = self.rpad2(x) x = self.conv2(x) if self.dropout: x = self.dropout2(x) if self.residual: x[:, 0:min(ox.shape[1], x.shape[1]), :, :] += ox[:, 0:min(ox. shape[1], x.shape[1]), :, :] x = self.actfun2(x) if self.norm2: x = self.norm2(x) return x class Unet(nn.Module): def __init__(self, n_channel_in=1, n_channel_out=1, n_internal_channels =8, residual=True, down='avgpool', up='bilinear', activation= 'leakyrelu', norm=None, softmax=False): super(Unet, self).__init__() self.residual = residual self.softmax = softmax nic = n_internal_channels if down == 'maxpool': self.down1 = nn.MaxPool2d(kernel_size=2) self.down2 = nn.MaxPool2d(kernel_size=2) self.down3 = nn.MaxPool2d(kernel_size=2) self.down4 = nn.MaxPool2d(kernel_size=2) elif down == 'avgpool': self.down1 = nn.AvgPool2d(kernel_size=2) self.down2 = nn.AvgPool2d(kernel_size=2) self.down3 = nn.AvgPool2d(kernel_size=2) self.down4 = nn.AvgPool2d(kernel_size=2) elif down == 'convpool': self.down1 = nn.Conv2d(nic, nic, kernel_size=2, stride=2, groups=32 ) self.down2 = nn.Conv2d(nic * 2, nic * 2, kernel_size=2, stride= 2, groups=64) self.down3 = nn.Conv2d(nic * 4, nic * 4, kernel_size=2, stride= 2, groups=128) self.down4 = nn.Conv2d(nic * 8, nic * 8, kernel_size=2, stride= 2, groups=256) self.down1.weight.data = 0.01 * self.down1.weight.data + 0.25 self.down2.weight.data = 0.01 * self.down2.weight.data + 0.25 self.down3.weight.data = 0.01 * self.down3.weight.data + 0.25 self.down4.weight.data = 0.01 * self.down4.weight.data + 0.25 self.down1.bias.data = 0.01 * self.down1.bias.data + 0 self.down2.bias.data = 0.01 * self.down2.bias.data + 0 self.down3.bias.data = 0.01 * self.down3.bias.data + 0 self.down4.bias.data = 0.01 * self.down4.bias.data + 0 if up == 'bilinear' or up == 'nearest': self.up1 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) self.up2 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) self.up3 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) self.up4 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) elif up == 'tconv': self.up1 = nn.ConvTranspose2d(nic * 8, nic * 8, kernel_size=2, stride=2, groups=nic * 8) self.up2 = nn.ConvTranspose2d(nic * 4, nic * 4, kernel_size=2, stride=2, groups=nic * 4) self.up3 = nn.ConvTranspose2d(nic * 2, nic * 2, kernel_size=2, stride=2, groups=nic * 2) self.up4 = nn.ConvTranspose2d(nic, nic, kernel_size=2, stride=2, groups=nic) self.up1.weight.data = 0.01 * self.up1.weight.data + 0.25 self.up2.weight.data = 0.01 * self.up2.weight.data + 0.25 self.up3.weight.data = 0.01 * self.up3.weight.data + 0.25 self.up4.weight.data = 0.01 * self.up4.weight.data + 0.25 self.up1.bias.data = 0.01 * self.up1.bias.data + 0 self.up2.bias.data = 0.01 * self.up2.bias.data + 0 self.up3.bias.data = 0.01 * self.up3.bias.data + 0 self.up4.bias.data = 0.01 * self.up4.bias.data + 0 self.conv1 = ConvBlock(n_channel_in, nic, residual=residual, activation=activation, norm=norm) self.conv2 = ConvBlock(nic, nic * 2, residual=residual, activation= activation, norm=norm) self.conv3 = ConvBlock(nic * 2, nic * 4, residual=residual, activation=activation, norm=norm) self.conv4 = ConvBlock(nic * 4, nic * 8, residual=residual, activation=activation, norm=norm) self.conv5 = ConvBlock(nic * 8, nic * 8, residual=residual, activation=activation, norm=norm) self.conv6 = ConvBlock(2 * nic * 8, nic * 4, residual=residual, activation=activation, norm=norm) self.conv7 = ConvBlock(2 * nic * 4, nic * 2, residual=residual, activation=activation, norm=norm) self.conv8 = ConvBlock(2 * nic * 2, nic, residual=residual, activation=activation, norm=norm) self.conv9 = ConvBlock(2 * nic, n_channel_out, residual=residual, activation=activation, norm=norm) if self.residual: self.convres = ConvBlock(n_channel_in, n_channel_out, residual= residual, activation=activation, norm=norm) def forward(self, x): c0 = x c1 = self.conv1(x) x = self.down1(c1) c2 = self.conv2(x) x = self.down2(c2) c3 = self.conv3(x) x = self.down3(c3) c4 = self.conv4(x) x = self.down4(c4) if self.softmax: x = F.softmax(x, dim=1) x = self.conv5(x) x = self.up1(x) if self.softmax: x = F.softmax(x, dim=1) x = torch.cat([x, c4], 1) x = self.conv6(x) x = self.up2(x) if self.softmax: x = F.softmax(x, dim=1) x = torch.cat([x, c3], 1) x = self.conv7(x) x = self.up3(x) if self.softmax: x = F.softmax(x, dim=1) x = torch.cat([x, c2], 1) x = self.conv8(x) x = self.up4(x) if self.softmax: x = F.softmax(x, dim=1) x = torch.cat([x, c1], 1) x = self.conv9(x) if self.residual: x = torch.add(x, self.convres(c0)) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 17424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x2 = xindex // 4356 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 139392 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x4 = xindex // 4356 x2 = xindex // 4356 % 8 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 8 x3 = xindex x0 = xindex % 4096 x2 = xindex // 32768 tmp21 = tl.load(in_out_ptr0 + x3, None) tmp22 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1], 1, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tmp2 & tmp2 tmp4 = tl.load(in_out_ptr0 + x3, tmp3, other=0.0) tmp5 = tl.load(in_ptr0 + x1, tmp3, eviction_policy='evict_last', other=0.0) tmp6 = tmp4 + tmp5 tmp7 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp3, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp3, tmp8, tmp9) tmp11 = tl.load(in_out_ptr0 + x3, tmp2, other=0.0) tmp12 = tl.load(in_ptr0 + x1, tmp2, eviction_policy='evict_last', other=0.0 ) tmp13 = tmp11 + tmp12 tmp14 = tl.where(tmp2, tmp10, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp2, tmp14, tmp15) tmp17 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp2, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp13 + tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp2, tmp18, tmp19) tmp23 = tmp21 + tmp22 tmp24 = tl.where(tmp2, tmp20, tmp23) tmp25 = tl.where(tmp2, tmp16, tmp24) tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 0.01 tmp29 = tmp25 * tmp28 tmp30 = tl.where(tmp27, tmp25, tmp29) tl.store(in_out_ptr0 + x3, tmp30, None) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 36992 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x2 = xindex // 1156 x3 = xindex tmp0 = tl.load(in_ptr0 + (4030 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4031 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4094 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4095 + -128 * tl_math.abs(-31 + tl_math.abs(- 1 + x1)) + -2 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 4096 * x2 ), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1024 % 16 x5 = xindex x0 = xindex % 32 x3 = xindex // 16384 x6 = xindex // 32 % 512 tmp18 = tl.load(in_out_ptr0 + x5, None) tmp19 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 8, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + x5, tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + x2, tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + (2 * x0 + 128 * x6 + 32768 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + 2 * x0 + 128 * x6 + 32768 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (64 + 2 * x0 + 128 * x6 + 32768 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (65 + 2 * x0 + 128 * x6 + 32768 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + x5, tmp27, None) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 20736 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = xindex // 18 % 18 x2 = xindex // 324 x3 = xindex tmp0 = tl.load(in_ptr0 + (990 + -64 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + 1024 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (991 + -64 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + 1024 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1022 + -64 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + 1024 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1023 + -64 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + 1024 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = xindex // 18 % 18 x4 = xindex // 324 x2 = xindex // 324 % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 256 % 32 x5 = xindex x0 = xindex % 16 x3 = xindex // 8192 x6 = xindex // 16 % 512 tmp18 = tl.load(in_out_ptr0 + x5, None) tmp19 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 16, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + x5, tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + x2, tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + (2 * x0 + 64 * x6 + 16384 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + 2 * x0 + 64 * x6 + 16384 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (32 + 2 * x0 + 64 * x6 + 16384 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (33 + 2 * x0 + 64 * x6 + 16384 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + x5, tmp27, None) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = xindex // 10 % 10 x2 = xindex // 100 x3 = xindex tmp0 = tl.load(in_ptr0 + (238 + -32 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + 256 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (239 + -32 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + 256 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (254 + -32 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + 256 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (255 + -32 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + 256 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = xindex // 10 % 10 x4 = xindex // 100 x2 = xindex // 100 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_11(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 64 % 64 x5 = xindex x0 = xindex % 8 x3 = xindex // 4096 x6 = xindex // 8 % 512 tmp18 = tl.load(in_out_ptr0 + x5, None) tmp19 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 32, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_out_ptr0 + x5, tmp2, other=0.0) tmp4 = tl.load(in_ptr0 + x2, tmp2, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.load(in_ptr1 + (2 * x0 + 32 * x6 + 8192 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (1 + 2 * x0 + 32 * x6 + 8192 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 + tmp6 tmp9 = tl.load(in_ptr1 + (16 + 2 * x0 + 32 * x6 + 8192 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp10 = tmp9 + tmp8 tmp11 = tl.load(in_ptr1 + (17 + 2 * x0 + 32 * x6 + 8192 * x3), tmp2, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp10 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp5 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp2, tmp15, tmp16) tmp20 = tmp18 + tmp19 tmp21 = tl.where(tmp2, tmp17, tmp20) tmp22 = tl.where(tmp2, tmp21, tmp21) tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.01 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + x5, tmp27, None) @triton.jit def triton_poi_fused_avg_pool2d_reflection_pad2d_12(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (54 + -16 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + 64 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (55 + -16 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + 64 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (62 + -16 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + 64 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + -16 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + -2 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + 64 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x4 = xindex // 36 x2 = xindex // 36 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_leaky_relu_backward_14( in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x4 = xindex x2 = xindex // 16 % 64 x0 = xindex % 4 x5 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x4, None) tmp1 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (2 * x0 + 16 * x5), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (1 + 2 * x0 + 16 * x5), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr1 + (8 + 2 * x0 + 16 * x5), None, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr1 + (9 + 2 * x0 + 16 * x5), None, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp4 + tmp3 tmp7 = tmp6 + tmp5 tmp9 = tmp8 + tmp7 tmp10 = 0.25 tmp11 = tmp9 * tmp10 tmp12 = tmp2 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.01 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tmp17 > tmp13 tl.store(in_out_ptr0 + x4, tmp12, None) tl.store(out_ptr0 + x4, tmp18, None) @triton.jit def triton_poi_fused_arange_15(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_16(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_17(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_18(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_19(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 4 * tmp4 + 16 * x2), None, eviction_policy='evict_last') tmp10 = 0.0 tmp11 = tmp9 > tmp10 tmp12 = 0.01 tmp13 = tmp9 * tmp12 tmp14 = tl.where(tmp11, tmp9, tmp13) tmp16 = tmp15 + tmp1 tmp17 = tmp15 < 0 tmp18 = tl.where(tmp17, tmp16, tmp15) tmp19 = tl.load(in_ptr2 + (tmp18 + 4 * tmp4 + 16 * x2), None, eviction_policy='evict_last') tmp20 = tmp19 > tmp10 tmp21 = tmp19 * tmp12 tmp22 = tl.where(tmp20, tmp19, tmp21) tmp23 = tmp22 - tmp14 tmp25 = tmp23 * tmp24 tmp26 = tmp14 + tmp25 tl.store(out_ptr0 + x4, tmp26, None) @triton.jit def triton_poi_fused_cat_20(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 64 % 128 x3 = xindex // 8192 x4 = xindex % 64 x1 = xindex // 8 % 8 x0 = xindex % 8 x5 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + 64 * x2 + 4096 * x3), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([XBLOCK], 4, tl.int32) tmp8 = tmp6 + tmp7 tmp9 = tmp6 < 0 tmp10 = tl.where(tmp9, tmp8, tmp6) tmp11 = tl.load(in_ptr2 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp12 = tmp11 + tmp7 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tmp15 = tl.load(in_ptr3 + (tmp14 + 4 * tmp10 + 16 * x2 + 1024 * x3), tmp4, eviction_policy='evict_last', other=0.0) tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.01 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.load(in_ptr4 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp22 = tmp21 + tmp7 tmp23 = tmp21 < 0 tmp24 = tl.where(tmp23, tmp22, tmp21) tmp25 = tl.load(in_ptr3 + (tmp24 + 4 * tmp10 + 16 * x2 + 1024 * x3), tmp4, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp16 tmp27 = tmp25 * tmp18 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tmp28 - tmp20 tmp30 = tl.load(in_ptr5 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp31 = tmp29 * tmp30 tmp32 = tmp20 + tmp31 tmp33 = tmp32 - tmp5 tmp34 = tl.load(in_ptr6 + x1, tmp4, eviction_policy='evict_last', other=0.0 ) tmp35 = tmp33 * tmp34 tmp36 = tmp5 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tl.full([1], 128, tl.int64) tmp42 = tl.load(in_ptr7 + (x4 + 64 * (-64 + x2) + 4096 * x3), tmp39, other=0.0) tmp43 = tl.where(tmp4, tmp38, tmp42) tl.store(out_ptr0 + x5, tmp43, None) @triton.jit def triton_poi_fused_reflection_pad2d_21(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = xindex // 10 % 10 x2 = xindex // 100 x3 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = xindex // 10 % 10 x4 = xindex // 100 x2 = xindex // 100 % 32 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_arange_23(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 7, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 16 x0 = xindex % 16 x5 = xindex // 256 x2 = xindex // 256 % 32 x3 = xindex // 8192 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 8 * tmp4 + 64 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr4 + (tmp8 + 8 * tmp4 + 64 * x2 + 8192 * x3), None, eviction_policy='evict_last') tmp13 = tmp11 + tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.01 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tmp20 = tmp19 + tmp1 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tmp23 = tl.load(in_ptr2 + (tmp8 + 8 * tmp22 + 64 * x5), None, eviction_policy='evict_last') tmp24 = tmp23 + tmp10 tmp25 = tl.load(in_ptr4 + (tmp8 + 8 * tmp22 + 64 * x2 + 8192 * x3), None, eviction_policy='evict_last') tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp14 tmp28 = tmp26 * tmp16 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp33 + 8 * tmp22 + 64 * x5), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tl.load(in_ptr4 + (tmp33 + 8 * tmp22 + 64 * x2 + 8192 * x3), None, eviction_policy='evict_last') tmp37 = tmp35 + tmp36 tmp38 = tmp37 > tmp14 tmp39 = tmp37 * tmp16 tmp40 = tl.where(tmp38, tmp37, tmp39) tmp41 = tmp40 - tmp29 tmp43 = tmp41 * tmp42 tmp44 = tmp29 + tmp43 tmp45 = tl.load(in_ptr2 + (tmp33 + 8 * tmp4 + 64 * x5), None, eviction_policy='evict_last') tmp46 = tmp45 + tmp10 tmp47 = tl.load(in_ptr4 + (tmp33 + 8 * tmp4 + 64 * x2 + 8192 * x3), None, eviction_policy='evict_last') tmp48 = tmp46 + tmp47 tmp49 = tmp48 > tmp14 tmp50 = tmp48 * tmp16 tmp51 = tl.where(tmp49, tmp48, tmp50) tmp52 = tmp51 - tmp18 tmp53 = tmp52 * tmp42 tmp54 = tmp18 + tmp53 tmp55 = tmp54 - tmp44 tmp57 = tmp55 * tmp56 tl.store(in_out_ptr0 + x6, tmp44, None) tl.store(in_out_ptr1 + x6, tmp57, None) @triton.jit def triton_poi_fused_cat_reflection_pad2d_28(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 324 % 64 x0 = xindex % 18 x1 = xindex // 18 % 18 x3 = xindex // 20736 x4 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2 + 8192 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2 + 8192 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 64, tl.int64) tmp13 = tl.load(in_ptr2 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * (-32 + x2) + 8192 * x3), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_29(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 20736 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = xindex // 18 % 18 x4 = xindex // 324 x2 = xindex // 324 % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_30( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 16 x0 = xindex % 256 x2 = xindex // 4096 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = x1 tl.full([1], 0, tl.int64) tmp6 = tl.full([1], 32, tl.int64) tmp7 = tmp3 < tmp6 tmp8 = tl.load(in_ptr1 + (x0 + 256 * x1 + 8192 * x2), tmp7, other=0.0) tmp9 = tl.load(in_ptr2 + (x0 + 256 * x1 + 8192 * x2), tmp7, other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp7, tmp10, tmp11) tmp13 = tmp3 >= tmp6 tl.full([1], 64, tl.int64) tmp16 = tl.load(in_ptr3 + (x0 + 256 * (-32 + x1) + 8192 * x2), tmp13, other=0.0) tmp17 = tl.where(tmp7, tmp12, tmp16) tmp18 = tmp2 + tmp17 tmp19 = 0.0 tmp20 = tmp18 > tmp19 tmp21 = 0.01 tmp22 = tmp18 * tmp21 tmp23 = tl.where(tmp20, tmp18, tmp22) tmp24 = tmp23 > tmp19 tl.store(in_out_ptr0 + x3, tmp18, None) tl.store(out_ptr0 + x3, tmp24, None) @triton.jit def triton_poi_fused_arange_31(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_32(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_33(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_34(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x2 = xindex // 1024 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 16 * tmp4 + 256 * x2), None, eviction_policy='evict_last') tmp10 = 0.0 tmp11 = tmp9 > tmp10 tmp12 = 0.01 tmp13 = tmp9 * tmp12 tmp14 = tl.where(tmp11, tmp9, tmp13) tmp16 = tmp15 + tmp1 tmp17 = tmp15 < 0 tmp18 = tl.where(tmp17, tmp16, tmp15) tmp19 = tl.load(in_ptr2 + (tmp18 + 16 * tmp4 + 256 * x2), None, eviction_policy='evict_last') tmp20 = tmp19 > tmp10 tmp21 = tmp19 * tmp12 tmp22 = tl.where(tmp20, tmp19, tmp21) tmp23 = tmp22 - tmp14 tmp25 = tmp23 * tmp24 tmp26 = tmp14 + tmp25 tl.store(out_ptr0 + x4, tmp26, None) @triton.jit def triton_poi_fused_cat_36(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1024 % 32 x3 = xindex // 32768 x4 = xindex % 1024 x1 = xindex // 32 % 32 x0 = xindex % 32 x5 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + 1024 * x2 + 16384 * x3), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([XBLOCK], 16, tl.int32) tmp8 = tmp6 + tmp7 tmp9 = tmp6 < 0 tmp10 = tl.where(tmp9, tmp8, tmp6) tmp11 = tl.load(in_ptr2 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp12 = tmp11 + tmp7 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tmp15 = tl.load(in_ptr3 + (tmp14 + 16 * tmp10 + 256 * x2 + 4096 * x3), tmp4, eviction_policy='evict_last', other=0.0) tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.01 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.load(in_ptr4 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp22 = tmp21 + tmp7 tmp23 = tmp21 < 0 tmp24 = tl.where(tmp23, tmp22, tmp21) tmp25 = tl.load(in_ptr3 + (tmp24 + 16 * tmp10 + 256 * x2 + 4096 * x3), tmp4, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp16 tmp27 = tmp25 * tmp18 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tmp28 - tmp20 tmp30 = tl.load(in_ptr5 + x0, tmp4, eviction_policy='evict_last', other=0.0 ) tmp31 = tmp29 * tmp30 tmp32 = tmp20 + tmp31 tmp33 = tmp32 - tmp5 tmp34 = tl.load(in_ptr6 + x1, tmp4, eviction_policy='evict_last', other=0.0 ) tmp35 = tmp33 * tmp34 tmp36 = tmp5 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tl.full([1], 32, tl.int64) tmp42 = tl.load(in_ptr7 + (x4 + 1024 * (-16 + x2) + 16384 * x3), tmp39, other=0.0) tmp43 = tl.where(tmp4, tmp38, tmp42) tl.store(out_ptr0 + x5, tmp43, None) @triton.jit def triton_poi_fused_reflection_pad2d_37(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x2 = xindex // 1156 x3 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_38(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 36992 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 8 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x5, tmp7, xmask) @triton.jit def triton_poi_fused_arange_39(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_40(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_41(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_clamp_mul_sub_42(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_43( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex // 4096 x2 = xindex // 4096 % 8 x3 = xindex // 32768 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr4 + (tmp8 + 32 * tmp4 + 1024 * x2 + 32768 * x3), None, eviction_policy='evict_last') tmp13 = tmp11 + tmp12 tmp14 = 0.0 tmp15 = tmp13 > tmp14 tmp16 = 0.01 tmp17 = tmp13 * tmp16 tmp18 = tl.where(tmp15, tmp13, tmp17) tmp20 = tmp19 + tmp1 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tmp23 = tl.load(in_ptr2 + (tmp8 + 32 * tmp22 + 1024 * x5), None, eviction_policy='evict_last') tmp24 = tmp23 + tmp10 tmp25 = tl.load(in_ptr4 + (tmp8 + 32 * tmp22 + 1024 * x2 + 32768 * x3), None, eviction_policy='evict_last') tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp14 tmp28 = tmp26 * tmp16 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp33 + 32 * tmp22 + 1024 * x5), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tl.load(in_ptr4 + (tmp33 + 32 * tmp22 + 1024 * x2 + 32768 * x3), None, eviction_policy='evict_last') tmp37 = tmp35 + tmp36 tmp38 = tmp37 > tmp14 tmp39 = tmp37 * tmp16 tmp40 = tl.where(tmp38, tmp37, tmp39) tmp41 = tmp40 - tmp29 tmp43 = tmp41 * tmp42 tmp44 = tmp29 + tmp43 tmp45 = tl.load(in_ptr2 + (tmp33 + 32 * tmp4 + 1024 * x5), None, eviction_policy='evict_last') tmp46 = tmp45 + tmp10 tmp47 = tl.load(in_ptr4 + (tmp33 + 32 * tmp4 + 1024 * x2 + 32768 * x3), None, eviction_policy='evict_last') tmp48 = tmp46 + tmp47 tmp49 = tmp48 > tmp14 tmp50 = tmp48 * tmp16 tmp51 = tl.where(tmp49, tmp48, tmp50) tmp52 = tmp51 - tmp18 tmp53 = tmp52 * tmp42 tmp54 = tmp18 + tmp53 tmp55 = tmp54 - tmp44 tmp57 = tmp55 * tmp56 tl.store(in_out_ptr0 + x6, tmp44, None) tl.store(in_out_ptr1 + x6, tmp57, None) @triton.jit def triton_poi_fused_cat_reflection_pad2d_44(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 4356 % 16 x0 = xindex % 66 x1 = xindex // 66 % 66 x3 = xindex // 69696 x4 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2 + 32768 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2 + 32768 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 16, tl.int64) tmp13 = tl.load(in_ptr2 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * (-8 + x2) + 32768 * x3), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 17424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x2 = xindex // 4356 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_46( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 x1 = xindex // 4096 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp24 = tl.load(in_ptr4 + x2, None) tmp25 = tl.load(in_ptr5 + 0) tmp26 = tl.broadcast_to(tmp25, [XBLOCK]) tmp28 = tl.load(in_ptr6 + x2, None) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int64) tmp6 = tl.full([1], 8, tl.int64) tmp7 = tmp4 < tmp6 tmp8 = tl.load(in_ptr1 + (x0 + 4096 * 0 + 32768 * x1), tmp7, other=0.0) tmp9 = tl.load(in_ptr2 + (x0 + 4096 * 0 + 32768 * x1), tmp7, other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp7, tmp10, tmp11) tmp13 = tmp4 >= tmp6 tl.full([1], 16, tl.int64) tmp16 = tl.load(in_ptr3 + (x0 + 4096 * -8 + 32768 * x1), tmp13, other=0.0) tmp17 = tl.where(tmp7, tmp12, tmp16) tmp18 = tmp3 + tmp17 tmp19 = 0.0 tmp20 = tmp18 > tmp19 tmp21 = 0.01 tmp22 = tmp18 * tmp21 tmp23 = tl.where(tmp20, tmp18, tmp22) tmp27 = tmp24 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tmp29 > tmp19 tmp31 = tmp29 * tmp21 tmp32 = tl.where(tmp30, tmp29, tmp31) tmp33 = tmp23 + tmp32 tmp34 = tmp32 > tmp19 tmp35 = tmp23 > tmp19 tl.store(out_ptr0 + x2, tmp33, None) tl.store(out_ptr1 + x2, tmp34, None) tl.store(out_ptr2 + x2, tmp35, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = tmp8 > tmp4 tl.store(out_ptr0 + x0, tmp9, None) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_48(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 8 x2 = xindex // 8192 x4 = xindex % 8192 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4 + 32768 * x2), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.01 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_49(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 8 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_50(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 16 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_51(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 32 x2 = xindex // 2048 x4 = xindex % 2048 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4 + 8192 * x2), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.01 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = tmp9 > tmp5 tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_52(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_53(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_54(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_55(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_56(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 16 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_57(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 8 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41) = args args.clear() assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_2, (8, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (32,), (1,)) assert_size_stride(primals_14, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64,), (1,)) assert_size_stride(primals_22, (32, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (32,), (1,)) assert_size_stride(primals_24, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_25, (32,), (1,)) assert_size_stride(primals_26, (16, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (16,), (1,)) assert_size_stride(primals_28, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_29, (16,), (1,)) assert_size_stride(primals_30, (8, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_31, (8,), (1,)) assert_size_stride(primals_32, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_33, (8,), (1,)) assert_size_stride(primals_34, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_35, (1,), (1,)) assert_size_stride(primals_36, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_37, (1,), (1,)) assert_size_stride(primals_38, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_39, (1,), (1,)) assert_size_stride(primals_40, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_41, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(17424)](primals_1, buf0, 17424, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf2 = empty_strided_cuda((4, 8, 66, 66), (34848, 4356, 66, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_1[grid(139392) ](buf1, primals_3, buf2, 139392, XBLOCK=512, num_warps=8, num_stages=1) buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf4 = buf3 del buf3 triton_poi_fused_add_convolution_leaky_relu_2[grid(131072)](buf4, primals_5, primals_1, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 8, 34, 34), (9248, 1156, 34, 1), torch.float32) triton_poi_fused_avg_pool2d_reflection_pad2d_3[grid(36992)](buf4, buf5, 36992, XBLOCK=256, num_warps=4, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf7 = empty_strided_cuda((4, 16, 34, 34), (18496, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_4[grid(73984) ](buf6, primals_7, buf7, 73984, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf9 = buf8 del buf8 buf10 = buf9 del buf9 triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_5[grid(65536)]( buf10, primals_9, buf4, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf11 = empty_strided_cuda((4, 16, 18, 18), (5184, 324, 18, 1), torch.float32) triton_poi_fused_avg_pool2d_reflection_pad2d_6[grid(20736)](buf10, buf11, 20736, XBLOCK=256, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 16, 16), (8192, 256, 16, 1)) buf13 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_7[grid(41472) ](buf12, primals_11, buf13, 41472, XBLOCK=256, num_warps=4, num_stages=1) buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 32, 16, 16), (8192, 256, 16, 1)) buf15 = buf14 del buf14 buf16 = buf15 del buf15 triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_8[grid(32768)]( buf16, primals_13, buf10, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 buf17 = empty_strided_cuda((4, 32, 10, 10), (3200, 100, 10, 1), torch.float32) triton_poi_fused_avg_pool2d_reflection_pad2d_9[grid(12800)](buf16, buf17, 12800, XBLOCK=128, num_warps=4, num_stages=1) buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 8, 8), (4096, 64, 8, 1)) buf19 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_10[grid(25600) ](buf18, primals_15, buf19, 25600, XBLOCK=256, num_warps=4, num_stages=1) buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 8, 8), (4096, 64, 8, 1)) buf21 = buf20 del buf20 buf22 = buf21 del buf21 triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_11[grid(16384)]( buf22, primals_17, buf16, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf23 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch. float32) triton_poi_fused_avg_pool2d_reflection_pad2d_12[grid(9216)](buf22, buf23, 9216, XBLOCK=128, num_warps=4, num_stages=1) buf24 = extern_kernels.convolution(buf23, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 4, 4), (1024, 16, 4, 1)) buf25 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_13[grid(9216) ](buf24, primals_19, buf25, 9216, XBLOCK=256, num_warps=4, num_stages=1) buf26 = extern_kernels.convolution(buf25, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 64, 4, 4), (1024, 16, 4, 1)) buf27 = buf26 del buf26 buf100 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool ) triton_poi_fused_add_avg_pool2d_convolution_leaky_relu_leaky_relu_backward_14[ grid(4096)](buf27, primals_21, buf22, buf100, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_21 buf28 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused_arange_15[grid(8)](buf28, 8, XBLOCK=8, num_warps=1, num_stages=1) buf29 = empty_strided_cuda((8, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_16[grid(8)](buf29, 8, XBLOCK=8, num_warps =1, num_stages=1) buf30 = empty_strided_cuda((8, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_17[grid(8)](buf30, 8, XBLOCK=8, num_warps=1, num_stages=1) buf31 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_16[grid(8)](buf31, 8, XBLOCK=8, num_warps =1, num_stages=1) buf32 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused_add_clamp_17[grid(8)](buf32, 8, XBLOCK=8, num_warps=1, num_stages=1) buf33 = empty_strided_cuda((8,), (1,), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_18[grid(8)](buf33, 8, XBLOCK=8, num_warps=1, num_stages=1) buf34 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch. float32) triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_19[grid(16384)]( buf29, buf31, buf27, buf32, buf33, buf34, 16384, XBLOCK=256, num_warps=4, num_stages=1) buf35 = empty_strided_cuda((8, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_18[grid(8)](buf35, 8, XBLOCK=8, num_warps=1, num_stages=1) buf36 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch. float32) triton_poi_fused_cat_20[grid(32768)](buf34, buf30, buf31, buf27, buf32, buf33, buf35, buf22, buf36, 32768, XBLOCK=256, num_warps =4, num_stages=1) del buf27 del buf34 buf37 = empty_strided_cuda((4, 128, 10, 10), (12800, 100, 10, 1), torch.float32) triton_poi_fused_reflection_pad2d_21[grid(51200)](buf36, buf37, 51200, XBLOCK=512, num_warps=4, num_stages=1) buf38 = extern_kernels.convolution(buf37, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 32, 8, 8), (2048, 64, 8, 1)) buf39 = empty_strided_cuda((4, 32, 10, 10), (3200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_22[grid(12800) ](buf38, primals_23, buf39, 12800, XBLOCK=256, num_warps=4, num_stages=1) buf40 = extern_kernels.convolution(buf39, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 32, 8, 8), (2048, 64, 8, 1)) buf41 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused_arange_23[grid(16)](buf41, 16, XBLOCK=16, num_warps=1, num_stages=1) buf42 = empty_strided_cuda((16, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_24[grid(16)](buf42, 16, XBLOCK=16, num_warps=1, num_stages=1) buf43 = empty_strided_cuda((16, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_25[grid(16)](buf43, 16, XBLOCK=16, num_warps=1, num_stages=1) buf44 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_24[grid(16)](buf44, 16, XBLOCK=16, num_warps=1, num_stages=1) buf45 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused_add_clamp_25[grid(16)](buf45, 16, XBLOCK=16, num_warps=1, num_stages=1) buf48 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_26[grid(16)](buf48, 16, XBLOCK=16, num_warps=1, num_stages=1) buf50 = empty_strided_cuda((16, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_26[grid(16)](buf50, 16, XBLOCK=16, num_warps=1, num_stages=1) buf47 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf46 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf49 = buf46 del buf46 buf51 = buf47 del buf47 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27[ grid(32768)](buf49, buf51, buf43, buf44, buf40, primals_25, buf36, buf42, buf45, buf48, buf50, 32768, XBLOCK=256, num_warps =4, num_stages=1) buf52 = empty_strided_cuda((4, 64, 18, 18), (20736, 324, 18, 1), torch.float32) triton_poi_fused_cat_reflection_pad2d_28[grid(82944)](buf49, buf51, buf16, buf52, 82944, XBLOCK=512, num_warps=8, num_stages=1) buf53 = extern_kernels.convolution(buf52, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 16, 16, 16), (4096, 256, 16, 1)) buf54 = empty_strided_cuda((4, 16, 18, 18), (5184, 324, 18, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_29[grid(20736) ](buf53, primals_27, buf54, 20736, XBLOCK=256, num_warps=4, num_stages=1) buf55 = extern_kernels.convolution(buf54, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 16, 16, 16), (4096, 256, 16, 1)) buf56 = buf55 del buf55 buf96 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.bool) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_30[grid (16384)](buf56, primals_29, buf49, buf51, buf16, buf96, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf49 del buf51 del primals_29 buf57 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_arange_31[grid(32)](buf57, 32, XBLOCK=32, num_warps=1, num_stages=1) buf58 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_32[grid(32)](buf58, 32, XBLOCK=32, num_warps=1, num_stages=1) buf59 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_33[grid(32)](buf59, 32, XBLOCK=32, num_warps=1, num_stages=1) buf60 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_32[grid(32)](buf60, 32, XBLOCK=32, num_warps=1, num_stages=1) buf61 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_add_clamp_33[grid(32)](buf61, 32, XBLOCK=32, num_warps=1, num_stages=1) buf62 = empty_strided_cuda((32,), (1,), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_34[grid(32)](buf62, 32, XBLOCK=32, num_warps=1, num_stages=1) buf63 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32) triton_poi_fused__unsafe_index_add_leaky_relu_mul_sub_35[grid(65536)]( buf58, buf60, buf56, buf61, buf62, buf63, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf64 = empty_strided_cuda((32, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_34[grid(32)](buf64, 32, XBLOCK=32, num_warps=1, num_stages=1) buf65 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) triton_poi_fused_cat_36[grid(131072)](buf63, buf59, buf60, buf56, buf61, buf62, buf64, buf10, buf65, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf63 buf66 = empty_strided_cuda((4, 32, 34, 34), (36992, 1156, 34, 1), torch.float32) triton_poi_fused_reflection_pad2d_37[grid(147968)](buf65, buf66, 147968, XBLOCK=512, num_warps=8, num_stages=1) buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 8, 32, 32), (8192, 1024, 32, 1)) buf68 = empty_strided_cuda((4, 8, 34, 34), (9248, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_38[grid(36992) ](buf67, primals_31, buf68, 36992, XBLOCK=512, num_warps=4, num_stages=1) buf69 = extern_kernels.convolution(buf68, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf69, (4, 8, 32, 32), (8192, 1024, 32, 1)) buf70 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_arange_39[grid(64)](buf70, 64, XBLOCK=64, num_warps=1, num_stages=1) buf71 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_40[grid(64)](buf71, 64, XBLOCK=64, num_warps=1, num_stages=1) buf72 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_41[grid(64)](buf72, 64, XBLOCK=64, num_warps=1, num_stages=1) buf73 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_40[grid(64)](buf73, 64, XBLOCK=64, num_warps=1, num_stages=1) buf74 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_add_clamp_41[grid(64)](buf74, 64, XBLOCK=64, num_warps=1, num_stages=1) buf77 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_42[grid(64)](buf77, 64, XBLOCK=64, num_warps=1, num_stages=1) buf79 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_clamp_mul_sub_42[grid(64)](buf79, 64, XBLOCK=64, num_warps=1, num_stages=1) buf76 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf75 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32) buf78 = buf75 del buf75 buf80 = buf76 del buf76 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_43[ grid(131072)](buf78, buf80, buf72, buf73, buf69, primals_33, buf65, buf71, buf74, buf77, buf79, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf81 = empty_strided_cuda((4, 16, 66, 66), (69696, 4356, 66, 1), torch.float32) triton_poi_fused_cat_reflection_pad2d_44[grid(278784)](buf78, buf80, buf4, buf81, 278784, XBLOCK=512, num_warps=8, num_stages=1) buf82 = extern_kernels.convolution(buf81, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf82, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf83 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45[grid(17424) ](buf82, primals_35, buf83, 17424, XBLOCK=128, num_warps=4, num_stages=1) buf84 = extern_kernels.convolution(buf83, primals_36, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf84, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf86 = extern_kernels.convolution(buf0, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf87 = empty_strided_cuda((4, 1, 66, 66), (4356, 4356, 66, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_reflection_pad2d_45[grid(17424) ](buf86, primals_39, buf87, 17424, XBLOCK=128, num_warps=4, num_stages=1) buf88 = extern_kernels.convolution(buf87, primals_40, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf88, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf85 = reinterpret_tensor(buf84, (4, 1, 64, 64), (4096, 16384, 64, 1), 0) del buf84 buf89 = reinterpret_tensor(buf56, (4, 1, 64, 64), (4096, 4096, 64, 1), 0) del buf56 buf90 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) buf92 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_46[grid (16384)](buf85, primals_37, buf78, buf80, buf4, buf88, primals_41, primals_1, buf89, buf90, buf92, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf78 del buf80 del buf85 del buf88 del primals_1 del primals_37 del primals_41 buf91 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47[grid (16384)](buf86, primals_39, buf91, 16384, XBLOCK=256, num_warps =4, num_stages=1) del buf86 del primals_39 buf93 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_47[grid (16384)](buf82, primals_35, buf93, 16384, XBLOCK=256, num_warps =4, num_stages=1) del buf82 del primals_35 buf94 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.bool) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_48[grid (32768)](buf69, primals_33, buf65, buf94, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf65 del buf69 del primals_33 buf95 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_49[grid (32768)](buf67, primals_31, buf95, 32768, XBLOCK=128, num_warps =4, num_stages=1) del buf67 del primals_31 buf97 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_50[grid (16384)](buf53, primals_27, buf97, 16384, XBLOCK=256, num_warps =4, num_stages=1) del buf53 del primals_27 buf98 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) triton_poi_fused_add_convolution_leaky_relu_leaky_relu_backward_51[grid (8192)](buf40, primals_25, buf36, buf98, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf36 del buf40 del primals_25 buf99 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_52[grid (8192)](buf38, primals_23, buf99, 8192, XBLOCK=256, num_warps=4, num_stages=1) del buf38 del primals_23 buf101 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_53[grid (4096)](buf24, primals_19, buf101, 4096, XBLOCK=128, num_warps= 4, num_stages=1) del buf24 del primals_19 buf102 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool ) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_54[grid (16384)](buf18, primals_15, buf102, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf18 del primals_15 buf103 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_55[grid (32768)](buf12, primals_11, buf103, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf12 del primals_11 buf104 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_56[grid (65536)](buf6, primals_7, buf104, 65536, XBLOCK=256, num_warps= 4, num_stages=1) del buf6 del primals_7 buf105 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_57[grid (131072)](buf1, primals_3, buf105, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf1 del primals_3 return (buf89, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, buf0, buf2, buf4, buf5, buf7, buf10, buf11, buf13, buf16, buf17, buf19, buf22, buf23, buf25, buf28, buf29, buf30, buf31, buf32, buf33, buf35, buf37, buf39, buf41, buf42, buf43, buf44, buf45, buf48, buf50, buf52, buf54, buf57, buf58, buf59, buf60, buf61, buf62, buf64, buf66, buf68, buf70, buf71, buf72, buf73, buf74, buf77, buf79, buf81, buf83, buf87, buf90, buf91, buf92, buf93, buf94, buf95, buf96, buf97, buf98, buf99, buf100, buf101, buf102, buf103, buf104, buf105) class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, dropout=False, norm=None, residual=True, activation='leakyrelu', in_place_activation=True, transpose=False, reflectpad=True): super(ConvBlock, self).__init__() self.dropout = dropout self.residual = residual self.activation = activation self.transpose = transpose self.reflectpad = reflectpad if self.dropout: self.dropout1 = nn.Dropout2d(p=0.05) self.dropout2 = nn.Dropout2d(p=0.05) self.norm1 = None self.norm2 = None if norm is not None: if norm == 'batch': self.norm1 = nn.BatchNorm2d(out_channels) self.norm2 = nn.BatchNorm2d(out_channels) elif norm == 'instance': self.norm1 = nn.InstanceNorm2d(out_channels, affine=True) self.norm2 = nn.InstanceNorm2d(out_channels, affine=True) if self.transpose: self.conv1 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) else: self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=0 if self.reflectpad else 1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size= 3, padding=0 if self.reflectpad else 1) if self.activation == 'relu': self.actfun1 = nn.ReLU(inplace=in_place_activation) self.actfun2 = nn.ReLU(inplace=in_place_activation) elif self.activation == 'leakyrelu': self.actfun1 = nn.LeakyReLU(inplace=in_place_activation) self.actfun2 = nn.LeakyReLU(inplace=in_place_activation) elif self.activation == 'elu': self.actfun1 = nn.ELU(inplace=in_place_activation) self.actfun2 = nn.ELU(inplace=in_place_activation) elif self.activation == 'selu': self.actfun1 = nn.SELU(inplace=in_place_activation) self.actfun2 = nn.SELU(inplace=in_place_activation) if self.reflectpad: self.rpad1 = nn.ReflectionPad2d(1) self.rpad2 = nn.ReflectionPad2d(1) def forward(self, x): ox = x if self.reflectpad: x = self.rpad1(x) x = self.conv1(x) if self.dropout: x = self.dropout1(x) x = self.actfun1(x) if self.norm1: x = self.norm1(x) if self.reflectpad: x = self.rpad2(x) x = self.conv2(x) if self.dropout: x = self.dropout2(x) if self.residual: x[:, 0:min(ox.shape[1], x.shape[1]), :, :] += ox[:, 0:min(ox. shape[1], x.shape[1]), :, :] x = self.actfun2(x) if self.norm2: x = self.norm2(x) return x class UnetNew(nn.Module): def __init__(self, n_channel_in=1, n_channel_out=1, n_internal_channels =8, residual=True, down='avgpool', up='bilinear', activation= 'leakyrelu', norm=None, softmax=False): super(UnetNew, self).__init__() self.residual = residual self.softmax = softmax nic = n_internal_channels if down == 'maxpool': self.down1 = nn.MaxPool2d(kernel_size=2) self.down2 = nn.MaxPool2d(kernel_size=2) self.down3 = nn.MaxPool2d(kernel_size=2) self.down4 = nn.MaxPool2d(kernel_size=2) elif down == 'avgpool': self.down1 = nn.AvgPool2d(kernel_size=2) self.down2 = nn.AvgPool2d(kernel_size=2) self.down3 = nn.AvgPool2d(kernel_size=2) self.down4 = nn.AvgPool2d(kernel_size=2) elif down == 'convpool': self.down1 = nn.Conv2d(nic, nic, kernel_size=2, stride=2, groups=32 ) self.down2 = nn.Conv2d(nic * 2, nic * 2, kernel_size=2, stride= 2, groups=64) self.down3 = nn.Conv2d(nic * 4, nic * 4, kernel_size=2, stride= 2, groups=128) self.down4 = nn.Conv2d(nic * 8, nic * 8, kernel_size=2, stride= 2, groups=256) self.down1.weight.data = 0.01 * self.down1.weight.data + 0.25 self.down2.weight.data = 0.01 * self.down2.weight.data + 0.25 self.down3.weight.data = 0.01 * self.down3.weight.data + 0.25 self.down4.weight.data = 0.01 * self.down4.weight.data + 0.25 self.down1.bias.data = 0.01 * self.down1.bias.data + 0 self.down2.bias.data = 0.01 * self.down2.bias.data + 0 self.down3.bias.data = 0.01 * self.down3.bias.data + 0 self.down4.bias.data = 0.01 * self.down4.bias.data + 0 if up == 'bilinear' or up == 'nearest': self.up1 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) self.up2 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) self.up3 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) self.up4 = lambda x: nn.functional.interpolate(x, mode=up, scale_factor=2, align_corners=False) elif up == 'tconv': self.up1 = nn.ConvTranspose2d(nic * 8, nic * 8, kernel_size=2, stride=2, groups=nic * 8) self.up2 = nn.ConvTranspose2d(nic * 4, nic * 4, kernel_size=2, stride=2, groups=nic * 4) self.up3 = nn.ConvTranspose2d(nic * 2, nic * 2, kernel_size=2, stride=2, groups=nic * 2) self.up4 = nn.ConvTranspose2d(nic, nic, kernel_size=2, stride=2, groups=nic) self.up1.weight.data = 0.01 * self.up1.weight.data + 0.25 self.up2.weight.data = 0.01 * self.up2.weight.data + 0.25 self.up3.weight.data = 0.01 * self.up3.weight.data + 0.25 self.up4.weight.data = 0.01 * self.up4.weight.data + 0.25 self.up1.bias.data = 0.01 * self.up1.bias.data + 0 self.up2.bias.data = 0.01 * self.up2.bias.data + 0 self.up3.bias.data = 0.01 * self.up3.bias.data + 0 self.up4.bias.data = 0.01 * self.up4.bias.data + 0 self.conv1 = ConvBlock(n_channel_in, nic, residual=residual, activation=activation, norm=norm) self.conv2 = ConvBlock(nic, nic * 2, residual=residual, activation= activation, norm=norm) self.conv3 = ConvBlock(nic * 2, nic * 4, residual=residual, activation=activation, norm=norm) self.conv4 = ConvBlock(nic * 4, nic * 8, residual=residual, activation=activation, norm=norm) self.conv5 = ConvBlock(nic * 8, nic * 8, residual=residual, activation=activation, norm=norm) self.conv6 = ConvBlock(2 * nic * 8, nic * 4, residual=residual, activation=activation, norm=norm) self.conv7 = ConvBlock(2 * nic * 4, nic * 2, residual=residual, activation=activation, norm=norm) self.conv8 = ConvBlock(2 * nic * 2, nic, residual=residual, activation=activation, norm=norm) self.conv9 = ConvBlock(2 * nic, n_channel_out, residual=residual, activation=activation, norm=norm) if self.residual: self.convres = ConvBlock(n_channel_in, n_channel_out, residual= residual, activation=activation, norm=norm) def forward(self, input_0): primals_2 = self.conv1.conv1.weight primals_3 = self.conv1.conv1.bias primals_4 = self.conv1.conv2.weight primals_5 = self.conv1.conv2.bias primals_6 = self.conv2.conv1.weight primals_7 = self.conv2.conv1.bias primals_8 = self.conv2.conv2.weight primals_9 = self.conv2.conv2.bias primals_10 = self.conv3.conv1.weight primals_11 = self.conv3.conv1.bias primals_12 = self.conv3.conv2.weight primals_13 = self.conv3.conv2.bias primals_14 = self.conv4.conv1.weight primals_15 = self.conv4.conv1.bias primals_16 = self.conv4.conv2.weight primals_17 = self.conv4.conv2.bias primals_18 = self.conv5.conv1.weight primals_19 = self.conv5.conv1.bias primals_20 = self.conv5.conv2.weight primals_21 = self.conv5.conv2.bias primals_22 = self.conv6.conv1.weight primals_23 = self.conv6.conv1.bias primals_24 = self.conv6.conv2.weight primals_25 = self.conv6.conv2.bias primals_26 = self.conv7.conv1.weight primals_27 = self.conv7.conv1.bias primals_28 = self.conv7.conv2.weight primals_29 = self.conv7.conv2.bias primals_30 = self.conv8.conv1.weight primals_31 = self.conv8.conv1.bias primals_32 = self.conv8.conv2.weight primals_33 = self.conv8.conv2.bias primals_34 = self.conv9.conv1.weight primals_35 = self.conv9.conv1.bias primals_36 = self.conv9.conv2.weight primals_37 = self.conv9.conv2.bias primals_38 = self.convres.conv1.weight primals_39 = self.convres.conv1.bias primals_40 = self.convres.conv2.weight primals_41 = self.convres.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41]) return output[0]
royerloic/aydin
Unet
false
16,515
[ "BSD-3-Clause" ]
78
f9c61a24030891d008c318b250da5faec69fcd7d
https://github.com/royerloic/aydin/tree/f9c61a24030891d008c318b250da5faec69fcd7d
PatchMerging
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/tz/ctz4s34jpban53ykdl3djxhytegtz4ycnxn7aaoe24qmhatfxjii.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.native_layer_norm] # Source node to ATen node mapping: # x_1 => cat # x_2 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_4, %slice_8, %slice_12, %slice_16], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%cat, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_per_fused_cat_native_layer_norm_0 = async_compile.triton('triton_per_fused_cat_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1024, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cat_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1024 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x1 = (xindex // 16) % 16 r3 = rindex x0 = xindex % 16 x2 = (xindex // 256) x4 = xindex tmp46 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*r3) + (64*x0) + (1024*x1) + (4096*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1, 1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (32 + (2*r3) + (64*x0) + (1024*((-4) + x1)) + (4096*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1, 1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (1 + (2*r3) + (64*x0) + (1024*((-8) + x1)) + (4096*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1, 1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (33 + (2*r3) + (64*x0) + (1024*((-12) + x1)) + (4096*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp25 = tl.where(xmask, tmp23, 0) tmp26 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp28 = tl.where(xmask, tmp26, 0) tmp29 = tl.sum(tmp28, 1)[:, None] tmp30 = tl.full([XBLOCK, 1], 16, tl.int32) tmp31 = tmp30.to(tl.float32) tmp32 = tmp29 / tmp31 tmp33 = tmp23 - tmp32 tmp34 = tmp33 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.where(xmask, tmp35, 0) tmp38 = tl.sum(tmp37, 1)[:, None] tmp39 = 16.0 tmp40 = tmp38 / tmp39 tmp41 = 1e-05 tmp42 = tmp40 + tmp41 tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp22 - tmp32 tmp45 = tmp44 * tmp43 tmp47 = tmp45 * tmp46 tmp49 = tmp47 + tmp48 tl.store(out_ptr0 + (r3 + (16*x4)), tmp22, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + (x4), tmp43, xmask) tl.store(out_ptr2 + (r3 + (16*x4)), tmp49, xmask) tl.store(out_ptr1 + (x4), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 32, 32), (4096, 1024, 32, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (8, 16, 1, 1), (16, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32) buf1 = empty_strided_cuda((4, 16, 16, 1), (256, 16, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 16, 16, 1), (256, 16, 1, 1024), torch.float32) buf4 = reinterpret_tensor(buf2, (4, 16, 16, 1), (256, 16, 1, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.native_layer_norm] stream0 = get_raw_stream(0) triton_per_fused_cat_native_layer_norm_0.run(buf4, primals_1, primals_2, primals_3, buf0, buf1, buf5, 1024, 16, grid=grid(1024), stream=stream0) del primals_1 del primals_2 del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 8, 16, 16), (2048, 256, 16, 1)) return (buf6, primals_4, buf0, buf1, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 32, 32), (4096, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch import optim as optim class PatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Conv2d(4 * dim, 2 * dim, 1, 1, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ B, C, H, W = x.shape assert H % 2 == 0 and W % 2 == 0, f'x size ({H}*{W}) are not even.' x = x.view(B, C, H, W) x0 = x[:, :, 0::2, 0::2] x1 = x[:, :, 1::2, 0::2] x2 = x[:, :, 0::2, 1::2] x3 = x[:, :, 1::2, 1::2] x = torch.cat([x0, x1, x2, x3], 1) x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) ->str: return f'input_resolution={self.input_resolution}, dim={self.dim}' def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += H // 2 * (W // 2) * 4 * self.dim * 2 * self.dim return flops def get_inputs(): return [torch.rand([4, 4, 32, 32])] def get_init_inputs(): return [[], {'input_resolution': 4, 'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_cat_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr ): xnumel = 1024 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x1 = xindex // 16 % 16 r3 = rindex x0 = xindex % 16 x2 = xindex // 256 x4 = xindex tmp46 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp0 = x1 tl.full([1, 1], 0, tl.int64) tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * r3 + 64 * x0 + 1024 * x1 + 4096 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1, 1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (32 + 2 * r3 + 64 * x0 + 1024 * (-4 + x1) + 4096 * x2), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1, 1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (1 + 2 * r3 + 64 * x0 + 1024 * (-8 + x1) + 4096 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1, 1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (33 + 2 * r3 + 64 * x0 + 1024 * (-12 + x1) + 4096 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tl.where(xmask, tmp23, 0) tmp26 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp28 = tl.where(xmask, tmp26, 0) tmp29 = tl.sum(tmp28, 1)[:, None] tmp30 = tl.full([XBLOCK, 1], 16, tl.int32) tmp31 = tmp30.to(tl.float32) tmp32 = tmp29 / tmp31 tmp33 = tmp23 - tmp32 tmp34 = tmp33 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.where(xmask, tmp35, 0) tmp38 = tl.sum(tmp37, 1)[:, None] tmp39 = 16.0 tmp40 = tmp38 / tmp39 tmp41 = 1e-05 tmp42 = tmp40 + tmp41 tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp22 - tmp32 tmp45 = tmp44 * tmp43 tmp47 = tmp45 * tmp46 tmp49 = tmp47 + tmp48 tl.store(out_ptr0 + (r3 + 16 * x4), tmp22, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + x4, tmp43, xmask) tl.store(out_ptr2 + (r3 + 16 * x4), tmp49, xmask) tl.store(out_ptr1 + x4, tmp32, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 32, 32), (4096, 1024, 32, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (8, 16, 1, 1), (16, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32) buf1 = empty_strided_cuda((4, 16, 16, 1), (256, 16, 1, 1), torch. float32) buf2 = empty_strided_cuda((4, 16, 16, 1), (256, 16, 1, 1024), torch .float32) buf4 = reinterpret_tensor(buf2, (4, 16, 16, 1), (256, 16, 1, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused_cat_native_layer_norm_0[grid(1024)](buf4, primals_1, primals_2, primals_3, buf0, buf1, buf5, 1024, 16, XBLOCK=8, num_warps=2, num_stages=1) del primals_1 del primals_2 del primals_3 buf6 = extern_kernels.convolution(buf5, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 8, 16, 16), (2048, 256, 16, 1)) return buf6, primals_4, buf0, buf1, buf4, buf5 class PatchMergingNew(nn.Module): """ Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Conv2d(4 * dim, 2 * dim, 1, 1, bias=False) self.norm = norm_layer(4 * dim) def extra_repr(self) ->str: return f'input_resolution={self.input_resolution}, dim={self.dim}' def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += H // 2 * (W // 2) * 4 * self.dim * 2 * self.dim return flops def forward(self, input_0): primals_4 = self.reduction.weight primals_2 = self.norm.weight primals_3 = self.norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
svip-lab/AS-MLP
PatchMerging
false
16,516
[ "MIT" ]
66
5f360348583b3cac8663a392c9588b6f7e2f46b8
https://github.com/svip-lab/AS-MLP/tree/5f360348583b3cac8663a392c9588b6f7e2f46b8
upconv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py # Topologically Sorted Source Nodes: [up_x], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # up_x => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mf/cmfppkmtabbxg6gzfye3hpnrc66hdqd4bmbrra3ay2tgpf5nsghl.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.elu] # Source node to ATen node mapping: # out_1 => expm1, gt, mul_4, mul_6, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_4,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul_4, %mul_6), kwargs = {}) triton_poi_fused_elu_1 = async_compile.triton('triton_poi_fused_elu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [up_x], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1)) buf2 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.elu] triton_poi_fused_elu_1.run(buf1, buf2, 1024, grid=grid(1024), stream=stream0) return (buf2, primals_2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F import torch.utils.data.distributed class upconv(nn.Module): def __init__(self, in_channels, out_channels, ratio=2): super(upconv, self).__init__() self.elu = nn.ELU() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, bias=False, kernel_size=3, stride=1, padding=1) self.ratio = ratio def forward(self, x): up_x = F.interpolate(x, scale_factor=self.ratio, mode='nearest') out = self.conv(up_x) out = self.elu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1)) buf2 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) triton_poi_fused_elu_1[grid(1024)](buf1, buf2, 1024, XBLOCK=128, num_warps=4, num_stages=1) return buf2, primals_2, buf0, buf1 class upconvNew(nn.Module): def __init__(self, in_channels, out_channels, ratio=2): super(upconvNew, self).__init__() self.elu = nn.ELU() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, bias=False, kernel_size=3, stride=1, padding=1) self.ratio = ratio def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
syKevinPeng/TransDepth
upconv
false
16,517
[ "MIT" ]
118
2282039da7bc0812e19a27b2d73a25bdef97d739
https://github.com/syKevinPeng/TransDepth/tree/2282039da7bc0812e19a27b2d73a25bdef97d739
UpsamplingLinear1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5m/c5mtsmqb4qdxw2g5qnkxck7xxscqwotsu46n2q3blkowjfwwiynn.py # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] # Source node to ATen node mapping: # interpolate => _unsafe_index, _unsafe_index_1, add_1, clamp_max_1, clamp_min, clamp_min_1, convert_element_type, convert_element_type_1, iota, mul, mul_1, sub, sub_1 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.42857142857142855), kwargs = {}) # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1]), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_1), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.load(in_ptr0 + (tmp6 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp6 + tmp8 tmp10 = tl.full([1], 3, tl.int64) tmp11 = triton_helpers.minimum(tmp9, tmp10) tmp12 = tl.load(in_ptr0 + (tmp11 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tmp12 - tmp7 tmp14 = tmp6.to(tl.float32) tmp15 = tmp5 - tmp14 tmp16 = triton_helpers.maximum(tmp15, tmp4) tmp17 = 1.0 tmp18 = triton_helpers.minimum(tmp16, tmp17) tmp19 = tmp13 * tmp18 tmp20 = tmp7 + tmp19 tl.store(out_ptr0 + (x2), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class UpsamplingLinear1d(nn.Module): def __init__(self, scale_factor=2.0): super().__init__() self.scale_factor = scale_factor def forward(self, x): return F.interpolate(x, scale_factor=self.scale_factor, mode= 'linear', align_corners=True) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.load(in_ptr0 + (tmp6 + 4 * x1), xmask, eviction_policy= 'evict_last') tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp6 + tmp8 tmp10 = tl.full([1], 3, tl.int64) tmp11 = triton_helpers.minimum(tmp9, tmp10) tmp12 = tl.load(in_ptr0 + (tmp11 + 4 * x1), xmask, eviction_policy= 'evict_last') tmp13 = tmp12 - tmp7 tmp14 = tmp6.to(tl.float32) tmp15 = tmp5 - tmp14 tmp16 = triton_helpers.maximum(tmp15, tmp4) tmp17 = 1.0 tmp18 = triton_helpers.minimum(tmp16, tmp17) tmp19 = tmp13 * tmp18 tmp20 = tmp7 + tmp19 tl.store(out_ptr0 + x2, tmp20, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (128)](arg0_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class UpsamplingLinear1dNew(nn.Module): def __init__(self, scale_factor=2.0): super().__init__() self.scale_factor = scale_factor def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tailintalent/ar-pde-cnn
UpsamplingLinear1d
false
16,518
[ "MIT" ]
51
88c130d7296af4ef7c13ec28a287fec4af3639f7
https://github.com/tailintalent/ar-pde-cnn/tree/88c130d7296af4ef7c13ec28a287fec4af3639f7
NonLocal2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/tw/ctwvjh3sk72wvpvfe6qttbbnuv7go7omfvhyfpoli3k62h5jasad.py # Topologically Sorted Source Nodes: [pool_x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # pool_x => getitem # Graph fragment: # %getitem : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c5/cc5335fx2gusb6qgcjpudfhou76zahyma2ckrjw26lmkw2q3zxd3.py # Topologically Sorted Source Nodes: [p_x], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_x => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zh/czh6tw7ngffcygnivwvcjex5edxy3ms4t27ymyn2hemxlpspxzq7.py # Topologically Sorted Source Nodes: [p_x], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_x => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ti/ctitm3fmik35mxgmabf5id22xrqrvhqyrxpmktt2s2eg77n2c7xt.py # Topologically Sorted Source Nodes: [y, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add # y => convolution_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_9, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_3, %primals_1), kwargs = {}) triton_poi_fused_add_convolution_5 = async_compile.triton('triton_poi_fused_add_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [pool_x], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(primals_1, buf1, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 2, 2), (16, 4, 2, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 2, 2), (16, 4, 2, 1)) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf5 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [theta_phi], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [p_x], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [p_x], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf7, buf8, 256, grid=grid(256), stream=stream0) buf9 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf9, primals_7, 64, grid=grid(64), stream=stream0) del primals_7 buf10 = reinterpret_tensor(buf7, (4, 4, 16), (64, 16, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [t_x], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (4, 4, 16), (64, 1, 4), 0), out=buf10) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [y, add], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_5.run(buf12, primals_9, primals_1, 256, grid=grid(256), stream=stream0) del primals_9 return (buf12, primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf8, reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf9, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf5, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torchvision.transforms import functional as F from torch.nn import functional as F import torch.utils.data class NonLocal2d(nn.Module): def __init__(self, dim_in, dim_inner, dim_out, max_pool_stride=2, use_maxpool=True, use_gn=False, use_scale=True): super().__init__() self.dim_inner = dim_inner self.use_maxpool = use_maxpool self.use_gn = use_gn self.use_scale = use_scale self.theta = nn.Conv2d(dim_in, dim_inner, 1, stride=1, padding=0) if self.use_maxpool: self.pool = nn.MaxPool2d(kernel_size=max_pool_stride, stride= max_pool_stride, padding=0) self.phi = nn.Conv2d(dim_in, dim_inner, 1, stride=1, padding=0) self.g = nn.Conv2d(dim_in, dim_inner, 1, stride=1, padding=0) self.out = nn.Conv2d(dim_inner, dim_out, 1, stride=1, padding=0) if self.use_gn: self.gn = nn.GroupNorm(32, dim_out, eps=1e-05) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.GroupNorm): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): batch_size = x.size(0) theta_x = self.theta(x).view(batch_size, self.dim_inner, -1) theta_x = theta_x.permute(0, 2, 1) if self.use_maxpool: pool_x = self.pool(x) else: pool_x = x phi_x = self.phi(pool_x).view(batch_size, self.dim_inner, -1) g_x = self.g(pool_x).view(batch_size, self.dim_inner, -1) theta_phi = torch.matmul(theta_x, phi_x) if self.use_scale: theta_phi_sc = theta_phi * self.dim_inner ** -0.5 else: theta_phi_sc = theta_phi p_x = F.softmax(theta_phi_sc, dim=-1) p_x = p_x.permute(0, 2, 1) t_x = torch.matmul(g_x, p_x) t_x = t_x.view(batch_size, self.dim_inner, *x.size()[2:]) y = self.out(t_x) if self.use_gn: y = self.gn(y) return y + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_inner': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(64)](primals_1, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 2, 2), (16, 4, 2, 1)) buf3 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 2, 2), (16, 4, 2, 1)) buf4 = buf0 del buf0 triton_poi_fused_convolution_1[grid(256)](buf4, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf5 = buf2 del buf2 triton_poi_fused_convolution_2[grid(64)](buf5, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf4, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused__softmax_4[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = buf3 del buf3 triton_poi_fused_convolution_2[grid(64)](buf9, primals_7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf10 = reinterpret_tensor(buf7, (4, 4, 16), (64, 16, 1), 0) del buf7 extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (4, 4, 16), (64, 1, 4), 0), out=buf10) buf11 = extern_kernels.convolution(reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = buf11 del buf11 triton_poi_fused_add_convolution_5[grid(256)](buf12, primals_9, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 return (buf12, primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf8, reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf9, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf5, (4, 4, 4), (16, 1, 4), 0)) class NonLocal2dNew(nn.Module): def __init__(self, dim_in, dim_inner, dim_out, max_pool_stride=2, use_maxpool=True, use_gn=False, use_scale=True): super().__init__() self.dim_inner = dim_inner self.use_maxpool = use_maxpool self.use_gn = use_gn self.use_scale = use_scale self.theta = nn.Conv2d(dim_in, dim_inner, 1, stride=1, padding=0) if self.use_maxpool: self.pool = nn.MaxPool2d(kernel_size=max_pool_stride, stride= max_pool_stride, padding=0) self.phi = nn.Conv2d(dim_in, dim_inner, 1, stride=1, padding=0) self.g = nn.Conv2d(dim_in, dim_inner, 1, stride=1, padding=0) self.out = nn.Conv2d(dim_inner, dim_out, 1, stride=1, padding=0) if self.use_gn: self.gn = nn.GroupNorm(32, dim_out, eps=1e-05) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.GroupNorm): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, input_0): primals_2 = self.theta.weight primals_3 = self.theta.bias primals_4 = self.phi.weight primals_5 = self.phi.bias primals_6 = self.g.weight primals_7 = self.g.bias primals_8 = self.out.weight primals_9 = self.out.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
shunya-toyokawa/qanet_human_parts_segmentatiom
NonLocal2d
false
16,519
[ "MIT" ]
72
5527b247acd65534b455c26e3692a14b31669602
https://github.com/shunya-toyokawa/qanet_human_parts_segmentatiom/tree/5527b247acd65534b455c26e3692a14b31669602
BinaryTreeComposer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6c/c6cdxegvlrfz544slqn2dip3ishrg4copvjgmhkoc22tv7ffieci.py # Topologically Sorted Source Nodes: [add, i, add_1, lf, add_2, rf, add_3, update, mul, mul_1, add_4, mul_2, c, h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.sigmoid_backward] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # c => add_5 # h => tanh_1 # i => sigmoid # lf => sigmoid_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # rf => sigmoid_2 # update => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %view_7), kwargs = {}) # %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %view_11), kwargs = {}) # %sigmoid_2 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_2,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_13, %view_15), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %primals_19), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %primals_20), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_2), kwargs = {}) # %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_5,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_2), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %sub_2), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub_3), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr1 + (x2), xmask) tmp9 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), xmask) tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr6 + (x2), xmask) tmp18 = tl.load(in_ptr7 + (x0), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr8 + (x2), xmask) tmp21 = tl.load(in_ptr9 + (x0), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr10 + (x2), xmask) tmp28 = tl.load(in_ptr11 + (x2), xmask) tmp29 = tl.load(in_ptr12 + (x0), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr13 + (x2), xmask) tmp32 = tl.load(in_ptr14 + (x0), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr15 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = libdevice.tanh(tmp14) tmp16 = tmp7 * tmp15 tmp19 = tmp17 + tmp18 tmp22 = tmp20 + tmp21 tmp23 = tmp19 + tmp22 tmp24 = tl.sigmoid(tmp23) tmp26 = tmp24 * tmp25 tmp27 = tmp16 + tmp26 tmp30 = tmp28 + tmp29 tmp33 = tmp31 + tmp32 tmp34 = tmp30 + tmp33 tmp35 = tl.sigmoid(tmp34) tmp37 = tmp35 * tmp36 tmp38 = tmp27 + tmp37 tmp39 = 1.0 tmp40 = tmp39 - tmp35 tmp41 = tmp35 * tmp40 tmp42 = tmp39 - tmp24 tmp43 = tmp24 * tmp42 tmp44 = libdevice.tanh(tmp38) tl.store(in_out_ptr0 + (x2), tmp7, xmask) tl.store(in_out_ptr1 + (x2), tmp15, xmask) tl.store(out_ptr0 + (x2), tmp38, xmask) tl.store(out_ptr1 + (x2), tmp41, xmask) tl.store(out_ptr2 + (x2), tmp43, xmask) tl.store(out_ptr3 + (x2), tmp44, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_20, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3) del primals_7 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf4) del primals_9 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf5) del primals_11 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf6) del primals_13 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf7) del primals_15 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf8) del primals_17 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf9 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf7 # reuse buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, i, add_1, lf, add_2, rf, add_3, update, mul, mul_1, add_4, mul_2, c, h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.sigmoid_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0.run(buf2, buf9, primals_2, buf1, primals_5, primals_16, buf8, primals_18, buf3, primals_8, buf4, primals_10, primals_19, buf5, primals_12, buf6, primals_14, primals_20, buf10, buf12, buf13, buf11, 256, grid=grid(256), stream=stream0) del buf1 del buf3 del buf4 del buf5 del buf6 del buf8 del primals_10 del primals_12 del primals_14 del primals_16 del primals_18 del primals_2 del primals_5 del primals_8 return (buf10, buf11, primals_19, primals_20, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf2, buf9, buf11, buf12, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.onnx class BinaryTreeComposer(nn.Module): """ local lc, lh = nn.Identity()(), nn.Identity()() local rc, rh = nn.Identity()(), nn.Identity()() local new_gate = function() return nn.CAddTable(){ nn.Linear(self.mem_dim, self.mem_dim)(lh), nn.Linear(self.mem_dim, self.mem_dim)(rh) } end local i = nn.Sigmoid()(new_gate()) -- input gate local lf = nn.Sigmoid()(new_gate()) -- left forget gate local rf = nn.Sigmoid()(new_gate()) -- right forget gate local update = nn.Tanh()(new_gate()) -- memory cell update vector local c = nn.CAddTable(){ -- memory cell nn.CMulTable(){i, update}, nn.CMulTable(){lf, lc}, nn.CMulTable(){rf, rc} } local h if self.gate_output then local o = nn.Sigmoid()(new_gate()) -- output gate h = nn.CMulTable(){o, nn.Tanh()(c)} else h = nn.Tanh()(c) end local composer = nn.gModule( {lc, lh, rc, rh}, {c, h}) """ def __init__(self, cuda, in_dim, mem_dim): super(BinaryTreeComposer, self).__init__() self.cudaFlag = cuda self.in_dim = in_dim self.mem_dim = mem_dim def new_gate(): lh = nn.Linear(self.mem_dim, self.mem_dim) rh = nn.Linear(self.mem_dim, self.mem_dim) return lh, rh self.ilh, self.irh = new_gate() self.lflh, self.lfrh = new_gate() self.rflh, self.rfrh = new_gate() self.ulh, self.urh = new_gate() if self.cudaFlag: self.ilh = self.ilh self.irh = self.irh self.lflh = self.lflh self.lfrh = self.lfrh self.rflh = self.rflh self.rfrh = self.rfrh self.ulh = self.ulh def forward(self, lc, lh, rc, rh): i = F.sigmoid(self.ilh(lh) + self.irh(rh)) lf = F.sigmoid(self.lflh(lh) + self.lfrh(rh)) rf = F.sigmoid(self.rflh(lh) + self.rfrh(rh)) update = F.tanh(self.ulh(lh) + self.urh(rh)) c = i * update + lf * lc + rf * rc h = F.tanh(c) return c, h def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'cuda': False, 'in_dim': 4, 'mem_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr1 + x2, xmask) tmp9 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, xmask) tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr6 + x2, xmask) tmp18 = tl.load(in_ptr7 + x0, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr8 + x2, xmask) tmp21 = tl.load(in_ptr9 + x0, xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr10 + x2, xmask) tmp28 = tl.load(in_ptr11 + x2, xmask) tmp29 = tl.load(in_ptr12 + x0, xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr13 + x2, xmask) tmp32 = tl.load(in_ptr14 + x0, xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr15 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = libdevice.tanh(tmp14) tmp16 = tmp7 * tmp15 tmp19 = tmp17 + tmp18 tmp22 = tmp20 + tmp21 tmp23 = tmp19 + tmp22 tmp24 = tl.sigmoid(tmp23) tmp26 = tmp24 * tmp25 tmp27 = tmp16 + tmp26 tmp30 = tmp28 + tmp29 tmp33 = tmp31 + tmp32 tmp34 = tmp30 + tmp33 tmp35 = tl.sigmoid(tmp34) tmp37 = tmp35 * tmp36 tmp38 = tmp27 + tmp37 tmp39 = 1.0 tmp40 = tmp39 - tmp35 tmp41 = tmp35 * tmp40 tmp42 = tmp39 - tmp24 tmp43 = tmp24 * tmp42 tmp44 = libdevice.tanh(tmp38) tl.store(in_out_ptr0 + x2, tmp7, xmask) tl.store(in_out_ptr1 + x2, tmp15, xmask) tl.store(out_ptr0 + x2, tmp38, xmask) tl.store(out_ptr1 + x2, tmp41, xmask) tl.store(out_ptr2 + x2, tmp43, xmask) tl.store(out_ptr3 + x2, tmp44, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_20, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3) del primals_7 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf4) del primals_9 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf5) del primals_11 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf6) del primals_13 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf7) del primals_15 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf8) del primals_17 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf9 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf7 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0[grid(256)]( buf2, buf9, primals_2, buf1, primals_5, primals_16, buf8, primals_18, buf3, primals_8, buf4, primals_10, primals_19, buf5, primals_12, buf6, primals_14, primals_20, buf10, buf12, buf13, buf11, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del buf3 del buf4 del buf5 del buf6 del buf8 del primals_10 del primals_12 del primals_14 del primals_16 del primals_18 del primals_2 del primals_5 del primals_8 return buf10, buf11, primals_19, primals_20, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0 ), buf2, buf9, buf11, buf12, buf13 class BinaryTreeComposerNew(nn.Module): """ local lc, lh = nn.Identity()(), nn.Identity()() local rc, rh = nn.Identity()(), nn.Identity()() local new_gate = function() return nn.CAddTable(){ nn.Linear(self.mem_dim, self.mem_dim)(lh), nn.Linear(self.mem_dim, self.mem_dim)(rh) } end local i = nn.Sigmoid()(new_gate()) -- input gate local lf = nn.Sigmoid()(new_gate()) -- left forget gate local rf = nn.Sigmoid()(new_gate()) -- right forget gate local update = nn.Tanh()(new_gate()) -- memory cell update vector local c = nn.CAddTable(){ -- memory cell nn.CMulTable(){i, update}, nn.CMulTable(){lf, lc}, nn.CMulTable(){rf, rc} } local h if self.gate_output then local o = nn.Sigmoid()(new_gate()) -- output gate h = nn.CMulTable(){o, nn.Tanh()(c)} else h = nn.Tanh()(c) end local composer = nn.gModule( {lc, lh, rc, rh}, {c, h}) """ def __init__(self, cuda, in_dim, mem_dim): super(BinaryTreeComposerNew, self).__init__() self.cudaFlag = cuda self.in_dim = in_dim self.mem_dim = mem_dim def new_gate(): lh = nn.Linear(self.mem_dim, self.mem_dim) rh = nn.Linear(self.mem_dim, self.mem_dim) return lh, rh self.ilh, self.irh = new_gate() self.lflh, self.lfrh = new_gate() self.rflh, self.rfrh = new_gate() self.ulh, self.urh = new_gate() if self.cudaFlag: self.ilh = self.ilh self.irh = self.irh self.lflh = self.lflh self.lfrh = self.lfrh self.rflh = self.rflh self.rfrh = self.rfrh self.ulh = self.ulh def forward(self, input_0, input_1, input_2, input_3): primals_1 = self.ilh.weight primals_2 = self.ilh.bias primals_4 = self.irh.weight primals_5 = self.irh.bias primals_7 = self.lflh.weight primals_8 = self.lflh.bias primals_9 = self.lfrh.weight primals_10 = self.lfrh.bias primals_11 = self.rflh.weight primals_12 = self.rflh.bias primals_13 = self.rfrh.weight primals_14 = self.rfrh.bias primals_15 = self.ulh.weight primals_16 = self.ulh.bias primals_17 = self.urh.weight primals_18 = self.urh.bias primals_3 = input_0 primals_6 = input_1 primals_19 = input_2 primals_20 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return output[0], output[1]
supunab/Lantern
BinaryTreeComposer
false
16,520
[ "BSD-3-Clause" ]
158
932a031816617d71c46653f3b2245129a6a8a7c8
https://github.com/supunab/Lantern/tree/932a031816617d71c46653f3b2245129a6a8a7c8
reduction_1x1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mc/cmcpc7mhpp5qk5yl7ecizlsrfqrfgcxw3zlel2qwdchxewjrnwdn.py # Topologically Sorted Source Nodes: [net], Original ATen: [aten.cat] # Source node to ATen node mapping: # net => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (48*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = 3.141592653589793 tmp8 = tmp6 * tmp7 tmp9 = 0.3333333333333333 tmp10 = tmp8 * tmp9 tmp11 = tl_math.sin(tmp10) tmp12 = tl.load(in_ptr0 + (16 + x0 + (48*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.sigmoid(tmp12) tmp14 = tmp13 * tmp7 tmp15 = 2.0 tmp16 = tmp14 * tmp15 tmp17 = tl_math.cos(tmp16) tmp18 = tmp11 * tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp4, tmp18, tmp19) tmp21 = tmp0 >= tmp3 tmp22 = tl.full([1], 2, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (x0 + (48*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tl.sigmoid(tmp25) tmp27 = tmp26 * tmp7 tmp28 = tmp27 * tmp9 tmp29 = tl_math.sin(tmp28) tmp30 = tl.load(in_ptr0 + (16 + x0 + (48*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tl.sigmoid(tmp30) tmp32 = tmp31 * tmp7 tmp33 = tmp32 * tmp15 tmp34 = tl_math.sin(tmp33) tmp35 = tmp29 * tmp34 tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype) tmp37 = tl.where(tmp24, tmp35, tmp36) tmp38 = tmp0 >= tmp22 tmp39 = tl.full([1], 3, tl.int64) tmp40 = tmp0 < tmp39 tmp41 = tmp38 & tmp40 tmp42 = tl.load(in_ptr0 + (x0 + (48*x2)), tmp41 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tl.sigmoid(tmp42) tmp44 = tmp43 * tmp7 tmp45 = tmp44 * tmp9 tmp46 = tl_math.cos(tmp45) tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp41, tmp46, tmp47) tmp49 = tmp0 >= tmp39 tmp50 = tl.full([1], 4, tl.int64) tmp51 = tmp0 < tmp50 tmp52 = tl.load(in_ptr0 + (32 + x0 + (48*x2)), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tl.sigmoid(tmp52) tmp54 = 1.0 tmp55 = tmp53 * tmp54 tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype) tmp57 = tl.where(tmp49, tmp55, tmp56) tmp58 = tl.where(tmp41, tmp48, tmp57) tmp59 = tl.where(tmp24, tmp37, tmp58) tmp60 = tl.where(tmp4, tmp20, tmp59) tl.store(out_ptr0 + (x3), tmp60, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (3, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 4, 4), (48, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [net], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) return (buf1, primals_1, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.utils.data.distributed class reduction_1x1(nn.Sequential): def __init__(self, num_in_filters, num_out_filters, max_depth, is_final =False): super(reduction_1x1, self).__init__() self.max_depth = max_depth self.is_final = is_final self.sigmoid = nn.Sigmoid() self.reduc = torch.nn.Sequential() while num_out_filters >= 4: if num_out_filters < 8: if self.is_final: self.reduc.add_module('final', torch.nn.Sequential(nn. Conv2d(num_in_filters, out_channels=1, bias=False, kernel_size=1, stride=1, padding=0), nn.Sigmoid())) else: self.reduc.add_module('plane_params', torch.nn.Conv2d( num_in_filters, out_channels=3, bias=False, kernel_size=1, stride=1, padding=0)) break else: self.reduc.add_module('inter_{}_{}'.format(num_in_filters, num_out_filters), torch.nn.Sequential(nn.Conv2d( in_channels=num_in_filters, out_channels= num_out_filters, bias=False, kernel_size=1, stride=1, padding=0), nn.ELU())) num_in_filters = num_out_filters num_out_filters = num_out_filters // 2 def forward(self, net): net = self.reduc.forward(net) if not self.is_final: theta = self.sigmoid(net[:, 0, :, :]) * math.pi / 3 phi = self.sigmoid(net[:, 1, :, :]) * math.pi * 2 dist = self.sigmoid(net[:, 2, :, :]) * self.max_depth n1 = torch.mul(torch.sin(theta), torch.cos(phi)).unsqueeze(1) n2 = torch.mul(torch.sin(theta), torch.sin(phi)).unsqueeze(1) n3 = torch.cos(theta).unsqueeze(1) n4 = dist.unsqueeze(1) net = torch.cat([n1, n2, n3, n4], dim=1) return net def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in_filters': 4, 'num_out_filters': 4, 'max_depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 48 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = 3.141592653589793 tmp8 = tmp6 * tmp7 tmp9 = 0.3333333333333333 tmp10 = tmp8 * tmp9 tmp11 = tl_math.sin(tmp10) tmp12 = tl.load(in_ptr0 + (16 + x0 + 48 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.sigmoid(tmp12) tmp14 = tmp13 * tmp7 tmp15 = 2.0 tmp16 = tmp14 * tmp15 tmp17 = tl_math.cos(tmp16) tmp18 = tmp11 * tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp4, tmp18, tmp19) tmp21 = tmp0 >= tmp3 tmp22 = tl.full([1], 2, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (x0 + 48 * x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tl.sigmoid(tmp25) tmp27 = tmp26 * tmp7 tmp28 = tmp27 * tmp9 tmp29 = tl_math.sin(tmp28) tmp30 = tl.load(in_ptr0 + (16 + x0 + 48 * x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tl.sigmoid(tmp30) tmp32 = tmp31 * tmp7 tmp33 = tmp32 * tmp15 tmp34 = tl_math.sin(tmp33) tmp35 = tmp29 * tmp34 tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype) tmp37 = tl.where(tmp24, tmp35, tmp36) tmp38 = tmp0 >= tmp22 tmp39 = tl.full([1], 3, tl.int64) tmp40 = tmp0 < tmp39 tmp41 = tmp38 & tmp40 tmp42 = tl.load(in_ptr0 + (x0 + 48 * x2), tmp41 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tl.sigmoid(tmp42) tmp44 = tmp43 * tmp7 tmp45 = tmp44 * tmp9 tmp46 = tl_math.cos(tmp45) tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp41, tmp46, tmp47) tmp49 = tmp0 >= tmp39 tl.full([1], 4, tl.int64) tmp52 = tl.load(in_ptr0 + (32 + x0 + 48 * x2), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tl.sigmoid(tmp52) tmp54 = 1.0 tmp55 = tmp53 * tmp54 tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype) tmp57 = tl.where(tmp49, tmp55, tmp56) tmp58 = tl.where(tmp41, tmp48, tmp57) tmp59 = tl.where(tmp24, tmp37, tmp58) tmp60 = tl.where(tmp4, tmp20, tmp59) tl.store(out_ptr0 + x3, tmp60, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (3, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 4, 4), (48, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf1, primals_1, primals_2, buf0 class reduction_1x1New(nn.Sequential): def __init__(self, num_in_filters, num_out_filters, max_depth, is_final =False): super(reduction_1x1New, self).__init__() self.max_depth = max_depth self.is_final = is_final self.sigmoid = nn.Sigmoid() self.reduc = torch.nn.Sequential() while num_out_filters >= 4: if num_out_filters < 8: if self.is_final: self.reduc.add_module('final', torch.nn.Sequential(nn. Conv2d(num_in_filters, out_channels=1, bias=False, kernel_size=1, stride=1, padding=0), nn.Sigmoid())) else: self.reduc.add_module('plane_params', torch.nn.Conv2d( num_in_filters, out_channels=3, bias=False, kernel_size=1, stride=1, padding=0)) break else: self.reduc.add_module('inter_{}_{}'.format(num_in_filters, num_out_filters), torch.nn.Sequential(nn.Conv2d( in_channels=num_in_filters, out_channels= num_out_filters, bias=False, kernel_size=1, stride=1, padding=0), nn.ELU())) num_in_filters = num_out_filters num_out_filters = num_out_filters // 2 def forward(self, input_0): primals_1 = self.reduc.plane_params.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
syKevinPeng/TransDepth
reduction_1x1
false
16,521
[ "MIT" ]
118
2282039da7bc0812e19a27b2d73a25bdef97d739
https://github.com/syKevinPeng/TransDepth/tree/2282039da7bc0812e19a27b2d73a25bdef97d739
SelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7e/c7eul75w5s2nxzr6mevxwrjuv2vslc5jmikyp4moxhc5kqk225qk.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%mm,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [mm_1], Original ATen: [aten.mm] extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 1, 4), (4, 0, 1), 0), primals_1, out=buf5) del buf4 return (reinterpret_tensor(buf5, (4, 4), (4, 1), 0), primals_1, buf1, buf2, reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from scipy.sparse import * class SelfAttention(nn.Module): def __init__(self, input_size, hidden_size): super(SelfAttention, self).__init__() self.W1 = torch.Tensor(input_size, hidden_size) self.W1 = nn.Parameter(nn.init.xavier_uniform_(self.W1)) self.W2 = torch.Tensor(hidden_size, 1) self.W2 = nn.Parameter(nn.init.xavier_uniform_(self.W2)) def forward(self, x, attention_mask=None): attention = torch.mm(torch.tanh(torch.mm(x.view(-1, x.size(-1)), self.W1)), self.W2).view(x.size(0), -1) if attention_mask is not None: attention = attention.masked_fill_(1 - attention_mask.byte(), -INF) probs = torch.softmax(attention, dim=-1).unsqueeze(1) weighted_x = torch.bmm(probs, x).squeeze(1) return weighted_x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn from scipy.sparse import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(64)](buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0) del buf3 extern_kernels.bmm(reinterpret_tensor(buf4, (4, 1, 4), (4, 0, 1), 0 ), primals_1, out=buf5) del buf4 return reinterpret_tensor(buf5, (4, 4), (4, 1), 0 ), primals_1, buf1, buf2, reinterpret_tensor(primals_3, (1, 4), (1, 1), 0) class SelfAttentionNew(nn.Module): def __init__(self, input_size, hidden_size): super(SelfAttentionNew, self).__init__() self.W1 = torch.Tensor(input_size, hidden_size) self.W1 = nn.Parameter(nn.init.xavier_uniform_(self.W1)) self.W2 = torch.Tensor(hidden_size, 1) self.W2 = nn.Parameter(nn.init.xavier_uniform_(self.W2)) def forward(self, input_0): primals_2 = self.W1 primals_3 = self.W2 primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
talha1503/RL-based-Graph2Seq-for-NQG
SelfAttention
false
16,522
[ "Apache-2.0" ]
100
1039e0b6231ae7029ea6e4073b1e55df5ad2e928
https://github.com/talha1503/RL-based-Graph2Seq-for-NQG/tree/1039e0b6231ae7029ea6e4073b1e55df5ad2e928
SEBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/is/cispe7zbbl4nxt2jjus6h5iou2w7htohqj7z2oz6g7nqz6vbpbqr.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [4, 4]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + (x0), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/o5/co5kpgkyaabh4nd7yz4gzpyl7x35mwdhgusbruykvtydzlq2lizg.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bp/cbp53nzkr6hcnl4m7bbtbj2xgxgdd2wpmbdcnrgjzy6l4el2ypa7.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => sigmoid # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yz/cyzraf5hkq5g34ofp7xcct5u6pj5qtysku2ga222bud7kopwrvo5.py # Topologically Sorted Source Nodes: [x_5, mul], Original ATen: [aten.repeat, aten.mul] # Source node to ATen node mapping: # mul => mul # x_5 => repeat # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%sigmoid, [1, 1, 4, 4]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %repeat), kwargs = {}) triton_poi_fused_mul_repeat_3 = async_compile.triton('triton_poi_fused_mul_repeat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_repeat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_repeat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_2.run(buf4, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5, mul], Original ATen: [aten.repeat, aten.mul] triton_poi_fused_mul_repeat_3.run(primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, primals_1, primals_2, primals_4, buf0, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SEBlock(nn.Module): def __init__(self, input_channels, internal_neurons): super(SEBlock, self).__init__() self.down = nn.Conv2d(in_channels=input_channels, out_channels= internal_neurons, kernel_size=1, stride=1, bias=True) self.up = nn.Conv2d(in_channels=internal_neurons, out_channels= input_channels, kernel_size=1, stride=1, bias=True) def forward(self, inputs): x = F.avg_pool2d(inputs, kernel_size=inputs.size(3)) x = self.down(x) x = F.relu(x) x = self.up(x) x = F.sigmoid(x) x = x.repeat(1, 1, inputs.size(2), inputs.size(3)) return inputs * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'internal_neurons': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + x0, tmp32, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_mul_repeat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](primals_1, buf0, 16, XBLOCK =16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_sigmoid_2[grid(16)](buf4, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_repeat_3[grid(256)](primals_1, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf5, primals_1, primals_2, primals_4, buf0, buf2, buf4 class SEBlockNew(nn.Module): def __init__(self, input_channels, internal_neurons): super(SEBlockNew, self).__init__() self.down = nn.Conv2d(in_channels=input_channels, out_channels= internal_neurons, kernel_size=1, stride=1, bias=True) self.up = nn.Conv2d(in_channels=internal_neurons, out_channels= input_channels, kernel_size=1, stride=1, bias=True) def forward(self, input_0): primals_2 = self.down.weight primals_3 = self.down.bias primals_4 = self.up.weight primals_5 = self.up.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sysu-shey/ACNet
SEBlock
false
16,523
[ "MIT" ]
767
6d967d3fff2d79a37f85799b78a21ffbd9001bd2
https://github.com/sysu-shey/ACNet/tree/6d967d3fff2d79a37f85799b78a21ffbd9001bd2
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dx/cdxi7jnsecd6qmi5ncdz7n5e5ypzbm5tmi4pr24mtwqi4lolchnu.py # Topologically Sorted Source Nodes: [sub_1, pow_1, mul, logpt, loss], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.log] # Source node to ATen node mapping: # logpt => log # loss => mul_1 # mul => mul # pow_1 => pow_1 # sub_1 => sub_1 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %log), kwargs = {}) triton_poi_fused_log_mul_pow_rsub_0 = async_compile.triton('triton_poi_fused_log_mul_pow_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_mul_pow_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_log_mul_pow_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK], 2, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert(((0 <= tmp5) & (tmp5 < 2)) | ~(xmask), "index out of bounds: 0 <= tmp5 < 2") tmp7 = tmp5 tmp8 = tl.full([1], 0, tl.int64) tmp9 = tmp7 >= tmp8 tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp7 < tmp10 tmp12 = tl.load(in_ptr1 + (x0), tmp11 & xmask, other=0.0) tmp13 = tl.sigmoid(tmp12) tmp14 = 1.0 tmp15 = tmp14 - tmp13 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tmp7 >= tmp10 tmp19 = tl.full([1], 2, tl.int64) tmp20 = tmp7 < tmp19 tmp21 = tl.load(in_ptr1 + (x0), tmp18 & xmask, other=0.0) tmp22 = tl.sigmoid(tmp21) tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp18, tmp22, tmp23) tmp25 = tl.where(tmp11, tmp17, tmp24) tmp26 = tmp14 - tmp25 tmp27 = tl_math.log(tmp25) tmp28 = -1.0 tmp29 = tmp28 * tmp27 tl.store(out_ptr0 + (x0), tmp29, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [sub_1, pow_1, mul, logpt, loss], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.log] stream0 = get_raw_stream(0) triton_poi_fused_log_mul_pow_rsub_0.run(arg1_1, arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 return (reinterpret_tensor(buf0, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FocalLoss(nn.Module): def __init__(self, gamma=0, alpha=None, device=None): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha if self.alpha is not None: self.alpha = torch.FloatTensor([1 - alpha, alpha]) def forward(self, pred, target): batch_size, n_pts = pred.size() pos = torch.sigmoid(pred) neg = 1 - pos pt = torch.stack([neg, pos], dim=-1).view(-1, 2) index = target.view(-1, 1).long() pt = pt.gather(-1, index).view(-1) logpt = pt.log() if self.alpha is not None: at = self.alpha.gather(0, index.view(-1)) logpt = logpt * at loss = -1 * (1 - pt) ** self.gamma * logpt return loss.view(batch_size, n_pts) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_log_mul_pow_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK], 2, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert((0 <= tmp5) & (tmp5 < 2) | ~xmask, 'index out of bounds: 0 <= tmp5 < 2') tmp7 = tmp5 tl.full([1], 0, tl.int64) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp7 < tmp10 tmp12 = tl.load(in_ptr1 + x0, tmp11 & xmask, other=0.0) tmp13 = tl.sigmoid(tmp12) tmp14 = 1.0 tmp15 = tmp14 - tmp13 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tmp7 >= tmp10 tl.full([1], 2, tl.int64) tmp21 = tl.load(in_ptr1 + x0, tmp18 & xmask, other=0.0) tmp22 = tl.sigmoid(tmp21) tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp18, tmp22, tmp23) tmp25 = tl.where(tmp11, tmp17, tmp24) tmp14 - tmp25 tmp27 = tl_math.log(tmp25) tmp28 = -1.0 tmp29 = tmp28 * tmp27 tl.store(out_ptr0 + x0, tmp29, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_log_mul_pow_rsub_0[grid(16)](arg1_1, arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return reinterpret_tensor(buf0, (4, 4), (4, 1), 0), class FocalLossNew(nn.Module): def __init__(self, gamma=0, alpha=None, device=None): super(FocalLossNew, self).__init__() self.gamma = gamma self.alpha = alpha if self.alpha is not None: self.alpha = torch.FloatTensor([1 - alpha, alpha]) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
taconite/PTF
FocalLoss
false
16,524
[ "MIT" ]
62
a8789c9f752aea2944c2a75e04cc2aa21c7e4a00
https://github.com/taconite/PTF/tree/a8789c9f752aea2944c2a75e04cc2aa21c7e4a00
ResnetBlockInplaceNormShallowConv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/m6/cm645lheesrjji6wgkstt4nu675ugbbjruised3fke4juyuyosol.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused__weight_norm_interface_0 = async_compile.triton('triton_poi_fused__weight_norm_interface_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dp/cdpmihjazxc2dpfye4tlkemiovtq5jgmt3cquzgrtbm3gn32us7u.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div, mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %div), kwargs = {}) triton_poi_fused__weight_norm_interface_1 = async_compile.triton('triton_poi_fused__weight_norm_interface_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/to/ctoqridz5dmpwh4sggfedfauvv5pw3xc2ada3ggrvw2lggppm3pd.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/h6/ch6zlfgi7geb62fnmkvel4p3qwzni6dcn2toehyh46idb22vqm23.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] stream0 = get_raw_stream(0) triton_poi_fused__weight_norm_interface_0.run(primals_3, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] triton_poi_fused__weight_norm_interface_1.run(primals_3, primals_2, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(primals_1, buf2, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [dx], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(buf2, (1, 4, 4), (0, 4, 1), 0), buf1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 4), (16, 4, 1)) buf4 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf4, primals_1, 16, grid=grid(16), stream=stream0) del primals_1 return (buf4, buf1, primals_2, primals_3, buf0, buf1, reinterpret_tensor(buf2, (1, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResnetBlockInplaceNormShallowConv1d(nn.Module): """ Fully connected ResNet Block imeplemented with group convolutions and weight/spectral normalizations. Args: size_in (int): input dimension groups (int): number of groups for group convolutions size_out (int): output dimension size_h (int): hidden dimension """ def __init__(self, size_in, groups, norm_method='weight_norm', size_out =None, size_h=None, dropout_prob=0.0, leaky=False): super().__init__() if size_out is None: size_out = size_in if size_h is None: size_h = min(size_in, size_out) if dropout_prob > 0.0: self.dropout = nn.Dropout(dropout_prob, inplace=True) else: self.dropout = None self.size_in = size_in self.size_h = size_h self.size_out = size_out fc_0 = nn.Conv1d(size_in, size_h, 1, groups=groups, bias=False) if norm_method == 'weight_norm': self.fc_0 = nn.utils.weight_norm(fc_0) elif norm_method == 'spectral_norm': self.fc_0 = nn.utils.spectral_norm(fc_0) else: raise ValueError('Normalization method {} not supported.'. format(norm_method)) if not leaky: self.actvn = nn.ReLU() else: self.actvn = nn.LeakyReLU(0.1) if size_in == size_out: self.shortcut = None else: self.shortcut = nn.Conv1d(size_in, size_out, 1, bias=False, groups=groups) def forward(self, x): if self.dropout is not None: dx = self.fc_0(self.dropout(self.actvn(x))) else: dx = self.fc_0(self.actvn(x)) if self.shortcut is not None: x_s = self.shortcut(x) else: x_s = x return x_s + dx def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'size_in': 4, 'groups': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__weight_norm_interface_0[grid(4)](primals_3, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused__weight_norm_interface_1[grid(16)](primals_3, primals_2, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_relu_2[grid(16)](primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = extern_kernels.convolution(reinterpret_tensor(buf2, (1, 4, 4 ), (0, 4, 1), 0), buf1, stride=(1,), padding=(0,), dilation=(1, ), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 4), (16, 4, 1)) buf4 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0) del buf3 triton_poi_fused_add_3[grid(16)](buf4, primals_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 return buf4, buf1, primals_2, primals_3, buf0, buf1, reinterpret_tensor( buf2, (1, 4, 4), (16, 4, 1), 0) class ResnetBlockInplaceNormShallowConv1dNew(nn.Module): """ Fully connected ResNet Block imeplemented with group convolutions and weight/spectral normalizations. Args: size_in (int): input dimension groups (int): number of groups for group convolutions size_out (int): output dimension size_h (int): hidden dimension """ def __init__(self, size_in, groups, norm_method='weight_norm', size_out =None, size_h=None, dropout_prob=0.0, leaky=False): super().__init__() if size_out is None: size_out = size_in if size_h is None: size_h = min(size_in, size_out) if dropout_prob > 0.0: self.dropout = nn.Dropout(dropout_prob, inplace=True) else: self.dropout = None self.size_in = size_in self.size_h = size_h self.size_out = size_out fc_0 = nn.Conv1d(size_in, size_h, 1, groups=groups, bias=False) if norm_method == 'weight_norm': self.fc_0 = nn.utils.weight_norm(fc_0) elif norm_method == 'spectral_norm': self.fc_0 = nn.utils.spectral_norm(fc_0) else: raise ValueError('Normalization method {} not supported.'. format(norm_method)) if not leaky: self.actvn = nn.ReLU() else: self.actvn = nn.LeakyReLU(0.1) if size_in == size_out: self.shortcut = None else: self.shortcut = nn.Conv1d(size_in, size_out, 1, bias=False, groups=groups) def forward(self, input_0): primals_2 = self.fc_0.weight_g primals_3 = self.fc_0.weight_v primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
taconite/MetaAvatar-release
ResnetBlockInplaceNormShallowConv1d
false
16,525
[ "MIT" ]
60
c9403a478ee82232633d25f65f108befd21d04e9
https://github.com/taconite/MetaAvatar-release/tree/c9403a478ee82232633d25f65f108befd21d04e9
ResnetBlockGroupNormConv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/64/c64uyqanlgbzvvnf4bt5g567ss5hfnfwyv4z737wik7u3ojr5wuv.py # Topologically Sorted Source Nodes: [mul, add_1, relu], Original ATen: [aten.mul, aten.add, aten.relu] # Source node to ATen node mapping: # add_1 => add_1 # mul => mul # relu => relu # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_mul_relu_0 = async_compile.triton('triton_poi_fused_add_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp11 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = 0.0 tmp6 = tmp4 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp3 / tmp9 tmp12 = tmp10 * tmp11 tmp14 = tmp12 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/to/ctobwbigfuxosis7k2qsriu5knhjriohveqkz4sp2nkdj2wg4lxc.py # Topologically Sorted Source Nodes: [add_4], Original ATen: [aten.add] # Source node to ATen node mapping: # add_4 => add_4 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_6, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add_1, relu], Original ATen: [aten.mul, aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_relu_0.run(primals_1, primals_2, primals_3, buf0, 64, grid=grid(64), stream=stream0) del primals_2 del primals_3 # Topologically Sorted Source Nodes: [net_3], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, add_3, relu_1], Original ATen: [aten.mul, aten.add, aten.relu] triton_poi_fused_add_mul_relu_0.run(buf1, primals_5, primals_6, buf2, 64, grid=grid(64), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [dx], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_7, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add_4], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf4, primals_1, 64, grid=grid(64), stream=stream0) return (buf4, primals_1, primals_4, primals_5, primals_7, buf0, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GroupNorm1d(nn.Module): """ Group normalization that does per-point group normalization. Args: groups (int): number of groups f_dim (int): feature dimension, mush be divisible by groups """ def __init__(self, groups, f_dim, eps=1e-05, affine=True): super().__init__() self.groups = groups self.f_dim = f_dim self.affine = affine self.eps = eps assert f_dim % groups == 0 if affine: self.gamma = nn.Parameter(torch.ones(1, f_dim, 1)) self.beta = nn.Parameter(torch.zeros(1, f_dim, 1)) def forward(self, x): batch_size, D, T = x.size() net = x.view(batch_size, self.groups, D // self.groups, T) means = net.mean(2, keepdim=True) variances = net.var(2, keepdim=True) net = (net - means) / (variances + self.eps).sqrt() net = net.view(batch_size, D, T) if self.affine: return net * self.gamma + self.beta else: return net class ResnetBlockGroupNormConv1d(nn.Module): """ Fully connected ResNet Block imeplemented with group convolutions and group normalizations. Args: size_in (int): input dimension groups (int): number of groups for group convolutions gn_groups (int): number of groups for group normalizations size_out (int): output dimension size_h (int): hidden dimension """ def __init__(self, size_in, groups, gn_groups=4, size_out=None, size_h= None, dropout_prob=0.0, leaky=False): super().__init__() if size_out is None: size_out = size_in if size_h is None: size_h = min(size_in, size_out) if dropout_prob > 0.0: self.dropout = nn.Dropout(dropout_prob, inplace=True) else: self.dropout = None self.size_in = size_in self.size_h = size_h self.size_out = size_out self.gn_0 = GroupNorm1d(groups * gn_groups, size_in) self.gn_1 = GroupNorm1d(groups * gn_groups, size_h) self.fc_0 = nn.Conv1d(size_in, size_h, 1, groups=groups, bias=False) self.fc_1 = nn.Conv1d(size_h, size_out, 1, groups=groups, bias=False) if not leaky: self.actvn = nn.ReLU() else: self.actvn = nn.LeakyReLU(0.1) if size_in == size_out: self.shortcut = None else: self.shortcut = nn.Conv1d(size_in, size_out, 1, bias=False, groups=groups) nn.init.zeros_(self.fc_1.weight) def forward(self, x): if self.dropout is not None: net = self.fc_0(self.dropout(self.actvn(self.gn_0(x)))) dx = self.fc_1(self.dropout(self.actvn(self.gn_1(net)))) else: net = self.fc_0(self.actvn(self.gn_0(x))) dx = self.fc_1(self.actvn(self.gn_1(net))) if self.shortcut is not None: x_s = self.shortcut(x) else: x_s = x return x_s + dx def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'size_in': 4, 'groups': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp11 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = 0.0 tmp6 = tmp4 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp3 / tmp9 tmp12 = tmp10 * tmp11 tmp14 = tmp12 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_6, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_relu_0[grid(64)](primals_1, primals_2, primals_3, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_3 buf1 = extern_kernels.convolution(buf0, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_relu_0[grid(64)](buf1, primals_5, primals_6, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_6 buf3 = extern_kernels.convolution(buf2, primals_7, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_add_1[grid(64)](buf4, primals_1, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf4, primals_1, primals_4, primals_5, primals_7, buf0, buf1, buf2 class GroupNorm1d(nn.Module): """ Group normalization that does per-point group normalization. Args: groups (int): number of groups f_dim (int): feature dimension, mush be divisible by groups """ def __init__(self, groups, f_dim, eps=1e-05, affine=True): super().__init__() self.groups = groups self.f_dim = f_dim self.affine = affine self.eps = eps assert f_dim % groups == 0 if affine: self.gamma = nn.Parameter(torch.ones(1, f_dim, 1)) self.beta = nn.Parameter(torch.zeros(1, f_dim, 1)) def forward(self, x): batch_size, D, T = x.size() net = x.view(batch_size, self.groups, D // self.groups, T) means = net.mean(2, keepdim=True) variances = net.var(2, keepdim=True) net = (net - means) / (variances + self.eps).sqrt() net = net.view(batch_size, D, T) if self.affine: return net * self.gamma + self.beta else: return net class ResnetBlockGroupNormConv1dNew(nn.Module): """ Fully connected ResNet Block imeplemented with group convolutions and group normalizations. Args: size_in (int): input dimension groups (int): number of groups for group convolutions gn_groups (int): number of groups for group normalizations size_out (int): output dimension size_h (int): hidden dimension """ def __init__(self, size_in, groups, gn_groups=4, size_out=None, size_h= None, dropout_prob=0.0, leaky=False): super().__init__() if size_out is None: size_out = size_in if size_h is None: size_h = min(size_in, size_out) if dropout_prob > 0.0: self.dropout = nn.Dropout(dropout_prob, inplace=True) else: self.dropout = None self.size_in = size_in self.size_h = size_h self.size_out = size_out self.gn_0 = GroupNorm1d(groups * gn_groups, size_in) self.gn_1 = GroupNorm1d(groups * gn_groups, size_h) self.fc_0 = nn.Conv1d(size_in, size_h, 1, groups=groups, bias=False) self.fc_1 = nn.Conv1d(size_h, size_out, 1, groups=groups, bias=False) if not leaky: self.actvn = nn.ReLU() else: self.actvn = nn.LeakyReLU(0.1) if size_in == size_out: self.shortcut = None else: self.shortcut = nn.Conv1d(size_in, size_out, 1, bias=False, groups=groups) nn.init.zeros_(self.fc_1.weight) def forward(self, input_0): primals_2 = self.gn_0.gamma primals_3 = self.gn_0.beta primals_5 = self.gn_1.gamma primals_6 = self.gn_1.beta primals_4 = self.fc_0.weight primals_7 = self.fc_1.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
taconite/MetaAvatar-release
ResnetBlockGroupNormConv1d
false
16,526
[ "MIT" ]
60
c9403a478ee82232633d25f65f108befd21d04e9
https://github.com/taconite/MetaAvatar-release/tree/c9403a478ee82232633d25f65f108befd21d04e9
GatedFusion
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/v5/cv5tq6n65fyvnhzubxrqee5iudkn67xd2tcw26lgrollkamxeihq.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %mul, %sub], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = tmp0 >= tmp12 tmp21 = tl.full([1], 16, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tl.load(in_ptr0 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr1 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 - tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp20, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp19, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wp/cwpecc4k3av5gvh6ggkod2aipdpjm4keqi6ev2zkqsbp5qwgyz44.py # Topologically Sorted Source Nodes: [z, sub_1, mul_1, mul_2, h_state], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add] # Source node to ATen node mapping: # h_state => add # mul_1 => mul_1 # mul_2 => mul_2 # sub_1 => sub_1 # z => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = tmp1 * tmp6 tmp8 = tmp5 + tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 1024, grid=grid(1024), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [z, sub_1, mul_1, mul_2, h_state], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_1.run(buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, reinterpret_tensor(buf0, (64, 16), (16, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from scipy.sparse import * class GatedFusion(nn.Module): def __init__(self, hidden_size): super(GatedFusion, self).__init__() """GatedFusion module""" self.fc_z = nn.Linear(4 * hidden_size, hidden_size, bias=True) def forward(self, h_state, input): z = torch.sigmoid(self.fc_z(torch.cat([h_state, input, h_state * input, h_state - input], -1))) h_state = (1 - z) * h_state + z * input return h_state def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from scipy.sparse import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp23 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr1 + (4 * x1 + (-12 + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 - tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp20, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp19, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + x2, tmp30, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = tmp1 * tmp6 tmp8 = tmp5 + tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch. float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1024)](primals_1, primals_2, buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_1[grid(256)](buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, reinterpret_tensor(buf0, (64, 16), ( 16, 1), 0), buf1 class GatedFusionNew(nn.Module): def __init__(self, hidden_size): super(GatedFusionNew, self).__init__() """GatedFusion module""" self.fc_z = nn.Linear(4 * hidden_size, hidden_size, bias=True) def forward(self, input_0, input_1): primals_3 = self.fc_z.weight primals_4 = self.fc_z.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
talha1503/RL-based-Graph2Seq-for-NQG
GatedFusion
false
16,527
[ "Apache-2.0" ]
100
1039e0b6231ae7029ea6e4073b1e55df5ad2e928
https://github.com/talha1503/RL-based-Graph2Seq-for-NQG/tree/1039e0b6231ae7029ea6e4073b1e55df5ad2e928
ResnetBlockGroupNormShallowConv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/64/c64uyqanlgbzvvnf4bt5g567ss5hfnfwyv4z737wik7u3ojr5wuv.py # Topologically Sorted Source Nodes: [mul, add_1, relu], Original ATen: [aten.mul, aten.add, aten.relu] # Source node to ATen node mapping: # add_1 => add_1 # mul => mul # relu => relu # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_mul_relu_0 = async_compile.triton('triton_poi_fused_add_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp11 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = 0.0 tmp6 = tmp4 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp3 / tmp9 tmp12 = tmp10 * tmp11 tmp14 = tmp12 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/to/ctobwbigfuxosis7k2qsriu5knhjriohveqkz4sp2nkdj2wg4lxc.py # Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add] # Source node to ATen node mapping: # add_2 => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add_1, relu], Original ATen: [aten.mul, aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_relu_0.run(primals_1, primals_2, primals_3, buf0, 64, grid=grid(64), stream=stream0) del primals_2 del primals_3 # Topologically Sorted Source Nodes: [dx], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_1, 64, grid=grid(64), stream=stream0) return (buf2, primals_1, primals_4, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GroupNorm1d(nn.Module): """ Group normalization that does per-point group normalization. Args: groups (int): number of groups f_dim (int): feature dimension, mush be divisible by groups """ def __init__(self, groups, f_dim, eps=1e-05, affine=True): super().__init__() self.groups = groups self.f_dim = f_dim self.affine = affine self.eps = eps assert f_dim % groups == 0 if affine: self.gamma = nn.Parameter(torch.ones(1, f_dim, 1)) self.beta = nn.Parameter(torch.zeros(1, f_dim, 1)) def forward(self, x): batch_size, D, T = x.size() net = x.view(batch_size, self.groups, D // self.groups, T) means = net.mean(2, keepdim=True) variances = net.var(2, keepdim=True) net = (net - means) / (variances + self.eps).sqrt() net = net.view(batch_size, D, T) if self.affine: return net * self.gamma + self.beta else: return net class ResnetBlockGroupNormShallowConv1d(nn.Module): """ Fully connected ResNet Block imeplemented with group convolutions and group normalizations. Args: size_in (int): input dimension groups (int): number of groups for group convolutions gn_groups (int): number of groups for group normalizations size_out (int): output dimension size_h (int): hidden dimension """ def __init__(self, size_in, groups, gn_groups=4, size_out=None, size_h= None, dropout_prob=0.0, leaky=False): super().__init__() if size_out is None: size_out = size_in if size_h is None: size_h = min(size_in, size_out) if dropout_prob > 0.0: self.dropout = nn.Dropout(dropout_prob, inplace=True) else: self.dropout = None self.size_in = size_in self.size_h = size_h self.size_out = size_out self.gn_0 = GroupNorm1d(groups * gn_groups, size_in) self.fc_0 = nn.Conv1d(size_in, size_h, 1, groups=groups, bias=False) if not leaky: self.actvn = nn.ReLU() else: self.actvn = nn.LeakyReLU(0.1) if size_in == size_out: self.shortcut = None else: self.shortcut = nn.Conv1d(size_in, size_out, 1, bias=False, groups=groups) def forward(self, x): if self.dropout is not None: dx = self.fc_0(self.dropout(self.actvn(self.gn_0(x)))) else: dx = self.fc_0(self.actvn(self.gn_0(x))) if self.shortcut is not None: x_s = self.shortcut(x) else: x_s = x return x_s + dx def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'size_in': 4, 'groups': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp11 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = 0.0 tmp6 = tmp4 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp3 / tmp9 tmp12 = tmp10 * tmp11 tmp14 = tmp12 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_relu_0[grid(64)](primals_1, primals_2, primals_3, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_3 buf1 = extern_kernels.convolution(buf0, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_add_1[grid(64)](buf2, primals_1, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, primals_1, primals_4, buf0 class GroupNorm1d(nn.Module): """ Group normalization that does per-point group normalization. Args: groups (int): number of groups f_dim (int): feature dimension, mush be divisible by groups """ def __init__(self, groups, f_dim, eps=1e-05, affine=True): super().__init__() self.groups = groups self.f_dim = f_dim self.affine = affine self.eps = eps assert f_dim % groups == 0 if affine: self.gamma = nn.Parameter(torch.ones(1, f_dim, 1)) self.beta = nn.Parameter(torch.zeros(1, f_dim, 1)) def forward(self, x): batch_size, D, T = x.size() net = x.view(batch_size, self.groups, D // self.groups, T) means = net.mean(2, keepdim=True) variances = net.var(2, keepdim=True) net = (net - means) / (variances + self.eps).sqrt() net = net.view(batch_size, D, T) if self.affine: return net * self.gamma + self.beta else: return net class ResnetBlockGroupNormShallowConv1dNew(nn.Module): """ Fully connected ResNet Block imeplemented with group convolutions and group normalizations. Args: size_in (int): input dimension groups (int): number of groups for group convolutions gn_groups (int): number of groups for group normalizations size_out (int): output dimension size_h (int): hidden dimension """ def __init__(self, size_in, groups, gn_groups=4, size_out=None, size_h= None, dropout_prob=0.0, leaky=False): super().__init__() if size_out is None: size_out = size_in if size_h is None: size_h = min(size_in, size_out) if dropout_prob > 0.0: self.dropout = nn.Dropout(dropout_prob, inplace=True) else: self.dropout = None self.size_in = size_in self.size_h = size_h self.size_out = size_out self.gn_0 = GroupNorm1d(groups * gn_groups, size_in) self.fc_0 = nn.Conv1d(size_in, size_h, 1, groups=groups, bias=False) if not leaky: self.actvn = nn.ReLU() else: self.actvn = nn.LeakyReLU(0.1) if size_in == size_out: self.shortcut = None else: self.shortcut = nn.Conv1d(size_in, size_out, 1, bias=False, groups=groups) def forward(self, input_0): primals_2 = self.gn_0.gamma primals_3 = self.gn_0.beta primals_4 = self.fc_0.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
taconite/MetaAvatar-release
ResnetBlockGroupNormShallowConv1d
false
16,528
[ "MIT" ]
60
c9403a478ee82232633d25f65f108befd21d04e9
https://github.com/taconite/MetaAvatar-release/tree/c9403a478ee82232633d25f65f108befd21d04e9
PatchEmbed
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/kn/cknyjwkwufnzzf4ya3scui55ownkmt5cdh3hggzwsfe3ch5fshzm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qy/cqyu5l2p6xh633a7thd2tte3bszrg4ugscf2y523iookhmpheqal.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 256], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2304 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (256*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (768*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4c/c4ckui43udehobca2kb3vy5stpaqfztmtjwrdinx2dhmcmh73fmo.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [16, 16], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 3072 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = (yindex // 768) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (768*x2) + (12288*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (768, 3, 16, 16), (768, 256, 16, 1)) assert_size_stride(primals_3, (768, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_1 buf1 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 2304, 256, grid=grid(2304, 256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf0, buf1, stride=(16, 16), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768)) buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf2, primals_3, buf3, 3072, 16, grid=grid(3072, 16), stream=stream0) del buf2 del primals_3 return (buf3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((768, 3, 16, 16), (768, 256, 16, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((768, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch import optim as optim class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = img_size // patch_size * (img_size // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): _B, _C, _H, _W = x.shape return self.proj(x) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 2304 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 256 * y3), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 768 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 768 y1 = yindex // 768 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 768 * x2 + 12288 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (768, 3, 16, 16), (768, 256, 16, 1)) assert_size_stride(primals_3, (768,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_0[grid(12, 4096)](primals_1, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((768, 3, 16, 16), (768, 1, 48, 3), torch. float32) triton_poi_fused_1[grid(2304, 256)](primals_2, buf1, 2304, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf0, buf1, stride=(16, 16), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 768, 4, 4), (12288, 1, 3072, 768)) buf3 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch. float32) triton_poi_fused_convolution_2[grid(3072, 16)](buf2, primals_3, buf3, 3072, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del buf2 del primals_3 return buf3, buf0, buf1 class PatchEmbedNew(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = img_size // patch_size * (img_size // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, input_0): primals_2 = self.proj.weight primals_3 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
taokong/ibot
PatchEmbed
false
16,529
[ "Apache-2.0" ]
327
a2ee1ae7495d4ea8fb9ba100434c062f1bd3d1f0
https://github.com/taokong/ibot/tree/a2ee1ae7495d4ea8fb9ba100434c062f1bd3d1f0
silog_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pl/cplkeinu4q55u7jt6ilmlbghegg6kiadmw6txrbu2mey3crjwphj.py # Topologically Sorted Source Nodes: [getitem, log, getitem_1, log_1, d, pow_1, mean, mean_1, pow_2, mul, sub_1, sqrt, mul_1], Original ATen: [aten.index, aten.log, aten.sub, aten.pow, aten.mean, aten.mul, aten.sqrt] # Source node to ATen node mapping: # d => sub # getitem => index # getitem_1 => index_1 # log => log # log_1 => log_1 # mean => mean # mean_1 => mean_1 # mul => mul # mul_1 => mul_1 # pow_1 => pow_1 # pow_2 => pow_2 # sqrt => sqrt # sub_1 => sub_1 # Graph fragment: # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%arg1_1]), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%index,), kwargs = {}) # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg2_1, [%arg1_1]), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%index_1,), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 4), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean, %mul), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sub_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, 10.0), kwargs = {}) triton_per_fused_index_log_mean_mul_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_index_log_mean_mul_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i64', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_log_mean_mul_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_index_log_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4), None, eviction_policy='evict_last') tmp7 = tmp6.to(tl.float32) tmp8 = tl_math.log(tmp7) tmp9 = tl.load(in_ptr2 + (tmp4), None, eviction_policy='evict_last') tmp10 = tmp9.to(tl.float32) tmp11 = tl_math.log(tmp10) tmp12 = tmp8 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp20 = 4.0 tmp21 = tmp16 / tmp20 tmp22 = tmp19 / tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp23 * tmp20 tmp25 = tmp21 - tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 10.0 tmp28 = tmp26 * tmp27 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp28, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, ), (1, )) assert_size_stride(arg1_1, (4, ), (1, )) assert_size_stride(arg2_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [getitem, log, getitem_1, log_1, d, pow_1, mean, mean_1, pow_2, mul, sub_1, sqrt, mul_1], Original ATen: [aten.index, aten.log, aten.sub, aten.pow, aten.mean, aten.mul, aten.sqrt] stream0 = get_raw_stream(0) triton_per_fused_index_log_mean_mul_pow_sqrt_sub_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data.distributed class silog_loss(nn.Module): def __init__(self, variance_focus): super(silog_loss, self).__init__() self.variance_focus = variance_focus def forward(self, depth_est, depth_gt, mask): d = torch.log(depth_est[mask]) - torch.log(depth_gt[mask]) return torch.sqrt((d ** 2).mean() - self.variance_focus * d.mean() ** 2 ) * 10.0 def get_inputs(): return [torch.ones([4], dtype=torch.int64), torch.ones([4], dtype=torch .int64), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'variance_focus': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_index_log_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + tmp4, None, eviction_policy='evict_last') tmp7 = tmp6.to(tl.float32) tmp8 = tl_math.log(tmp7) tmp9 = tl.load(in_ptr2 + tmp4, None, eviction_policy='evict_last') tmp10 = tmp9.to(tl.float32) tmp11 = tl_math.log(tmp10) tmp12 = tmp8 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp20 = 4.0 tmp21 = tmp16 / tmp20 tmp22 = tmp19 / tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp23 * tmp20 tmp25 = tmp21 - tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 10.0 tmp28 = tmp26 * tmp27 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp28, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4,), (1,)) assert_size_stride(arg1_1, (4,), (1,)) assert_size_stride(arg2_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_index_log_mean_mul_pow_sqrt_sub_0[grid(1)](buf2, arg1_1, arg0_1, arg2_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class silog_lossNew(nn.Module): def __init__(self, variance_focus): super(silog_lossNew, self).__init__() self.variance_focus = variance_focus def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
syKevinPeng/TransDepth
silog_loss
false
16,530
[ "MIT" ]
118
2282039da7bc0812e19a27b2d73a25bdef97d739
https://github.com/syKevinPeng/TransDepth/tree/2282039da7bc0812e19a27b2d73a25bdef97d739
SoftDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ay/cayhym2763alqimr4izzfn2uov2zcecjjz6c7w4egklx74t7hbc5.py # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, den1, den2, add_1, add_2, soft_dice, neg], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.neg] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # den1 => sum_2 # den2 => sum_3 # intersection => sum_1 # mul => mul # mul_1 => mul_1 # neg => neg # soft_dice => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {}) triton_per_fused_add_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_neg_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = -tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, den1, den2, add_1, add_2, soft_dice, neg], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.neg] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_neg_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SoftDiceLoss(nn.Module): def __init__(self): super(SoftDiceLoss, self).__init__() def forward(self, output, label): probs = output.view(-1) mask = label.view(-1) smooth = 1 intersection = torch.sum(probs * mask) den1 = torch.sum(probs) den2 = torch.sum(mask) soft_dice = (2 * intersection + smooth) / (den1 + den2 + smooth) return -soft_dice def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = -tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_neg_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class SoftDiceLossNew(nn.Module): def __init__(self): super(SoftDiceLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tdml13/NiftyNet
SoftDiceLoss
false
16,531
[ "Apache-2.0" ]
1,403
b35fa19ca307e81d229e2fe8269a417724833da2
https://github.com/tdml13/NiftyNet/tree/b35fa19ca307e81d229e2fe8269a417724833da2
PatchMerging
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/27/c27w2vsk7hohsacusbwl2tb7dxz6zo6ythuojm6gntenf734qgqj.py # Topologically Sorted Source Nodes: [x_1, x_3], Original ATen: [aten.cat, aten.native_layer_norm] # Source node to ATen node mapping: # x_1 => cat # x_3 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_3, %slice_7, %slice_11, %slice_15], -1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_per_fused_cat_native_layer_norm_0 = async_compile.triton('triton_per_fused_cat_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cat_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp46 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last') tmp0 = r1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((16*x0) + r1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1, 1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (8 + (16*x0) + ((-4) + r1)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1, 1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (4 + (16*x0) + ((-8) + r1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1, 1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (12 + (16*x0) + ((-12) + r1)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp25 = tl.where(xmask, tmp23, 0) tmp26 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp28 = tl.where(xmask, tmp26, 0) tmp29 = tl.sum(tmp28, 1)[:, None] tmp30 = tl.full([XBLOCK, 1], 16, tl.int32) tmp31 = tmp30.to(tl.float32) tmp32 = tmp29 / tmp31 tmp33 = tmp23 - tmp32 tmp34 = tmp33 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.where(xmask, tmp35, 0) tmp38 = tl.sum(tmp37, 1)[:, None] tmp39 = 16.0 tmp40 = tmp38 / tmp39 tmp41 = 1e-05 tmp42 = tmp40 + tmp41 tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp22 - tmp32 tmp45 = tmp44 * tmp43 tmp47 = tmp45 * tmp46 tmp49 = tmp47 + tmp48 tl.store(out_ptr0 + (r1 + (16*x0)), tmp22, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp43, xmask) tl.store(out_ptr2 + (r1 + (16*x0)), tmp49, xmask) tl.store(out_ptr1 + (x0), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (8, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 16), (16, 16, 16, 1), torch.float32) buf1 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf4 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_3], Original ATen: [aten.cat, aten.native_layer_norm] stream0 = get_raw_stream(0) triton_per_fused_cat_native_layer_norm_0.run(buf4, primals_1, primals_2, primals_3, buf0, buf1, buf5, 4, 16, grid=grid(4), stream=stream0) del primals_1 del primals_2 del primals_3 buf6 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf5, (4, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 8), (1, 16), 0), out=buf6) return (reinterpret_tensor(buf6, (4, 1, 8), (8, 8, 1), 0), buf0, buf1, buf4, reinterpret_tensor(buf5, (4, 16), (16, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 16), (16, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from math import sqrt from torch import optim as optim class PatchMerging(nn.Module): """Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ B, L, C = x.shape H = int(sqrt(L)) W = H x = x.view(B, H, W, C) pad_input = H % 2 == 1 or W % 2 == 1 if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, 0::2, 0::2, :] x1 = x[:, 1::2, 0::2, :] x2 = x[:, 0::2, 1::2, :] x3 = x[:, 1::2, 1::2, :] x = torch.cat([x0, x1, x2, x3], -1) x = x.view(B, -1, 4 * C) x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) ->str: return f'input_resolution={self.input_resolution}, dim={self.dim}' def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += H // 2 * (W // 2) * 4 * self.dim * 2 * self.dim return flops def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_resolution': 4, 'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_cat_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr ): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp46 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last') tmp0 = r1 tl.full([1, 1], 0, tl.int64) tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (16 * x0 + r1), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1, 1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (8 + 16 * x0 + (-4 + r1)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1, 1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (4 + 16 * x0 + (-8 + r1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1, 1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (12 + 16 * x0 + (-12 + r1)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tl.where(xmask, tmp23, 0) tmp26 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp28 = tl.where(xmask, tmp26, 0) tmp29 = tl.sum(tmp28, 1)[:, None] tmp30 = tl.full([XBLOCK, 1], 16, tl.int32) tmp31 = tmp30.to(tl.float32) tmp32 = tmp29 / tmp31 tmp33 = tmp23 - tmp32 tmp34 = tmp33 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.where(xmask, tmp35, 0) tmp38 = tl.sum(tmp37, 1)[:, None] tmp39 = 16.0 tmp40 = tmp38 / tmp39 tmp41 = 1e-05 tmp42 = tmp40 + tmp41 tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp22 - tmp32 tmp45 = tmp44 * tmp43 tmp47 = tmp45 * tmp46 tmp49 = tmp47 + tmp48 tl.store(out_ptr0 + (r1 + 16 * x0), tmp22, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp43, xmask) tl.store(out_ptr2 + (r1 + 16 * x0), tmp49, xmask) tl.store(out_ptr1 + x0, tmp32, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (8, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 16), (16, 16, 16, 1), torch.float32 ) buf1 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf4 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused_cat_native_layer_norm_0[grid(4)](buf4, primals_1, primals_2, primals_3, buf0, buf1, buf5, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_1 del primals_2 del primals_3 buf6 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (4, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 8), (1, 16), 0), out=buf6) return reinterpret_tensor(buf6, (4, 1, 8), (8, 8, 1), 0 ), buf0, buf1, buf4, reinterpret_tensor(buf5, (4, 16), (16, 1), 0 ), primals_4 class PatchMergingNew(nn.Module): """Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def extra_repr(self) ->str: return f'input_resolution={self.input_resolution}, dim={self.dim}' def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += H // 2 * (W // 2) * 4 * self.dim * 2 * self.dim return flops def forward(self, input_0): primals_4 = self.reduction.weight primals_2 = self.norm.weight primals_3 = self.norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
taokong/ibot
PatchMerging
false
16,532
[ "Apache-2.0" ]
327
a2ee1ae7495d4ea8fb9ba100434c062f1bd3d1f0
https://github.com/taokong/ibot/tree/a2ee1ae7495d4ea8fb9ba100434c062f1bd3d1f0
ITN2D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oy/coyhsh2gonfcpjxzlrgxzb2cyfxeyqdlyipiltkiqn3cy2uxjzy4.py # Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py # Topologically Sorted Source Nodes: [conv2d_1, x1_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x1_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4r/c4ray2h4ol3a6cz27neikf5ftekc6k2qf6po4lp77jbjfk4hme6h.py # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qy/cqyzkwubw5kpd5fvgbwao6qol7mev6647ui3gjisxhbajysvxwio.py # Topologically Sorted Source Nodes: [conv2d_3, x2_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x2_1 => relu_2 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xi/cxir4oidn24irnnabwa2s6m4z6ce6yu73mldknzjqglr2ar4dmc6.py # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x3 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/by/cbyqdutooah5tcqryjobcfio2m7hohfvkjwiihzh6hfpcbeoc3uz.py # Topologically Sorted Source Nodes: [conv2d_5, x3_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # x3_1 => relu_3 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_4, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ua/cuayw5tj6t3p7bdu4ij24cqcnyrtfsywfue5l6ylb3wzjn3o7smf.py # Topologically Sorted Source Nodes: [conv_transpose2d, x2_2], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # conv_transpose2d => convolution_6 # x2_2 => add # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_14, %primals_15, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_6, %relu_2), kwargs = {}) triton_poi_fused_add_convolution_6 = async_compile.triton('triton_poi_fused_add_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ic/cics44mszydykku2ingqhr7kjb5bgx6jv2i7wjmcbq734t4otlfv.py # Topologically Sorted Source Nodes: [conv_transpose2d_1, x1_2], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_8 # x1_2 => add_1 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_18, %primals_19, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_8, %relu_1), kwargs = {}) triton_poi_fused_add_convolution_7 = async_compile.triton('triton_poi_fused_add_convolution_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hv/chvjps7mdihsey52liakjjf3pnbmsltepa5vr65k6fxgupdvvp7p.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_8 = async_compile.triton('triton_poi_fused_convolution_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25 = args args.clear() assert_size_stride(primals_1, (2, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (8, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_7, (8, ), (1, )) assert_size_stride(primals_8, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_9, (8, ), (1, )) assert_size_stride(primals_10, (16, 8, 2, 2), (32, 4, 2, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_13, (16, ), (1, )) assert_size_stride(primals_14, (16, 8, 2, 2), (32, 4, 2, 1)) assert_size_stride(primals_15, (8, ), (1, )) assert_size_stride(primals_16, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_17, (8, ), (1, )) assert_size_stride(primals_18, (8, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_19, (4, ), (1, )) assert_size_stride(primals_20, (2, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_21, (2, ), (1, )) assert_size_stride(primals_22, (2, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_23, (2, ), (1, )) assert_size_stride(primals_24, (4, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_25, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x1_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 8, 2, 2), (32, 4, 2, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_7, 128, grid=grid(128), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 8, 2, 2), (32, 4, 2, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x2_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf7, primals_9, 128, grid=grid(128), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 1, 1), (16, 1, 1, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf9, primals_11, 64, grid=grid(64), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 1, 1), (16, 1, 1, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x3_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf11, primals_13, 64, grid=grid(64), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_14, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 8, 2, 2), (32, 4, 2, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d, x2_2], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_6.run(buf13, primals_15, buf7, 128, grid=grid(128), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 8, 2, 2), (32, 4, 2, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d_6, x2_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf15, primals_17, 128, grid=grid(128), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_18, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_1, x1_2], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_7.run(buf17, primals_19, buf3, 256, grid=grid(256), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 2, 4, 4), (32, 16, 4, 1)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x1_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf19, primals_21, 128, grid=grid(128), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 2, 4, 4), (32, 16, 4, 1)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [conv2d_8, x1_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf21, primals_23, 128, grid=grid(128), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 4, 4, 4), (64, 16, 4, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_8.run(buf23, primals_25, 256, grid=grid(256), stream=stream0) del primals_25 return (buf23, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf19, buf21, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 8, 2, 2), (32, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((16, 8, 2, 2), (32, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((8, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((2, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((2, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((4, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class ITN2D(nn.Module): def __init__(self, input_channels): super(ITN2D, self).__init__() use_bias = True self.conv11 = nn.Conv2d(input_channels, 2, kernel_size=3, padding=1, bias=use_bias) self.conv12 = nn.Conv2d(2, 4, kernel_size=3, padding=1, bias=use_bias) self.down1 = nn.Conv2d(4, 8, kernel_size=2, stride=2, bias=use_bias) self.conv21 = nn.Conv2d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.down2 = nn.Conv2d(8, 16, kernel_size=2, stride=2, bias=use_bias) self.conv31 = nn.Conv2d(16, 16, kernel_size=3, padding=1, bias=use_bias ) self.up2 = nn.ConvTranspose2d(16, 8, kernel_size=2, stride=2, bias= use_bias) self.conv22 = nn.Conv2d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.up1 = nn.ConvTranspose2d(8, 4, kernel_size=2, stride=2, bias= use_bias) self.conv13 = nn.Conv2d(4, 2, kernel_size=3, padding=1, bias=use_bias) self.conv14 = nn.Conv2d(2, 2, kernel_size=3, padding=1, bias=use_bias) self.conv15 = nn.Conv2d(2, input_channels, kernel_size=3, padding=1, bias=use_bias) def forward(self, x): x1 = F.relu(self.conv11(x)) x1 = F.relu(self.conv12(x1)) x2 = self.down1(x1) x2 = F.relu(self.conv21(x2)) x3 = self.down2(x2) x3 = F.relu(self.conv31(x3)) x2 = self.up2(x3) + x2 x2 = F.relu(self.conv22(x2)) x1 = self.up1(x2) + x1 x1 = F.relu(self.conv13(x1)) x1 = F.relu(self.conv14(x1)) x = self.conv15(x1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25) = args args.clear() assert_size_stride(primals_1, (2, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (8, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_9, (8,), (1,)) assert_size_stride(primals_10, (16, 8, 2, 2), (32, 4, 2, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_13, (16,), (1,)) assert_size_stride(primals_14, (16, 8, 2, 2), (32, 4, 2, 1)) assert_size_stride(primals_15, (8,), (1,)) assert_size_stride(primals_16, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_17, (8,), (1,)) assert_size_stride(primals_18, (8, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_19, (4,), (1,)) assert_size_stride(primals_20, (2, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_21, (2,), (1,)) assert_size_stride(primals_22, (2, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_23, (2,), (1,)) assert_size_stride(primals_24, (4, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_25, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 8, 2, 2), (32, 4, 2, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(128)](buf5, primals_7, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 8, 2, 2), (32, 4, 2, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_3[grid(128)](buf7, primals_9, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 1, 1), (16, 1, 1, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_4[grid(64)](buf9, primals_11, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 1, 1), (16, 1, 1, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_5[grid(64)](buf11, primals_13, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_13 buf12 = extern_kernels.convolution(buf11, primals_14, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 8, 2, 2), (32, 4, 2, 1)) buf13 = buf12 del buf12 triton_poi_fused_add_convolution_6[grid(128)](buf13, primals_15, buf7, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 8, 2, 2), (32, 4, 2, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_3[grid(128)](buf15, primals_17, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_17 buf16 = extern_kernels.convolution(buf15, primals_18, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1)) buf17 = buf16 del buf16 triton_poi_fused_add_convolution_7[grid(256)](buf17, primals_19, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_19 buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 2, 4, 4), (32, 16, 4, 1)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_0[grid(128)](buf19, primals_21, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_21 buf20 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 2, 4, 4), (32, 16, 4, 1)) buf21 = buf20 del buf20 triton_poi_fused_convolution_relu_0[grid(128)](buf21, primals_23, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_23 buf22 = extern_kernels.convolution(buf21, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 4, 4, 4), (64, 16, 4, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_8[grid(256)](buf23, primals_25, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_25 return (buf23, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf19, buf21) class ITN2DNew(nn.Module): def __init__(self, input_channels): super(ITN2DNew, self).__init__() use_bias = True self.conv11 = nn.Conv2d(input_channels, 2, kernel_size=3, padding=1, bias=use_bias) self.conv12 = nn.Conv2d(2, 4, kernel_size=3, padding=1, bias=use_bias) self.down1 = nn.Conv2d(4, 8, kernel_size=2, stride=2, bias=use_bias) self.conv21 = nn.Conv2d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.down2 = nn.Conv2d(8, 16, kernel_size=2, stride=2, bias=use_bias) self.conv31 = nn.Conv2d(16, 16, kernel_size=3, padding=1, bias=use_bias ) self.up2 = nn.ConvTranspose2d(16, 8, kernel_size=2, stride=2, bias= use_bias) self.conv22 = nn.Conv2d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.up1 = nn.ConvTranspose2d(8, 4, kernel_size=2, stride=2, bias= use_bias) self.conv13 = nn.Conv2d(4, 2, kernel_size=3, padding=1, bias=use_bias) self.conv14 = nn.Conv2d(2, 2, kernel_size=3, padding=1, bias=use_bias) self.conv15 = nn.Conv2d(2, input_channels, kernel_size=3, padding=1, bias=use_bias) def forward(self, input_0): primals_1 = self.conv11.weight primals_2 = self.conv11.bias primals_4 = self.conv12.weight primals_5 = self.conv12.bias primals_6 = self.down1.weight primals_7 = self.down1.bias primals_8 = self.conv21.weight primals_9 = self.conv21.bias primals_10 = self.down2.weight primals_11 = self.down2.bias primals_12 = self.conv31.weight primals_13 = self.conv31.bias primals_14 = self.up2.weight primals_15 = self.up2.bias primals_16 = self.conv22.weight primals_17 = self.conv22.bias primals_18 = self.up1.weight primals_19 = self.up1.bias primals_20 = self.conv13.weight primals_21 = self.conv13.bias primals_22 = self.conv14.weight primals_23 = self.conv14.bias primals_24 = self.conv15.weight primals_25 = self.conv15.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return output[0]
swaroopkml96/istn
ITN2D
false
16,533
[ "Apache-2.0" ]
91
600543e071aa56907509aa090697295cdc69a6b1
https://github.com/swaroopkml96/istn/tree/600543e071aa56907509aa090697295cdc69a6b1
Conv_Q
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sn/csnsms5tdtjok5uxcwcbko2ioqfann3pwnmkfhlujgvnsujd5bud.py # Topologically Sorted Source Nodes: [conv2d, c], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # c => relu # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 156800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 1225) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f4/cf4q74veoggsxdgdkl43ap6cyqfylpfk3qs7wdqoebyfzzb36dvw.py # Topologically Sorted Source Nodes: [conv2d_1, c_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # c_1 => relu_1 # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jd/cjdph23oasfased5f2dfu7kch7qcwjhegz6fxsrsn22yzjy3qj2u.py # Topologically Sorted Source Nodes: [conv2d_2, c_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # c_2 => relu_2 # conv2d_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 196) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b5/cb5bmriikeb3z65rmk4n4vz3fvd4pzjrhfemonu665rzgwpxeamm.py # Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu] # Source node to ATen node mapping: # q => relu_3 # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ih/cihnd2atqsffuwbbsfahtc3ppzigvmfylfkax5rj4sghofcx2p6f.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # q_1 => relu_4 # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_11), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c3/cc3yzdrqwif5qd22o4v4h2kaw6n5tscgokeect6rrivqfiwciitk.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_5, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_5, %amax), kwargs = {}) triton_poi_fused__log_softmax_5 = async_compile.triton('triton_poi_fused__log_softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kq/ckqtdekt6qwlduobrybnggdp6xavr7mflka2uaftl7373cj36swo.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_6 = async_compile.triton('triton_poi_fused__log_softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args args.clear() assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 144, 144), (82944, 20736, 144, 1)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (512, 3136), (3136, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (16, 512), (512, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (512, 3136), (3136, 1)) assert_size_stride(primals_15, (512, ), (1, )) assert_size_stride(primals_16, (16, 512), (512, 1)) assert_size_stride(primals_17, (16, ), (1, )) assert_size_stride(primals_18, (4, 16), (16, 1)) assert_size_stride(primals_19, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 35, 35), (39200, 1225, 35, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, c], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 156800, grid=grid(156800), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 16, 16), (16384, 256, 16, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, c_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 65536, grid=grid(65536), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 14, 14), (12544, 196, 14, 1)) buf5 = buf4; del buf4 # reuse buf18 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, c_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_2.run(buf5, primals_7, buf18, 50176, grid=grid(50176), stream=stream0) del primals_7 buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu] triton_poi_fused_relu_3.run(buf7, primals_9, 8192, grid=grid(8192), stream=stream0) del primals_9 buf8 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf7, reinterpret_tensor(primals_10, (512, 16), (1, 512), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_11, 256, grid=grid(256), stream=stream0) del primals_11 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, buf9, reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf10) del primals_13 buf11 = empty_strided_cuda((16, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_14, (3136, 512), (1, 3136), 0), out=buf11) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [i], Original ATen: [aten.relu] triton_poi_fused_relu_3.run(buf12, primals_15, 8192, grid=grid(8192), stream=stream0) del primals_15 buf13 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf12, reinterpret_tensor(primals_16, (512, 16), (1, 512), 0), out=buf13) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [i_1], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf14, primals_17, 256, grid=grid(256), stream=stream0) del primals_17 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [i_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_19, buf14, reinterpret_tensor(primals_18, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf15) del primals_19 buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_5.run(buf15, buf16, 64, grid=grid(64), stream=stream0) buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_6.run(buf16, buf17, 64, grid=grid(64), stream=stream0) del buf16 return (buf10, buf17, buf15, primals_1, primals_3, primals_4, primals_6, buf1, buf3, reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), buf7, buf9, buf12, buf14, buf17, primals_18, primals_16, primals_14, primals_12, primals_10, primals_8, buf18, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 144, 144), (82944, 20736, 144, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 3136), (3136, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((512, 3136), (3136, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((16, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch.functional import F from torch import nn from typing import * from torch.nn import functional as F class Conv_Q(nn.Module): def __init__(self, frames, num_actions): super(Conv_Q, self).__init__() self.c1 = nn.Conv2d(frames, 32, kernel_size=8, stride=4) self.c2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.c3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.q1 = nn.Linear(3136, 512) self.q2 = nn.Linear(512, 16) self.q3 = nn.Linear(16, num_actions) self.i1 = nn.Linear(3136, 512) self.i2 = nn.Linear(512, 16) self.i3 = nn.Linear(16, num_actions) def forward(self, state): c = F.relu(self.c1(state)) c = F.relu(self.c2(c)) c = F.relu(self.c3(c)) q = F.relu(self.q1(c.reshape(-1, 3136))) q = F.relu(self.q2(q)) q = self.q3(q) i = F.relu(self.i1(c.reshape(-1, 3136))) i = F.relu(self.i2(i)) i = self.i3(i) return q, F.log_softmax(i, dim=1), i def encode(self, state): with torch.no_grad(): c = F.relu(self.c1(state)) c = F.relu(self.c2(c)) c = F.relu(self.c3(c)) q = F.relu(self.q1(c.reshape(-1, 3136))) q = F.relu(self.q2(q)) i = F.relu(self.i1(c.reshape(-1, 3136))) i = F.relu(self.i2(i)) return i def get_inputs(): return [torch.rand([4, 4, 144, 144])] def get_init_inputs(): return [[], {'frames': 4, 'num_actions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F from torch.functional import F from torch import nn from typing import * from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 156800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 1225 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 196 % 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19) = args args.clear() assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 144, 144), (82944, 20736, 144, 1)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (512, 3136), (3136, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (16, 512), (512, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (512, 3136), (3136, 1)) assert_size_stride(primals_15, (512,), (1,)) assert_size_stride(primals_16, (16, 512), (512, 1)) assert_size_stride(primals_17, (16,), (1,)) assert_size_stride(primals_18, (4, 16), (16, 1)) assert_size_stride(primals_19, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 35, 35), (39200, 1225, 35, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(156800)](buf1, primals_2, 156800, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 16, 16), (16384, 256, 16, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(65536)](buf3, primals_5, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 14, 14), (12544, 196, 14, 1)) buf5 = buf4 del buf4 buf18 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_2[grid(50176)]( buf5, primals_7, buf18, 50176, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0 ), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_relu_3[grid(8192)](buf7, primals_9, 8192, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(buf7, reinterpret_tensor(primals_10, (512, 16), ( 1, 512), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(256)](buf9, primals_11, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, buf9, reinterpret_tensor( primals_12, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf10) del primals_13 buf11 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0 ), reinterpret_tensor(primals_14, (3136, 512), (1, 3136), 0), out=buf11) buf12 = buf11 del buf11 triton_poi_fused_relu_3[grid(8192)](buf12, primals_15, 8192, XBLOCK =128, num_warps=4, num_stages=1) del primals_15 buf13 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(buf12, reinterpret_tensor(primals_16, (512, 16), (1, 512), 0), out=buf13) buf14 = buf13 del buf13 triton_poi_fused_relu_4[grid(256)](buf14, primals_17, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_17 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_19, buf14, reinterpret_tensor( primals_18, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf15) del primals_19 buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_5[grid(64)](buf15, buf16, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_6[grid(64)](buf16, buf17, 64, XBLOCK= 64, num_warps=1, num_stages=1) del buf16 return (buf10, buf17, buf15, primals_1, primals_3, primals_4, primals_6, buf1, buf3, reinterpret_tensor(buf5, (16, 3136), (3136, 1), 0), buf7, buf9, buf12, buf14, buf17, primals_18, primals_16, primals_14, primals_12, primals_10, primals_8, buf18) class Conv_QNew(nn.Module): def __init__(self, frames, num_actions): super(Conv_QNew, self).__init__() self.c1 = nn.Conv2d(frames, 32, kernel_size=8, stride=4) self.c2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.c3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.q1 = nn.Linear(3136, 512) self.q2 = nn.Linear(512, 16) self.q3 = nn.Linear(16, num_actions) self.i1 = nn.Linear(3136, 512) self.i2 = nn.Linear(512, 16) self.i3 = nn.Linear(16, num_actions) def encode(self, state): with torch.no_grad(): c = F.relu(self.c1(state)) c = F.relu(self.c2(c)) c = F.relu(self.c3(c)) q = F.relu(self.q1(c.reshape(-1, 3136))) q = F.relu(self.q2(q)) i = F.relu(self.i1(c.reshape(-1, 3136))) i = F.relu(self.i2(i)) return i def forward(self, input_0): primals_1 = self.c1.weight primals_2 = self.c1.bias primals_4 = self.c2.weight primals_5 = self.c2.bias primals_6 = self.c3.weight primals_7 = self.c3.bias primals_8 = self.q1.weight primals_9 = self.q1.bias primals_10 = self.q2.weight primals_11 = self.q2.bias primals_12 = self.q3.weight primals_13 = self.q3.bias primals_14 = self.i1.weight primals_15 = self.i1.bias primals_16 = self.i2.weight primals_17 = self.i2.bias primals_18 = self.i3.weight primals_19 = self.i3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return output[0], output[1], output[2]
ssimonc/NeoRL
Conv_Q
false
16,534
[ "Apache-2.0" ]
50
098c58c8e4c3e43e67803f6384619d3bfe7fce5d
https://github.com/ssimonc/NeoRL/tree/098c58c8e4c3e43e67803f6384619d3bfe7fce5d
Dense
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ay/cay3542vhmin5gvntsp37i63dfwj3bpzz2hr5fa2ukw6ibl57qp3.py # Topologically Sorted Source Nodes: [autograd_function_apply], Original ATen: [aten.add, aten.sigmoid] # Source node to ATen node mapping: # autograd_function_apply => add, sigmoid # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm, %expand), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) triton_poi_fused_add_sigmoid_0 = async_compile.triton('triton_poi_fused_add_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [autograd_function_apply], Original ATen: [aten.mm] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [autograd_function_apply], Original ATen: [aten.add, aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_add_sigmoid_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (buf1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function from torch.nn import Module import torch from torch.nn import Parameter class DenseFunction(Function): @staticmethod def forward(ctx, input, weight, bias=None): output = input.mm(weight.t()) if bias is not None: output += bias.unsqueeze(0).expand_as(output) output = torch.sigmoid(output) ctx.save_for_backward(input, weight, bias, output) return output @staticmethod def backward(ctx, grad_output): input, weight, bias, output = ctx.saved_tensors grad_sigmoid = (1.0 - output) * output grad_output = grad_sigmoid * grad_output grad_input = grad_weight = grad_bias = None if ctx.needs_input_grad[0]: grad_input = grad_output.mm(weight) if ctx.needs_input_grad[1]: grad_weight = grad_output.t().mm(input) if bias is not None and ctx.needs_input_grad[2]: grad_bias = grad_output.sum(0).squeeze(0) return grad_input, grad_weight, grad_bias class Dense(Module): def __init__(self, input_features, output_features, bias=True): super(Dense, self).__init__() self.input_features = input_features self.output_features = output_features self.weight = Parameter(torch.Tensor(output_features, input_features)) if bias: self.bias = Parameter(torch.Tensor(output_features)) else: self.register_parameter('bias', None) self.weight.data.uniform_(-0.1, 0.1) if bias is not None: self.bias.data.uniform_(-0.1, 0.1) def forward(self, input): return DenseFunction.apply(input, self.weight, self.bias) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_features': 4, 'output_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.autograd import Function from torch.nn import Module from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_sigmoid_0[grid(16)](buf1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf1, primals_3, buf1 class DenseFunction(Function): @staticmethod def forward(ctx, input, weight, bias=None): output = input.mm(weight.t()) if bias is not None: output += bias.unsqueeze(0).expand_as(output) output = torch.sigmoid(output) ctx.save_for_backward(input, weight, bias, output) return output @staticmethod def backward(ctx, grad_output): input, weight, bias, output = ctx.saved_tensors grad_sigmoid = (1.0 - output) * output grad_output = grad_sigmoid * grad_output grad_input = grad_weight = grad_bias = None if ctx.needs_input_grad[0]: grad_input = grad_output.mm(weight) if ctx.needs_input_grad[1]: grad_weight = grad_output.t().mm(input) if bias is not None and ctx.needs_input_grad[2]: grad_bias = grad_output.sum(0).squeeze(0) return grad_input, grad_weight, grad_bias class DenseNew(Module): def __init__(self, input_features, output_features, bias=True): super(DenseNew, self).__init__() self.input_features = input_features self.output_features = output_features self.weight = Parameter(torch.Tensor(output_features, input_features)) if bias: self.bias = Parameter(torch.Tensor(output_features)) else: self.register_parameter('bias', None) self.weight.data.uniform_(-0.1, 0.1) if bias is not None: self.bias.data.uniform_(-0.1, 0.1) def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
tczhangzhi/pytorch-parallel
Dense
false
16,535
[ "MIT" ]
117
8d8baf80dd48234386051d0bab616de5b55f8f5c
https://github.com/tczhangzhi/pytorch-parallel/tree/8d8baf80dd48234386051d0bab616de5b55f8f5c
TripletLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vz/cvzyvtnfg4gcdcjqeirfzha3mhsgnl5yb5d75tvz4utrvzgere4q.py # Topologically Sorted Source Nodes: [pos_dist, add, neg_dist, sub, hinge_dist, loss], Original ATen: [aten.sub, aten.add, aten.norm, aten.clamp, aten.mean] # Source node to ATen node mapping: # add => add_2 # hinge_dist => clamp_min # loss => mean # neg_dist => add_1, pow_3, pow_4, sub_1, sum_2 # pos_dist => add, pow_1, pow_2, sub, sum_1 # sub => sub_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 4), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub_1, 1e-06), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 2.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [3]), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %pow_4), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min,), kwargs = {}) triton_per_fused_add_clamp_mean_norm_sub_0 = async_compile.triton('triton_per_fused_add_clamp_mean_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_norm_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mean_norm_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 4.0 tmp26 = tmp24 + tmp25 tmp28 = tmp0 - tmp27 tmp29 = tmp28 + tmp3 tmp30 = tmp29 * tmp29 tmp32 = tmp6 - tmp31 tmp33 = tmp32 + tmp3 tmp34 = tmp33 * tmp33 tmp35 = tmp30 + tmp34 tmp37 = tmp12 - tmp36 tmp38 = tmp37 + tmp3 tmp39 = tmp38 * tmp38 tmp40 = tmp35 + tmp39 tmp42 = tmp18 - tmp41 tmp43 = tmp42 + tmp3 tmp44 = tmp43 * tmp43 tmp45 = tmp40 + tmp44 tmp46 = libdevice.sqrt(tmp45) tmp47 = tmp26 - tmp46 tmp48 = 0.0 tmp49 = triton_helpers.maximum(tmp47, tmp48) tmp50 = tl.broadcast_to(tmp49, [XBLOCK, RBLOCK]) tmp52 = tl.sum(tmp50, 1)[:, None] tmp53 = 64.0 tmp54 = tmp52 / tmp53 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp54, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [pos_dist, add, neg_dist, sub, hinge_dist, loss], Original ATen: [aten.sub, aten.add, aten.norm, aten.clamp, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_mean_norm_sub_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.modules.distance import PairwiseDistance class TripletLoss(torch.nn.Module): def __init__(self, margin): super(TripletLoss, self).__init__() self.margin = margin self.pdist = PairwiseDistance(2) def forward(self, anchor, positive, negative): pos_dist = self.pdist.forward(anchor, positive) neg_dist = self.pdist.forward(anchor, negative) hinge_dist = torch.clamp(self.margin + pos_dist - neg_dist, min=0.0) loss = torch.mean(hinge_dist) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'margin': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.nn.modules.distance import PairwiseDistance assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_mean_norm_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 4.0 tmp26 = tmp24 + tmp25 tmp28 = tmp0 - tmp27 tmp29 = tmp28 + tmp3 tmp30 = tmp29 * tmp29 tmp32 = tmp6 - tmp31 tmp33 = tmp32 + tmp3 tmp34 = tmp33 * tmp33 tmp35 = tmp30 + tmp34 tmp37 = tmp12 - tmp36 tmp38 = tmp37 + tmp3 tmp39 = tmp38 * tmp38 tmp40 = tmp35 + tmp39 tmp42 = tmp18 - tmp41 tmp43 = tmp42 + tmp3 tmp44 = tmp43 * tmp43 tmp45 = tmp40 + tmp44 tmp46 = libdevice.sqrt(tmp45) tmp47 = tmp26 - tmp46 tmp48 = 0.0 tmp49 = triton_helpers.maximum(tmp47, tmp48) tmp50 = tl.broadcast_to(tmp49, [XBLOCK, RBLOCK]) tmp52 = tl.sum(tmp50, 1)[:, None] tmp53 = 64.0 tmp54 = tmp52 / tmp53 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp54, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_clamp_mean_norm_sub_0[grid(1)](buf2, arg1_1, arg0_1, arg2_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class TripletLossNew(torch.nn.Module): def __init__(self, margin): super(TripletLossNew, self).__init__() self.margin = margin self.pdist = PairwiseDistance(2) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
tbmoon/facenet
TripletLoss
false
16,536
[ "MIT" ]
231
b3aec1a930f22a5a9597efa7072373c0ff93663f
https://github.com/tbmoon/facenet/tree/b3aec1a930f22a5a9597efa7072373c0ff93663f
ConcatBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rg/crgahvsjlzfu5j2g6kugt23uqorbnhqrp4n3tf2gfwg5emxvjkpf.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x => convolution # x_1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf3 del primals_5 return (buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ConcatBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ConcatBlock, self).__init__() self.in_chns = in_channels self.out_chns = out_channels self.conv1 = nn.Conv2d(self.in_chns, self.in_chns, kernel_size=1, padding=0) self.conv2 = nn.Conv2d(self.in_chns, self.out_chns, kernel_size=1, padding=0) self.ac1 = nn.LeakyReLU() self.ac2 = nn.LeakyReLU() def forward(self, x): x = self.conv1(x) x = self.ac1(x) x = self.conv2(x) x = self.ac2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 return buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4 class ConcatBlockNew(nn.Module): def __init__(self, in_channels, out_channels): super(ConcatBlockNew, self).__init__() self.in_chns = in_channels self.out_chns = out_channels self.conv1 = nn.Conv2d(self.in_chns, self.in_chns, kernel_size=1, padding=0) self.conv2 = nn.Conv2d(self.in_chns, self.out_chns, kernel_size=1, padding=0) self.ac1 = nn.LeakyReLU() self.ac2 = nn.LeakyReLU() def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
tea321000/SSL4MIS
ConcatBlock
false
16,537
[ "MIT" ]
854
8d1b0be08cf089943481a47877b36eb6405fffb2
https://github.com/tea321000/SSL4MIS/tree/8d1b0be08cf089943481a47877b36eb6405fffb2
OutPutBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/x5/cx5tt74pyfkrffe55ubcbkx6l564ggebb2dj4powbi5hgsxalj2h.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 2 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_4 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 128, grid=grid(128), stream=stream0) del buf0 del primals_3 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf4, primals_1, primals_2, primals_4, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class OutPutBlock(nn.Module): def __init__(self, in_channels, out_channels): super(OutPutBlock, self).__init__() self.in_chns = in_channels self.out_chns = out_channels self.conv1 = nn.Conv2d(self.in_chns, self.in_chns // 2, kernel_size =1, padding=0) self.conv2 = nn.Conv2d(self.in_chns // 2, self.out_chns, kernel_size=1, padding=0) self.drop1 = nn.Dropout2d(0.3) self.drop2 = nn.Dropout2d(0.3) self.ac1 = nn.LeakyReLU() def forward(self, x): x = self.drop1(x) x = self.conv1(x) x = self.ac1(x) x = self.drop2(x) x = self.conv2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 2 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(128)](buf0, primals_3, buf1, buf2, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_1[grid(256)](buf4, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf4, primals_1, primals_2, primals_4, buf1, buf2 class OutPutBlockNew(nn.Module): def __init__(self, in_channels, out_channels): super(OutPutBlockNew, self).__init__() self.in_chns = in_channels self.out_chns = out_channels self.conv1 = nn.Conv2d(self.in_chns, self.in_chns // 2, kernel_size =1, padding=0) self.conv2 = nn.Conv2d(self.in_chns // 2, self.out_chns, kernel_size=1, padding=0) self.drop1 = nn.Dropout2d(0.3) self.drop2 = nn.Dropout2d(0.3) self.ac1 = nn.LeakyReLU() def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
tea321000/SSL4MIS
OutPutBlock
false
16,538
[ "MIT" ]
854
8d1b0be08cf089943481a47877b36eb6405fffb2
https://github.com/tea321000/SSL4MIS/tree/8d1b0be08cf089943481a47877b36eb6405fffb2
MinimalRNNCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.cat] # Source node to ATen node mapping: # hx => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %primals_4], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k7/ck7n26po73znthtjpkrlbjvlyg7nkmnxzzp3wk4u5h2oaeoy3ljj.py # Topologically Sorted Source Nodes: [hidden, g, sub, mul, mul_1, h], Original ATen: [aten.tanh, aten.sigmoid, aten.rsub, aten.mul, aten.add] # Source node to ATen node mapping: # g => sigmoid # h => add # hidden => tanh # mul => mul # mul_1 => mul_1 # sub => sub # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp1 * tmp7 tmp9 = tmp5 + tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_preact], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_3, primals_4, buf1, 512, grid=grid(512), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [g_preact], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden, g, sub, mul, mul_1, h], Original ATen: [aten.tanh, aten.sigmoid, aten.rsub, aten.mul, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_tanh_1.run(buf2, primals_4, buf0, buf3, 256, grid=grid(256), stream=stream0) return (buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 8), (8, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from functools import partial def get_initializer(name, activation): if activation in ['id', 'identity', 'linear', 'modrelu']: nonlinearity = 'linear' elif activation in ['relu', 'tanh', 'sigmoid']: nonlinearity = activation else: assert False, f'get_initializer: activation {activation} not supported' if name == 'uniform': initializer = partial(torch.nn.init.kaiming_uniform_, nonlinearity= nonlinearity) elif name == 'normal': initializer = partial(torch.nn.init.kaiming_normal_, nonlinearity= nonlinearity) elif name == 'xavier': initializer = torch.nn.init.xavier_normal_ elif name == 'zero': initializer = partial(torch.nn.init.constant_, val=0) elif name == 'one': initializer = partial(torch.nn.init.constant_, val=1) else: assert False, f'get_initializer: initializer type {name} not supported' return initializer def Linear_(input_size, output_size, bias, init='normal', zero_bias_init= False, **kwargs): """ Returns a nn.Linear module with initialization options """ l = nn.Linear(input_size, output_size, bias=bias, **kwargs) get_initializer(init, 'linear')(l.weight) if bias and zero_bias_init: nn.init.zeros_(l.bias) return l def get_activation(activation, size): if activation == 'id': return nn.Identity() elif activation == 'tanh': return torch.tanh elif activation == 'relu': return torch.relu elif activation == 'sigmoid': return torch.sigmoid elif activation == 'modrelu': return Modrelu(size) else: raise NotImplementedError("hidden activation '{}' is not implemented" .format(activation)) class Gate(nn.Module): """ Implements gating mechanisms. Mechanisms: N - No gate G - Standard sigmoid gate """ def __init__(self, size, preact_ctor, preact_args, mechanism='N'): super().__init__() self.size = size self.mechanism = mechanism if self.mechanism == 'N': pass elif self.mechanism == 'G': self.W_g = preact_ctor(*preact_args) else: assert False, f'Gating type {self.mechanism} is not supported.' def forward(self, *inputs): if self.mechanism == 'N': return 1.0 if self.mechanism == 'G': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) return g class modrelu(nn.Module): def __init__(self, features): super(modrelu, self).__init__() self.features = features self.b = nn.Parameter(torch.Tensor(self.features)) self.reset_parameters() def reset_parameters(self): self.b.data.uniform_(-0.01, 0.01) def forward(self, inputs): norm = torch.abs(inputs) biased_norm = norm + self.b magnitude = nn.functional.relu(biased_norm) phase = torch.sign(inputs) return phase * magnitude class CellBase(nn.Module): """ Abstract class for our recurrent cell interface. Passes input through """ registry = {} def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) if hasattr(cls, 'name') and cls.name is not None: cls.registry[cls.name] = cls name = 'id' valid_keys = [] def default_initializers(self): return {} def default_architecture(self): return {} def __init__(self, input_size, hidden_size, initializers=None, architecture=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.architecture = self.default_architecture() self.initializers = self.default_initializers() if initializers is not None: self.initializers.update(initializers) None if architecture is not None: self.architecture.update(architecture) assert set(self.initializers.keys()).issubset(self.valid_keys) assert set(self.architecture.keys()).issubset(self.valid_keys) self.reset_parameters() def reset_parameters(self): pass def forward(self, input, hidden): return input, input def default_state(self, input, batch_size=None): return input.new_zeros(input.size(0) if batch_size is None else batch_size, self.hidden_size, requires_grad=False) def output(self, h): return h def state_size(self): return self.hidden_size def output_size(self): return self.hidden_size def initial_state(self, trainable=False): """ Return initial state of the RNN This should not need to see the input as it should be batch size agnostic and automatically broadcasted # TODO Currently not used """ if trainable: self.initial_state = torch.zeros(self.hidden_size, requires_grad=True) else: return torch.zeros(self.hidden_size, requires_grad=True) class Modrelu(modrelu): def reset_parameters(self): self.b.data.uniform_(-0.0, 0.0) class MinimalRNNCell(CellBase): name = 'mrnn' valid_keys = ['hx', 'bias'] def default_initializers(self): return {'hx': 'xavier'} def default_architecture(self): return {'bias': True} def __init__(self, input_size, hidden_size, hidden_activation='tanh', orthogonal=False, ortho_args=None, zero_bias_init=False, **kwargs): self.hidden_activation = hidden_activation self.zero_bias_init = zero_bias_init super().__init__(input_size, hidden_size, **kwargs) def reset_parameters(self): self.W_hx = Linear_(self.input_size, self.hidden_size, bias=self. architecture['bias'], zero_bias_init=self.zero_bias_init) get_initializer(self.initializers['hx'], self.hidden_activation)(self .W_hx.weight) self.hidden_activation_fn = get_activation(self.hidden_activation, self.hidden_size) preact_ctor = Linear_ preact_args = [self.input_size + self.hidden_size, self.hidden_size, self.architecture['bias']] self.W_g = Gate(self.hidden_size, preact_ctor, preact_args, mechanism='G') def forward(self, input, h): hidden_preact = self.W_hx(input) hidden = self.hidden_activation_fn(hidden_preact) hx = torch.cat((input, h), dim=-1) g = self.W_g(hx) h = (1.0 - g) * h + g * hidden return h, h def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from functools import partial assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp1 * tmp7 tmp9 = tmp5 + tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](primals_3, primals_4, buf1, 512, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (64, 8), ( 8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_1[grid(256)](buf2, primals_4, buf0, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf1, (64, 8), (8, 1), 0), buf2 def get_initializer(name, activation): if activation in ['id', 'identity', 'linear', 'modrelu']: nonlinearity = 'linear' elif activation in ['relu', 'tanh', 'sigmoid']: nonlinearity = activation else: assert False, f'get_initializer: activation {activation} not supported' if name == 'uniform': initializer = partial(torch.nn.init.kaiming_uniform_, nonlinearity= nonlinearity) elif name == 'normal': initializer = partial(torch.nn.init.kaiming_normal_, nonlinearity= nonlinearity) elif name == 'xavier': initializer = torch.nn.init.xavier_normal_ elif name == 'zero': initializer = partial(torch.nn.init.constant_, val=0) elif name == 'one': initializer = partial(torch.nn.init.constant_, val=1) else: assert False, f'get_initializer: initializer type {name} not supported' return initializer def Linear_(input_size, output_size, bias, init='normal', zero_bias_init= False, **kwargs): """ Returns a nn.Linear module with initialization options """ l = nn.Linear(input_size, output_size, bias=bias, **kwargs) get_initializer(init, 'linear')(l.weight) if bias and zero_bias_init: nn.init.zeros_(l.bias) return l def get_activation(activation, size): if activation == 'id': return nn.Identity() elif activation == 'tanh': return torch.tanh elif activation == 'relu': return torch.relu elif activation == 'sigmoid': return torch.sigmoid elif activation == 'modrelu': return Modrelu(size) else: raise NotImplementedError("hidden activation '{}' is not implemented" .format(activation)) class Gate(nn.Module): """ Implements gating mechanisms. Mechanisms: N - No gate G - Standard sigmoid gate """ def __init__(self, size, preact_ctor, preact_args, mechanism='N'): super().__init__() self.size = size self.mechanism = mechanism if self.mechanism == 'N': pass elif self.mechanism == 'G': self.W_g = preact_ctor(*preact_args) else: assert False, f'Gating type {self.mechanism} is not supported.' def forward(self, *inputs): if self.mechanism == 'N': return 1.0 if self.mechanism == 'G': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) return g class modrelu(nn.Module): def __init__(self, features): super(modrelu, self).__init__() self.features = features self.b = nn.Parameter(torch.Tensor(self.features)) self.reset_parameters() def reset_parameters(self): self.b.data.uniform_(-0.01, 0.01) def forward(self, inputs): norm = torch.abs(inputs) biased_norm = norm + self.b magnitude = nn.functional.relu(biased_norm) phase = torch.sign(inputs) return phase * magnitude class CellBase(nn.Module): """ Abstract class for our recurrent cell interface. Passes input through """ registry = {} def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) if hasattr(cls, 'name') and cls.name is not None: cls.registry[cls.name] = cls name = 'id' valid_keys = [] def default_initializers(self): return {} def default_architecture(self): return {} def __init__(self, input_size, hidden_size, initializers=None, architecture=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.architecture = self.default_architecture() self.initializers = self.default_initializers() if initializers is not None: self.initializers.update(initializers) None if architecture is not None: self.architecture.update(architecture) assert set(self.initializers.keys()).issubset(self.valid_keys) assert set(self.architecture.keys()).issubset(self.valid_keys) self.reset_parameters() def reset_parameters(self): pass def forward(self, input, hidden): return input, input def default_state(self, input, batch_size=None): return input.new_zeros(input.size(0) if batch_size is None else batch_size, self.hidden_size, requires_grad=False) def output(self, h): return h def state_size(self): return self.hidden_size def output_size(self): return self.hidden_size def initial_state(self, trainable=False): """ Return initial state of the RNN This should not need to see the input as it should be batch size agnostic and automatically broadcasted # TODO Currently not used """ if trainable: self.initial_state = torch.zeros(self.hidden_size, requires_grad=True) else: return torch.zeros(self.hidden_size, requires_grad=True) class Modrelu(modrelu): def reset_parameters(self): self.b.data.uniform_(-0.0, 0.0) class MinimalRNNCellNew(CellBase): name = 'mrnn' valid_keys = ['hx', 'bias'] def default_initializers(self): return {'hx': 'xavier'} def default_architecture(self): return {'bias': True} def __init__(self, input_size, hidden_size, hidden_activation='tanh', orthogonal=False, ortho_args=None, zero_bias_init=False, **kwargs): self.hidden_activation = hidden_activation self.zero_bias_init = zero_bias_init super().__init__(input_size, hidden_size, **kwargs) def reset_parameters(self): self.W_hx = Linear_(self.input_size, self.hidden_size, bias=self. architecture['bias'], zero_bias_init=self.zero_bias_init) get_initializer(self.initializers['hx'], self.hidden_activation)(self .W_hx.weight) self.hidden_activation_fn = get_activation(self.hidden_activation, self.hidden_size) preact_ctor = Linear_ preact_args = [self.input_size + self.hidden_size, self.hidden_size, self.architecture['bias']] self.W_g = Gate(self.hidden_size, preact_ctor, preact_args, mechanism='G') def forward(self, input_0, input_1): primals_1 = self.W_hx.weight primals_2 = self.W_hx.bias primals_5 = self.W_g.W_g.weight primals_6 = self.W_g.W_g.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
tarepan/HiPPO
MinimalRNNCell
false
16,539
[ "Apache-2.0" ]
57
bc23e2dba13da6c307cb5a4ae248c2d2c56d465f
https://github.com/tarepan/HiPPO/tree/bc23e2dba13da6c307cb5a4ae248c2d2c56d465f
AvgPoolShortening
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yr/cyrgajo5a5abqha3m42zm7eckzjdefosqmg6mj3cpa2rfivywiav.py # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool1d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 4], [0, 0], True), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (1, 4, 4), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class AvgPoolShortening(Module): """ ### Average pool shortening This down-samples by a given factor with average pooling """ def __init__(self, k: 'int'): """ * `k` is the shortening factor """ super().__init__() self.pool = nn.AvgPool1d(k, ceil_mode=True) def forward(self, x: 'torch.Tensor'): """ * `x` is of shape `[seq_len, batch_size, d_model]` """ return self.pool(x.permute(1, 2, 0)).permute(2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'k': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (1, 4, 4), (1, 4, 1), 0), class AvgPoolShorteningNew(Module): """ ### Average pool shortening This down-samples by a given factor with average pooling """ def __init__(self, k: 'int'): """ * `k` is the shortening factor """ super().__init__() self.pool = nn.AvgPool1d(k, ceil_mode=True) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
AvgPoolShortening
false
16,540
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
MLPAutoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] # Source node to ATen node mapping: # h => tanh # Graph fragment: # %tanh : [num_users=3] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/to/ctojyq5molny3okwhwgln5l3y6zmyrnfcfg3n3zbrlhiyoz7m5zg.py # Topologically Sorted Source Nodes: [tanh_1, h_1], Original ATen: [aten.tanh, aten.add] # Source node to ATen node mapping: # h_1 => add # tanh_1 => tanh_1 # Graph fragment: # %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, %tanh_1), kwargs = {}) triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = libdevice.tanh(tmp1) tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_1, h_1], Original ATen: [aten.tanh, aten.add] triton_poi_fused_add_tanh_1.run(buf1, buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_2, h_2], Original ATen: [aten.tanh, aten.add] triton_poi_fused_add_tanh_1.run(buf3, buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf6, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf8, primals_11, 256, grid=grid(256), stream=stream0) del primals_11 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_13 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_4, h_4], Original ATen: [aten.tanh, aten.add] triton_poi_fused_add_tanh_1.run(buf8, buf9, buf10, 256, grid=grid(256), stream=stream0) buf11 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_15 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_5, h_5], Original ATen: [aten.tanh, aten.add] triton_poi_fused_add_tanh_1.run(buf10, buf11, buf12, 256, grid=grid(256), stream=stream0) buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_hat], Original ATen: [aten.addmm] extern_kernels.addmm(primals_17, reinterpret_tensor(buf12, (64, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_17 return (reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf6, buf8, buf9, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), buf11, reinterpret_tensor(buf12, (64, 4), (4, 1), 0), primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def choose_nonlinearity(name): nl = None if name == 'tanh': nl = torch.tanh elif name == 'relu': nl = torch.relu elif name == 'sigmoid': nl = torch.sigmoid elif name == 'softplus': nl = torch.nn.functional.softplus elif name == 'selu': nl = torch.nn.functional.selu elif name == 'elu': nl = torch.nn.functional.elu elif name == 'swish': def nl(x): return x * torch.sigmoid(x) else: raise ValueError('nonlinearity not recognized') return nl class MLPAutoencoder(torch.nn.Module): """A salt-of-the-earth MLP Autoencoder + some edgy res connections""" def __init__(self, input_dim, hidden_dim, latent_dim, nonlinearity='tanh'): super(MLPAutoencoder, self).__init__() self.linear1 = torch.nn.Linear(input_dim, hidden_dim) self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear3 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear4 = torch.nn.Linear(hidden_dim, latent_dim) self.linear5 = torch.nn.Linear(latent_dim, hidden_dim) self.linear6 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear7 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear8 = torch.nn.Linear(hidden_dim, input_dim) for l in [self.linear1, self.linear2, self.linear3, self.linear4, self.linear5, self.linear6, self.linear7, self.linear8]: torch.nn.init.orthogonal_(l.weight) self.nonlinearity = choose_nonlinearity(nonlinearity) def encode(self, x): h = self.nonlinearity(self.linear1(x)) h = h + self.nonlinearity(self.linear2(h)) h = h + self.nonlinearity(self.linear3(h)) return self.linear4(h) def decode(self, z): h = self.nonlinearity(self.linear5(z)) h = h + self.nonlinearity(self.linear6(h)) h = h + self.nonlinearity(self.linear7(h)) return self.linear8(h) def forward(self, x): z = self.encode(x) x_hat = self.decode(z) return x_hat def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim': 4, 'latent_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_add_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = libdevice.tanh(tmp1) tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_tanh_1[grid(256)](buf1, buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_tanh_1[grid(256)](buf3, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf6, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf7 triton_poi_fused_tanh_0[grid(256)](buf8, primals_11, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_11 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_13 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_tanh_1[grid(256)](buf8, buf9, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_15, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_15 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_tanh_1[grid(256)](buf10, buf11, buf12, 256, XBLOCK=128, num_warps=4, num_stages=1) buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_17, reinterpret_tensor(buf12, (64, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_17 return (reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf6, buf8, buf9, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), buf11, reinterpret_tensor(buf12, (64, 4), (4, 1), 0), primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4) def choose_nonlinearity(name): nl = None if name == 'tanh': nl = torch.tanh elif name == 'relu': nl = torch.relu elif name == 'sigmoid': nl = torch.sigmoid elif name == 'softplus': nl = torch.nn.functional.softplus elif name == 'selu': nl = torch.nn.functional.selu elif name == 'elu': nl = torch.nn.functional.elu elif name == 'swish': def nl(x): return x * torch.sigmoid(x) else: raise ValueError('nonlinearity not recognized') return nl class MLPAutoencoderNew(torch.nn.Module): """A salt-of-the-earth MLP Autoencoder + some edgy res connections""" def __init__(self, input_dim, hidden_dim, latent_dim, nonlinearity='tanh'): super(MLPAutoencoderNew, self).__init__() self.linear1 = torch.nn.Linear(input_dim, hidden_dim) self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear3 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear4 = torch.nn.Linear(hidden_dim, latent_dim) self.linear5 = torch.nn.Linear(latent_dim, hidden_dim) self.linear6 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear7 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear8 = torch.nn.Linear(hidden_dim, input_dim) for l in [self.linear1, self.linear2, self.linear3, self.linear4, self.linear5, self.linear6, self.linear7, self.linear8]: torch.nn.init.orthogonal_(l.weight) self.nonlinearity = choose_nonlinearity(nonlinearity) def encode(self, x): h = self.nonlinearity(self.linear1(x)) h = h + self.nonlinearity(self.linear2(h)) h = h + self.nonlinearity(self.linear3(h)) return self.linear4(h) def decode(self, z): h = self.nonlinearity(self.linear5(z)) h = h + self.nonlinearity(self.linear6(h)) h = h + self.nonlinearity(self.linear7(h)) return self.linear8(h) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_8 = self.linear4.weight primals_9 = self.linear4.bias primals_10 = self.linear5.weight primals_11 = self.linear5.bias primals_12 = self.linear6.weight primals_13 = self.linear6.bias primals_14 = self.linear7.weight primals_15 = self.linear7.bias primals_16 = self.linear8.weight primals_17 = self.linear8.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
tailintalent/hamiltonian-nn
MLPAutoencoder
false
16,541
[ "Apache-2.0" ]
293
1f6dd2d58ab84977a30584f0d1dd7f8b234e4049
https://github.com/tailintalent/hamiltonian-nn/tree/1f6dd2d58ab84977a30584f0d1dd7f8b234e4049
ClippedValueFunctionLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ux/cuxyq6jg627wu3buhxoipzlue5jekgs24d5ikz7kqoqhqlliw5dg.py # Topologically Sorted Source Nodes: [sub_1, pow_1, sub, neg, clamp, clipped_value, sub_2, pow_2, vf_loss, mean, mul], Original ATen: [aten.sub, aten.pow, aten.neg, aten.clamp, aten.add, aten.maximum, aten.mean, aten.mul] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # clipped_value => add # mean => mean # mul => mul # neg => neg # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # vf_loss => maximum # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg3_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg2_1,), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.Tensor](args = (%sub, %neg), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.Tensor](args = (%clamp_min, %arg2_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %clamp_max), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %arg3_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%pow_1, %pow_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%maximum,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0 = async_compile.triton('triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp4 = tl.load(in_ptr2 + (r0), None) tmp6 = tl.load(in_ptr3 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp0 - tmp4 tmp7 = -tmp6 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp9 = triton_helpers.minimum(tmp8, tmp6) tmp10 = tmp4 + tmp9 tmp11 = tmp10 - tmp1 tmp12 = tmp11 * tmp11 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tmp19 = 0.5 tmp20 = tmp18 * tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub_1, pow_1, sub, neg, clamp, clipped_value, sub_2, pow_2, vf_loss, mean, mul], Original ATen: [aten.sub, aten.pow, aten.neg, aten.clamp, aten.add, aten.maximum, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0.run(buf1, arg0_1, arg3_1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class ClippedValueFunctionLoss(Module): """ ## Clipped Value Function Loss Similarly we clip the value function update also. egin{align} V^{\\pi_ heta}_{CLIP}(s_t) &= clip\\Bigl(V^{\\pi_ heta}(s_t) - \\hat{V_t}, -\\epsilon, +\\epsilon\\Bigr) \\ \\mathcal{L}^{VF}( heta) &= rac{1}{2} \\mathbb{E} iggl[ max\\Bigl(igl(V^{\\pi_ heta}(s_t) - R_tigr)^2, igl(V^{\\pi_ heta}_{CLIP}(s_t) - R_tigr)^2\\Bigr) iggr] \\end{align} Clipping makes sure the value function $V_ heta$ doesn't deviate significantly from $V_{ heta_{OLD}}$. """ def forward(self, value: 'torch.Tensor', sampled_value: 'torch.Tensor', sampled_return: 'torch.Tensor', clip: 'float'): clipped_value = sampled_value + (value - sampled_value).clamp(min=- clip, max=clip) vf_loss = torch.max((value - sampled_return) ** 2, (clipped_value - sampled_return) ** 2) return 0.5 * vf_loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp4 = tl.load(in_ptr2 + r0, None) tmp6 = tl.load(in_ptr3 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp0 - tmp4 tmp7 = -tmp6 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp9 = triton_helpers.minimum(tmp8, tmp6) tmp10 = tmp4 + tmp9 tmp11 = tmp10 - tmp1 tmp12 = tmp11 * tmp11 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tmp19 = 0.5 tmp20 = tmp18 * tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0[grid(1)](buf1 , arg0_1, arg3_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1 ) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf1, class ClippedValueFunctionLossNew(Module): """ ## Clipped Value Function Loss Similarly we clip the value function update also. egin{align} V^{\\pi_ heta}_{CLIP}(s_t) &= clip\\Bigl(V^{\\pi_ heta}(s_t) - \\hat{V_t}, -\\epsilon, +\\epsilon\\Bigr) \\ \\mathcal{L}^{VF}( heta) &= rac{1}{2} \\mathbb{E} iggl[ max\\Bigl(igl(V^{\\pi_ heta}(s_t) - R_tigr)^2, igl(V^{\\pi_ heta}_{CLIP}(s_t) - R_tigr)^2\\Bigr) iggr] \\end{align} Clipping makes sure the value function $V_ heta$ doesn't deviate significantly from $V_{ heta_{OLD}}$. """ def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
ClippedValueFunctionLoss
false
16,542
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ll/cll7t6akly5m2slpaefqtiz6arirqijxcl5czgrfumap56hqd4jx.py # Topologically Sorted Source Nodes: [sum_5, sum_6, mul_3, Iand1], Original ATen: [aten.sum, aten.mul] # Source node to ATen node mapping: # Iand1 => sum_4 # mul_3 => mul_9 # sum_5 => sum_5 # sum_6 => sum_6 # Graph fragment: # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_2,), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_3,), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %select_1), kwargs = {}) # %sum_4 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_9,), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp4 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None) tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5d/c5dkhuly7l62jol3mekjqr7dl3tffc47caabd7ynctas4qge7jcv.py # Topologically Sorted Source Nodes: [sum_8, sum_9, mul_4, Iand1_1], Original ATen: [aten.sum, aten.mul] # Source node to ATen node mapping: # Iand1_1 => sum_7 # mul_4 => mul_10 # sum_8 => sum_8 # sum_9 => sum_9 # Graph fragment: # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_6,), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_7,), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %select_5), kwargs = {}) # %sum_7 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_10,), kwargs = {}) triton_per_fused_mul_sum_1 = async_compile.triton('triton_per_fused_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (64 + r0), None) tmp4 = tl.load(in_ptr1 + (64 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None) tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oh/coh4c4gmsdgjfcuouxcmj3cc65x4gfiuw6cq5vu7jmfuysa3trv2.py # Topologically Sorted Source Nodes: [sum_11, sum_12, mul_5, Iand1_2], Original ATen: [aten.sum, aten.mul] # Source node to ATen node mapping: # Iand1_2 => sum_10 # mul_5 => mul_11 # sum_11 => sum_11 # sum_12 => sum_12 # Graph fragment: # %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_10,), kwargs = {}) # %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_11,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, %select_9), kwargs = {}) # %sum_10 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_11,), kwargs = {}) triton_per_fused_mul_sum_2 = async_compile.triton('triton_per_fused_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (128 + r0), None) tmp4 = tl.load(in_ptr1 + (128 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None) tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zw/czwyklhdjyygbls4i2sf3fo3x7esyv7qekq6ryt6nalogz6m35ag.py # Topologically Sorted Source Nodes: [sum_14, sum_15, mul_6, Iand1_3], Original ATen: [aten.sum, aten.mul] # Source node to ATen node mapping: # Iand1_3 => sum_13 # mul_6 => mul_12 # sum_14 => sum_14 # sum_15 => sum_15 # Graph fragment: # %sum_14 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_14,), kwargs = {}) # %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_15,), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_12, %select_13), kwargs = {}) # %sum_13 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_12,), kwargs = {}) triton_per_fused_mul_sum_3 = async_compile.triton('triton_per_fused_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (192 + r0), None) tmp4 = tl.load(in_ptr1 + (192 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None) tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6i/c6invlj756a3uwe7ocp56ybc3ywfnjmkwvgmnfftgssgrzdle35c.py # Topologically Sorted Source Nodes: [loss, w, eq, label_t, sum_1, sum_2, eq_1, label_f, sum_3, add, p, setitem, sub, setitem_1, m_loss, loss_1, c_loss, add_9, loss_2, s_loss, add_10, add_1, Ior1, IoU1, sub_2, IoU, add_3, Ior1_1, IoU1_1, sub_4, IoU_1, add_5, Ior1_2, IoU1_2, sub_6, IoU_2, add_7, Ior1_3, IoU1_3, sub_8, IoU_3, truediv_5, iou_loss, loss_3], Original ATen: [aten.binary_cross_entropy, aten.zeros_like, aten.eq, aten._to_copy, aten.sum, aten.add, aten.div, aten.index_put, aten.rsub, aten.mul, aten.smooth_l1_loss, aten.sub] # Source node to ATen node mapping: # IoU => add_2 # IoU1 => div_2 # IoU1_1 => div_3 # IoU1_2 => div_4 # IoU1_3 => div_5 # IoU_1 => add_4 # IoU_2 => add_6 # IoU_3 => add_8 # Ior1 => sub_7 # Ior1_1 => sub_9 # Ior1_2 => sub_11 # Ior1_3 => sub_13 # add => add # add_1 => add_1 # add_10 => add_10 # add_3 => add_3 # add_5 => add_5 # add_7 => add_7 # add_9 => add_9 # c_loss => mul_6 # eq => eq # eq_1 => eq_1 # iou_loss => mul_13 # label_f => convert_element_type_1 # label_t => convert_element_type # loss => full_default_1, full_default_2, log, log1p, maximum, maximum_1, mean, mul, mul_1, mul_2, neg, sub_1, sub_2 # loss_1 => full_default_3, full_default_4, log1p_1, log_1, maximum_2, maximum_3, mean_1, mul_4, mul_5, neg_1, sub_3, sub_4 # loss_2 => abs_1, div_1, lt, mean_2, mul_7, pow_1, sub_5, sub_6, where # loss_3 => add_11 # m_loss => mul_3 # p => div # s_loss => mul_8 # setitem => index_put # setitem_1 => index_put_1 # sub => sub # sub_2 => sub_8 # sub_4 => sub_10 # sub_6 => sub_12 # sub_8 => sub_14 # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # truediv_5 => div_6 # w => full_default # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, 1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %maximum), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view,), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %maximum_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([16, 1, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_1, 1), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_1, 0), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq_1, torch.float32), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [%eq_2], %div), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %index_put_1 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%index_put, [%eq_3], %sub), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %expand_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_2,), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, 1), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg3_1,), kwargs = {}) # %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg_1,), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_2 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p_1, %full_default_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %maximum_2), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg3_1,), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_3 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log_1, %full_default_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %maximum_3), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_4,), kwargs = {}) # %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 1), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %mul_6), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub_5,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_7, 1.0), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div_1, %sub_6), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) # %mul_8 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 1), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %mul_8), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, %sum_6), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %sum_4), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, %sub_7), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_8, 0.0), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_8, %sum_9), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %sum_7), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_7, %sub_9), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_3), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %sub_10), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_11, %sum_12), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %sum_10), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_10, %sub_11), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_4), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %sub_12), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_14, %sum_15), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_7, %sum_13), kwargs = {}) # %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_13, %sub_13), kwargs = {}) # %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_5), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %sub_14), kwargs = {}) # %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_8, 4), kwargs = {}) # %mul_13 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_6, 1), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %mul_13), kwargs = {}) triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_mul_rsub_smooth_l1_loss_sub_sum_zeros_like_4 = async_compile.triton('triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_mul_rsub_smooth_l1_loss_sub_sum_zeros_like_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: 'i32', 21: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {20: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21), equal_to_1=(20,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_mul_rsub_smooth_l1_loss_sub_sum_zeros_like_4', 'mutated_arg_names': ['in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3', 'in_out_ptr4'], 'no_x_dim': True, 'num_load': 16, 'num_reduction': 6, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_mul_rsub_smooth_l1_loss_sub_sum_zeros_like_4(in_out_ptr1, in_out_ptr2, in_out_ptr3, in_out_ptr4, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, out_ptr3, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp16 = tl.load(in_ptr2 + (r0), None) tmp34 = tl.load(in_ptr3 + (r0), None) tmp66 = tl.load(in_ptr4 + (0)) tmp67 = tl.broadcast_to(tmp66, [1]) tmp68 = tl.load(in_out_ptr4 + (0)) tmp69 = tl.broadcast_to(tmp68, [1]) tmp70 = tl.load(in_ptr5 + (0)) tmp71 = tl.broadcast_to(tmp70, [1]) tmp77 = tl.load(in_ptr6 + (0)) tmp78 = tl.broadcast_to(tmp77, [1]) tmp79 = tl.load(in_ptr7 + (0)) tmp80 = tl.broadcast_to(tmp79, [1]) tmp81 = tl.load(in_ptr8 + (0)) tmp82 = tl.broadcast_to(tmp81, [1]) tmp88 = tl.load(in_ptr9 + (0)) tmp89 = tl.broadcast_to(tmp88, [1]) tmp90 = tl.load(in_ptr10 + (0)) tmp91 = tl.broadcast_to(tmp90, [1]) tmp92 = tl.load(in_ptr11 + (0)) tmp93 = tl.broadcast_to(tmp92, [1]) tmp99 = tl.load(in_ptr12 + (0)) tmp100 = tl.broadcast_to(tmp99, [1]) tmp101 = tl.load(in_ptr13 + (0)) tmp102 = tl.broadcast_to(tmp101, [1]) tmp103 = tl.load(in_ptr14 + (0)) tmp104 = tl.broadcast_to(tmp103, [1]) tmp1 = 1.0 tmp2 = tmp0 - tmp1 tmp4 = -tmp3 tmp5 = libdevice.log1p(tmp4) tmp6 = -100.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp2 * tmp7 tmp9 = tl_math.log(tmp3) tmp10 = triton_helpers.maximum(tmp9, tmp6) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp17 = tmp16 == tmp1 tmp18 = tmp17.to(tl.float32) tmp19 = tl.broadcast_to(tmp18, [RBLOCK]) tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0)) tmp22 = 0.0 tmp23 = tmp16 == tmp22 tmp24 = tmp23.to(tl.float32) tmp25 = tl.broadcast_to(tmp24, [RBLOCK]) tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0)) tmp28 = tmp21 + tmp27 tmp29 = tmp21 / tmp28 tmp30 = tl.where(tmp17, tmp29, tmp22) tmp31 = tmp1 - tmp29 tmp32 = tl.where(tmp23, tmp31, tmp30) tmp33 = tmp16 - tmp1 tmp35 = -tmp34 tmp36 = libdevice.log1p(tmp35) tmp37 = triton_helpers.maximum(tmp36, tmp6) tmp38 = tmp33 * tmp37 tmp39 = tl_math.log(tmp34) tmp40 = triton_helpers.maximum(tmp39, tmp6) tmp41 = tmp16 * tmp40 tmp42 = tmp38 - tmp41 tmp43 = tmp42 * tmp32 tmp44 = tl.broadcast_to(tmp43, [RBLOCK]) tmp46 = triton_helpers.promote_to_tensor(tl.sum(tmp44, 0)) tmp47 = tmp34 - tmp16 tmp48 = tl_math.abs(tmp47) tmp49 = tmp48 < tmp1 tmp50 = tmp48 * tmp48 tmp51 = 0.5 tmp52 = tmp50 * tmp51 tmp53 = tmp52 * tmp1 tmp54 = tmp48 - tmp51 tmp55 = tl.where(tmp49, tmp53, tmp54) tmp56 = tl.broadcast_to(tmp55, [RBLOCK]) tmp58 = triton_helpers.promote_to_tensor(tl.sum(tmp56, 0)) tmp59 = 256.0 tmp60 = tmp46 / tmp59 tmp61 = tmp60 * tmp1 tmp62 = tmp15 / tmp59 tmp63 = tmp62 * tmp1 tmp64 = tmp58 / tmp59 tmp65 = tmp64 * tmp1 tmp72 = tmp69 + tmp71 tmp73 = tmp72 - tmp67 tmp74 = tmp67 / tmp73 tmp75 = tmp1 - tmp74 tmp76 = tmp75 + tmp22 tmp83 = tmp80 + tmp82 tmp84 = tmp83 - tmp78 tmp85 = tmp78 / tmp84 tmp86 = tmp1 - tmp85 tmp87 = tmp76 + tmp86 tmp94 = tmp91 + tmp93 tmp95 = tmp94 - tmp89 tmp96 = tmp89 / tmp95 tmp97 = tmp1 - tmp96 tmp98 = tmp87 + tmp97 tmp105 = tmp102 + tmp104 tmp106 = tmp105 - tmp100 tmp107 = tmp100 / tmp106 tmp108 = tmp1 - tmp107 tmp109 = tmp98 + tmp108 tmp110 = 0.25 tmp111 = tmp109 * tmp110 tmp112 = tmp111 * tmp1 tmp113 = tmp61 + tmp63 tmp114 = tmp113 + tmp65 tmp115 = tmp114 + tmp112 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp61, None) tl.debug_barrier() tl.store(in_out_ptr2 + (tl.full([1], 0, tl.int32)), tmp63, None) tl.debug_barrier() tl.store(in_out_ptr3 + (tl.full([1], 0, tl.int32)), tmp65, None) tl.debug_barrier() tl.store(in_out_ptr4 + (tl.full([1], 0, tl.int32)), tmp112, None) tl.store(out_ptr3 + (tl.full([1], 0, tl.int32)), tmp115, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf11 = empty_strided_cuda((), (), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) buf13 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sum_5, sum_6, mul_3, Iand1], Original ATen: [aten.sum, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(arg1_1, arg0_1, buf11, buf12, buf13, 1, 64, grid=grid(1), stream=stream0) buf14 = empty_strided_cuda((), (), torch.float32) buf15 = empty_strided_cuda((), (), torch.float32) buf16 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sum_8, sum_9, mul_4, Iand1_1], Original ATen: [aten.sum, aten.mul] triton_per_fused_mul_sum_1.run(arg1_1, arg0_1, buf14, buf15, buf16, 1, 64, grid=grid(1), stream=stream0) buf17 = empty_strided_cuda((), (), torch.float32) buf18 = empty_strided_cuda((), (), torch.float32) buf19 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sum_11, sum_12, mul_5, Iand1_2], Original ATen: [aten.sum, aten.mul] triton_per_fused_mul_sum_2.run(arg1_1, arg0_1, buf17, buf18, buf19, 1, 64, grid=grid(1), stream=stream0) buf20 = empty_strided_cuda((), (), torch.float32) buf21 = empty_strided_cuda((), (), torch.float32) buf22 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sum_14, sum_15, mul_6, Iand1_3], Original ATen: [aten.sum, aten.mul] triton_per_fused_mul_sum_3.run(arg1_1, arg0_1, buf20, buf21, buf22, 1, 64, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((), (), torch.float32) buf9 = empty_strided_cuda((), (), torch.float32) buf6 = buf5; del buf5 # reuse buf8 = buf7; del buf7 # reuse buf10 = buf9; del buf9 # reuse buf23 = buf11; del buf11 # reuse buf24 = buf23; del buf23 # reuse buf25 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [loss, w, eq, label_t, sum_1, sum_2, eq_1, label_f, sum_3, add, p, setitem, sub, setitem_1, m_loss, loss_1, c_loss, add_9, loss_2, s_loss, add_10, add_1, Ior1, IoU1, sub_2, IoU, add_3, Ior1_1, IoU1_1, sub_4, IoU_1, add_5, Ior1_2, IoU1_2, sub_6, IoU_2, add_7, Ior1_3, IoU1_3, sub_8, IoU_3, truediv_5, iou_loss, loss_3], Original ATen: [aten.binary_cross_entropy, aten.zeros_like, aten.eq, aten._to_copy, aten.sum, aten.add, aten.div, aten.index_put, aten.rsub, aten.mul, aten.smooth_l1_loss, aten.sub] triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_mul_rsub_smooth_l1_loss_sub_sum_zeros_like_4.run(buf6, buf8, buf10, buf24, arg2_1, arg3_1, arg1_1, arg0_1, buf13, buf12, buf16, buf14, buf15, buf19, buf17, buf18, buf22, buf20, buf21, buf25, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del buf12 del buf13 del buf14 del buf15 del buf16 del buf17 del buf18 del buf19 del buf20 del buf21 del buf22 return (buf25, buf6, buf8, buf10, buf24, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn def _iou(pred, target): b = pred.shape[0] IoU = 0.0 for i in range(0, b): Iand1 = torch.sum(target[i, :, :] * pred[i, :, :]) Ior1 = torch.sum(target[i, :, :]) + torch.sum(pred[i, :, :]) - Iand1 IoU1 = Iand1 / Ior1 IoU = IoU + (1 - IoU1) return IoU / b class IOU(torch.nn.Module): def __init__(self): super(IOU, self).__init__() def forward(self, pred, target): return _iou(pred, target) class Weighed_Bce_Loss(nn.Module): def __init__(self): super(Weighed_Bce_Loss, self).__init__() def forward(self, x, label): x = x.view(-1, 1, x.shape[1], x.shape[2]) label = label.view(-1, 1, label.shape[1], label.shape[2]) label_t = (label == 1).float() label_f = (label == 0).float() p = torch.sum(label_t) / (torch.sum(label_t) + torch.sum(label_f)) w = torch.zeros_like(label) w[label == 1] = p w[label == 0] = 1 - p loss = F.binary_cross_entropy(x, label, weight=w) return loss class Cls_Loss(nn.Module): def __init__(self): super(Cls_Loss, self).__init__() def forward(self, x, label): loss = F.binary_cross_entropy(x, label) return loss class S_Loss(nn.Module): def __init__(self): super(S_Loss, self).__init__() def forward(self, x, label): loss = F.smooth_l1_loss(x, label) return loss class Loss(nn.Module): def __init__(self): super(Loss, self).__init__() self.loss_wbce = Weighed_Bce_Loss() self.loss_cls = Cls_Loss() self.loss_s = S_Loss() self.loss_i = IOU() self.w_wbce = 1 self.w_cls = 1 self.w_smooth = 1 self.w_iou = 1 def forward(self, x, label, x_cls, label_cls): m_loss = self.loss_wbce(x, label) * self.w_wbce c_loss = self.loss_cls(x_cls, label_cls) * self.w_cls s_loss = self.loss_s(x, label) * self.w_smooth iou_loss = self.loss_i(x, label) * self.w_iou loss = m_loss + c_loss + s_loss + iou_loss return loss, m_loss, c_loss, s_loss, iou_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn.functional as F from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp4 = tl.load(in_ptr1 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None) tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) @triton.jit def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (64 + r0), None) tmp4 = tl.load(in_ptr1 + (64 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None) tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) @triton.jit def triton_per_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (128 + r0), None) tmp4 = tl.load(in_ptr1 + (128 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None) tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) @triton.jit def triton_per_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (192 + r0), None) tmp4 = tl.load(in_ptr1 + (192 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp4 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None) tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) @triton.jit def triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_mul_rsub_smooth_l1_loss_sub_sum_zeros_like_4( in_out_ptr1, in_out_ptr2, in_out_ptr3, in_out_ptr4, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, out_ptr3, xnumel, rnumel ): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp16 = tl.load(in_ptr2 + r0, None) tmp34 = tl.load(in_ptr3 + r0, None) tmp66 = tl.load(in_ptr4 + 0) tmp67 = tl.broadcast_to(tmp66, [1]) tmp68 = tl.load(in_out_ptr4 + 0) tmp69 = tl.broadcast_to(tmp68, [1]) tmp70 = tl.load(in_ptr5 + 0) tmp71 = tl.broadcast_to(tmp70, [1]) tmp77 = tl.load(in_ptr6 + 0) tmp78 = tl.broadcast_to(tmp77, [1]) tmp79 = tl.load(in_ptr7 + 0) tmp80 = tl.broadcast_to(tmp79, [1]) tmp81 = tl.load(in_ptr8 + 0) tmp82 = tl.broadcast_to(tmp81, [1]) tmp88 = tl.load(in_ptr9 + 0) tmp89 = tl.broadcast_to(tmp88, [1]) tmp90 = tl.load(in_ptr10 + 0) tmp91 = tl.broadcast_to(tmp90, [1]) tmp92 = tl.load(in_ptr11 + 0) tmp93 = tl.broadcast_to(tmp92, [1]) tmp99 = tl.load(in_ptr12 + 0) tmp100 = tl.broadcast_to(tmp99, [1]) tmp101 = tl.load(in_ptr13 + 0) tmp102 = tl.broadcast_to(tmp101, [1]) tmp103 = tl.load(in_ptr14 + 0) tmp104 = tl.broadcast_to(tmp103, [1]) tmp1 = 1.0 tmp2 = tmp0 - tmp1 tmp4 = -tmp3 tmp5 = libdevice.log1p(tmp4) tmp6 = -100.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp2 * tmp7 tmp9 = tl_math.log(tmp3) tmp10 = triton_helpers.maximum(tmp9, tmp6) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp17 = tmp16 == tmp1 tmp18 = tmp17.to(tl.float32) tmp19 = tl.broadcast_to(tmp18, [RBLOCK]) tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0)) tmp22 = 0.0 tmp23 = tmp16 == tmp22 tmp24 = tmp23.to(tl.float32) tmp25 = tl.broadcast_to(tmp24, [RBLOCK]) tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0)) tmp28 = tmp21 + tmp27 tmp29 = tmp21 / tmp28 tmp30 = tl.where(tmp17, tmp29, tmp22) tmp31 = tmp1 - tmp29 tmp32 = tl.where(tmp23, tmp31, tmp30) tmp33 = tmp16 - tmp1 tmp35 = -tmp34 tmp36 = libdevice.log1p(tmp35) tmp37 = triton_helpers.maximum(tmp36, tmp6) tmp38 = tmp33 * tmp37 tmp39 = tl_math.log(tmp34) tmp40 = triton_helpers.maximum(tmp39, tmp6) tmp41 = tmp16 * tmp40 tmp42 = tmp38 - tmp41 tmp43 = tmp42 * tmp32 tmp44 = tl.broadcast_to(tmp43, [RBLOCK]) tmp46 = triton_helpers.promote_to_tensor(tl.sum(tmp44, 0)) tmp47 = tmp34 - tmp16 tmp48 = tl_math.abs(tmp47) tmp49 = tmp48 < tmp1 tmp50 = tmp48 * tmp48 tmp51 = 0.5 tmp52 = tmp50 * tmp51 tmp53 = tmp52 * tmp1 tmp54 = tmp48 - tmp51 tmp55 = tl.where(tmp49, tmp53, tmp54) tmp56 = tl.broadcast_to(tmp55, [RBLOCK]) tmp58 = triton_helpers.promote_to_tensor(tl.sum(tmp56, 0)) tmp59 = 256.0 tmp60 = tmp46 / tmp59 tmp61 = tmp60 * tmp1 tmp62 = tmp15 / tmp59 tmp63 = tmp62 * tmp1 tmp64 = tmp58 / tmp59 tmp65 = tmp64 * tmp1 tmp72 = tmp69 + tmp71 tmp73 = tmp72 - tmp67 tmp74 = tmp67 / tmp73 tmp75 = tmp1 - tmp74 tmp76 = tmp75 + tmp22 tmp83 = tmp80 + tmp82 tmp84 = tmp83 - tmp78 tmp85 = tmp78 / tmp84 tmp86 = tmp1 - tmp85 tmp87 = tmp76 + tmp86 tmp94 = tmp91 + tmp93 tmp95 = tmp94 - tmp89 tmp96 = tmp89 / tmp95 tmp97 = tmp1 - tmp96 tmp98 = tmp87 + tmp97 tmp105 = tmp102 + tmp104 tmp106 = tmp105 - tmp100 tmp107 = tmp100 / tmp106 tmp108 = tmp1 - tmp107 tmp109 = tmp98 + tmp108 tmp110 = 0.25 tmp111 = tmp109 * tmp110 tmp112 = tmp111 * tmp1 tmp113 = tmp61 + tmp63 tmp114 = tmp113 + tmp65 tmp115 = tmp114 + tmp112 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp61, None) tl.debug_barrier() tl.store(in_out_ptr2 + tl.full([1], 0, tl.int32), tmp63, None) tl.debug_barrier() tl.store(in_out_ptr3 + tl.full([1], 0, tl.int32), tmp65, None) tl.debug_barrier() tl.store(in_out_ptr4 + tl.full([1], 0, tl.int32), tmp112, None) tl.store(out_ptr3 + tl.full([1], 0, tl.int32), tmp115, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf11 = empty_strided_cuda((), (), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) buf13 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_mul_sum_0[grid(1)](arg1_1, arg0_1, buf11, buf12, buf13, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf14 = empty_strided_cuda((), (), torch.float32) buf15 = empty_strided_cuda((), (), torch.float32) buf16 = empty_strided_cuda((), (), torch.float32) triton_per_fused_mul_sum_1[grid(1)](arg1_1, arg0_1, buf14, buf15, buf16, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf17 = empty_strided_cuda((), (), torch.float32) buf18 = empty_strided_cuda((), (), torch.float32) buf19 = empty_strided_cuda((), (), torch.float32) triton_per_fused_mul_sum_2[grid(1)](arg1_1, arg0_1, buf17, buf18, buf19, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf20 = empty_strided_cuda((), (), torch.float32) buf21 = empty_strided_cuda((), (), torch.float32) buf22 = empty_strided_cuda((), (), torch.float32) triton_per_fused_mul_sum_3[grid(1)](arg1_1, arg0_1, buf20, buf21, buf22, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((), (), torch.float32) buf9 = empty_strided_cuda((), (), torch.float32) buf6 = buf5 del buf5 buf8 = buf7 del buf7 buf10 = buf9 del buf9 buf23 = buf11 del buf11 buf24 = buf23 del buf23 buf25 = empty_strided_cuda((), (), torch.float32) triton_per_fused__to_copy_add_binary_cross_entropy_div_eq_index_put_mul_rsub_smooth_l1_loss_sub_sum_zeros_like_4[ grid(1)](buf6, buf8, buf10, buf24, arg2_1, arg3_1, arg1_1, arg0_1, buf13, buf12, buf16, buf14, buf15, buf19, buf17, buf18, buf22, buf20, buf21, buf25, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del buf12 del buf13 del buf14 del buf15 del buf16 del buf17 del buf18 del buf19 del buf20 del buf21 del buf22 return buf25, buf6, buf8, buf10, buf24 def _iou(pred, target): b = pred.shape[0] IoU = 0.0 for i in range(0, b): Iand1 = torch.sum(target[i, :, :] * pred[i, :, :]) Ior1 = torch.sum(target[i, :, :]) + torch.sum(pred[i, :, :]) - Iand1 IoU1 = Iand1 / Ior1 IoU = IoU + (1 - IoU1) return IoU / b class IOU(torch.nn.Module): def __init__(self): super(IOU, self).__init__() def forward(self, pred, target): return _iou(pred, target) class Weighed_Bce_Loss(nn.Module): def __init__(self): super(Weighed_Bce_Loss, self).__init__() def forward(self, x, label): x = x.view(-1, 1, x.shape[1], x.shape[2]) label = label.view(-1, 1, label.shape[1], label.shape[2]) label_t = (label == 1).float() label_f = (label == 0).float() p = torch.sum(label_t) / (torch.sum(label_t) + torch.sum(label_f)) w = torch.zeros_like(label) w[label == 1] = p w[label == 0] = 1 - p loss = F.binary_cross_entropy(x, label, weight=w) return loss class Cls_Loss(nn.Module): def __init__(self): super(Cls_Loss, self).__init__() def forward(self, x, label): loss = F.binary_cross_entropy(x, label) return loss class S_Loss(nn.Module): def __init__(self): super(S_Loss, self).__init__() def forward(self, x, label): loss = F.smooth_l1_loss(x, label) return loss class LossNew(nn.Module): def __init__(self): super(LossNew, self).__init__() self.loss_wbce = Weighed_Bce_Loss() self.loss_cls = Cls_Loss() self.loss_s = S_Loss() self.loss_i = IOU() self.w_wbce = 1 self.w_cls = 1 self.w_smooth = 1 self.w_iou = 1 def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1], output[2], output[3], output[4]
suyukun666/UFO
Loss
false
16,543
[ "MIT" ]
122
e57016948b03cd2f75155d2958cea69b6e4b56f8
https://github.com/suyukun666/UFO/tree/e57016948b03cd2f75155d2958cea69b6e4b56f8
DPFP
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nk/cnkn4azjs7p23wvexd663q3licov6bhbhf2h5uynp4fgwugfkg6g.py # Topologically Sorted Source Nodes: [cat, x, roll, k, sum_1, add, truediv], Original ATen: [aten.cat, aten.relu, aten.roll, aten.mul, aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # add => add_1 # cat => cat # k => mul # roll => index # sum_1 => sum_1 # truediv => div # x => relu # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %neg], -1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%relu, [None, None, None, %fmod]), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %index), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1], True), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {}) triton_per_fused_add_cat_div_mul_relu_roll_sum_0 = async_compile.triton('triton_per_fused_add_cat_div_mul_relu_roll_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 8], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_cat_div_mul_relu_roll_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_cat_div_mul_relu_roll_sum_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 8 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = r1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + r1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1, 1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + ((4*x0) + ((-4) + r1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = -tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp6, tmp10, tmp11) tmp13 = tl.where(tmp4, tmp5, tmp12) tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = (7 + r1) % 8 tmp17 = tmp16 >= tmp1 tmp18 = tmp16 < tmp3 tmp19 = tl.load(in_ptr0 + ((4*x0) + ((7 + r1) % 8)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp16 >= tmp3 tmp21 = tmp16 < tmp7 tmp22 = tl.load(in_ptr0 + ((4*x0) + ((-4) + ((7 + r1) % 8))), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = -tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp20, tmp23, tmp24) tmp26 = tl.where(tmp18, tmp19, tmp25) tmp27 = triton_helpers.maximum(tmp14, tmp26) tmp28 = tmp15 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.where(xmask, tmp29, 0) tmp32 = tl.sum(tmp31, 1)[:, None] tmp33 = 1e-06 tmp34 = tmp32 + tmp33 tmp35 = tmp28 / tmp34 tl.store(out_ptr2 + (r1 + (8*x0)), tmp35, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat, x, roll, k, sum_1, add, truediv], Original ATen: [aten.cat, aten.relu, aten.roll, aten.mul, aten.sum, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_cat_div_mul_relu_roll_sum_0.run(arg0_1, buf2, 64, 8, grid=grid(64), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class DPFP(Module): """ ## Deterministic Parameter Free Project (DPFP) This is the new projection function $ extcolor{lightgreen}{\\phi}$ introduced in the paper. DPFP projects $k$ of dimensionality $d_{key}$ to dimensionality $d_{dot} = 2 d_{key} u$, where $ u \\in \\{1, 2, ..., 2 d_{key} - 1 \\}$ is a hyper-parameter. $$ extcolor{lightgreen}{\\phi_{2 d_{key} (i - 1) + j}(k)} = ext{ReLU}\\Big(ig[k, -kig]\\Big)_{j} ext{ReLU}\\Big(ig[k, -kig]\\Big)_{i + j}$$ where $ig[k, -kig]$ is the concatenation of $k$ and $-k$ to give a vector of size $2 d_{key}$, $i \\in \\{1, 2, ..., u \\}$, and $j \\in \\{1, 2, ..., 2 d_{key}\\}$. $x_i$ is the $i$-th element of vector $x$ and is rolled around if $i$ is larger than the number of elements in $x$. Basically, it creates a new vector by multiplying elements of $[k, -k]$ shifted by $i$. This produces projections that are sparse (only a few elements of $phi$ are non-zero) and orthogonal ($ extcolor{lightgreen}{\\phi(k^{(i)})} \\cdot extcolor{lightgreen}{\\phi(k^{(j)})} pprox 0$ for most $i, j$ unless $k^{(i)}$ and $k^{(j)}$ are very similar. ### Normalization Paper introduces a simple normalization for $ extcolor{lightgreen}{\\phi}$, $$ extcolor{lightgreen}{\\phi '(k)} = rac{ extcolor{lightgreen}{\\phi(k)}}{\\sum^{d_{dot}}_{j=1} extcolor{lightgreen}{\\phi(k)_j}}$$ *Check the paper for derivation.* """ def __init__(self, nu: 'int'=1, eps: 'float'=1e-06): """ * `nu` is the hyper-parameter $ u$. * `eps` is the small value used to make sure there is no division-by-zero when normalizing. """ super().__init__() self.nu = nu self.relu = nn.ReLU() self.eps = eps def forward(self, k: 'torch.Tensor'): k = self.dpfp(k) return k / (torch.sum(k, dim=-1, keepdim=True) + self.eps) def dpfp(self, k: 'torch.Tensor'): """ $$ extcolor{lightgreen}{\\phi(k)}$$ """ x = self.relu(torch.cat([k, -k], dim=-1)) x_rolled = [x.roll(shifts=i, dims=-1) for i in range(1, self.nu + 1)] x_rolled = torch.cat(x_rolled, dim=-1) x_repeat = torch.cat([x] * self.nu, dim=-1) return x_repeat * x_rolled def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_cat_div_mul_relu_roll_sum_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = r1 tl.full([1, 1], 0, tl.int64) tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + r1), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1, 1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (4 * x0 + (-4 + r1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = -tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp6, tmp10, tmp11) tmp13 = tl.where(tmp4, tmp5, tmp12) tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = (7 + r1) % 8 tmp18 = tmp16 < tmp3 tmp19 = tl.load(in_ptr0 + (4 * x0 + (7 + r1) % 8), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp16 >= tmp3 tmp22 = tl.load(in_ptr0 + (4 * x0 + (-4 + (7 + r1) % 8)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = -tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp20, tmp23, tmp24) tmp26 = tl.where(tmp18, tmp19, tmp25) tmp27 = triton_helpers.maximum(tmp14, tmp26) tmp28 = tmp15 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.where(xmask, tmp29, 0) tmp32 = tl.sum(tmp31, 1)[:, None] tmp33 = 1e-06 tmp34 = tmp32 + tmp33 tmp35 = tmp28 / tmp34 tl.store(out_ptr2 + (r1 + 8 * x0), tmp35, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_cat_div_mul_relu_roll_sum_0[grid(64)](arg0_1, buf2, 64, 8, XBLOCK=32, num_warps=2, num_stages=1) del arg0_1 return buf2, class DPFPNew(Module): """ ## Deterministic Parameter Free Project (DPFP) This is the new projection function $ extcolor{lightgreen}{\\phi}$ introduced in the paper. DPFP projects $k$ of dimensionality $d_{key}$ to dimensionality $d_{dot} = 2 d_{key} u$, where $ u \\in \\{1, 2, ..., 2 d_{key} - 1 \\}$ is a hyper-parameter. $$ extcolor{lightgreen}{\\phi_{2 d_{key} (i - 1) + j}(k)} = ext{ReLU}\\Big(ig[k, -kig]\\Big)_{j} ext{ReLU}\\Big(ig[k, -kig]\\Big)_{i + j}$$ where $ig[k, -kig]$ is the concatenation of $k$ and $-k$ to give a vector of size $2 d_{key}$, $i \\in \\{1, 2, ..., u \\}$, and $j \\in \\{1, 2, ..., 2 d_{key}\\}$. $x_i$ is the $i$-th element of vector $x$ and is rolled around if $i$ is larger than the number of elements in $x$. Basically, it creates a new vector by multiplying elements of $[k, -k]$ shifted by $i$. This produces projections that are sparse (only a few elements of $phi$ are non-zero) and orthogonal ($ extcolor{lightgreen}{\\phi(k^{(i)})} \\cdot extcolor{lightgreen}{\\phi(k^{(j)})} pprox 0$ for most $i, j$ unless $k^{(i)}$ and $k^{(j)}$ are very similar. ### Normalization Paper introduces a simple normalization for $ extcolor{lightgreen}{\\phi}$, $$ extcolor{lightgreen}{\\phi '(k)} = rac{ extcolor{lightgreen}{\\phi(k)}}{\\sum^{d_{dot}}_{j=1} extcolor{lightgreen}{\\phi(k)_j}}$$ *Check the paper for derivation.* """ def __init__(self, nu: 'int'=1, eps: 'float'=1e-06): """ * `nu` is the hyper-parameter $ u$. * `eps` is the small value used to make sure there is no division-by-zero when normalizing. """ super().__init__() self.nu = nu self.relu = nn.ReLU() self.eps = eps def dpfp(self, k: 'torch.Tensor'): """ $$ extcolor{lightgreen}{\\phi(k)}$$ """ x = self.relu(torch.cat([k, -k], dim=-1)) x_rolled = [x.roll(shifts=i, dims=-1) for i in range(1, self.nu + 1)] x_rolled = torch.cat(x_rolled, dim=-1) x_repeat = torch.cat([x] * self.nu, dim=-1) return x_repeat * x_rolled def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
DPFP
false
16,544
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
DiscriminatorLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6k/c6keogbsbczhv7za5qvdnqtoyslxmpkn26o5ri5y2uquynatq3pp.py # Topologically Sorted Source Nodes: [sub, relu, mean], Original ATen: [aten.rsub, aten.relu, aten.mean] # Source node to ATen node mapping: # mean => mean # relu => relu # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%relu,), kwargs = {}) triton_per_fused_mean_relu_rsub_0 = async_compile.triton('triton_per_fused_mean_relu_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_relu_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_relu_rsub_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lj/cljvcit4p6vjtwmejklnkzpuexfn22rbffq5dyzgt4sefx3jy3zk.py # Topologically Sorted Source Nodes: [add, relu_1, mean_1], Original ATen: [aten.add, aten.relu, aten.mean] # Source node to ATen node mapping: # add => add # mean_1 => mean_1 # relu_1 => relu_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1), kwargs = {}) # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%relu_1,), kwargs = {}) triton_per_fused_add_mean_relu_1 = async_compile.triton('triton_per_fused_add_mean_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_relu_1(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, relu, mean], Original ATen: [aten.rsub, aten.relu, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_relu_rsub_0.run(buf2, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, relu_1, mean_1], Original ATen: [aten.add, aten.relu, aten.mean] triton_per_fused_add_mean_relu_1.run(buf3, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg1_1 return (buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F import torch.utils.data import torch.nn.functional import torch.autograd class DiscriminatorLoss(Module): """ ## Discriminator Loss We want to find $w$ to maximize $$\\mathbb{E}_{x \\sim \\mathbb{P}_r} [f_w(x)]- \\mathbb{E}_{z \\sim p(z)} [f_w(g_ heta(z))]$$, so we minimize, $$- rac{1}{m} \\sum_{i=1}^m f_w ig(x^{(i)} ig) + rac{1}{m} \\sum_{i=1}^m f_w ig( g_ heta(z^{(i)}) ig)$$ """ def forward(self, f_real: 'torch.Tensor', f_fake: 'torch.Tensor'): """ * `f_real` is $f_w(x)$ * `f_fake` is $f_w(g_ heta(z))$ This returns the a tuple with losses for $f_w(x)$ and $f_w(g_ heta(z))$, which are later added. They are kept separate for logging. """ return F.relu(1 - f_real).mean(), F.relu(1 + f_fake).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_relu_rsub_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None) @triton.jit def triton_per_fused_add_mean_relu_1(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_relu_rsub_0[grid(1)](buf2, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf3 = buf1 del buf1 triton_per_fused_add_mean_relu_1[grid(1)](buf3, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg1_1 return buf2, buf3 class DiscriminatorLossNew(Module): """ ## Discriminator Loss We want to find $w$ to maximize $$\\mathbb{E}_{x \\sim \\mathbb{P}_r} [f_w(x)]- \\mathbb{E}_{z \\sim p(z)} [f_w(g_ heta(z))]$$, so we minimize, $$- rac{1}{m} \\sum_{i=1}^m f_w ig(x^{(i)} ig) + rac{1}{m} \\sum_{i=1}^m f_w ig( g_ heta(z^{(i)}) ig)$$ """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
techthiyanes/annotated_deep_learning_paper_implementations
DiscriminatorLoss
false
16,545
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
ITN3D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sx/csx5p5dyl6rlkppzzf3u2q4i35dvf4nskeut234gltf6gbrcpeg2.py # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le_6 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3p/c3p33hnyor46am5bbu552bu6hhwxr4bva2unf464y7z76cfgczbh.py # Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x1_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hl/chllbu2mcajbntbm52ypq2x27k7lwjhicimcx6nui7wvmf6tv5q6.py # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze_2, %primals_6, %primals_7, [2, 2, 2], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 8) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bw/cbwz2nw7x546vtiihvjutvwninlsjpr6uwnfapyz7bepp4vmlfyp.py # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x2_1 => relu_2 # Graph fragment: # %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze_3,), kwargs = {}) triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 8) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wl/cwltaoiyzcmseuq46vy3lephokycrkkc7tu2gy2isgtpq6soxm7o.py # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x3 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze_4, %primals_10, %primals_11, [2, 2, 2], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fz/cfzz6rw2tppc3s44ya5py2x5vjtxfh5uwnniyjm4q5kut5nideos.py # Topologically Sorted Source Nodes: [x3_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x3_1 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze_5,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7k/c7kbmxvhp4m2zw4zx6esidsagty5sxv7dl7lskqcezzmr4wfsuao.py # Topologically Sorted Source Nodes: [x2_2], Original ATen: [aten.add, aten.threshold_backward] # Source node to ATen node mapping: # x2_2 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%squeeze_6, %relu_2), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_add_threshold_backward_6 = async_compile.triton('triton_poi_fused_add_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_threshold_backward_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_threshold_backward_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 8) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp3 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/le/clelbbbgjrxwasubm6sl4f7mgqm6vekqd3vwz3bkxfd32k2ratxz.py # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x2_3 => relu_4 # Graph fragment: # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze_7,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 8) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zw/czwlsibtscp5fu6ewnwjw6lhvr7jausmc5fsf6gvwgosl72qrjrl.py # Topologically Sorted Source Nodes: [x1_2], Original ATen: [aten.add, aten.threshold_backward] # Source node to ATen node mapping: # x1_2 => add_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%squeeze_8, %relu_1), kwargs = {}) # %le_5 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_threshold_backward_8 = async_compile.triton('triton_poi_fused_add_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_threshold_backward_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_threshold_backward_8(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp3 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t7/ct7ady36dpxh2zewngxf7kycz5rc4ubg2h2sviv3iovklflbuomh.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze_11, %primals_24, %primals_25, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_9 = async_compile.triton('triton_poi_fused_convolution_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25 = args args.clear() assert_size_stride(primals_1, (2, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 3, 3, 3), (54, 27, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (8, 4, 2, 2, 2), (32, 8, 4, 2, 1)) assert_size_stride(primals_7, (8, ), (1, )) assert_size_stride(primals_8, (8, 8, 3, 3, 3), (216, 27, 9, 3, 1)) assert_size_stride(primals_9, (8, ), (1, )) assert_size_stride(primals_10, (16, 8, 2, 2, 2), (64, 8, 4, 2, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (16, 16, 3, 3, 3), (432, 27, 9, 3, 1)) assert_size_stride(primals_13, (16, ), (1, )) assert_size_stride(primals_14, (16, 8, 2, 2, 2), (64, 8, 4, 2, 1)) assert_size_stride(primals_15, (8, ), (1, )) assert_size_stride(primals_16, (8, 8, 3, 3, 3), (216, 27, 9, 3, 1)) assert_size_stride(primals_17, (8, ), (1, )) assert_size_stride(primals_18, (8, 4, 2, 2, 2), (32, 8, 4, 2, 1)) assert_size_stride(primals_19, (4, ), (1, )) assert_size_stride(primals_20, (2, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_21, (2, ), (1, )) assert_size_stride(primals_22, (2, 2, 3, 3, 3), (54, 27, 9, 3, 1)) assert_size_stride(primals_23, (2, ), (1, )) assert_size_stride(primals_24, (4, 2, 3, 3, 3), (54, 27, 9, 3, 1)) assert_size_stride(primals_25, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (2, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf30 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf30, 128, grid=grid(128), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv3d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 2, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_4, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 4, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_6, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_7, 64, grid=grid(64), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv3d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf6, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf7 = reinterpret_tensor(buf6, (8, 2, 2, 2), (8, 4, 2, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.relu] triton_poi_fused_relu_3.run(buf7, primals_9, 64, grid=grid(64), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(reinterpret_tensor(buf7, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_10, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf8, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1)) buf9 = reinterpret_tensor(buf8, (1, 16, 1, 1, 1), (16, 1, 16, 16, 16), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf9, primals_11, 16, grid=grid(16), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv3d_5], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(reinterpret_tensor(buf9, (1, 16, 1, 1, 1), (0, 1, 0, 0, 0), 0), primals_12, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf10, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1)) buf11 = reinterpret_tensor(buf10, (16, 1, 1, 1), (1, 16, 16, 16), 0); del buf10 # reuse buf27 = empty_strided_cuda((16, 1, 1, 1), (1, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x3_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf11, primals_13, buf27, 16, grid=grid(16), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv_transpose3d], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16, 1, 1, 1), (0, 1, 0, 0, 0), 0), primals_14, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf12, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf13 = reinterpret_tensor(buf12, (8, 2, 2, 2), (8, 4, 2, 1), 0); del buf12 # reuse buf28 = empty_strided_cuda((8, 2, 2, 2), (8, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [x2_2], Original ATen: [aten.add, aten.threshold_backward] triton_poi_fused_add_threshold_backward_6.run(buf13, primals_15, buf7, buf28, 64, grid=grid(64), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv3d_6], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_16, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf14, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf15 = reinterpret_tensor(buf14, (8, 2, 2, 2), (8, 4, 2, 1), 0); del buf14 # reuse buf26 = empty_strided_cuda((8, 2, 2, 2), (8, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_7.run(buf15, primals_17, buf26, 64, grid=grid(64), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv_transpose3d_1], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(reinterpret_tensor(buf15, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_18, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf16, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf17 = reinterpret_tensor(buf16, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf16 # reuse buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x1_2], Original ATen: [aten.add, aten.threshold_backward] triton_poi_fused_add_threshold_backward_8.run(buf17, primals_19, buf3, buf29, 256, grid=grid(256), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv3d_7], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(reinterpret_tensor(buf17, (1, 4, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_20, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf18, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf19 = reinterpret_tensor(buf18, (2, 4, 4, 4), (64, 16, 4, 1), 0); del buf18 # reuse buf25 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x1_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf19, primals_21, buf25, 128, grid=grid(128), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [conv3d_8], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(reinterpret_tensor(buf19, (1, 2, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_22, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf20, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf21 = reinterpret_tensor(buf20, (2, 4, 4, 4), (64, 16, 4, 1), 0); del buf20 # reuse buf24 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x1_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf21, primals_23, buf24, 128, grid=grid(128), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(reinterpret_tensor(buf21, (1, 2, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_24, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf22, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_9.run(buf23, primals_25, 256, grid=grid(256), stream=stream0) del primals_25 return (reinterpret_tensor(buf23, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf1, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0), reinterpret_tensor(buf3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf5, reinterpret_tensor(buf7, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1), 0), reinterpret_tensor(buf9, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1), 0), reinterpret_tensor(buf11, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1), 0), reinterpret_tensor(buf13, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1), 0), reinterpret_tensor(buf15, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1), 0), reinterpret_tensor(buf17, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf19, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0), reinterpret_tensor(buf21, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0), buf24, buf25, buf26, buf27, buf28, buf29, buf30, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 3, 3, 3), (54, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 4, 2, 2, 2), (32, 8, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 8, 3, 3, 3), (216, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 8, 2, 2, 2), (64, 8, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, 16, 3, 3, 3), (432, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((16, 8, 2, 2, 2), (64, 8, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((8, 8, 3, 3, 3), (216, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((8, 4, 2, 2, 2), (32, 8, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((2, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((2, 2, 3, 3, 3), (54, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((4, 2, 3, 3, 3), (54, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class ITN3D(nn.Module): def __init__(self, input_channels): super(ITN3D, self).__init__() use_bias = True self.conv11 = nn.Conv3d(input_channels, 2, kernel_size=3, padding=1, bias=use_bias) self.conv12 = nn.Conv3d(2, 4, kernel_size=3, padding=1, bias=use_bias) self.down1 = nn.Conv3d(4, 8, kernel_size=2, stride=2, bias=use_bias) self.conv21 = nn.Conv3d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.down2 = nn.Conv3d(8, 16, kernel_size=2, stride=2, bias=use_bias) self.conv31 = nn.Conv3d(16, 16, kernel_size=3, padding=1, bias=use_bias ) self.up2 = nn.ConvTranspose3d(16, 8, kernel_size=2, stride=2, bias= use_bias) self.conv22 = nn.Conv3d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.up1 = nn.ConvTranspose3d(8, 4, kernel_size=2, stride=2, bias= use_bias) self.conv13 = nn.Conv3d(4, 2, kernel_size=3, padding=1, bias=use_bias) self.conv14 = nn.Conv3d(2, 2, kernel_size=3, padding=1, bias=use_bias) self.conv15 = nn.Conv3d(2, input_channels, kernel_size=3, padding=1, bias=use_bias) def forward(self, x): x1 = F.relu(self.conv11(x)) x1 = F.relu(self.conv12(x1)) x2 = self.down1(x1) x2 = F.relu(self.conv21(x2)) x3 = self.down2(x2) x3 = F.relu(self.conv31(x3)) x2 = self.up2(x3) + x2 x2 = F.relu(self.conv22(x2)) x1 = self.up1(x2) + x1 x1 = F.relu(self.conv13(x1)) x1 = F.relu(self.conv14(x1)) x = self.conv15(x1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_threshold_backward_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp3 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_threshold_backward_8(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp3 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25) = args args.clear() assert_size_stride(primals_1, (2, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 3, 3, 3), (54, 27, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (8, 4, 2, 2, 2), (32, 8, 4, 2, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (8, 8, 3, 3, 3), (216, 27, 9, 3, 1)) assert_size_stride(primals_9, (8,), (1,)) assert_size_stride(primals_10, (16, 8, 2, 2, 2), (64, 8, 4, 2, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (16, 16, 3, 3, 3), (432, 27, 9, 3, 1)) assert_size_stride(primals_13, (16,), (1,)) assert_size_stride(primals_14, (16, 8, 2, 2, 2), (64, 8, 4, 2, 1)) assert_size_stride(primals_15, (8,), (1,)) assert_size_stride(primals_16, (8, 8, 3, 3, 3), (216, 27, 9, 3, 1)) assert_size_stride(primals_17, (8,), (1,)) assert_size_stride(primals_18, (8, 4, 2, 2, 2), (32, 8, 4, 2, 1)) assert_size_stride(primals_19, (4,), (1,)) assert_size_stride(primals_20, (2, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_21, (2,), (1,)) assert_size_stride(primals_22, (2, 2, 3, 3, 3), (54, 27, 9, 3, 1)) assert_size_stride(primals_23, (2,), (1,)) assert_size_stride(primals_24, (4, 2, 3, 3, 3), (54, 27, 9, 3, 1)) assert_size_stride(primals_25, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (2, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf30 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1, primals_2, buf30, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 2, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_4, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_relu_1[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 4, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_6, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(64)](buf5, primals_7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf6, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf7 = reinterpret_tensor(buf6, (8, 2, 2, 2), (8, 4, 2, 1), 0) del buf6 triton_poi_fused_relu_3[grid(64)](buf7, primals_9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(reinterpret_tensor(buf7, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_10, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf8, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1)) buf9 = reinterpret_tensor(buf8, (1, 16, 1, 1, 1), (16, 1, 16, 16, 16), 0) del buf8 triton_poi_fused_convolution_4[grid(16)](buf9, primals_11, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(reinterpret_tensor(buf9, (1, 16, 1, 1, 1), (0, 1, 0, 0, 0), 0), primals_12, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf10, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1)) buf11 = reinterpret_tensor(buf10, (16, 1, 1, 1), (1, 16, 16, 16), 0) del buf10 buf27 = empty_strided_cuda((16, 1, 1, 1), (1, 1, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(16)](buf11, primals_13, buf27, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_13 buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16, 1, 1, 1), (0, 1, 0, 0, 0), 0), primals_14, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf12, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf13 = reinterpret_tensor(buf12, (8, 2, 2, 2), (8, 4, 2, 1), 0) del buf12 buf28 = empty_strided_cuda((8, 2, 2, 2), (8, 4, 2, 1), torch.bool) triton_poi_fused_add_threshold_backward_6[grid(64)](buf13, primals_15, buf7, buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_15 buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_16, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf14, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1)) buf15 = reinterpret_tensor(buf14, (8, 2, 2, 2), (8, 4, 2, 1), 0) del buf14 buf26 = empty_strided_cuda((8, 2, 2, 2), (8, 4, 2, 1), torch.bool) triton_poi_fused_relu_threshold_backward_7[grid(64)](buf15, primals_17, buf26, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_17 buf16 = extern_kernels.convolution(reinterpret_tensor(buf15, (1, 8, 2, 2, 2), (0, 8, 4, 2, 1), 0), primals_18, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf16, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf17 = reinterpret_tensor(buf16, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf16 buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_threshold_backward_8[grid(256)](buf17, primals_19, buf3, buf29, 256, XBLOCK=128, num_warps=4, num_stages=1 ) del primals_19 buf18 = extern_kernels.convolution(reinterpret_tensor(buf17, (1, 4, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_20, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf18, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf19 = reinterpret_tensor(buf18, (2, 4, 4, 4), (64, 16, 4, 1), 0) del buf18 buf25 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf19, primals_21, buf25, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_21 buf20 = extern_kernels.convolution(reinterpret_tensor(buf19, (1, 2, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_22, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf20, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1)) buf21 = reinterpret_tensor(buf20, (2, 4, 4, 4), (64, 16, 4, 1), 0) del buf20 buf24 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf21, primals_23, buf24, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_23 buf22 = extern_kernels.convolution(reinterpret_tensor(buf21, (1, 2, 4, 4, 4), (0, 64, 16, 4, 1), 0), primals_24, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf22, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_9[grid(256)](buf23, primals_25, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 return (reinterpret_tensor(buf23, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf1, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0), reinterpret_tensor(buf3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf5, reinterpret_tensor(buf7, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1), 0), reinterpret_tensor(buf9, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1), 0), reinterpret_tensor(buf11, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1), 0), reinterpret_tensor(buf13, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1), 0), reinterpret_tensor(buf15, (1, 8, 2, 2, 2), (64, 8, 4, 2, 1), 0), reinterpret_tensor(buf17, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf19, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0), reinterpret_tensor(buf21, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0), buf24, buf25, buf26, buf27, buf28, buf29, buf30) class ITN3DNew(nn.Module): def __init__(self, input_channels): super(ITN3DNew, self).__init__() use_bias = True self.conv11 = nn.Conv3d(input_channels, 2, kernel_size=3, padding=1, bias=use_bias) self.conv12 = nn.Conv3d(2, 4, kernel_size=3, padding=1, bias=use_bias) self.down1 = nn.Conv3d(4, 8, kernel_size=2, stride=2, bias=use_bias) self.conv21 = nn.Conv3d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.down2 = nn.Conv3d(8, 16, kernel_size=2, stride=2, bias=use_bias) self.conv31 = nn.Conv3d(16, 16, kernel_size=3, padding=1, bias=use_bias ) self.up2 = nn.ConvTranspose3d(16, 8, kernel_size=2, stride=2, bias= use_bias) self.conv22 = nn.Conv3d(8, 8, kernel_size=3, padding=1, bias=use_bias) self.up1 = nn.ConvTranspose3d(8, 4, kernel_size=2, stride=2, bias= use_bias) self.conv13 = nn.Conv3d(4, 2, kernel_size=3, padding=1, bias=use_bias) self.conv14 = nn.Conv3d(2, 2, kernel_size=3, padding=1, bias=use_bias) self.conv15 = nn.Conv3d(2, input_channels, kernel_size=3, padding=1, bias=use_bias) def forward(self, input_0): primals_1 = self.conv11.weight primals_2 = self.conv11.bias primals_4 = self.conv12.weight primals_5 = self.conv12.bias primals_6 = self.down1.weight primals_7 = self.down1.bias primals_8 = self.conv21.weight primals_9 = self.conv21.bias primals_10 = self.down2.weight primals_11 = self.down2.bias primals_12 = self.conv31.weight primals_13 = self.conv31.bias primals_14 = self.up2.weight primals_15 = self.up2.bias primals_16 = self.conv22.weight primals_17 = self.conv22.bias primals_18 = self.up1.weight primals_19 = self.up1.bias primals_20 = self.conv13.weight primals_21 = self.conv13.bias primals_22 = self.conv14.weight primals_23 = self.conv14.bias primals_24 = self.conv15.weight primals_25 = self.conv15.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return output[0]
swaroopkml96/istn
ITN3D
false
16,546
[ "Apache-2.0" ]
91
600543e071aa56907509aa090697295cdc69a6b1
https://github.com/swaroopkml96/istn/tree/600543e071aa56907509aa090697295cdc69a6b1
CrossEntropyBayesRisk
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/f7/cf7j4pwlu55ah6fc4huqphitmbwk5lpjrsflp3g4iowoictloibu.py # Topologically Sorted Source Nodes: [alpha, strength], Original ATen: [aten.add, aten.sum] # Source node to ATen node mapping: # alpha => add # strength => sum_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1]), kwargs = {}) triton_poi_fused_add_sum_0 = async_compile.triton('triton_poi_fused_add_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = tmp2 + tmp4 tmp7 = tmp6 + tmp1 tmp8 = tmp5 + tmp7 tmp10 = tmp9 + tmp1 tmp11 = tmp8 + tmp10 tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ng/cng3qs5i7l7nydt5poohpevomfjvgc4tpjnfgxynhzf2fuov5xde.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten.add] # Source node to ATen node mapping: # alpha => add # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vn/cvnzeqhjxijtgpwsm3a57xbuknnkhkk7k3udzcqfvczkfyomgkmt.py # Topologically Sorted Source Nodes: [sub, mul, loss, mean], Original ATen: [aten.sub, aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # loss => sum_2 # mean => mean # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %digamma_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused_mean_mul_sub_sum_2 = async_compile.triton('triton_per_fused_mean_mul_sub_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sub_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mul_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (4*r3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (4*r3), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + (4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + (4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (3 + (4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp10 = tmp4 + tmp9 tmp14 = tmp12 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tmp10 + tmp15 tmp20 = tmp18 - tmp19 tmp21 = tmp17 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp25 = tl.sum(tmp23, 1)[:, None] tmp26 = 64.0 tmp27 = tmp25 / tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha, strength], Original ATen: [aten.add, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_add_sum_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [alpha, strength, digamma], Original ATen: [aten.add, aten.sum, aten.digamma] buf1 = torch.ops.aten.digamma.default(buf0) del buf0 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten.add] triton_poi_fused_add_1.run(arg0_1, buf3, 256, grid=grid(256), stream=stream0) del arg0_1 # Topologically Sorted Source Nodes: [alpha, digamma_1], Original ATen: [aten.add, aten.digamma] buf4 = torch.ops.aten.digamma.default(buf3) del buf3 buf5 = buf4 del buf4 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [sub, mul, loss, mean], Original ATen: [aten.sub, aten.mul, aten.sum, aten.mean] triton_per_fused_mean_mul_sub_sum_2.run(buf8, arg1_1, buf2, buf5, 1, 64, grid=grid(1), stream=stream0) del arg1_1 del buf2 del buf5 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class CrossEntropyBayesRisk(Module): """ <a id="CrossEntropyBayesRisk"></a> ## Bayes Risk with Cross Entropy Loss Bayes risk is the overall maximum cost of making incorrect estimates. It takes a cost function that gives the cost of making an incorrect estimate and sums it over all possible outcomes based on probability distribution. Here the cost function is cross-entropy loss, for one-hot coded $\\mathbf{y}$ $$\\sum_{k=1}^K -y_k \\log p_k$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K -y_k \\log p_k \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\psi(S) - \\psi( extcolor{orange}{lpha_k} ) igg) \\end{align} where $\\psi(\\cdot)$ is the $digamma$ function. """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) loss = (target * (torch.digamma(strength)[:, None] - torch.digamma( alpha))).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = tmp2 + tmp4 tmp7 = tmp6 + tmp1 tmp8 = tmp5 + tmp7 tmp10 = tmp9 + tmp1 tmp11 = tmp8 + tmp10 tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused_add_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused_mean_mul_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + 4 * r3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4 * r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr2 + 4 * r3, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + 4 * r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr2 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + 4 * r0 + 16 * r2), None, eviction_policy ='evict_last') tmp13 = tl.load(in_ptr2 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (3 + 4 * r0 + 16 * r2), None, eviction_policy ='evict_last') tmp19 = tl.load(in_ptr2 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp10 = tmp4 + tmp9 tmp14 = tmp12 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tmp10 + tmp15 tmp20 = tmp18 - tmp19 tmp21 = tmp17 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp25 = tl.sum(tmp23, 1)[:, None] tmp26 = 64.0 tmp27 = tmp25 / tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp27, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_sum_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = torch.ops.aten.digamma.default(buf0) del buf0 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_1[grid(256)](arg0_1, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf4 = torch.ops.aten.digamma.default(buf3) del buf3 buf5 = buf4 del buf4 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7 del buf7 triton_per_fused_mean_mul_sub_sum_2[grid(1)](buf8, arg1_1, buf2, buf5, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf2 del buf5 return buf8, class CrossEntropyBayesRiskNew(Module): """ <a id="CrossEntropyBayesRisk"></a> ## Bayes Risk with Cross Entropy Loss Bayes risk is the overall maximum cost of making incorrect estimates. It takes a cost function that gives the cost of making an incorrect estimate and sums it over all possible outcomes based on probability distribution. Here the cost function is cross-entropy loss, for one-hot coded $\\mathbf{y}$ $$\\sum_{k=1}^K -y_k \\log p_k$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K -y_k \\log p_k \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\psi(S) - \\psi( extcolor{orange}{lpha_k} ) igg) \\end{align} where $\\psi(\\cdot)$ is the $digamma$ function. """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
CrossEntropyBayesRisk
false
16,547
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
GatedRNNCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/cv/ccvh5pcjc57oskvep5v2okylauufvnesitt2j6dbyvr6fh3vwuer.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yv/cyvktn4tq6gpumlr5orsqswrvyakfjwm4wgqbluvzandnotidcnr.py # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.cat] # Source node to ATen node mapping: # hx => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/er/cerqshqr2zc47pjpq3hmobkrsq7s5hm2xywfwrrspm5fd5d22bxs.py # Topologically Sorted Source Nodes: [hidden_preact, hidden, g, sub, mul_1, mul_2, h], Original ATen: [aten.add, aten.tanh, aten.sigmoid, aten.rsub, aten.mul] # Source node to ATen node mapping: # g => sigmoid # h => add_1 # hidden => tanh # hidden_preact => add # mul_1 => mul_1 # mul_2 => mul_2 # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x2), xmask) tmp12 = tl.load(in_ptr4 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = libdevice.tanh(tmp6) tmp9 = tl.sigmoid(tmp8) tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp9 * tmp7 tmp15 = tmp13 + tmp14 tl.store(in_out_ptr0 + (x2), tmp7, xmask) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, primals_2, buf4, 512, grid=grid(512), stream=stream0) buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [g_preact], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (64, 8), (8, 1), 0), reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_7 del primals_8 buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_preact, hidden, g, sub, mul_1, mul_2, h], Original ATen: [aten.add, aten.tanh, aten.sigmoid, aten.rsub, aten.mul] triton_poi_fused_add_mul_rsub_sigmoid_tanh_2.run(buf3, primals_4, buf2, primals_6, buf5, primals_2, buf6, 256, grid=grid(256), stream=stream0) del buf2 del primals_4 del primals_6 return (buf6, primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, reinterpret_tensor(buf4, (64, 8), (8, 1), 0), buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from functools import partial def get_initializer(name, activation): if activation in ['id', 'identity', 'linear', 'modrelu']: nonlinearity = 'linear' elif activation in ['relu', 'tanh', 'sigmoid']: nonlinearity = activation else: assert False, f'get_initializer: activation {activation} not supported' if name == 'uniform': initializer = partial(torch.nn.init.kaiming_uniform_, nonlinearity= nonlinearity) elif name == 'normal': initializer = partial(torch.nn.init.kaiming_normal_, nonlinearity= nonlinearity) elif name == 'xavier': initializer = torch.nn.init.xavier_normal_ elif name == 'zero': initializer = partial(torch.nn.init.constant_, val=0) elif name == 'one': initializer = partial(torch.nn.init.constant_, val=1) else: assert False, f'get_initializer: initializer type {name} not supported' return initializer def Linear_(input_size, output_size, bias, init='normal', zero_bias_init= False, **kwargs): """ Returns a nn.Linear module with initialization options """ l = nn.Linear(input_size, output_size, bias=bias, **kwargs) get_initializer(init, 'linear')(l.weight) if bias and zero_bias_init: nn.init.zeros_(l.bias) return l def get_activation(activation, size): if activation == 'id': return nn.Identity() elif activation == 'tanh': return torch.tanh elif activation == 'relu': return torch.relu elif activation == 'sigmoid': return torch.sigmoid elif activation == 'modrelu': return Modrelu(size) else: raise NotImplementedError("hidden activation '{}' is not implemented" .format(activation)) class Gate(nn.Module): """ Implements gating mechanisms. Mechanisms: N - No gate G - Standard sigmoid gate """ def __init__(self, size, preact_ctor, preact_args, mechanism='N'): super().__init__() self.size = size self.mechanism = mechanism if self.mechanism == 'N': pass elif self.mechanism == 'G': self.W_g = preact_ctor(*preact_args) else: assert False, f'Gating type {self.mechanism} is not supported.' def forward(self, *inputs): if self.mechanism == 'N': return 1.0 if self.mechanism == 'G': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) return g class modrelu(nn.Module): def __init__(self, features): super(modrelu, self).__init__() self.features = features self.b = nn.Parameter(torch.Tensor(self.features)) self.reset_parameters() def reset_parameters(self): self.b.data.uniform_(-0.01, 0.01) def forward(self, inputs): norm = torch.abs(inputs) biased_norm = norm + self.b magnitude = nn.functional.relu(biased_norm) phase = torch.sign(inputs) return phase * magnitude class Parametrization(nn.Module): """ Implements the parametrization of a manifold in terms of a Euclidean space It gives the parametrized matrix through the attribute `B` To use it, subclass it and implement the method `retraction` and the method `forward` (and optionally `project`). See the documentation in these methods for details You can find an example in the file `orthogonal.py` where we implement the Orthogonal class to optimize over the Stiefel manifold using an arbitrary retraction """ def __init__(self, A, base, mode): """ mode: "static" or a tuple such that: mode[0] == "dynamic" mode[1]: int, K, the number of steps after which we should change the basis of the dyn triv mode[2]: int, M, the number of changes of basis after which we should project back onto the manifold the basis. This is particularly helpful for small values of K. """ super(Parametrization, self).__init__() assert mode == 'static' or isinstance(mode, tuple) and len(mode ) == 3 and mode[0] == 'dynamic' self.A = nn.Parameter(A) self.register_buffer('_B', None) self.register_buffer('base', base) if mode == 'static': self.mode = mode else: self.mode = mode[0] self.K = mode[1] self.M = mode[2] self.k = 0 self.m = 0 def hook(grad): nonlocal self self._B = None self.A.register_hook(hook) def rebase(self): with torch.no_grad(): self.base.data.copy_(self._B.data) self.A.data.zero_() @property def B(self): not_B = self._B is None if not_B or not self._B.grad_fn and torch.is_grad_enabled(): self._B = self.retraction(self.A, self.base) self._B.requires_grad_() self._B.retain_grad() if self.mode == 'dynamic' and not_B: if self.k == 0: self.rebase() self.m = (self.m + 1) % self.M if self.m == 0 and hasattr(self, 'project'): with torch.no_grad(): self.base = self.project(self.base) if self.K != 'infty': self.k = (self.k + 1) % self.K elif self.k == 0: self.k = 1 return self._B def retraction(self, A, base): """ It computes r_{base}(A). Notice that A will not always be in the tangent space of our manifold For this reason, we first have to use A to parametrize the tangent space, and then compute the retraction When dealing with Lie groups, raw_A is always projected into the Lie algebra, as an optimization (cf. Section E in the paper) """ raise NotImplementedError def project(self, base): """ This method is OPTIONAL It returns the projected base back into the manifold """ raise NotImplementedError def forward(self, input): """ It uses the attribute self.B to implement the layer itself (e.g. Linear, CNN, ...) """ raise NotImplementedError class Orthogonal(Parametrization): """ Class that implements optimization restricted to the Stiefel manifold """ def __init__(self, input_size, output_size, initializer_skew, mode, param): """ mode: "static" or a tuple such that: mode[0] == "dynamic" mode[1]: int, K, the number of steps after which we should change the basis of the dyn triv mode[2]: int, M, the number of changes of basis after which we should project back onto the manifold the basis. This is particularly helpful for small values of K. param: A parametrization of in terms of skew-symmetyric matrices """ max_size = max(input_size, output_size) A = torch.empty(max_size, max_size) base = torch.empty(input_size, output_size) super(Orthogonal, self).__init__(A, base, mode) self.input_size = input_size self.output_size = output_size self.param = param self.init_A = initializer_skew self.init_base = nn.init.eye_ self.reset_parameters() def reset_parameters(self): self.init_A(self.A) self.init_base(self.base) def forward(self, input): return input.matmul(self.B) def retraction(self, A, base): A = A.triu(diagonal=1) A = A - A.t() B = base.mm(self.param(A)) if self.input_size != self.output_size: B = B[:self.input_size, :self.output_size] return B def project(self, base): try: U, _, V = torch.svd(base, some=True) return U.mm(V.t()) except RuntimeError: x = base if base.size(0) < base.size(1): x = base.t() ret = torch.qr(x, some=True).Q if base.size(0) < base.size(1): ret = ret.t() return ret class CellBase(nn.Module): """ Abstract class for our recurrent cell interface. Passes input through """ registry = {} def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) if hasattr(cls, 'name') and cls.name is not None: cls.registry[cls.name] = cls name = 'id' valid_keys = [] def default_initializers(self): return {} def default_architecture(self): return {} def __init__(self, input_size, hidden_size, initializers=None, architecture=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.architecture = self.default_architecture() self.initializers = self.default_initializers() if initializers is not None: self.initializers.update(initializers) None if architecture is not None: self.architecture.update(architecture) assert set(self.initializers.keys()).issubset(self.valid_keys) assert set(self.architecture.keys()).issubset(self.valid_keys) self.reset_parameters() def reset_parameters(self): pass def forward(self, input, hidden): return input, input def default_state(self, input, batch_size=None): return input.new_zeros(input.size(0) if batch_size is None else batch_size, self.hidden_size, requires_grad=False) def output(self, h): return h def state_size(self): return self.hidden_size def output_size(self): return self.hidden_size def initial_state(self, trainable=False): """ Return initial state of the RNN This should not need to see the input as it should be batch size agnostic and automatically broadcasted # TODO Currently not used """ if trainable: self.initial_state = torch.zeros(self.hidden_size, requires_grad=True) else: return torch.zeros(self.hidden_size, requires_grad=True) class Modrelu(modrelu): def reset_parameters(self): self.b.data.uniform_(-0.0, 0.0) class OrthogonalLinear(Orthogonal): def __init__(self, input_size, output_size, method='exprnn', init= 'cayley', K=100): """ Wrapper around expRNN's Orthogonal class taking care of parameter names """ if method == 'exprnn': mode = 'static' param = 'expm' elif method == 'dtriv': mode = 'dynamic', ortho_args['K'], 100 param = 'expm' elif method == 'cayley': mode = 'static' param = 'cayley' else: assert False, f'OrthogonalLinear: orthogonal method {method} not supported' param = param_name_to_param[param] init_A = init_name_to_init[init] super().__init__(input_size, output_size, init_A, mode, param) class RNNCell(CellBase): name = 'rnn' valid_keys = ['hx', 'hh', 'bias'] def default_initializers(self): return {'hx': 'xavier', 'hh': 'xavier'} def default_architecture(self): return {'bias': True} def __init__(self, input_size, hidden_size, hidden_activation='tanh', orthogonal=False, ortho_args=None, zero_bias_init=False, **kwargs): self.hidden_activation = hidden_activation self.orthogonal = orthogonal self.ortho_args = ortho_args self.zero_bias_init = zero_bias_init super().__init__(input_size, hidden_size, **kwargs) def reset_parameters(self): self.W_hx = Linear_(self.input_size, self.hidden_size, bias=self. architecture['bias'], zero_bias_init=self.zero_bias_init) get_initializer(self.initializers['hx'], self.hidden_activation)(self .W_hx.weight) self.hidden_activation_fn = get_activation(self.hidden_activation, self.hidden_size) self.reset_hidden_to_hidden() def reset_hidden_to_hidden(self): if self.orthogonal: if self.ortho_args is None: self.ortho_args = {} self.ortho_args['input_size'] = self.hidden_size self.ortho_args['output_size'] = self.hidden_size self.W_hh = OrthogonalLinear(**self.ortho_args) else: self.W_hh = nn.Linear(self.hidden_size, self.hidden_size, bias= self.architecture['bias']) get_initializer(self.initializers['hh'], self.hidden_activation)( self.W_hh.weight) def forward(self, input, h): hidden_preact = self.W_hx(input) + self.W_hh(h) hidden = self.hidden_activation_fn(hidden_preact) return hidden, hidden class GatedRNNCell(RNNCell): name = 'gru' def __init__(self, input_size, hidden_size, gate='G', reset='N', **kwargs): self.gate = gate self.reset = reset super().__init__(input_size, hidden_size, **kwargs) def reset_parameters(self): super().reset_parameters() preact_ctor = Linear_ preact_args = [self.input_size + self.hidden_size, self.hidden_size, self.architecture['bias']] self.W_g = Gate(self.hidden_size, preact_ctor, preact_args, mechanism=self.gate) self.W_reset = Gate(self.hidden_size, preact_ctor, preact_args, mechanism=self.reset) def forward(self, input, h): hx = torch.cat((input, h), dim=-1) reset = self.W_reset(hx) _, update = super().forward(input, reset * h) g = self.W_g(hx) h = (1.0 - g) * h + g * update return h, h def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from functools import partial assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x2, xmask) tmp12 = tl.load(in_ptr4 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = libdevice.tanh(tmp6) tmp9 = tl.sigmoid(tmp8) tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp9 * tmp7 tmp15 = tmp13 + tmp14 tl.store(in_out_ptr0 + x2, tmp7, xmask) tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_2, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) triton_poi_fused_cat_1[grid(512)](primals_1, primals_2, buf4, 512, XBLOCK=128, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (64, 8), ( 8, 1), 0), reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_7 del primals_8 buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2[grid(256)](buf3, primals_4, buf2, primals_6, buf5, primals_2, buf6, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf2 del primals_4 del primals_6 return buf6, primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0 ), buf3, reinterpret_tensor(buf4, (64, 8), (8, 1), 0), buf5 def get_initializer(name, activation): if activation in ['id', 'identity', 'linear', 'modrelu']: nonlinearity = 'linear' elif activation in ['relu', 'tanh', 'sigmoid']: nonlinearity = activation else: assert False, f'get_initializer: activation {activation} not supported' if name == 'uniform': initializer = partial(torch.nn.init.kaiming_uniform_, nonlinearity= nonlinearity) elif name == 'normal': initializer = partial(torch.nn.init.kaiming_normal_, nonlinearity= nonlinearity) elif name == 'xavier': initializer = torch.nn.init.xavier_normal_ elif name == 'zero': initializer = partial(torch.nn.init.constant_, val=0) elif name == 'one': initializer = partial(torch.nn.init.constant_, val=1) else: assert False, f'get_initializer: initializer type {name} not supported' return initializer def Linear_(input_size, output_size, bias, init='normal', zero_bias_init= False, **kwargs): """ Returns a nn.Linear module with initialization options """ l = nn.Linear(input_size, output_size, bias=bias, **kwargs) get_initializer(init, 'linear')(l.weight) if bias and zero_bias_init: nn.init.zeros_(l.bias) return l def get_activation(activation, size): if activation == 'id': return nn.Identity() elif activation == 'tanh': return torch.tanh elif activation == 'relu': return torch.relu elif activation == 'sigmoid': return torch.sigmoid elif activation == 'modrelu': return Modrelu(size) else: raise NotImplementedError("hidden activation '{}' is not implemented" .format(activation)) class Gate(nn.Module): """ Implements gating mechanisms. Mechanisms: N - No gate G - Standard sigmoid gate """ def __init__(self, size, preact_ctor, preact_args, mechanism='N'): super().__init__() self.size = size self.mechanism = mechanism if self.mechanism == 'N': pass elif self.mechanism == 'G': self.W_g = preact_ctor(*preact_args) else: assert False, f'Gating type {self.mechanism} is not supported.' def forward(self, *inputs): if self.mechanism == 'N': return 1.0 if self.mechanism == 'G': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) return g class modrelu(nn.Module): def __init__(self, features): super(modrelu, self).__init__() self.features = features self.b = nn.Parameter(torch.Tensor(self.features)) self.reset_parameters() def reset_parameters(self): self.b.data.uniform_(-0.01, 0.01) def forward(self, inputs): norm = torch.abs(inputs) biased_norm = norm + self.b magnitude = nn.functional.relu(biased_norm) phase = torch.sign(inputs) return phase * magnitude class Parametrization(nn.Module): """ Implements the parametrization of a manifold in terms of a Euclidean space It gives the parametrized matrix through the attribute `B` To use it, subclass it and implement the method `retraction` and the method `forward` (and optionally `project`). See the documentation in these methods for details You can find an example in the file `orthogonal.py` where we implement the Orthogonal class to optimize over the Stiefel manifold using an arbitrary retraction """ def __init__(self, A, base, mode): """ mode: "static" or a tuple such that: mode[0] == "dynamic" mode[1]: int, K, the number of steps after which we should change the basis of the dyn triv mode[2]: int, M, the number of changes of basis after which we should project back onto the manifold the basis. This is particularly helpful for small values of K. """ super(Parametrization, self).__init__() assert mode == 'static' or isinstance(mode, tuple) and len(mode ) == 3 and mode[0] == 'dynamic' self.A = nn.Parameter(A) self.register_buffer('_B', None) self.register_buffer('base', base) if mode == 'static': self.mode = mode else: self.mode = mode[0] self.K = mode[1] self.M = mode[2] self.k = 0 self.m = 0 def hook(grad): nonlocal self self._B = None self.A.register_hook(hook) def rebase(self): with torch.no_grad(): self.base.data.copy_(self._B.data) self.A.data.zero_() @property def B(self): not_B = self._B is None if not_B or not self._B.grad_fn and torch.is_grad_enabled(): self._B = self.retraction(self.A, self.base) self._B.requires_grad_() self._B.retain_grad() if self.mode == 'dynamic' and not_B: if self.k == 0: self.rebase() self.m = (self.m + 1) % self.M if self.m == 0 and hasattr(self, 'project'): with torch.no_grad(): self.base = self.project(self.base) if self.K != 'infty': self.k = (self.k + 1) % self.K elif self.k == 0: self.k = 1 return self._B def retraction(self, A, base): """ It computes r_{base}(A). Notice that A will not always be in the tangent space of our manifold For this reason, we first have to use A to parametrize the tangent space, and then compute the retraction When dealing with Lie groups, raw_A is always projected into the Lie algebra, as an optimization (cf. Section E in the paper) """ raise NotImplementedError def project(self, base): """ This method is OPTIONAL It returns the projected base back into the manifold """ raise NotImplementedError def forward(self, input): """ It uses the attribute self.B to implement the layer itself (e.g. Linear, CNN, ...) """ raise NotImplementedError class Orthogonal(Parametrization): """ Class that implements optimization restricted to the Stiefel manifold """ def __init__(self, input_size, output_size, initializer_skew, mode, param): """ mode: "static" or a tuple such that: mode[0] == "dynamic" mode[1]: int, K, the number of steps after which we should change the basis of the dyn triv mode[2]: int, M, the number of changes of basis after which we should project back onto the manifold the basis. This is particularly helpful for small values of K. param: A parametrization of in terms of skew-symmetyric matrices """ max_size = max(input_size, output_size) A = torch.empty(max_size, max_size) base = torch.empty(input_size, output_size) super(Orthogonal, self).__init__(A, base, mode) self.input_size = input_size self.output_size = output_size self.param = param self.init_A = initializer_skew self.init_base = nn.init.eye_ self.reset_parameters() def reset_parameters(self): self.init_A(self.A) self.init_base(self.base) def forward(self, input): return input.matmul(self.B) def retraction(self, A, base): A = A.triu(diagonal=1) A = A - A.t() B = base.mm(self.param(A)) if self.input_size != self.output_size: B = B[:self.input_size, :self.output_size] return B def project(self, base): try: U, _, V = torch.svd(base, some=True) return U.mm(V.t()) except RuntimeError: x = base if base.size(0) < base.size(1): x = base.t() ret = torch.qr(x, some=True).Q if base.size(0) < base.size(1): ret = ret.t() return ret class CellBase(nn.Module): """ Abstract class for our recurrent cell interface. Passes input through """ registry = {} def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) if hasattr(cls, 'name') and cls.name is not None: cls.registry[cls.name] = cls name = 'id' valid_keys = [] def default_initializers(self): return {} def default_architecture(self): return {} def __init__(self, input_size, hidden_size, initializers=None, architecture=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.architecture = self.default_architecture() self.initializers = self.default_initializers() if initializers is not None: self.initializers.update(initializers) None if architecture is not None: self.architecture.update(architecture) assert set(self.initializers.keys()).issubset(self.valid_keys) assert set(self.architecture.keys()).issubset(self.valid_keys) self.reset_parameters() def reset_parameters(self): pass def forward(self, input, hidden): return input, input def default_state(self, input, batch_size=None): return input.new_zeros(input.size(0) if batch_size is None else batch_size, self.hidden_size, requires_grad=False) def output(self, h): return h def state_size(self): return self.hidden_size def output_size(self): return self.hidden_size def initial_state(self, trainable=False): """ Return initial state of the RNN This should not need to see the input as it should be batch size agnostic and automatically broadcasted # TODO Currently not used """ if trainable: self.initial_state = torch.zeros(self.hidden_size, requires_grad=True) else: return torch.zeros(self.hidden_size, requires_grad=True) class Modrelu(modrelu): def reset_parameters(self): self.b.data.uniform_(-0.0, 0.0) class OrthogonalLinear(Orthogonal): def __init__(self, input_size, output_size, method='exprnn', init= 'cayley', K=100): """ Wrapper around expRNN's Orthogonal class taking care of parameter names """ if method == 'exprnn': mode = 'static' param = 'expm' elif method == 'dtriv': mode = 'dynamic', ortho_args['K'], 100 param = 'expm' elif method == 'cayley': mode = 'static' param = 'cayley' else: assert False, f'OrthogonalLinear: orthogonal method {method} not supported' param = param_name_to_param[param] init_A = init_name_to_init[init] super().__init__(input_size, output_size, init_A, mode, param) class RNNCell(CellBase): name = 'rnn' valid_keys = ['hx', 'hh', 'bias'] def default_initializers(self): return {'hx': 'xavier', 'hh': 'xavier'} def default_architecture(self): return {'bias': True} def __init__(self, input_size, hidden_size, hidden_activation='tanh', orthogonal=False, ortho_args=None, zero_bias_init=False, **kwargs): self.hidden_activation = hidden_activation self.orthogonal = orthogonal self.ortho_args = ortho_args self.zero_bias_init = zero_bias_init super().__init__(input_size, hidden_size, **kwargs) def reset_parameters(self): self.W_hx = Linear_(self.input_size, self.hidden_size, bias=self. architecture['bias'], zero_bias_init=self.zero_bias_init) get_initializer(self.initializers['hx'], self.hidden_activation)(self .W_hx.weight) self.hidden_activation_fn = get_activation(self.hidden_activation, self.hidden_size) self.reset_hidden_to_hidden() def reset_hidden_to_hidden(self): if self.orthogonal: if self.ortho_args is None: self.ortho_args = {} self.ortho_args['input_size'] = self.hidden_size self.ortho_args['output_size'] = self.hidden_size self.W_hh = OrthogonalLinear(**self.ortho_args) else: self.W_hh = nn.Linear(self.hidden_size, self.hidden_size, bias= self.architecture['bias']) get_initializer(self.initializers['hh'], self.hidden_activation)( self.W_hh.weight) def forward(self, input, h): hidden_preact = self.W_hx(input) + self.W_hh(h) hidden = self.hidden_activation_fn(hidden_preact) return hidden, hidden class GatedRNNCellNew(RNNCell): name = 'gru' def __init__(self, input_size, hidden_size, gate='G', reset='N', **kwargs): self.gate = gate self.reset = reset super().__init__(input_size, hidden_size, **kwargs) def reset_parameters(self): super().reset_parameters() preact_ctor = Linear_ preact_args = [self.input_size + self.hidden_size, self.hidden_size, self.architecture['bias']] self.W_g = Gate(self.hidden_size, preact_ctor, preact_args, mechanism=self.gate) self.W_reset = Gate(self.hidden_size, preact_ctor, preact_args, mechanism=self.reset) def forward(self, input_0, input_1): primals_3 = self.W_hx.weight primals_4 = self.W_hx.bias primals_5 = self.W_hh.weight primals_6 = self.W_hh.bias primals_7 = self.W_g.W_g.weight primals_8 = self.W_g.W_g.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
tarepan/HiPPO
GatedRNNCell
false
16,548
[ "Apache-2.0" ]
57
bc23e2dba13da6c307cb5a4ae248c2d2c56d465f
https://github.com/tarepan/HiPPO/tree/bc23e2dba13da6c307cb5a4ae248c2d2c56d465f
MaximumLikelihoodLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/f6/cf6outqezdomcxvjwbjchfmsgy45k2q6wtv3oau6yri4t3ezi6d7.py # Topologically Sorted Source Nodes: [alpha, log_1, sub, mul, loss, mean], Original ATen: [aten.add, aten.log, aten.sub, aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # alpha => add # log_1 => log_1 # loss => sum_2 # mean => mean # mul => mul # sub => sub # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %log_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused_add_log_mean_mul_sub_sum_0 = async_compile.triton('triton_per_fused_add_log_mean_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mean_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_log_mean_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (4*r3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (4*r3), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (4 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (5 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (6 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (7 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr1 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr0 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (8 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (9 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr1 + (10 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (11 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp57 = tl.load(in_ptr0 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr1 + (12 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp60 = tl.load(in_ptr1 + (13 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp63 = tl.load(in_ptr1 + (14 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp66 = tl.load(in_ptr1 + (15 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp70 = tl.load(in_ptr1 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp5 = tmp4 + tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp7 + tmp2 tmp9 = tmp6 + tmp8 tmp11 = tmp10 + tmp2 tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp15 = tmp14 + tmp2 tmp16 = tl_math.log(tmp15) tmp17 = tmp13 - tmp16 tmp18 = tmp0 * tmp17 tmp21 = tmp20 + tmp2 tmp23 = tmp22 + tmp2 tmp24 = tmp21 + tmp23 tmp26 = tmp25 + tmp2 tmp27 = tmp24 + tmp26 tmp29 = tmp28 + tmp2 tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp33 = tmp32 + tmp2 tmp34 = tl_math.log(tmp33) tmp35 = tmp31 - tmp34 tmp36 = tmp19 * tmp35 tmp37 = tmp18 + tmp36 tmp40 = tmp39 + tmp2 tmp42 = tmp41 + tmp2 tmp43 = tmp40 + tmp42 tmp45 = tmp44 + tmp2 tmp46 = tmp43 + tmp45 tmp48 = tmp47 + tmp2 tmp49 = tmp46 + tmp48 tmp50 = tl_math.log(tmp49) tmp52 = tmp51 + tmp2 tmp53 = tl_math.log(tmp52) tmp54 = tmp50 - tmp53 tmp55 = tmp38 * tmp54 tmp56 = tmp37 + tmp55 tmp59 = tmp58 + tmp2 tmp61 = tmp60 + tmp2 tmp62 = tmp59 + tmp61 tmp64 = tmp63 + tmp2 tmp65 = tmp62 + tmp64 tmp67 = tmp66 + tmp2 tmp68 = tmp65 + tmp67 tmp69 = tl_math.log(tmp68) tmp71 = tmp70 + tmp2 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tmp57 * tmp73 tmp75 = tmp56 + tmp74 tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.sum(tmp76, 1)[:, None] tmp79 = 64.0 tmp80 = tmp78 / tmp79 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp80, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [alpha, log_1, sub, mul, loss, mean], Original ATen: [aten.add, aten.log, aten.sub, aten.mul, aten.sum, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_log_mean_mul_sub_sum_0.run(buf2, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class MaximumLikelihoodLoss(Module): """ <a id="MaximumLikelihoodLoss"></a> ## Type II Maximum Likelihood Loss The distribution $D(\\mathbf{p} ert extcolor{orange}{\\mathbf{lpha}})$ is a prior on the likelihood $Multi(\\mathbf{y} ert p)$, and the negative log marginal likelihood is calculated by integrating over class probabilities $\\mathbf{p}$. If target probabilities (one-hot targets) are $y_k$ for a given sample the loss is, egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\prod_{k=1}^K p_k^{y_k} rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\log S - \\log extcolor{orange}{lpha_k} igg) \\end{align} """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) loss = (target * (strength.log()[:, None] - alpha.log())).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_log_mean_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + 4 * r3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (16 * r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (1 + 16 * r0 + 64 * r2), None, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 16 * r0 + 64 * r2), None, eviction_policy ='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + 4 * r3, None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (4 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (5 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (6 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (7 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr1 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr0 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (8 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (9 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr1 + (10 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (11 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp57 = tl.load(in_ptr0 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr1 + (12 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp60 = tl.load(in_ptr1 + (13 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp63 = tl.load(in_ptr1 + (14 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp66 = tl.load(in_ptr1 + (15 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp70 = tl.load(in_ptr1 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp5 = tmp4 + tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp7 + tmp2 tmp9 = tmp6 + tmp8 tmp11 = tmp10 + tmp2 tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp15 = tmp14 + tmp2 tmp16 = tl_math.log(tmp15) tmp17 = tmp13 - tmp16 tmp18 = tmp0 * tmp17 tmp21 = tmp20 + tmp2 tmp23 = tmp22 + tmp2 tmp24 = tmp21 + tmp23 tmp26 = tmp25 + tmp2 tmp27 = tmp24 + tmp26 tmp29 = tmp28 + tmp2 tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp33 = tmp32 + tmp2 tmp34 = tl_math.log(tmp33) tmp35 = tmp31 - tmp34 tmp36 = tmp19 * tmp35 tmp37 = tmp18 + tmp36 tmp40 = tmp39 + tmp2 tmp42 = tmp41 + tmp2 tmp43 = tmp40 + tmp42 tmp45 = tmp44 + tmp2 tmp46 = tmp43 + tmp45 tmp48 = tmp47 + tmp2 tmp49 = tmp46 + tmp48 tmp50 = tl_math.log(tmp49) tmp52 = tmp51 + tmp2 tmp53 = tl_math.log(tmp52) tmp54 = tmp50 - tmp53 tmp55 = tmp38 * tmp54 tmp56 = tmp37 + tmp55 tmp59 = tmp58 + tmp2 tmp61 = tmp60 + tmp2 tmp62 = tmp59 + tmp61 tmp64 = tmp63 + tmp2 tmp65 = tmp62 + tmp64 tmp67 = tmp66 + tmp2 tmp68 = tmp65 + tmp67 tmp69 = tl_math.log(tmp68) tmp71 = tmp70 + tmp2 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tmp57 * tmp73 tmp75 = tmp56 + tmp74 tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.sum(tmp76, 1)[:, None] tmp79 = 64.0 tmp80 = tmp78 / tmp79 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp80, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_log_mean_mul_sub_sum_0[grid(1)](buf2, arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class MaximumLikelihoodLossNew(Module): """ <a id="MaximumLikelihoodLoss"></a> ## Type II Maximum Likelihood Loss The distribution $D(\\mathbf{p} ert extcolor{orange}{\\mathbf{lpha}})$ is a prior on the likelihood $Multi(\\mathbf{y} ert p)$, and the negative log marginal likelihood is calculated by integrating over class probabilities $\\mathbf{p}$. If target probabilities (one-hot targets) are $y_k$ for a given sample the loss is, egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\prod_{k=1}^K p_k^{y_k} rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\log S - \\log extcolor{orange}{lpha_k} igg) \\end{align} """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
MaximumLikelihoodLoss
false
16,549
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
EqualizedWeight
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np from torch import nn import torch.utils.data from typing import List import torch.nn.functional import torch.autograd class EqualizedWeight(nn.Module): """ <a id="equalized_weight"></a> ## Learning-rate Equalized Weights Parameter This is based on equalized learning rate introduced in the Progressive GAN paper. Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it. $$w_i = c \\hat{w}_i$$ The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have an affect since optimizers such as Adam normalize them by a running mean of the squared gradients. The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$. But the effective weights $w$ get updated proportionately to $c \\lambda$. Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$. So we are effectively scaling the learning rate by $c$ for these weight parameters. """ def __init__(self, shape: 'List[int]'): """ * `shape` is the shape of the weight parameter """ super().__init__() self.c = 1 / math.sqrt(np.prod(shape[1:])) self.weight = nn.Parameter(torch.randn(shape)) def forward(self): return self.weight * self.c def get_inputs(): return [] def get_init_inputs(): return [[], {'shape': [4, 4]}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import numpy as np from torch import nn import torch.utils.data from typing import List import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 return buf0, class EqualizedWeightNew(nn.Module): """ <a id="equalized_weight"></a> ## Learning-rate Equalized Weights Parameter This is based on equalized learning rate introduced in the Progressive GAN paper. Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it. $$w_i = c \\hat{w}_i$$ The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have an affect since optimizers such as Adam normalize them by a running mean of the squared gradients. The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$. But the effective weights $w$ get updated proportionately to $c \\lambda$. Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$. So we are effectively scaling the learning rate by $c$ for these weight parameters. """ def __init__(self, shape: 'List[int]'): """ * `shape` is the shape of the weight parameter """ super().__init__() self.c = 1 / math.sqrt(np.prod(shape[1:])) self.weight = nn.Parameter(torch.randn(shape)) def forward(self): primals_1 = self.weight output = call([primals_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
EqualizedWeight
false
16,550
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
MarginLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2l/c2lqz5eg4uounnzhu2xhx6kieol5nd5d676uuijy3vfi2vfxmwhd.py # Topologically Sorted Source Nodes: [eye, labels, pow_1, sum_1, v_norm, sub, relu, mul, sub_1, mul_1, sub_2, relu_1, mul_2, loss], Original ATen: [aten.eye, aten.index, aten.pow, aten.sum, aten.sqrt, aten.rsub, aten.relu, aten.mul, aten.sub, aten.add] # Source node to ATen node mapping: # eye => eq, full_default, full_default_1, iota_1, where # labels => index # loss => add # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # pow_1 => pow_1 # relu => relu # relu_1 => relu_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sum_1 => sum_1 # v_norm => sqrt # Graph fragment: # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze, %iota_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {}) # %index : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%where, [%arg1_1]), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (0.9, %sqrt), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %relu), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %index), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sqrt, 0.1), kwargs = {}) # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_2,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %relu_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_2), kwargs = {}) triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0 = async_compile.triton('triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tmp4 tmp7 = x0 tmp8 = tmp6 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 0.9 tmp25 = tmp24 - tmp23 tmp26 = tl.full([1], 0, tl.int32) tmp27 = triton_helpers.maximum(tmp26, tmp25) tmp28 = tmp11 * tmp27 tmp29 = tmp9 - tmp11 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.1 tmp33 = tmp23 - tmp32 tmp34 = triton_helpers.maximum(tmp26, tmp33) tmp35 = tmp31 * tmp34 tmp36 = tmp28 + tmp35 tl.store(out_ptr0 + (x3), tmp36, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nl/cnlounivewsan7neintygju4ung6fdl7sne7vd5zvvrfxzgid2yx.py # Topologically Sorted Source Nodes: [sum_2, mean], Original ATen: [aten.sum, aten.mean] # Source node to ATen node mapping: # mean => mean # sum_2 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused_mean_sum_1 = async_compile.triton('triton_per_fused_mean_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 16.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [eye, labels, pow_1, sum_1, v_norm, sub, relu, mul, sub_1, mul_1, sub_2, relu_1, mul_2, loss], Original ATen: [aten.eye, aten.index, aten.pow, aten.sum, aten.sqrt, aten.rsub, aten.relu, aten.mul, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sum_2, mean], Original ATen: [aten.sum, aten.mean] triton_per_fused_mean_sum_1.run(buf2, buf0, 1, 16, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F import torch.utils.data import torch.nn.functional import torch.autograd class MarginLoss(Module): '\n ## Margin loss for class existence\n\n A separate margin loss is used for each output capsule and the total loss is the sum of them.\n The length of each output capsule is the probability that class is present in the input.\n\n Loss for each output capsule or class $k$ is,\n $$\\mathcal{L}_k = T_k \\max(0, m^{+} - \\lVert\\mathbf{v}_k\rVert)^2 +\n \\lambda (1 - T_k) \\max(0, \\lVert\\mathbf{v}_k\rVert - m^{-})^2$$\n\n $T_k$ is $1$ if the class $k$ is present and $0$ otherwise.\n The first component of the loss is $0$ when the class is not present,\n and the second component is $0$ if the class is present.\n The $\\max(0, x)$ is used to avoid predictions going to extremes.\n $m^{+}$ is set to be $0.9$ and $m^{-}$ to be $0.1$ in the paper.\n\n The $\\lambda$ down-weighting is used to stop the length of all capsules from\n falling during the initial phase of training.\n ' def __init__(self, *, n_labels: int, lambda_: float=0.5, m_positive: float=0.9, m_negative: float=0.1): super().__init__() self.m_negative = m_negative self.m_positive = m_positive self.lambda_ = lambda_ self.n_labels = n_labels def forward(self, v: 'torch.Tensor', labels: 'torch.Tensor'): """ `v`, $\\mathbf{v}_j$ are the squashed output capsules. This has shape `[batch_size, n_labels, n_features]`; that is, there is a capsule for each label. `labels` are the labels, and has shape `[batch_size]`. """ v_norm = torch.sqrt((v ** 2).sum(dim=-1)) labels = torch.eye(self.n_labels, device=labels.device)[labels] loss = labels * F.relu(self.m_positive - v_norm) + self.lambda_ * ( 1.0 - labels) * F.relu(v_norm - self.m_negative) return loss.sum(dim=-1).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'n_labels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tmp4 tmp7 = x0 tmp8 = tmp6 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 0.9 tmp25 = tmp24 - tmp23 tmp26 = tl.full([1], 0, tl.int32) tmp27 = triton_helpers.maximum(tmp26, tmp25) tmp28 = tmp11 * tmp27 tmp29 = tmp9 - tmp11 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.1 tmp33 = tmp23 - tmp32 tmp34 = triton_helpers.maximum(tmp26, tmp33) tmp35 = tmp31 * tmp34 tmp36 = tmp28 + tmp35 tl.store(out_ptr0 + x3, tmp36, xmask) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 16.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0[grid (64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_mean_sum_1[grid(1)](buf2, buf0, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, class MarginLossNew(Module): '\n ## Margin loss for class existence\n\n A separate margin loss is used for each output capsule and the total loss is the sum of them.\n The length of each output capsule is the probability that class is present in the input.\n\n Loss for each output capsule or class $k$ is,\n $$\\mathcal{L}_k = T_k \\max(0, m^{+} - \\lVert\\mathbf{v}_k\rVert)^2 +\n \\lambda (1 - T_k) \\max(0, \\lVert\\mathbf{v}_k\rVert - m^{-})^2$$\n\n $T_k$ is $1$ if the class $k$ is present and $0$ otherwise.\n The first component of the loss is $0$ when the class is not present,\n and the second component is $0$ if the class is present.\n The $\\max(0, x)$ is used to avoid predictions going to extremes.\n $m^{+}$ is set to be $0.9$ and $m^{-}$ to be $0.1$ in the paper.\n\n The $\\lambda$ down-weighting is used to stop the length of all capsules from\n falling during the initial phase of training.\n ' def __init__(self, *, n_labels: int, lambda_: float=0.5, m_positive: float=0.9, m_negative: float=0.1): super().__init__() self.m_negative = m_negative self.m_positive = m_positive self.lambda_ = lambda_ self.n_labels = n_labels def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
MarginLoss
false
16,551
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
Conv1dCompression
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/bs/cbstxeghddltznr7shuzsnth6ngv6mnftr2w7pqzzm5flm72plbl.py # Topologically Sorted Source Nodes: [c_mem], Original ATen: [aten.convolution] # Source node to ATen node mapping: # c_mem => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [4], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [c_mem], Original ATen: [aten.convolution] # Source node to ATen node mapping: # c_mem => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [4], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [c_mem], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [c_mem], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1), (4, 1, 1)) del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [c_mem], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (1, 4, 4), (1, 4, 1), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Conv1dCompression(Module): """ ## 1D Convolution Compression $f_c$ This is a simple wrapper around [`nn.Conv1d`](https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html) with some tensor dimension permutations. """ def __init__(self, compression_rate: 'int', d_model: 'int'): """ * `compression_rate` $c$ * `d_model` is the embedding size """ super().__init__() self.conv = nn.Conv1d(d_model, d_model, kernel_size= compression_rate, stride=compression_rate) def forward(self, mem: 'torch.Tensor'): """ `mem` has shape `[seq_len, batch, d_model]` """ mem = mem.permute(1, 2, 0) c_mem = self.conv(mem) return c_mem.permute(2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'compression_rate': 4, 'd_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1), (4, 1, 1)) del buf0 buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (1, 4, 4), (1, 4, 1), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0) class Conv1dCompressionNew(Module): """ ## 1D Convolution Compression $f_c$ This is a simple wrapper around [`nn.Conv1d`](https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html) with some tensor dimension permutations. """ def __init__(self, compression_rate: 'int', d_model: 'int'): """ * `compression_rate` $c$ * `d_model` is the embedding size """ super().__init__() self.conv = nn.Conv1d(d_model, d_model, kernel_size= compression_rate, stride=compression_rate) def forward(self, input_0): primals_1 = self.conv.weight primals_3 = self.conv.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
Conv1dCompression
false
16,552
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] # Source node to ATen node mapping: # h => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def choose_nonlinearity(name): nl = None if name == 'tanh': nl = torch.tanh elif name == 'relu': nl = torch.relu elif name == 'sigmoid': nl = torch.sigmoid elif name == 'softplus': nl = torch.nn.functional.softplus elif name == 'selu': nl = torch.nn.functional.selu elif name == 'elu': nl = torch.nn.functional.elu elif name == 'swish': def nl(x): return x * torch.sigmoid(x) else: raise ValueError('nonlinearity not recognized') return nl class MLP(torch.nn.Module): """Just a salt-of-the-earth MLP""" def __init__(self, input_dim, hidden_dim, output_dim, nonlinearity='tanh'): super(MLP, self).__init__() self.linear1 = torch.nn.Linear(input_dim, hidden_dim) self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear3 = torch.nn.Linear(hidden_dim, output_dim, bias=None) for l in [self.linear1, self.linear2, self.linear3]: torch.nn.init.orthogonal_(l.weight) self.nonlinearity = choose_nonlinearity(nonlinearity) def forward(self, x, separate_fields=False): h = self.nonlinearity(self.linear1(x)) h = self.nonlinearity(self.linear2(h)) return self.linear3(h) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(256)](buf3, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, primals_6, primals_4 def choose_nonlinearity(name): nl = None if name == 'tanh': nl = torch.tanh elif name == 'relu': nl = torch.relu elif name == 'sigmoid': nl = torch.sigmoid elif name == 'softplus': nl = torch.nn.functional.softplus elif name == 'selu': nl = torch.nn.functional.selu elif name == 'elu': nl = torch.nn.functional.elu elif name == 'swish': def nl(x): return x * torch.sigmoid(x) else: raise ValueError('nonlinearity not recognized') return nl class MLPNew(torch.nn.Module): """Just a salt-of-the-earth MLP""" def __init__(self, input_dim, hidden_dim, output_dim, nonlinearity='tanh'): super(MLPNew, self).__init__() self.linear1 = torch.nn.Linear(input_dim, hidden_dim) self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim) self.linear3 = torch.nn.Linear(hidden_dim, output_dim, bias=None) for l in [self.linear1, self.linear2, self.linear3]: torch.nn.init.orthogonal_(l.weight) self.nonlinearity = choose_nonlinearity(nonlinearity) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
tailintalent/hamiltonian-nn
MLP
false
16,553
[ "Apache-2.0" ]
293
1f6dd2d58ab84977a30584f0d1dd7f8b234e4049
https://github.com/tailintalent/hamiltonian-nn/tree/1f6dd2d58ab84977a30584f0d1dd7f8b234e4049
ChannelNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/i7/ci7t7iiz7rvr7feeg7u3oqbndzrc2eexgichqwatlcys5unofv7u.py # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, sub_1, add, sqrt, x_norm, mul, x_norm_1], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mean => mean # mean_x2 => mean_1 # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sqrt => sqrt # sub_1 => sub_1 # var => sub # x_norm => div # x_norm_1 => add_1 # Graph fragment: # %mean : [num_users=3] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_1, %pow_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-05), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_2), kwargs = {}) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + (0)) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp23 = tl.load(in_ptr2 + (0)) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 64.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp20 = tmp0 - tmp11 tmp21 = tmp20 / tmp17 tmp22 = tmp19 * tmp21 tmp25 = tmp22 + tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp17, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp25, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0); del buf0 # reuse buf3 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 1, 64), (64, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, sub_1, add, sqrt, x_norm, mul, x_norm_1], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0.run(buf1, buf3, primals_1, primals_2, primals_3, buf4, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class ChannelNorm(Module): """ ## Channel Normalization This is similar to [Group Normalization](../group_norm/index.html) but affine transform is done group wise. """ def __init__(self, channels, groups, eps: 'float'=1e-05, affine: 'bool' =True): """ * `groups` is the number of groups the features are divided into * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[x^{(k)}] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() self.channels = channels self.groups = groups self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(groups)) self.shift = nn.Parameter(torch.zeros(groups)) def forward(self, x: 'torch.Tensor'): """ `x` is a tensor of shape `[batch_size, channels, *]`. `*` denotes any number of (possibly 0) dimensions. For example, in an image (2D) convolution this will be `[batch_size, channels, height, width]` """ x_shape = x.shape batch_size = x_shape[0] assert self.channels == x.shape[1] x = x.view(batch_size, self.groups, -1) mean = x.mean(dim=[-1], keepdim=True) mean_x2 = (x ** 2).mean(dim=[-1], keepdim=True) var = mean_x2 - mean ** 2 x_norm = (x - mean) / torch.sqrt(var + self.eps) if self.affine: x_norm = self.scale.view(1, -1, 1) * x_norm + self.shift.view(1, -1, 1) return x_norm.view(x_shape) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'groups': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + 0) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp23 = tl.load(in_ptr2 + 0) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 64.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp20 = tmp0 - tmp11 tmp21 = tmp20 / tmp17 tmp22 = tmp19 * tmp21 tmp25 = tmp22 + tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp17, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp25, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0) del buf0 buf3 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 1, 64), (64, 64, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0[grid(4)](buf1, buf3, primals_1, primals_2, primals_3, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, buf1, buf3 class ChannelNormNew(Module): """ ## Channel Normalization This is similar to [Group Normalization](../group_norm/index.html) but affine transform is done group wise. """ def __init__(self, channels, groups, eps: 'float'=1e-05, affine: 'bool' =True): """ * `groups` is the number of groups the features are divided into * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[x^{(k)}] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() self.channels = channels self.groups = groups self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(groups)) self.shift = nn.Parameter(torch.zeros(groups)) def forward(self, input_0): primals_2 = self.scale primals_3 = self.shift primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
ChannelNorm
false
16,554
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
KLDivLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fh/cfhl4tf45osircr7c3fcnkkmm63hrxmrewn65xg36whopnb4upq6.py # Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, mean, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.mean, aten.mul] # Source node to ATen node mapping: # add => add # exp => exp # mean => mean # mul => mul # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_1), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %exp), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, -0.5), kwargs = {}) triton_per_fused_add_exp_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_exp_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_exp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp0) tmp7 = tmp5 - tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tmp13 = -0.5 tmp14 = tmp12 * tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, mean, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_exp_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class KLDivLoss(Module): """ ## KL-Divergence loss This calculates the KL divergence between a given normal distribution and $\\mathcal{N}(0, 1)$ """ def forward(self, sigma_hat: 'torch.Tensor', mu: 'torch.Tensor'): return -0.5 * torch.mean(1 + sigma_hat - mu ** 2 - torch.exp(sigma_hat) ) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_exp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp0) tmp7 = tmp5 - tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tmp13 = -0.5 tmp14 = tmp12 * tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_exp_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class KLDivLossNew(Module): """ ## KL-Divergence loss This calculates the KL divergence between a given normal distribution and $\\mathcal{N}(0, 1)$ """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
KLDivLoss
false
16,555
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
BinaryClassificationHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lz/clzc7c4rqtr7ky6jrepxpu2dlmeo4y66gzcis5bqhwixpt7ktopj.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_3 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 buf4 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_5 return (reinterpret_tensor(buf4, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch class BinaryClassificationHead(torch.nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size) self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) self.out_proj = torch.nn.Linear(config.hidden_size, 1) def init_weights(self): self.dense.weight.data.normal_(mean=0.0, std=self.config. initializer_range) if self.dense.bias is not None: self.dense.bias.data.zero_() def forward(self, features, **kwargs): x = features[:, 0, :] x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, hidden_dropout_prob= 0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_tanh_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_5 return reinterpret_tensor(buf4, (4, 4, 1), (4, 1, 1), 0 ), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, primals_4 class BinaryClassificationHeadNew(torch.nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size) self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) self.out_proj = torch.nn.Linear(config.hidden_size, 1) def init_weights(self): self.dense.weight.data.normal_(mean=0.0, std=self.config. initializer_range) if self.dense.bias is not None: self.dense.bias.data.zero_() def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_4 = self.out_proj.weight primals_5 = self.out_proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
techthiyanes/DeepPavlov
BinaryClassificationHead
false
16,556
[ "Apache-2.0" ]
5,893
08555428388fed3c7b036c0a82a70a25efcabcff
https://github.com/techthiyanes/DeepPavlov/tree/08555428388fed3c7b036c0a82a70a25efcabcff
MiniBatchStdDev
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/b2/cb2w3vazqfwutkrvce5wyq2j2ldjxrsqp5cgfby5ouafz5za7pvf.py # Topologically Sorted Source Nodes: [var, add, std, mean, cat], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.cat] # Source node to ATen node mapping: # add => add # cat => cat # mean => mean # std => sqrt # var => var # Graph fragment: # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [0]), kwargs = {correction: 1}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %expand], 1), kwargs = {}) triton_per_fused_add_cat_mean_sqrt_var_0 = async_compile.triton('triton_per_fused_add_cat_mean_sqrt_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_cat_mean_sqrt_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_cat_mean_sqrt_var_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr0 + (64 + r0), None) tmp3 = tl.load(in_ptr0 + (128 + r0), None) tmp5 = tl.load(in_ptr0 + (192 + r0), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tmp22 = 1e-08 tmp23 = tmp21 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 64.0 tmp29 = tmp27 / tmp28 tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [XBLOCK, RBLOCK])), tmp29, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yi/cyidf2yj3fms5jdxlfe7fdijzfj6p5a5q2qxo4llkuxnpqh6fj5o.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %expand], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias # Topologically Sorted Source Nodes: [var, add, std, mean, cat], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.cat] stream0 = get_raw_stream(0) triton_per_fused_add_cat_mean_sqrt_var_0.run(arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0) buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class MiniBatchStdDev(nn.Module): """ <a id="mini_batch_std_dev"></a> ### Mini-batch Standard Deviation Mini-batch standard deviation calculates the standard deviation across a mini-batch (or a subgroups within the mini-batch) for each feature in the feature map. Then it takes the mean of all the standard deviations and appends it to the feature map as one extra feature. """ def __init__(self, group_size: 'int'=4): """ * `group_size` is the number of samples to calculate standard deviation across. """ super().__init__() self.group_size = group_size def forward(self, x: 'torch.Tensor'): """ * `x` is the feature map """ assert x.shape[0] % self.group_size == 0 grouped = x.view(self.group_size, -1) std = torch.sqrt(grouped.var(dim=0) + 1e-08) std = std.mean().view(1, 1, 1, 1) b, _, h, w = x.shape std = std.expand(b, -1, h, w) return torch.cat([x, std], dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_cat_mean_sqrt_var_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr0 + (64 + r0), None) tmp3 = tl.load(in_ptr0 + (128 + r0), None) tmp5 = tl.load(in_ptr0 + (192 + r0), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tmp22 = 1e-08 tmp23 = tmp21 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 64.0 tmp29 = tmp27 / tmp28 tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [XBLOCK, RBLOCK]), tmp29, None) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) get_raw_stream(0) triton_per_fused_add_cat_mean_sqrt_var_0[grid(1)](arg0_1, buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) triton_poi_fused_cat_1[grid(256)](arg0_1, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf3, class MiniBatchStdDevNew(nn.Module): """ <a id="mini_batch_std_dev"></a> ### Mini-batch Standard Deviation Mini-batch standard deviation calculates the standard deviation across a mini-batch (or a subgroups within the mini-batch) for each feature in the feature map. Then it takes the mean of all the standard deviations and appends it to the feature map as one extra feature. """ def __init__(self, group_size: 'int'=4): """ * `group_size` is the number of samples to calculate standard deviation across. """ super().__init__() self.group_size = group_size def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
MiniBatchStdDev
false
16,557
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
GroupNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/47/c47iah7uu5cs7dnrpms5wrjq4yrryqwlpfexgbwwzkf3j3cly5go.py # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, add, sqrt, mul, x_norm_2], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.mul] # Source node to ATen node mapping: # add => add # mean => mean # mean_x2 => mean_1 # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sqrt => sqrt # var => sub # x_norm_2 => add_1 # Graph fragment: # %mean : [num_users=3] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_1, %pow_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-05), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_3), kwargs = {}) triton_per_fused_add_mean_mul_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 64.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp19 = tmp0 - tmp11 tmp20 = tmp19 / tmp17 tmp21 = tmp18 * tmp20 tmp23 = tmp21 + tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp17, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0); del buf0 # reuse buf3 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, add, sqrt, mul, x_norm_2], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_pow_sqrt_sub_0.run(buf1, buf3, primals_1, primals_2, primals_3, buf4, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class GroupNorm(Module): """ ## Group Normalization Layer """ def __init__(self, groups: 'int', channels: 'int', *, eps: float=1e-05, affine: bool=True): """ * `groups` is the number of groups the features are divided into * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[x^{(k)}] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() assert channels % groups == 0, 'Number of channels should be evenly divisible by the number of groups' self.groups = groups self.channels = channels self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(channels)) self.shift = nn.Parameter(torch.zeros(channels)) def forward(self, x: 'torch.Tensor'): """ `x` is a tensor of shape `[batch_size, channels, *]`. `*` denotes any number of (possibly 0) dimensions. For example, in an image (2D) convolution this will be `[batch_size, channels, height, width]` """ x_shape = x.shape batch_size = x_shape[0] assert self.channels == x.shape[1] x = x.view(batch_size, self.groups, -1) mean = x.mean(dim=[-1], keepdim=True) mean_x2 = (x ** 2).mean(dim=[-1], keepdim=True) var = mean_x2 - mean ** 2 x_norm = (x - mean) / torch.sqrt(var + self.eps) if self.affine: x_norm = x_norm.view(batch_size, self.channels, -1) x_norm = self.scale.view(1, -1, 1) * x_norm + self.shift.view(1, -1, 1) return x_norm.view(x_shape) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'groups': 1, 'channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 64.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp19 = tmp0 - tmp11 tmp20 = tmp19 / tmp17 tmp21 = tmp18 * tmp20 tmp23 = tmp21 + tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp17, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp23, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0) del buf0 buf3 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_mean_mul_pow_sqrt_sub_0[grid(4)](buf1, buf3, primals_1, primals_2, primals_3, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, buf1, buf3 class GroupNormNew(Module): """ ## Group Normalization Layer """ def __init__(self, groups: 'int', channels: 'int', *, eps: float=1e-05, affine: bool=True): """ * `groups` is the number of groups the features are divided into * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[x^{(k)}] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() assert channels % groups == 0, 'Number of channels should be evenly divisible by the number of groups' self.groups = groups self.channels = channels self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(channels)) self.shift = nn.Parameter(torch.zeros(channels)) def forward(self, input_0): primals_2 = self.scale primals_3 = self.shift primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
GroupNorm
false
16,558
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
SquaredReLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ic/cicdjjsf5hzl3lpbazppxvx5umzuokzpuu5z3lapupqhtd2tusv6.py # Topologically Sorted Source Nodes: [x, mul], Original ATen: [aten.relu, aten.mul] # Source node to ATen node mapping: # mul => mul # x => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %relu), kwargs = {}) triton_poi_fused_mul_relu_0 = async_compile.triton('triton_poi_fused_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tmp2 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, mul], Original ATen: [aten.relu, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class SquaredReLU(Module): """ ## Squared ReLU activation $$y = {\\max(x, 0)}^2$$ Squared ReLU is used as the activation function in the [position wise feedforward module](../feed_forward.html). """ def __init__(self): super().__init__() self.relu = nn.ReLU() def forward(self, x: 'torch.Tensor'): x = self.relu(x) return x * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tmp2 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SquaredReLUNew(Module): """ ## Squared ReLU activation $$y = {\\max(x, 0)}^2$$ Squared ReLU is used as the activation function in the [position wise feedforward module](../feed_forward.html). """ def __init__(self): super().__init__() self.relu = nn.ReLU() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
SquaredReLU
false
16,559
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
LSTMCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/lg/clgtnw2bgvc3mnanbov77yxt2a6ztfqy7qpuhudozzijvzjgbgly.py # Topologically Sorted Source Nodes: [sigmoid, mul, sigmoid_1, tanh, mul_1, c_next, sigmoid_2, tanh_1, h_next], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add, aten.sigmoid_backward] # Source node to ATen node mapping: # c_next => add_1 # h_next => mul_2 # mul => mul # mul_1 => mul_1 # sigmoid => sigmoid # sigmoid_1 => sigmoid_1 # sigmoid_2 => sigmoid_2 # tanh => tanh # tanh_1 => tanh_1 # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_6), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %tanh), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sigmoid_2 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_3,), kwargs = {}) # %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %tanh_1), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_4), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 13, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (16*x1)), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (8 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp13 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (4 + x0 + (16*x1)), xmask) tmp18 = tl.load(in_ptr3 + (x2), xmask) tmp25 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp26 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp19 = tmp17 * tmp18 tmp20 = tmp5 * tmp11 tmp21 = tmp19 + tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp17 tmp24 = tmp17 * tmp23 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.sigmoid(tmp29) tmp31 = libdevice.tanh(tmp21) tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp21, xmask) tl.store(out_ptr3 + (x2), tmp24, xmask) tl.store(out_ptr4 + (x2), tmp30, xmask) tl.store(out_ptr5 + (x2), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul, sigmoid_1, tanh, mul_1, c_next, sigmoid_2, tanh_1, h_next], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add, aten.sigmoid_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0.run(buf0, primals_2, buf1, primals_6, buf2, buf3, buf4, buf7, buf5, buf6, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_2 return (buf6, buf4, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), buf2, buf3, buf4, buf5, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class LSTMCell(Module): """ ## Long Short-Term Memory Cell LSTM Cell computes $c$, and $h$. $c$ is like the long-term memory, and $h$ is like the short term memory. We use the input $x$ and $h$ to update the long term memory. In the update, some features of $c$ are cleared with a forget gate $f$, and some features $i$ are added through a gate $g$. The new short term memory is the $ anh$ of the long-term memory multiplied by the output gate $o$. Note that the cell doesn't look at long term memory $c$ when doing the update. It only modifies it. Also $c$ never goes through a linear transformation. This is what solves vanishing and exploding gradients. Here's the update rule. egin{align} c_t &= \\sigma(f_t) \\odot c_{t-1} + \\sigma(i_t) \\odot anh(g_t) \\ h_t &= \\sigma(o_t) \\odot anh(c_t) \\end{align} $\\odot$ stands for element-wise multiplication. Intermediate values and gates are computed as linear transformations of the hidden state and input. egin{align} i_t &= lin_x^i(x_t) + lin_h^i(h_{t-1}) \\ f_t &= lin_x^f(x_t) + lin_h^f(h_{t-1}) \\ g_t &= lin_x^g(x_t) + lin_h^g(h_{t-1}) \\ o_t &= lin_x^o(x_t) + lin_h^o(h_{t-1}) \\end{align} """ def __init__(self, input_size: 'int', hidden_size: 'int', layer_norm: 'bool'=False): super().__init__() self.hidden_lin = nn.Linear(hidden_size, 4 * hidden_size) self.input_lin = nn.Linear(input_size, 4 * hidden_size, bias=False) if layer_norm: self.layer_norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(4)]) self.layer_norm_c = nn.LayerNorm(hidden_size) else: self.layer_norm = nn.ModuleList([nn.Identity() for _ in range(4)]) self.layer_norm_c = nn.Identity() def forward(self, x: 'torch.Tensor', h: 'torch.Tensor', c: 'torch.Tensor'): ifgo = self.hidden_lin(h) + self.input_lin(x) ifgo = ifgo.chunk(4, dim=-1) ifgo = [self.layer_norm[i](ifgo[i]) for i in range(4)] i, f, g, o = ifgo c_next = torch.sigmoid(f) * c + torch.sigmoid(i) * torch.tanh(g) h_next = torch.sigmoid(o) * torch.tanh(self.layer_norm_c(c_next)) return h_next, c_next def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 16 * x1), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (8 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp13 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (4 + x0 + 16 * x1), xmask) tmp18 = tl.load(in_ptr3 + x2, xmask) tmp25 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp26 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp19 = tmp17 * tmp18 tmp20 = tmp5 * tmp11 tmp21 = tmp19 + tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp17 tmp24 = tmp17 * tmp23 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.sigmoid(tmp29) tmp31 = libdevice.tanh(tmp21) tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp21, xmask) tl.store(out_ptr3 + x2, tmp24, xmask) tl.store(out_ptr4 + x2, tmp30, xmask) tl.store(out_ptr5 + x2, tmp32, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0[grid(256)]( buf0, primals_2, buf1, primals_6, buf2, buf3, buf4, buf7, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 del primals_2 return buf6, buf4, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0 ), buf2, buf3, buf4, buf5, buf7 class LSTMCellNew(Module): """ ## Long Short-Term Memory Cell LSTM Cell computes $c$, and $h$. $c$ is like the long-term memory, and $h$ is like the short term memory. We use the input $x$ and $h$ to update the long term memory. In the update, some features of $c$ are cleared with a forget gate $f$, and some features $i$ are added through a gate $g$. The new short term memory is the $ anh$ of the long-term memory multiplied by the output gate $o$. Note that the cell doesn't look at long term memory $c$ when doing the update. It only modifies it. Also $c$ never goes through a linear transformation. This is what solves vanishing and exploding gradients. Here's the update rule. egin{align} c_t &= \\sigma(f_t) \\odot c_{t-1} + \\sigma(i_t) \\odot anh(g_t) \\ h_t &= \\sigma(o_t) \\odot anh(c_t) \\end{align} $\\odot$ stands for element-wise multiplication. Intermediate values and gates are computed as linear transformations of the hidden state and input. egin{align} i_t &= lin_x^i(x_t) + lin_h^i(h_{t-1}) \\ f_t &= lin_x^f(x_t) + lin_h^f(h_{t-1}) \\ g_t &= lin_x^g(x_t) + lin_h^g(h_{t-1}) \\ o_t &= lin_x^o(x_t) + lin_h^o(h_{t-1}) \\end{align} """ def __init__(self, input_size: 'int', hidden_size: 'int', layer_norm: 'bool'=False): super().__init__() self.hidden_lin = nn.Linear(hidden_size, 4 * hidden_size) self.input_lin = nn.Linear(input_size, 4 * hidden_size, bias=False) if layer_norm: self.layer_norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(4)]) self.layer_norm_c = nn.LayerNorm(hidden_size) else: self.layer_norm = nn.ModuleList([nn.Identity() for _ in range(4)]) self.layer_norm_c = nn.Identity() def forward(self, input_0, input_1, input_2): primals_1 = self.hidden_lin.weight primals_2 = self.hidden_lin.bias primals_4 = self.input_lin.weight primals_3 = input_0 primals_5 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
techthiyanes/annotated_deep_learning_paper_implementations
LSTMCell
false
16,560
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
InstanceNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xx/cxx35mtwn5ayt37fld6r3ar4nymqsvja32r4rrr2lkvxuya6njgx.py # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, sub_1, add, sqrt, x_norm, x_norm_1, mul, x_norm_2], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.div, aten.view, aten.mul] # Source node to ATen node mapping: # add => add # mean => mean # mean_x2 => mean_1 # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sqrt => sqrt # sub_1 => sub_1 # var => sub # x_norm => div # x_norm_1 => view_1 # x_norm_2 => add_1 # Graph fragment: # %mean : [num_users=3] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_1, %pow_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-05), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %sqrt), kwargs = {}) # %view_1 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%div, [4, 4, -1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_3), kwargs = {}) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_view_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_pow_sqrt_sub_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_pow_sqrt_sub_view_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_pow_sqrt_sub_view_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 16.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp19 = tmp0 - tmp11 tmp20 = tmp19 / tmp17 tmp21 = tmp18 * tmp20 tmp23 = tmp21 + tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp17, xmask) tl.store(out_ptr0 + (r1 + (16*x0)), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0); del buf0 # reuse buf3 = reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, sub_1, add, sqrt, x_norm, x_norm_1, mul, x_norm_2], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.div, aten.view, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_view_0.run(buf1, buf3, primals_1, primals_2, primals_3, buf4, 16, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class InstanceNorm(Module): """ ## Instance Normalization Layer Instance normalization layer $\\text{IN}$ normalizes the input $X$ as follows: When input $X \\in \\mathbb{R}^{B \\times C \\times H \\times W}$ is a batch of image representations, where $B$ is the batch size, $C$ is the number of channels, $H$ is the height and $W$ is the width. $\\gamma \\in \\mathbb{R}^{C}$ and $\\beta \\in \\mathbb{R}^{C}$. The affine transformation with $gamma$ and $beta$ are optional. $$\\text{IN}(X) = \\gamma \\frac{X - \\underset{H, W}{\\mathbb{E}}[X]}{\\sqrt{\\underset{H, W}{Var}[X] + \\epsilon}} + \\beta$$ """ def __init__(self, channels: 'int', *, eps: float=1e-05, affine: bool=True ): """ * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[X] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() self.channels = channels self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(channels)) self.shift = nn.Parameter(torch.zeros(channels)) def forward(self, x: 'torch.Tensor'): """ `x` is a tensor of shape `[batch_size, channels, *]`. `*` denotes any number of (possibly 0) dimensions. For example, in an image (2D) convolution this will be `[batch_size, channels, height, width]` """ x_shape = x.shape batch_size = x_shape[0] assert self.channels == x.shape[1] x = x.view(batch_size, self.channels, -1) mean = x.mean(dim=[-1], keepdim=True) mean_x2 = (x ** 2).mean(dim=[-1], keepdim=True) var = mean_x2 - mean ** 2 x_norm = (x - mean) / torch.sqrt(var + self.eps) x_norm = x_norm.view(batch_size, self.channels, -1) if self.affine: x_norm = self.scale.view(1, -1, 1) * x_norm + self.shift.view(1, -1, 1) return x_norm.view(x_shape) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_pow_sqrt_sub_view_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 16.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp19 = tmp0 - tmp11 tmp20 = tmp19 / tmp17 tmp21 = tmp18 * tmp20 tmp23 = tmp21 + tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp17, xmask) tl.store(out_ptr0 + (r1 + 16 * x0), tmp23, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0) del buf0 buf3 = reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_view_0[grid(16)](buf1, buf3, primals_1, primals_2, primals_3, buf4, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del primals_2 del primals_3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, buf1, buf3 class InstanceNormNew(Module): """ ## Instance Normalization Layer Instance normalization layer $\\text{IN}$ normalizes the input $X$ as follows: When input $X \\in \\mathbb{R}^{B \\times C \\times H \\times W}$ is a batch of image representations, where $B$ is the batch size, $C$ is the number of channels, $H$ is the height and $W$ is the width. $\\gamma \\in \\mathbb{R}^{C}$ and $\\beta \\in \\mathbb{R}^{C}$. The affine transformation with $gamma$ and $beta$ are optional. $$\\text{IN}(X) = \\gamma \\frac{X - \\underset{H, W}{\\mathbb{E}}[X]}{\\sqrt{\\underset{H, W}{Var}[X] + \\epsilon}} + \\beta$$ """ def __init__(self, channels: 'int', *, eps: float=1e-05, affine: bool=True ): """ * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[X] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() self.channels = channels self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(channels)) self.shift = nn.Parameter(torch.zeros(channels)) def forward(self, input_0): primals_2 = self.scale primals_3 = self.shift primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
InstanceNorm
false
16,561
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
Conv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2p/c2pd7sczu4zbchwmyczzvermmmjm5atowlgceb2f5h7wfzjfyokj.py # Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, weight_1], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # sqrt => sqrt # sub => sub # var_mean => var_mean # weight_1 => div # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [1]), kwargs = {correction: 1, keepdim: True}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %getitem_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) triton_per_fused_add_div_sqrt_sub_var_mean_0 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_sqrt_sub_var_mean_0(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 63.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.sqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (64*x0)), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %view_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 1), (1, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, weight_1], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_sqrt_sub_var_mean_0.run(buf3, primals_1, buf4, 4, 64, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(primals_3, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf6, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (buf6, primals_1, primals_3, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F import torch.utils.data import torch.nn.functional import torch.autograd def weight_standardization(weight: 'torch.Tensor', eps: 'float'): """ ## Weight Standardization $$\\hat{W}_{i,j} = \\frac{W_{i,j} - \\mu_{W_{i,\\cdot}}} {\\sigma_{W_{i,\\cdot}}}$$ where, \\begin{align} W &\\in \\mathbb{R}^{O \\times I} \\\\ \\mu_{W_{i,\\cdot}} &= \\frac{1}{I} \\sum_{j=1}^I W_{i,j} \\\\ \\sigma_{W_{i,\\cdot}} &= \\sqrt{\\frac{1}{I} \\sum_{j=1}^I W^2_{i,j} - \\mu^2_{W_{i,\\cdot}} + \\epsilon} \\\\ \\end{align} for a 2D-convolution layer $O$ is the number of output channels ($O = C_{out}$) and $I$ is the number of input channels times the kernel size ($I = C_{in} \\times k_H \\times k_W$) """ c_out, c_in, *kernel_shape = weight.shape weight = weight.view(c_out, -1) var, mean = torch.var_mean(weight, dim=1, keepdim=True) weight = (weight - mean) / torch.sqrt(var + eps) return weight.view(c_out, c_in, *kernel_shape) class Conv2d(nn.Conv2d): """ ## 2D Convolution Layer This extends the standard 2D Convolution layer and standardize the weights before the convolution step. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups: 'int'=1, bias: 'bool'=True, padding_mode: 'str'='zeros', eps: 'float'=1e-05): super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups= groups, bias=bias, padding_mode=padding_mode) self.eps = eps def forward(self, x: 'torch.Tensor'): return F.conv2d(x, weight_standardization(self.weight, self.eps), self.bias, self.stride, self.padding, self.dilation, self.groups) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_sqrt_sub_var_mean_0(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 63.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.sqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 64 * x0), tmp23, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 1), (1, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 64), (64, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_sqrt_sub_var_mean_0[grid(4)](buf3, primals_1, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf5 = extern_kernels.convolution(primals_3, reinterpret_tensor( buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding= (0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_1[grid(16)](buf6, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf6, primals_1, primals_3, buf3, buf4 def weight_standardization(weight: 'torch.Tensor', eps: 'float'): """ ## Weight Standardization $$\\hat{W}_{i,j} = \\frac{W_{i,j} - \\mu_{W_{i,\\cdot}}} {\\sigma_{W_{i,\\cdot}}}$$ where, \\begin{align} W &\\in \\mathbb{R}^{O \\times I} \\\\ \\mu_{W_{i,\\cdot}} &= \\frac{1}{I} \\sum_{j=1}^I W_{i,j} \\\\ \\sigma_{W_{i,\\cdot}} &= \\sqrt{\\frac{1}{I} \\sum_{j=1}^I W^2_{i,j} - \\mu^2_{W_{i,\\cdot}} + \\epsilon} \\\\ \\end{align} for a 2D-convolution layer $O$ is the number of output channels ($O = C_{out}$) and $I$ is the number of input channels times the kernel size ($I = C_{in} \\times k_H \\times k_W$) """ c_out, c_in, *kernel_shape = weight.shape weight = weight.view(c_out, -1) var, mean = torch.var_mean(weight, dim=1, keepdim=True) weight = (weight - mean) / torch.sqrt(var + eps) return weight.view(c_out, c_in, *kernel_shape) class Conv2dNew(nn.Conv2d): """ ## 2D Convolution Layer This extends the standard 2D Convolution layer and standardize the weights before the convolution step. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups: 'int'=1, bias: 'bool'=True, padding_mode: 'str'='zeros', eps: 'float'=1e-05): super(Conv2dNew, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode) self.eps = eps def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
Conv2d
false
16,562
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
SelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7f/c7frum44nttx5j2scsyi4n5crs45f743kpwenibqumqcc2i3bx3p.py # Topologically Sorted Source Nodes: [tiled_inputs], Original ATen: [aten.repeat] # Source node to ATen node mapping: # tiled_inputs => repeat # Graph fragment: # %repeat : [num_users=3] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [1, 4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ah/cahcbdgzcypclgrmenrcgftl53kemvcm53v6yoxzwdqjyblrincb.py # Topologically Sorted Source Nodes: [queries_dot_keys], Original ATen: [aten.clone] # Source node to ATen node mapping: # queries_dot_keys => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gn/cgnan5db7bmnus5r6d3226ruzg3uqo4t5cbu4kmjpmmgp4y234bk.py # Topologically Sorted Source Nodes: [outputs_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # outputs_4 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.full([1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qd/cqdvbtqdpjhwkuohkdwvpgjwcpeyiuiaeogxecaehdoybawykwan.py # Topologically Sorted Source Nodes: [outputs_6], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # outputs_6 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_13,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/te/cteikgf7cmmumg55dtgdzzwnt4blwbjngt2tmw7kg3gpwqpom4pf.py # Topologically Sorted Source Nodes: [outputs_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # outputs_3 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_11,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tiled_inputs], Original ATen: [aten.repeat] stream0 = get_raw_stream(0) triton_poi_fused_repeat_0.run(primals_2, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [queries_dot_keys], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [queries_dot_keys], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf6) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf7, (16, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs_4], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf8, primals_2, buf9, 128, grid=grid(128), stream=stream0) buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs_5], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf9, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [outputs_6], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [outputs_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_6.run(buf8, buf13, 64, grid=grid(64), stream=stream0) del buf8 return (buf11, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf1, buf3, reinterpret_tensor(buf7, (16, 16), (16, 1), 0), reinterpret_tensor(buf9, (16, 8), (8, 1), 0), buf12, primals_4, buf13, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class SelfAttention(torch.nn.Module): def __init__(self, num_heads, model_dim, dropout_keep_prob): super(SelfAttention, self).__init__() self.num_heads = num_heads self.model_dim = model_dim self.dropout_keep_prob = dropout_keep_prob self.q_layer = torch.nn.Linear(model_dim, model_dim * self. num_heads, bias=False) self.out_layer = torch.nn.Linear(model_dim * self.num_heads, model_dim, bias=False) self.out_layer2 = torch.nn.Linear(model_dim * 2, model_dim, bias=False) self.relu = torch.nn.ReLU() self.softmax = torch.nn.Softmax(dim=-1) self.dropout = torch.nn.Dropout(1 - dropout_keep_prob) def forward(self, batched_inputs, attn_mask=None): q = self._linear_projection(batched_inputs) qs = self._split_heads(q) tiled_inputs = batched_inputs.unsqueeze(1).repeat(1, self.num_heads, 1, 1) outputs = self._scaled_dot_product(qs, tiled_inputs, tiled_inputs, attn_mask) outputs = self._concat_heads(outputs) if self.num_heads > 1: outputs = self.out_layer(outputs) outputs = self.relu(outputs) outputs = torch.cat([outputs, batched_inputs], dim=-1) outputs = self.out_layer2(outputs) outputs = self.relu(outputs) return outputs def _linear_projection(self, batched_inputs): q = self.q_layer(batched_inputs) return q def _split_heads(self, q): def split_last_dimension_then_transpose(tensor, num_heads, dim): tensor = tensor.view([-1, tensor.size()[1], num_heads, dim]) return tensor.transpose(1, 2) qs = split_last_dimension_then_transpose(q, self.num_heads, self. model_dim) return qs def _scaled_dot_product(self, qs, ks, tiled_inputs, valid_mask): queries_dot_keys = torch.matmul(qs, ks.transpose(2, 3)) scaled_scores = queries_dot_keys if valid_mask is not None: mask = torch.log(valid_mask.view(valid_mask.size()[0], 1, 1, valid_mask.size()[1])) scaled_scores += mask attention_weights = self.softmax(scaled_scores) return torch.matmul(attention_weights, tiled_inputs) def _concat_heads(self, outputs): max_contexts = outputs.size()[2] tensor = outputs.transpose(1, 2) return tensor.contiguous().view([-1, max_contexts, self.model_dim * self.num_heads]) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'num_heads': 4, 'model_dim': 4, 'dropout_keep_prob': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.full([1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp13 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + x2, tmp14, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_repeat_0[grid(256)](primals_2, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](buf0, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0) del buf0 extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = buf2 del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0) del buf4 extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf6) buf7 = buf5 del buf5 triton_poi_fused_clone_1[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (16, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_4[grid(128)](buf8, primals_2, buf9, 128, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0) del buf10 buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(64)](buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_6[grid(64)](buf8, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf8 return buf11, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), buf1, buf3, reinterpret_tensor(buf7, (16, 16), (16, 1), 0 ), reinterpret_tensor(buf9, (16, 8), (8, 1), 0 ), buf12, primals_4, buf13, primals_3 class SelfAttentionNew(torch.nn.Module): def __init__(self, num_heads, model_dim, dropout_keep_prob): super(SelfAttentionNew, self).__init__() self.num_heads = num_heads self.model_dim = model_dim self.dropout_keep_prob = dropout_keep_prob self.q_layer = torch.nn.Linear(model_dim, model_dim * self. num_heads, bias=False) self.out_layer = torch.nn.Linear(model_dim * self.num_heads, model_dim, bias=False) self.out_layer2 = torch.nn.Linear(model_dim * 2, model_dim, bias=False) self.relu = torch.nn.ReLU() self.softmax = torch.nn.Softmax(dim=-1) self.dropout = torch.nn.Dropout(1 - dropout_keep_prob) def _linear_projection(self, batched_inputs): q = self.q_layer(batched_inputs) return q def _split_heads(self, q): def split_last_dimension_then_transpose(tensor, num_heads, dim): tensor = tensor.view([-1, tensor.size()[1], num_heads, dim]) return tensor.transpose(1, 2) qs = split_last_dimension_then_transpose(q, self.num_heads, self. model_dim) return qs def _scaled_dot_product(self, qs, ks, tiled_inputs, valid_mask): queries_dot_keys = torch.matmul(qs, ks.transpose(2, 3)) scaled_scores = queries_dot_keys if valid_mask is not None: mask = torch.log(valid_mask.view(valid_mask.size()[0], 1, 1, valid_mask.size()[1])) scaled_scores += mask attention_weights = self.softmax(scaled_scores) return torch.matmul(attention_weights, tiled_inputs) def _concat_heads(self, outputs): max_contexts = outputs.size()[2] tensor = outputs.transpose(1, 2) return tensor.contiguous().view([-1, max_contexts, self.model_dim * self.num_heads]) def forward(self, input_0): primals_1 = self.q_layer.weight primals_3 = self.out_layer.weight primals_4 = self.out_layer2.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
tech-srl/bottleneck
SelfAttention
false
16,563
[ "MIT" ]
56
b8c629ad25e02f53ba3389dd33a90bbeb83ea447
https://github.com/tech-srl/bottleneck/tree/b8c629ad25e02f53ba3389dd33a90bbeb83ea447