entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
EnDeWithPooling | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5b/c5b7soflxobdhhzkim3kecmdxhe5yvpgrmlmq2zwhe7zsmzyed2c.py
# Topologically Sorted Source Nodes: [conv2d, selu], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d => convolution
# selu => expm1, gt, mul, mul_1, mul_2, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0507009873554805), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.7580993408473766), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + (x3), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wy/cwyx3wa4jndgnwzcjpr33hhlviahccyeckxfax46ztwjbjc22gd7.py
# Topologically Sorted Source Nodes: [conv1_], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# conv1_ => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kf/ckfdli7yjwk3c6ojm5hqpsdsli2fgswmnh33ygbopk7zwjgklb6w.py
# Topologically Sorted Source Nodes: [conv2d_1, selu_1], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# selu_1 => expm1_1, gt_1, mul_3, mul_4, mul_5, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1.0507009873554805), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1.0), kwargs = {})
# %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.7580993408473766), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {})
triton_poi_fused_convolution_elu_2 = async_compile.triton('triton_poi_fused_convolution_elu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + (x3), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6y/c6yx6oq7oo2cwoaop3iwu5iqfdckg6lycdtu4jjuiv3wdcf2o6p7.py
# Topologically Sorted Source Nodes: [conv2_], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# conv2_ => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/su/csukxd5c6zcmjaz4vynojuv2mn7hyj4zxaikhjwfyrysdbqpzkud.py
# Topologically Sorted Source Nodes: [conv2d_2, selu_2], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# selu_2 => expm1_2, gt_2, mul_6, mul_7, mul_8, where_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 1.0507009873554805), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 1.0), kwargs = {})
# %expm1_2 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_7,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_2, 1.7580993408473766), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_6, %mul_8), kwargs = {})
triton_poi_fused_convolution_elu_4 = async_compile.triton('triton_poi_fused_convolution_elu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + (x3), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/a4/ca43wvja2n3mesrfuj54dcwx324bk23dhpnatmpi7kjryanvrx2z.py
# Topologically Sorted Source Nodes: [conv3_], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# conv3_ => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/c4/cc4pcjn3iwkiegowujfyxnsqdjvzyqpxaxhkbsxgsqfltpbmhgzx.py
# Topologically Sorted Source Nodes: [conv2d_3, intermediate_], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# intermediate_ => expm1_3, gt_3, mul_10, mul_11, mul_9, where_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 1.0507009873554805), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 1.0), kwargs = {})
# %expm1_3 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_10,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_3, 1.7580993408473766), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %mul_9, %mul_11), kwargs = {})
triton_poi_fused_convolution_elu_6 = async_compile.triton('triton_poi_fused_convolution_elu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + (x3), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/i7/ci7zdbqfnevulfroz3py57lhtspaldzcd64usz2t57n6gfd23xny.py
# Topologically Sorted Source Nodes: [conv_transpose2d, conv2d_4, selu_4, skip_deconv3_, deconv3_], Original ATen: [aten.convolution, aten.elu, aten.add]
# Source node to ATen node mapping:
# conv2d_4 => convolution_5
# conv_transpose2d => convolution_4
# deconv3_ => expm1_5, gt_5, mul_15, mul_16, mul_17, where_5
# selu_4 => expm1_4, gt_4, mul_12, mul_13, mul_14, where_4
# skip_deconv3_ => add
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [2, 2], [1, 1], [1, 1], True, [1, 1], 1), kwargs = {})
# %convolution_5 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_5, 0), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_5, 1.0507009873554805), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_5, 1.0), kwargs = {})
# %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_13,), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.7580993408473766), kwargs = {})
# %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %mul_12, %mul_14), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %where_4), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1.0507009873554805), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1.0), kwargs = {})
# %expm1_5 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_16,), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_5, 1.7580993408473766), kwargs = {})
# %where_5 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %mul_15, %mul_17), kwargs = {})
triton_poi_fused_add_convolution_elu_7 = async_compile.triton('triton_poi_fused_add_convolution_elu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_elu_7', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_elu_7(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x3), None)
tmp4 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 1.0507009873554805
tmp9 = tmp2 * tmp8
tmp10 = 1.0
tmp11 = tmp2 * tmp10
tmp12 = libdevice.expm1(tmp11)
tmp13 = 1.7580993408473766
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp7, tmp9, tmp14)
tmp16 = tmp5 + tmp15
tmp17 = tmp16 > tmp6
tmp18 = tmp16 * tmp8
tmp19 = tmp16 * tmp10
tmp20 = libdevice.expm1(tmp19)
tmp21 = tmp20 * tmp13
tmp22 = tl.where(tmp17, tmp18, tmp21)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(in_out_ptr1 + (x3), tmp22, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xe/cxe5gtcmbuknqumo5vcqgumqscdkgd7hgp7o5iu7qzvcob6taoz7.py
# Topologically Sorted Source Nodes: [conv_transpose2d_1, conv2d_5, selu_6, skip_deconv2_, deconv2_], Original ATen: [aten.convolution, aten.elu, aten.add]
# Source node to ATen node mapping:
# conv2d_5 => convolution_7
# conv_transpose2d_1 => convolution_6
# deconv2_ => expm1_7, gt_7, mul_21, mul_22, mul_23, where_7
# selu_6 => expm1_6, gt_6, mul_18, mul_19, mul_20, where_6
# skip_deconv2_ => add_1
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_5, %primals_14, %primals_15, [2, 2], [1, 1], [1, 1], True, [1, 1], 1), kwargs = {})
# %convolution_7 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 1.0507009873554805), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 1.0), kwargs = {})
# %expm1_6 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_19,), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_6, 1.7580993408473766), kwargs = {})
# %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %mul_18, %mul_20), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_6, %where_6), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1.0507009873554805), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1.0), kwargs = {})
# %expm1_7 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_22,), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_7, 1.7580993408473766), kwargs = {})
# %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %mul_21, %mul_23), kwargs = {})
triton_poi_fused_add_convolution_elu_8 = async_compile.triton('triton_poi_fused_add_convolution_elu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_elu_8', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_elu_8(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x3), None)
tmp4 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 1.0507009873554805
tmp9 = tmp2 * tmp8
tmp10 = 1.0
tmp11 = tmp2 * tmp10
tmp12 = libdevice.expm1(tmp11)
tmp13 = 1.7580993408473766
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp7, tmp9, tmp14)
tmp16 = tmp5 + tmp15
tmp17 = tmp16 > tmp6
tmp18 = tmp16 * tmp8
tmp19 = tmp16 * tmp10
tmp20 = libdevice.expm1(tmp19)
tmp21 = tmp20 * tmp13
tmp22 = tl.where(tmp17, tmp18, tmp21)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(in_out_ptr1 + (x3), tmp22, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qf/cqfepjaacssrdx3gpigwaemn7fa5exigc3jc26jzduom5cw7afzj.py
# Topologically Sorted Source Nodes: [conv_transpose2d_2, deconv1_], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv_transpose2d_2 => convolution_8
# deconv1_ => expm1_8, gt_8, mul_24, mul_25, mul_26, where_8
# Graph fragment:
# %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_7, %primals_18, %primals_19, [2, 2], [1, 1], [1, 1], True, [1, 1], 1), kwargs = {})
# %gt_8 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 1.0507009873554805), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 1.0), kwargs = {})
# %expm1_8 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_25,), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_8, 1.7580993408473766), kwargs = {})
# %where_8 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %mul_24, %mul_26), kwargs = {})
triton_poi_fused_convolution_elu_9 = async_compile.triton('triton_poi_fused_convolution_elu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + (x3), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/a5/ca5vovie4nzzpjebj3wahhrwhrs7y474tmwedlvsy2srjecdlo5t.py
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# score => convolution_9
# Graph fragment:
# %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_8, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_10 = async_compile.triton('triton_poi_fused_convolution_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21 = args
args.clear()
assert_size_stride(primals_1, (16, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_11, (32, ), (1, ))
assert_size_stride(primals_12, (32, 32, 1, 1), (32, 1, 1, 1))
assert_size_stride(primals_13, (32, ), (1, ))
assert_size_stride(primals_14, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_15, (16, ), (1, ))
assert_size_stride(primals_16, (16, 16, 1, 1), (16, 1, 1, 1))
assert_size_stride(primals_17, (16, ), (1, ))
assert_size_stride(primals_18, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_19, (8, ), (1, ))
assert_size_stride(primals_20, (1, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_21, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, selu], Original ATen: [aten.convolution, aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_elu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.int8)
# Topologically Sorted Source Nodes: [conv1_], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, selu_1], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_2.run(buf5, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8)
# Topologically Sorted Source Nodes: [conv2_], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, selu_2], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_4.run(buf9, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
# Topologically Sorted Source Nodes: [conv3_], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, intermediate_], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_6.run(buf13, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf14, (4, 32, 16, 16), (8192, 256, 16, 1))
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf6, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 32, 16, 16), (8192, 256, 16, 1))
buf16 = buf15; del buf15 # reuse
buf17 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d, conv2d_4, selu_4, skip_deconv3_, deconv3_], Original ATen: [aten.convolution, aten.elu, aten.add]
triton_poi_fused_add_convolution_elu_7.run(buf16, buf17, primals_13, primals_11, 32768, grid=grid(32768), stream=stream0)
del primals_11
del primals_13
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf18 = extern_kernels.convolution(buf17, primals_14, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf18, (4, 16, 32, 32), (16384, 1024, 32, 1))
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf2, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf20 = buf19; del buf19 # reuse
buf21 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_1, conv2d_5, selu_6, skip_deconv2_, deconv2_], Original ATen: [aten.convolution, aten.elu, aten.add]
triton_poi_fused_add_convolution_elu_8.run(buf20, buf21, primals_17, primals_15, 65536, grid=grid(65536), stream=stream0)
del primals_15
del primals_17
# Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, primals_18, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf22, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_2, deconv1_], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_9.run(buf23, primals_19, 131072, grid=grid(131072), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf25 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.convolution]
triton_poi_fused_convolution_10.run(buf25, primals_21, 16384, grid=grid(16384), stream=stream0)
del primals_21
return (buf25, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf16, buf17, buf20, buf21, buf23, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((32, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((1, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
class EnDeWithPooling(nn.Module):
def __init__(self, activation, initType, numChannels, batchnorm=False,
softmax=False):
super(EnDeWithPooling, self).__init__()
self.batchnorm = batchnorm
self.bias = not batchnorm
self.initType = initType
self.activation = None
self.numChannels = numChannels
self.softmax = softmax
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
else:
self.activation = nn.SELU(inplace=True)
self.conv1 = nn.Conv2d(self.numChannels, 16, 3, 1, 1, bias=self.bias)
self.conv2 = nn.Conv2d(16, 32, 3, 1, 1, bias=self.bias)
self.conv3 = nn.Conv2d(32, 64, 3, 1, 1, bias=self.bias)
self.deconv3 = nn.ConvTranspose2d(64, 32, 3, 2, 1, 1)
self.deconv2 = nn.ConvTranspose2d(32, 16, 3, 2, 1, 1)
self.deconv1 = nn.ConvTranspose2d(16, 8, 3, 2, 1, 1)
self.classifier = nn.Conv2d(8, 1, 1)
self.pool = nn.MaxPool2d(2, 2)
self.intermediate = nn.Conv2d(64, 64, 1, 1, 0, bias=self.bias)
self.skip1 = nn.Conv2d(16, 16, 1, 1, 0, bias=self.bias)
self.skip2 = nn.Conv2d(32, 32, 1, 1, 0, bias=self.bias)
if self.batchnorm:
self.bn1 = nn.BatchNorm2d(16)
self.bn2 = nn.BatchNorm2d(32)
self.bn3 = nn.BatchNorm2d(64)
self.bn4 = nn.BatchNorm2d(32)
self.bn5 = nn.BatchNorm2d(16)
self.bn6 = nn.BatchNorm2d(8)
def forward(self, x):
if self.batchnorm:
conv1_ = self.pool(self.bn1(self.activation(self.conv1(x))))
conv2_ = self.pool(self.bn2(self.activation(self.conv2(conv1_))))
conv3_ = self.pool(self.bn3(self.activation(self.conv3(conv2_))))
intermediate_ = self.activation(self.intermediate(conv3_))
skip_deconv3_ = self.deconv3(intermediate_) + self.activation(self
.skip2(conv2_))
deconv3_ = self.bn4(self.activation(skip_deconv3_))
skip_deconv2_ = self.deconv2(deconv3_) + self.activation(self.
skip1(conv1_))
deconv2_ = self.bn5(self.activation(skip_deconv2_))
deconv1_ = self.bn6(self.activation(self.deconv1(deconv2_)))
score = self.classifier(deconv1_)
else:
conv1_ = self.pool(self.activation(self.conv1(x)))
conv2_ = self.pool(self.activation(self.conv2(conv1_)))
conv3_ = self.pool(self.activation(self.conv3(conv2_)))
intermediate_ = self.activation(self.intermediate(conv3_))
skip_deconv3_ = self.deconv3(intermediate_) + self.activation(self
.skip2(conv2_))
deconv3_ = self.activation(skip_deconv3_)
skip_deconv2_ = self.deconv2(deconv3_) + self.activation(self.
skip1(conv1_))
deconv2_ = self.activation(skip_deconv2_)
deconv1_ = self.activation(self.deconv1(deconv2_))
if self.softmax:
score = F.softmax(self.classifier(deconv1_), dim=1)
else:
score = self.classifier(deconv1_)
return score
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
if self.initType == 'default':
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, np.sqrt(2.0 / n))
elif self.initType == 'xavier':
nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
if isinstance(m, nn.ConvTranspose2d):
if self.initType == 'default':
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, np.sqrt(2.0 / n))
elif self.initType == 'xavier':
nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'activation': 4, 'initType': 4, 'numChannels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + x3, tmp12, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_elu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + x3, tmp12, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_elu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + x3, tmp12, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_elu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + x3, tmp12, None)
@triton.jit
def triton_poi_fused_add_convolution_elu_7(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, None)
tmp4 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 1.0507009873554805
tmp9 = tmp2 * tmp8
tmp10 = 1.0
tmp11 = tmp2 * tmp10
tmp12 = libdevice.expm1(tmp11)
tmp13 = 1.7580993408473766
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp7, tmp9, tmp14)
tmp16 = tmp5 + tmp15
tmp17 = tmp16 > tmp6
tmp18 = tmp16 * tmp8
tmp19 = tmp16 * tmp10
tmp20 = libdevice.expm1(tmp19)
tmp21 = tmp20 * tmp13
tmp22 = tl.where(tmp17, tmp18, tmp21)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(in_out_ptr1 + x3, tmp22, None)
@triton.jit
def triton_poi_fused_add_convolution_elu_8(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, None)
tmp4 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 1.0507009873554805
tmp9 = tmp2 * tmp8
tmp10 = 1.0
tmp11 = tmp2 * tmp10
tmp12 = libdevice.expm1(tmp11)
tmp13 = 1.7580993408473766
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp7, tmp9, tmp14)
tmp16 = tmp5 + tmp15
tmp17 = tmp16 > tmp6
tmp18 = tmp16 * tmp8
tmp19 = tmp16 * tmp10
tmp20 = libdevice.expm1(tmp19)
tmp21 = tmp20 * tmp13
tmp22 = tl.where(tmp17, tmp18, tmp21)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(in_out_ptr1 + x3, tmp22, None)
@triton.jit
def triton_poi_fused_convolution_elu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 8
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + x3, tmp12, None)
@triton.jit
def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21) = args
args.clear()
assert_size_stride(primals_1, (16, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_11, (32,), (1,))
assert_size_stride(primals_12, (32, 32, 1, 1), (32, 1, 1, 1))
assert_size_stride(primals_13, (32,), (1,))
assert_size_stride(primals_14, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_15, (16,), (1,))
assert_size_stride(primals_16, (16, 16, 1, 1), (16, 1, 1, 1))
assert_size_stride(primals_17, (16,), (1,))
assert_size_stride(primals_18, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_19, (8,), (1,))
assert_size_stride(primals_20, (1, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_21, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_elu_0[grid(262144)](buf1, primals_2,
262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(65536)](buf1, buf2,
buf3, 65536, XBLOCK=512, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_elu_2[grid(131072)](buf5, primals_5,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf5, buf6,
buf7, 32768, XBLOCK=128, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_elu_4[grid(65536)](buf9, primals_7,
65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.
float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_5[grid(16384)](buf9, buf10,
buf11, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_elu_6[grid(16384)](buf13, primals_9,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf14 = extern_kernels.convolution(buf13, primals_10, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf14, (4, 32, 16, 16), (8192, 256, 16, 1))
buf15 = extern_kernels.convolution(buf6, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 32, 16, 16), (8192, 256, 16, 1))
buf16 = buf15
del buf15
buf17 = buf14
del buf14
triton_poi_fused_add_convolution_elu_7[grid(32768)](buf16, buf17,
primals_13, primals_11, 32768, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_11
del primals_13
buf18 = extern_kernels.convolution(buf17, primals_14, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf18, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf19 = extern_kernels.convolution(buf2, primals_16, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf20 = buf19
del buf19
buf21 = buf18
del buf18
triton_poi_fused_add_convolution_elu_8[grid(65536)](buf20, buf21,
primals_17, primals_15, 65536, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_15
del primals_17
buf22 = extern_kernels.convolution(buf21, primals_18, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf22, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf23 = buf22
del buf22
triton_poi_fused_convolution_elu_9[grid(131072)](buf23, primals_19,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_19
buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf25 = buf24
del buf24
triton_poi_fused_convolution_10[grid(16384)](buf25, primals_21,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_21
return (buf25, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11,
buf13, buf16, buf17, buf20, buf21, buf23)
class EnDeWithPoolingNew(nn.Module):
def __init__(self, activation, initType, numChannels, batchnorm=False,
softmax=False):
super(EnDeWithPoolingNew, self).__init__()
self.batchnorm = batchnorm
self.bias = not batchnorm
self.initType = initType
self.activation = None
self.numChannels = numChannels
self.softmax = softmax
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
else:
self.activation = nn.SELU(inplace=True)
self.conv1 = nn.Conv2d(self.numChannels, 16, 3, 1, 1, bias=self.bias)
self.conv2 = nn.Conv2d(16, 32, 3, 1, 1, bias=self.bias)
self.conv3 = nn.Conv2d(32, 64, 3, 1, 1, bias=self.bias)
self.deconv3 = nn.ConvTranspose2d(64, 32, 3, 2, 1, 1)
self.deconv2 = nn.ConvTranspose2d(32, 16, 3, 2, 1, 1)
self.deconv1 = nn.ConvTranspose2d(16, 8, 3, 2, 1, 1)
self.classifier = nn.Conv2d(8, 1, 1)
self.pool = nn.MaxPool2d(2, 2)
self.intermediate = nn.Conv2d(64, 64, 1, 1, 0, bias=self.bias)
self.skip1 = nn.Conv2d(16, 16, 1, 1, 0, bias=self.bias)
self.skip2 = nn.Conv2d(32, 32, 1, 1, 0, bias=self.bias)
if self.batchnorm:
self.bn1 = nn.BatchNorm2d(16)
self.bn2 = nn.BatchNorm2d(32)
self.bn3 = nn.BatchNorm2d(64)
self.bn4 = nn.BatchNorm2d(32)
self.bn5 = nn.BatchNorm2d(16)
self.bn6 = nn.BatchNorm2d(8)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
if self.initType == 'default':
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, np.sqrt(2.0 / n))
elif self.initType == 'xavier':
nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
if isinstance(m, nn.ConvTranspose2d):
if self.initType == 'default':
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, np.sqrt(2.0 / n))
elif self.initType == 'xavier':
nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_10 = self.deconv3.weight
primals_11 = self.deconv3.bias
primals_14 = self.deconv2.weight
primals_15 = self.deconv2.bias
primals_18 = self.deconv1.weight
primals_19 = self.deconv1.bias
primals_20 = self.classifier.weight
primals_21 = self.classifier.bias
primals_8 = self.intermediate.weight
primals_9 = self.intermediate.bias
primals_16 = self.skip1.weight
primals_17 = self.skip1.bias
primals_12 = self.skip2.weight
primals_13 = self.skip2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21])
return output[0]
| talsperre/INFER | EnDeWithPooling | false | 16,564 | [
"MIT"
] | 56 | 38fb2356700c5a92991788b7eb9a267c99a07c5b | https://github.com/talsperre/INFER/tree/38fb2356700c5a92991788b7eb9a267c99a07c5b |
SpatialDepthWiseSharedConvolution | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jb/cjbf3ssum7resbwampiwoknxcnzh4uzdy4fhoaakjojloew6qlw5.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (64*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/e2/ce2f4ussgg6jfpqca2kweqtdut6siq46cus4r4zd4oeneykjlqi5.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (64, 1, 6), (6, 6, 1))
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 384, grid=grid(384), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0), primals_2, reinterpret_tensor(primals_1, (64, 1, 4), (1, 256, 64), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
class SpatialDepthWiseSharedConvolution(Module):
"""
## Spatial Depth Wise Shared Convolution
We share the same kernel across all channels.
"""
def __init__(self, kernel_size: 'int'=3):
"""
"""
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=(
kernel_size,), padding=(kernel_size - 1,))
def forward(self, x: 'torch.Tensor'):
"""
`x` has shape `[seq_len, batch_size, heads, d_k]`
"""
seq_len, batch_size, heads, d_k = x.shape
x = x.permute(1, 2, 3, 0)
x = x.view(batch_size * heads * d_k, 1, seq_len)
x = self.conv(x)
x = x[:, :, :-(self.kernel_size - 1)]
x = x.view(batch_size, heads, d_k, seq_len)
x = x.permute(3, 0, 1, 2)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 64 * x1), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(64, 4)](primals_1, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(2,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (64, 1, 6), (6, 6, 1))
del buf0
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(384)](buf2, primals_3, 384,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0
), primals_2, reinterpret_tensor(primals_1, (64, 1, 4), (1, 256, 64), 0
)
class SpatialDepthWiseSharedConvolutionNew(Module):
"""
## Spatial Depth Wise Shared Convolution
We share the same kernel across all channels.
"""
def __init__(self, kernel_size: 'int'=3):
"""
"""
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=(
kernel_size,), padding=(kernel_size - 1,))
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | SpatialDepthWiseSharedConvolution | false | 16,565 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
DownSample | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/kv/ckvcp5yyimbwh53rkecse243qnmz6pvukh6fzqoc42qysp7ikta3.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# x_1 => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view, [None, None, %clamp_max, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {})
triton_poi_fused_replication_pad2d_0 = async_compile.triton('triton_poi_fused_replication_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (3)))) + (16*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3k/c3kguicgoffxoot656zsenhhuwrflaxmmrcgimvhldpp36va3767.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
# Source node to ATen node mapping:
# interpolate => _unsafe_index_2, _unsafe_index_3, _unsafe_index_4, _unsafe_index_5, add_2, add_4, add_5, add_6, clamp_max_4, clamp_max_5, clamp_min_3, clamp_min_4, clamp_min_5, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_3, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6
# Graph fragment:
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
# %iota_3 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_3, torch.float32), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 2.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {})
# %clamp_min_3 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_3, torch.int64), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_1, [None, None, %clamp_max_2, %clamp_max_3]), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_1, [None, None, %clamp_max_2, %convert_element_type_3]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_3, %convert_element_type_3), kwargs = {})
# %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_4 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_4, 1.0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_4), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_3), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_1, [None, None, %convert_element_type_1, %clamp_max_3]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_4), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_2), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %convert_element_type_1), kwargs = {})
# %clamp_min_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_5, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_5), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_1 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x2 = (xindex // 4)
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 2.0
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = x0
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 + tmp2
tmp17 = tmp16 * tmp4
tmp18 = tmp17 - tmp2
tmp19 = triton_helpers.maximum(tmp18, tmp7)
tmp20 = tmp19.to(tl.int32)
tmp21 = tmp20 + tmp10
tmp22 = triton_helpers.minimum(tmp21, tmp12)
tmp23 = tl.load(in_ptr0 + (tmp22 + (4*tmp13) + (16*x2)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (tmp20 + (4*tmp13) + (16*x2)), xmask, eviction_policy='evict_last')
tmp25 = tmp23 - tmp24
tmp26 = tmp20.to(tl.float32)
tmp27 = tmp19 - tmp26
tmp28 = triton_helpers.maximum(tmp27, tmp7)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp25 * tmp30
tmp32 = tl.load(in_ptr0 + (tmp20 + (4*tmp9) + (16*x2)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp22 + (4*tmp9) + (16*x2)), xmask, eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp30
tmp36 = tmp32 + tmp35
tmp37 = tmp24 + tmp31
tmp38 = tmp37 - tmp36
tmp39 = tmp9.to(tl.float32)
tmp40 = tmp8 - tmp39
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = triton_helpers.minimum(tmp41, tmp29)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tl.store(in_out_ptr0 + (x3), tmp44, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1, 6, 6), (36, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.replication_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_replication_pad2d_0.run(arg0_1, buf0, 576, grid=grid(576), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.replication_pad2d, aten.convolution]
buf1 = extern_kernels.convolution(buf0, arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (16, 1, 4, 4), (16, 16, 4, 1))
del arg1_1
del buf0
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf4 = buf2; del buf2 # reuse
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_1.run(buf5, buf1, 64, grid=grid(64), stream=stream0)
del buf1
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
import torch.autograd
class Smooth(nn.Module):
"""
<a id="smooth"></a>
### Smoothing Layer
This layer blurs each channel
"""
def __init__(self):
super().__init__()
kernel = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]
kernel = torch.tensor([[kernel]], dtype=torch.float)
kernel /= kernel.sum()
self.kernel = nn.Parameter(kernel, requires_grad=False)
self.pad = nn.ReplicationPad2d(1)
def forward(self, x: 'torch.Tensor'):
b, c, h, w = x.shape
x = x.view(-1, 1, h, w)
x = self.pad(x)
x = F.conv2d(x, self.kernel)
return x.view(b, c, h, w)
class DownSample(nn.Module):
"""
<a id="down_sample"></a>
### Down-sample
The down-sample operation [smoothens](#smooth) each feature channel and
scale $2 imes$ using bilinear interpolation.
This is based on the paper
[Making Convolutional Networks Shift-Invariant Again](https://papers.labml.ai/paper/1904.11486).
"""
def __init__(self):
super().__init__()
self.smooth = Smooth()
def forward(self, x: 'torch.Tensor'):
x = self.smooth(x)
return F.interpolate(x, (x.shape[2] // 2, x.shape[3] // 2), mode=
'bilinear', align_corners=False)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 0 * (0 >= -1 + x1) + (-1 + x1) *
(-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) *
(0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 3)) + 16 * x2 + (
3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + (0 * (0 >=
-1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 +
x0) * (-1 + x0 > 0) < 3))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_1(
in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x2 = xindex // 4
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 2.0
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = x0
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 + tmp2
tmp17 = tmp16 * tmp4
tmp18 = tmp17 - tmp2
tmp19 = triton_helpers.maximum(tmp18, tmp7)
tmp20 = tmp19.to(tl.int32)
tmp21 = tmp20 + tmp10
tmp22 = triton_helpers.minimum(tmp21, tmp12)
tmp23 = tl.load(in_ptr0 + (tmp22 + 4 * tmp13 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (tmp20 + 4 * tmp13 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp25 = tmp23 - tmp24
tmp26 = tmp20.to(tl.float32)
tmp27 = tmp19 - tmp26
tmp28 = triton_helpers.maximum(tmp27, tmp7)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp25 * tmp30
tmp32 = tl.load(in_ptr0 + (tmp20 + 4 * tmp9 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp22 + 4 * tmp9 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp30
tmp36 = tmp32 + tmp35
tmp37 = tmp24 + tmp31
tmp38 = tmp37 - tmp36
tmp39 = tmp9.to(tl.float32)
tmp40 = tmp8 - tmp39
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = triton_helpers.minimum(tmp41, tmp29)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tl.store(in_out_ptr0 + x3, tmp44, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1, 6, 6), (36, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_replication_pad2d_0[grid(576)](arg0_1, buf0, 576,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf1 = extern_kernels.convolution(buf0, arg1_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (16, 1, 4, 4), (16, 16, 4, 1))
del arg1_1
del buf0
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf4 = buf2
del buf2
buf5 = buf4
del buf4
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_1[grid
(64)](buf5, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf1
return buf5,
class Smooth(nn.Module):
"""
<a id="smooth"></a>
### Smoothing Layer
This layer blurs each channel
"""
def __init__(self):
super().__init__()
kernel = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]
kernel = torch.tensor([[kernel]], dtype=torch.float)
kernel /= kernel.sum()
self.kernel = nn.Parameter(kernel, requires_grad=False)
self.pad = nn.ReplicationPad2d(1)
def forward(self, x: 'torch.Tensor'):
b, c, h, w = x.shape
x = x.view(-1, 1, h, w)
x = self.pad(x)
x = F.conv2d(x, self.kernel)
return x.view(b, c, h, w)
class DownSampleNew(nn.Module):
"""
<a id="down_sample"></a>
### Down-sample
The down-sample operation [smoothens](#smooth) each feature channel and
scale $2 imes$ using bilinear interpolation.
This is based on the paper
[Making Convolutional Networks Shift-Invariant Again](https://papers.labml.ai/paper/1904.11486).
"""
def __init__(self):
super().__init__()
self.smooth = Smooth()
def forward(self, input_0):
arg1_1 = self.smooth.kernel
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | DownSample | false | 16,566 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
Smooth | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/kv/ckvcp5yyimbwh53rkecse243qnmz6pvukh6fzqoc42qysp7ikta3.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# x_1 => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view, [None, None, %clamp_max, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {})
triton_poi_fused_replication_pad2d_0 = async_compile.triton('triton_poi_fused_replication_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (3)))) + (16*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1, 6, 6), (36, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.replication_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_replication_pad2d_0.run(arg0_1, buf0, 576, grid=grid(576), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.replication_pad2d, aten.convolution]
buf1 = extern_kernels.convolution(buf0, arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (16, 1, 4, 4), (16, 16, 4, 1))
del arg1_1
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
import torch.autograd
class Smooth(nn.Module):
"""
<a id="smooth"></a>
### Smoothing Layer
This layer blurs each channel
"""
def __init__(self):
super().__init__()
kernel = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]
kernel = torch.tensor([[kernel]], dtype=torch.float)
kernel /= kernel.sum()
self.kernel = nn.Parameter(kernel, requires_grad=False)
self.pad = nn.ReplicationPad2d(1)
def forward(self, x: 'torch.Tensor'):
b, c, h, w = x.shape
x = x.view(-1, 1, h, w)
x = self.pad(x)
x = F.conv2d(x, self.kernel)
return x.view(b, c, h, w)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 0 * (0 >= -1 + x1) + (-1 + x1) *
(-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) *
(0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 3)) + 16 * x2 + (
3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + (0 * (0 >=
-1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 +
x0) * (-1 + x0 > 0) < 3))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1, 6, 6), (36, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_replication_pad2d_0[grid(576)](arg0_1, buf0, 576,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf1 = extern_kernels.convolution(buf0, arg1_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (16, 1, 4, 4), (16, 16, 4, 1))
del arg1_1
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class SmoothNew(nn.Module):
"""
<a id="smooth"></a>
### Smoothing Layer
This layer blurs each channel
"""
def __init__(self):
super().__init__()
kernel = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]
kernel = torch.tensor([[kernel]], dtype=torch.float)
kernel /= kernel.sum()
self.kernel = nn.Parameter(kernel, requires_grad=False)
self.pad = nn.ReplicationPad2d(1)
def forward(self, input_0):
arg1_1 = self.kernel
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | Smooth | false | 16,567 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
ATLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ft/cftz5ja4wgrkcx5pv7d7j6lunvnnmz6djadit33a2463r447sayy.py
# Topologically Sorted Source Nodes: [setitem_1], Original ATen: [aten.lift_fresh, aten.fill]
# Source node to ATen node mapping:
# setitem_1 => copy_1, full_default_2
# Graph fragment:
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_2, %full_default_2), kwargs = {})
# %copy__default : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%select_int, %copy_1), kwargs = {})
triton_poi_fused_fill_lift_fresh_0 = async_compile.triton('triton_poi_fused_fill_lift_fresh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_0', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_fill_lift_fresh_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
tmp0 = 0.0
tl.store(out_ptr0 + (x0 + (64*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cn/ccnjm2dqpzcrnbuww2omqd3latcfln56427nk6wxia5xlnc6b5c5.py
# Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, n_mask, sub_3, mul_2, logit2, log_softmax_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, sub_3, sum_1
# log_softmax_1 => amax_1, exp_1, sub_7, sum_3
# logit1 => sub_2
# logit2 => sub_6
# mul => mul
# mul_2 => mul_2
# n_mask => sub
# p_mask => add
# setitem => copy, full_default_1
# sub_1 => sub_1
# sub_3 => sub_5
# th_label => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select, %full_default_1), kwargs = {})
# %select_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default, %copy, 1, 0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %select_scatter_default), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1e+30), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub_2, [-1], True), kwargs = {})
# %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sub), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, 1e+30), kwargs = {})
# %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul_2), kwargs = {})
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub_6, [-1], True), kwargs = {})
# %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_6, %amax_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_7,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1 = async_compile.triton('triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp2 = x1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp2 == tmp3
tmp5 = 1.0
tmp6 = 0.0
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = tmp1 + tmp7
tmp9 = tmp5 - tmp8
tmp10 = 1e+30
tmp11 = tmp9 * tmp10
tmp12 = tmp0 - tmp11
tmp15 = tmp14 + tmp7
tmp16 = tmp5 - tmp15
tmp17 = tmp16 * tmp10
tmp18 = tmp13 - tmp17
tmp19 = triton_helpers.maximum(tmp12, tmp18)
tmp22 = tmp21 + tmp7
tmp23 = tmp5 - tmp22
tmp24 = tmp23 * tmp10
tmp25 = tmp20 - tmp24
tmp26 = triton_helpers.maximum(tmp19, tmp25)
tmp29 = tmp28 + tmp7
tmp30 = tmp5 - tmp29
tmp31 = tmp30 * tmp10
tmp32 = tmp27 - tmp31
tmp33 = triton_helpers.maximum(tmp26, tmp32)
tmp34 = tmp12 - tmp33
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp18 - tmp33
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp35 + tmp37
tmp39 = tmp25 - tmp33
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp38 + tmp40
tmp42 = tmp32 - tmp33
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp41 + tmp43
tmp45 = tmp5 - tmp1
tmp46 = tmp5 - tmp45
tmp47 = tmp46 * tmp10
tmp48 = tmp0 - tmp47
tmp49 = tmp5 - tmp14
tmp50 = tmp5 - tmp49
tmp51 = tmp50 * tmp10
tmp52 = tmp13 - tmp51
tmp53 = triton_helpers.maximum(tmp48, tmp52)
tmp54 = tmp5 - tmp21
tmp55 = tmp5 - tmp54
tmp56 = tmp55 * tmp10
tmp57 = tmp20 - tmp56
tmp58 = triton_helpers.maximum(tmp53, tmp57)
tmp59 = tmp5 - tmp28
tmp60 = tmp5 - tmp59
tmp61 = tmp60 * tmp10
tmp62 = tmp27 - tmp61
tmp63 = triton_helpers.maximum(tmp58, tmp62)
tmp64 = tmp48 - tmp63
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp52 - tmp63
tmp67 = tl_math.exp(tmp66)
tmp68 = tmp65 + tmp67
tmp69 = tmp57 - tmp63
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp68 + tmp70
tmp72 = tmp62 - tmp63
tmp73 = tl_math.exp(tmp72)
tmp74 = tmp71 + tmp73
tl.store(out_ptr0 + (x3), tmp33, xmask)
tl.store(out_ptr1 + (x3), tmp44, xmask)
tl.store(out_ptr2 + (x3), tmp63, xmask)
tl.store(out_ptr3 + (x3), tmp74, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/uj/cuj4drsaoeeafppqq56jc2dqbimn76sbovf5a42dyfiev4rt56n7.py
# Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, mul_1, sum_1, loss1, n_mask, sub_3, mul_2, logit2, log_softmax_1, mul_3, sum_2, loss2, loss, loss_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax, aten.sum, aten.neg, aten.mean]
# Source node to ATen node mapping:
# log_softmax => log, sub_3, sub_4
# log_softmax_1 => amax_1, log_1, sub_7, sub_8
# logit1 => sub_2
# logit2 => sub_6
# loss => add_1
# loss1 => neg
# loss2 => neg_1
# loss_1 => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# n_mask => sub
# p_mask => add
# setitem => copy, full_default_1
# sub_1 => sub_1
# sub_3 => sub_5
# sum_1 => sum_2
# sum_2 => sum_4
# th_label => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select, %full_default_1), kwargs = {})
# %select_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default, %copy, 1, 0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %select_scatter_default), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1e+30), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul), kwargs = {})
# %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %amax), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_3, %log), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sub), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, 1e+30), kwargs = {})
# %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul_2), kwargs = {})
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub_6, [-1], True), kwargs = {})
# %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_6, %amax_1), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_3,), kwargs = {})
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_7, %log_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %select_scatter_default), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_4,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %neg_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {})
triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2 = async_compile.triton('triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {7: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=(7,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = (rindex // 16)
r4 = rindex % 16
r1 = (rindex // 4) % 4
r3 = rindex
tmp0 = tl.load(in_ptr0 + (r4 + (64*r2)), None)
tmp1 = tl.load(in_ptr1 + (r4 + (64*r2)), None)
tmp12 = tl.load(in_ptr2 + (r1 + (16*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr3 + (r1 + (16*r2)), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (16 + r4 + (64*r2)), None)
tmp19 = tl.load(in_ptr1 + (16 + r4 + (64*r2)), None)
tmp27 = tl.load(in_ptr2 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr3 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr0 + (32 + r4 + (64*r2)), None)
tmp35 = tl.load(in_ptr1 + (32 + r4 + (64*r2)), None)
tmp43 = tl.load(in_ptr2 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr3 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr0 + (48 + r4 + (64*r2)), None)
tmp51 = tl.load(in_ptr1 + (48 + r4 + (64*r2)), None)
tmp59 = tl.load(in_ptr2 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr3 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr4 + (r1 + (16*r2)), None, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr5 + (r1 + (16*r2)), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr4 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp82 = tl.load(in_ptr5 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp91 = tl.load(in_ptr4 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp93 = tl.load(in_ptr5 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp102 = tl.load(in_ptr4 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp104 = tl.load(in_ptr5 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last')
tmp2 = tl.full([1, 1], 0, tl.int32)
tmp3 = tmp2 == tmp2
tmp4 = 1.0
tmp5 = 0.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp1 + tmp6
tmp8 = tmp4 - tmp7
tmp9 = 1e+30
tmp10 = tmp8 * tmp9
tmp11 = tmp0 - tmp10
tmp13 = tmp11 - tmp12
tmp15 = tl_math.log(tmp14)
tmp16 = tmp13 - tmp15
tmp17 = tmp16 * tmp1
tmp20 = tl.full([1, 1], 1, tl.int32)
tmp21 = tmp20 == tmp2
tmp22 = tl.where(tmp21, tmp4, tmp5)
tmp23 = tmp19 + tmp22
tmp24 = tmp4 - tmp23
tmp25 = tmp24 * tmp9
tmp26 = tmp18 - tmp25
tmp28 = tmp26 - tmp27
tmp30 = tl_math.log(tmp29)
tmp31 = tmp28 - tmp30
tmp32 = tmp31 * tmp19
tmp33 = tmp17 + tmp32
tmp36 = tl.full([1, 1], 2, tl.int32)
tmp37 = tmp36 == tmp2
tmp38 = tl.where(tmp37, tmp4, tmp5)
tmp39 = tmp35 + tmp38
tmp40 = tmp4 - tmp39
tmp41 = tmp40 * tmp9
tmp42 = tmp34 - tmp41
tmp44 = tmp42 - tmp43
tmp46 = tl_math.log(tmp45)
tmp47 = tmp44 - tmp46
tmp48 = tmp47 * tmp35
tmp49 = tmp33 + tmp48
tmp52 = tl.full([1, 1], 3, tl.int32)
tmp53 = tmp52 == tmp2
tmp54 = tl.where(tmp53, tmp4, tmp5)
tmp55 = tmp51 + tmp54
tmp56 = tmp4 - tmp55
tmp57 = tmp56 * tmp9
tmp58 = tmp50 - tmp57
tmp60 = tmp58 - tmp59
tmp62 = tl_math.log(tmp61)
tmp63 = tmp60 - tmp62
tmp64 = tmp63 * tmp51
tmp65 = tmp49 + tmp64
tmp66 = tmp4 - tmp1
tmp67 = tmp4 - tmp66
tmp68 = tmp67 * tmp9
tmp69 = tmp0 - tmp68
tmp71 = tmp69 - tmp70
tmp73 = tl_math.log(tmp72)
tmp74 = tmp71 - tmp73
tmp75 = tmp74 * tmp6
tmp76 = tmp4 - tmp19
tmp77 = tmp4 - tmp76
tmp78 = tmp77 * tmp9
tmp79 = tmp18 - tmp78
tmp81 = tmp79 - tmp80
tmp83 = tl_math.log(tmp82)
tmp84 = tmp81 - tmp83
tmp85 = tmp84 * tmp22
tmp86 = tmp75 + tmp85
tmp87 = tmp4 - tmp35
tmp88 = tmp4 - tmp87
tmp89 = tmp88 * tmp9
tmp90 = tmp34 - tmp89
tmp92 = tmp90 - tmp91
tmp94 = tl_math.log(tmp93)
tmp95 = tmp92 - tmp94
tmp96 = tmp95 * tmp38
tmp97 = tmp86 + tmp96
tmp98 = tmp4 - tmp51
tmp99 = tmp4 - tmp98
tmp100 = tmp99 * tmp9
tmp101 = tmp50 - tmp100
tmp103 = tmp101 - tmp102
tmp105 = tl_math.log(tmp104)
tmp106 = tmp103 - tmp105
tmp107 = tmp106 * tmp54
tmp108 = tmp97 + tmp107
tmp109 = -tmp65
tmp110 = -tmp108
tmp111 = tmp109 + tmp110
tmp112 = tl.broadcast_to(tmp111, [XBLOCK, RBLOCK])
tmp114 = tl.sum(tmp112, 1)[:, None]
tmp115 = 64.0
tmp116 = tmp114 / tmp115
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp116, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [setitem_1], Original ATen: [aten.lift_fresh, aten.fill]
stream0 = get_raw_stream(0)
triton_poi_fused_fill_lift_fresh_0.run(arg0_1, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, n_mask, sub_3, mul_2, logit2, log_softmax_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax]
triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1.run(arg1_1, arg0_1, buf1, buf2, buf4, buf5, 64, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((), (), torch.float32)
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, mul_1, sum_1, loss1, n_mask, sub_3, mul_2, logit2, log_softmax_1, mul_3, sum_2, loss2, loss, loss_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax, aten.sum, aten.neg, aten.mean]
triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2.run(buf8, arg1_1, arg0_1, buf1, buf2, buf4, buf5, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del buf1
del buf2
del buf4
del buf5
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
class ATLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, logits: 'Tensor', labels: 'Tensor') ->float:
"""
Args:
logits: predicted probabilities (shape: batch size x num classes)
labels: one-hot encoded true labels (shape: batch size x num classes)
"""
th_label = torch.zeros_like(labels, dtype=torch.float)
th_label[:, 0] = 1.0
labels[:, 0] = 0.0
p_mask = labels + th_label
n_mask = 1 - labels
logit1 = logits - (1 - p_mask) * 1e+30
loss1 = -(F.log_softmax(logit1, dim=-1) * labels).sum(1)
logit2 = logits - (1 - n_mask) * 1e+30
loss2 = -(F.log_softmax(logit2, dim=-1) * th_label).sum(1)
loss = loss1 + loss2
loss = loss.mean()
return loss
def get_label(self, logits: 'Tensor', num_labels: 'int'=-1, threshold:
'float'=None) ->Tensor:
""" Calculated the labels """
if threshold:
th_logit = torch.full((len(logits), 1), threshold)
else:
th_logit = logits[:, 0].unsqueeze(1)
output = torch.zeros_like(logits)
mask = logits > th_logit
if num_labels > 0:
top_v, _ = torch.topk(logits, num_labels, dim=1)
top_v = top_v[:, -1]
mask = (logits >= top_v.unsqueeze(1)) & mask
output[mask] = 1.0
output[:, 0] = output.sum(1) == 0.0
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import Tensor
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_fill_lift_fresh_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
tmp0 = 0.0
tl.store(out_ptr0 + (x0 + 64 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1(
in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp27 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp28 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp2 = x1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp2 == tmp3
tmp5 = 1.0
tmp6 = 0.0
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = tmp1 + tmp7
tmp9 = tmp5 - tmp8
tmp10 = 1e+30
tmp11 = tmp9 * tmp10
tmp12 = tmp0 - tmp11
tmp15 = tmp14 + tmp7
tmp16 = tmp5 - tmp15
tmp17 = tmp16 * tmp10
tmp18 = tmp13 - tmp17
tmp19 = triton_helpers.maximum(tmp12, tmp18)
tmp22 = tmp21 + tmp7
tmp23 = tmp5 - tmp22
tmp24 = tmp23 * tmp10
tmp25 = tmp20 - tmp24
tmp26 = triton_helpers.maximum(tmp19, tmp25)
tmp29 = tmp28 + tmp7
tmp30 = tmp5 - tmp29
tmp31 = tmp30 * tmp10
tmp32 = tmp27 - tmp31
tmp33 = triton_helpers.maximum(tmp26, tmp32)
tmp34 = tmp12 - tmp33
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp18 - tmp33
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp35 + tmp37
tmp39 = tmp25 - tmp33
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp38 + tmp40
tmp42 = tmp32 - tmp33
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp41 + tmp43
tmp45 = tmp5 - tmp1
tmp46 = tmp5 - tmp45
tmp47 = tmp46 * tmp10
tmp48 = tmp0 - tmp47
tmp49 = tmp5 - tmp14
tmp50 = tmp5 - tmp49
tmp51 = tmp50 * tmp10
tmp52 = tmp13 - tmp51
tmp53 = triton_helpers.maximum(tmp48, tmp52)
tmp54 = tmp5 - tmp21
tmp55 = tmp5 - tmp54
tmp56 = tmp55 * tmp10
tmp57 = tmp20 - tmp56
tmp58 = triton_helpers.maximum(tmp53, tmp57)
tmp59 = tmp5 - tmp28
tmp60 = tmp5 - tmp59
tmp61 = tmp60 * tmp10
tmp62 = tmp27 - tmp61
tmp63 = triton_helpers.maximum(tmp58, tmp62)
tmp64 = tmp48 - tmp63
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp52 - tmp63
tmp67 = tl_math.exp(tmp66)
tmp68 = tmp65 + tmp67
tmp69 = tmp57 - tmp63
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp68 + tmp70
tmp72 = tmp62 - tmp63
tmp73 = tl_math.exp(tmp72)
tmp74 = tmp71 + tmp73
tl.store(out_ptr0 + x3, tmp33, xmask)
tl.store(out_ptr1 + x3, tmp44, xmask)
tl.store(out_ptr2 + x3, tmp63, xmask)
tl.store(out_ptr3 + x3, tmp74, xmask)
@triton.jit
def triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex // 16
r4 = rindex % 16
r1 = rindex // 4 % 4
tmp0 = tl.load(in_ptr0 + (r4 + 64 * r2), None)
tmp1 = tl.load(in_ptr1 + (r4 + 64 * r2), None)
tmp12 = tl.load(in_ptr2 + (r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr3 + (r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (16 + r4 + 64 * r2), None)
tmp19 = tl.load(in_ptr1 + (16 + r4 + 64 * r2), None)
tmp27 = tl.load(in_ptr2 + (4 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr3 + (4 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp34 = tl.load(in_ptr0 + (32 + r4 + 64 * r2), None)
tmp35 = tl.load(in_ptr1 + (32 + r4 + 64 * r2), None)
tmp43 = tl.load(in_ptr2 + (8 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp45 = tl.load(in_ptr3 + (8 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp50 = tl.load(in_ptr0 + (48 + r4 + 64 * r2), None)
tmp51 = tl.load(in_ptr1 + (48 + r4 + 64 * r2), None)
tmp59 = tl.load(in_ptr2 + (12 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp61 = tl.load(in_ptr3 + (12 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp70 = tl.load(in_ptr4 + (r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp72 = tl.load(in_ptr5 + (r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp80 = tl.load(in_ptr4 + (4 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp82 = tl.load(in_ptr5 + (4 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp91 = tl.load(in_ptr4 + (8 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp93 = tl.load(in_ptr5 + (8 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp102 = tl.load(in_ptr4 + (12 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp104 = tl.load(in_ptr5 + (12 + r1 + 16 * r2), None, eviction_policy=
'evict_last')
tmp2 = tl.full([1, 1], 0, tl.int32)
tmp3 = tmp2 == tmp2
tmp4 = 1.0
tmp5 = 0.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp1 + tmp6
tmp8 = tmp4 - tmp7
tmp9 = 1e+30
tmp10 = tmp8 * tmp9
tmp11 = tmp0 - tmp10
tmp13 = tmp11 - tmp12
tmp15 = tl_math.log(tmp14)
tmp16 = tmp13 - tmp15
tmp17 = tmp16 * tmp1
tmp20 = tl.full([1, 1], 1, tl.int32)
tmp21 = tmp20 == tmp2
tmp22 = tl.where(tmp21, tmp4, tmp5)
tmp23 = tmp19 + tmp22
tmp24 = tmp4 - tmp23
tmp25 = tmp24 * tmp9
tmp26 = tmp18 - tmp25
tmp28 = tmp26 - tmp27
tmp30 = tl_math.log(tmp29)
tmp31 = tmp28 - tmp30
tmp32 = tmp31 * tmp19
tmp33 = tmp17 + tmp32
tmp36 = tl.full([1, 1], 2, tl.int32)
tmp37 = tmp36 == tmp2
tmp38 = tl.where(tmp37, tmp4, tmp5)
tmp39 = tmp35 + tmp38
tmp40 = tmp4 - tmp39
tmp41 = tmp40 * tmp9
tmp42 = tmp34 - tmp41
tmp44 = tmp42 - tmp43
tmp46 = tl_math.log(tmp45)
tmp47 = tmp44 - tmp46
tmp48 = tmp47 * tmp35
tmp49 = tmp33 + tmp48
tmp52 = tl.full([1, 1], 3, tl.int32)
tmp53 = tmp52 == tmp2
tmp54 = tl.where(tmp53, tmp4, tmp5)
tmp55 = tmp51 + tmp54
tmp56 = tmp4 - tmp55
tmp57 = tmp56 * tmp9
tmp58 = tmp50 - tmp57
tmp60 = tmp58 - tmp59
tmp62 = tl_math.log(tmp61)
tmp63 = tmp60 - tmp62
tmp64 = tmp63 * tmp51
tmp65 = tmp49 + tmp64
tmp66 = tmp4 - tmp1
tmp67 = tmp4 - tmp66
tmp68 = tmp67 * tmp9
tmp69 = tmp0 - tmp68
tmp71 = tmp69 - tmp70
tmp73 = tl_math.log(tmp72)
tmp74 = tmp71 - tmp73
tmp75 = tmp74 * tmp6
tmp76 = tmp4 - tmp19
tmp77 = tmp4 - tmp76
tmp78 = tmp77 * tmp9
tmp79 = tmp18 - tmp78
tmp81 = tmp79 - tmp80
tmp83 = tl_math.log(tmp82)
tmp84 = tmp81 - tmp83
tmp85 = tmp84 * tmp22
tmp86 = tmp75 + tmp85
tmp87 = tmp4 - tmp35
tmp88 = tmp4 - tmp87
tmp89 = tmp88 * tmp9
tmp90 = tmp34 - tmp89
tmp92 = tmp90 - tmp91
tmp94 = tl_math.log(tmp93)
tmp95 = tmp92 - tmp94
tmp96 = tmp95 * tmp38
tmp97 = tmp86 + tmp96
tmp98 = tmp4 - tmp51
tmp99 = tmp4 - tmp98
tmp100 = tmp99 * tmp9
tmp101 = tmp50 - tmp100
tmp103 = tmp101 - tmp102
tmp105 = tl_math.log(tmp104)
tmp106 = tmp103 - tmp105
tmp107 = tmp106 * tmp54
tmp108 = tmp97 + tmp107
tmp109 = -tmp65
tmp110 = -tmp108
tmp111 = tmp109 + tmp110
tmp112 = tl.broadcast_to(tmp111, [XBLOCK, RBLOCK])
tmp114 = tl.sum(tmp112, 1)[:, None]
tmp115 = 64.0
tmp116 = tmp114 / tmp115
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp116, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
get_raw_stream(0)
triton_poi_fused_fill_lift_fresh_0[grid(64)](arg0_1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1[
grid(64)](arg1_1, arg0_1, buf1, buf2, buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((), (), torch.float32)
buf8 = buf7
del buf7
triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2[
grid(1)](buf8, arg1_1, arg0_1, buf1, buf2, buf4, buf5, 1, 64,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del buf1
del buf2
del buf4
del buf5
return buf8,
class ATLossNew(nn.Module):
def __init__(self):
super().__init__()
def get_label(self, logits: 'Tensor', num_labels: 'int'=-1, threshold:
'float'=None) ->Tensor:
""" Calculated the labels """
if threshold:
th_logit = torch.full((len(logits), 1), threshold)
else:
th_logit = logits[:, 0].unsqueeze(1)
output = torch.zeros_like(logits)
mask = logits > th_logit
if num_labels > 0:
top_v, _ = torch.topk(logits, num_labels, dim=1)
top_v = top_v[:, -1]
mask = (logits >= top_v.unsqueeze(1)) & mask
output[mask] = 1.0
output[:, 0] = output.sum(1) == 0.0
return output
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| techthiyanes/DeepPavlov | ATLoss | false | 16,568 | [
"Apache-2.0"
] | 5,893 | 08555428388fed3c7b036c0a82a70a25efcabcff | https://github.com/techthiyanes/DeepPavlov/tree/08555428388fed3c7b036c0a82a70a25efcabcff |
SpatialDepthWisePerHeadConvolution | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jb/cjbf3ssum7resbwampiwoknxcnzh4uzdy4fhoaakjojloew6qlw5.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 16), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (64*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6z/c6zyvii2c5e5dc43sgzfkfbsfrhltqlojfzhuoqqgpavg7xdvriv.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 16), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 6) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (16, 1, 3), (3, 3, 1))
assert_size_stride(primals_3, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=16, bias=None)
assert_size_stride(buf1, (4, 16, 6), (96, 6, 1))
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 384, grid=grid(384), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0), primals_2, reinterpret_tensor(primals_1, (4, 16, 4), (16, 1, 64), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
class SpatialDepthWisePerHeadConvolution(Module):
"""
## Spatial Depth Wise Per Head Convolution
"""
def __init__(self, heads: 'int', d_k: 'int', kernel_size: 'int'=3):
"""
* `heads` is the number of heads
* `d_k` is the number of channels in each head
"""
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv1d(in_channels=d_k * heads, out_channels=d_k *
heads, kernel_size=(kernel_size,), padding=(kernel_size - 1,),
groups=d_k * heads)
def forward(self, x: 'torch.Tensor'):
"""
`x` has shape `[seq_len, batch_size, heads, d_k]`
"""
seq_len, batch_size, heads, d_k = x.shape
x = x.permute(1, 2, 3, 0)
x = x.view(batch_size, heads * d_k, seq_len)
x = self.conv(x)
x = x[:, :, :-(self.kernel_size - 1)]
x = x.view(batch_size, heads, d_k, seq_len)
x = x.permute(3, 0, 1, 2)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'heads': 4, 'd_k': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 64 * x1), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 6 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (16, 1, 3), (3, 3, 1))
assert_size_stride(primals_3, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(64, 4)](primals_1, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(2,), dilation=(1,), transposed=False, output_padding=(
0,), groups=16, bias=None)
assert_size_stride(buf1, (4, 16, 6), (96, 6, 1))
del buf0
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(384)](buf2, primals_3, 384,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0
), primals_2, reinterpret_tensor(primals_1, (4, 16, 4), (16, 1, 64), 0)
class SpatialDepthWisePerHeadConvolutionNew(Module):
"""
## Spatial Depth Wise Per Head Convolution
"""
def __init__(self, heads: 'int', d_k: 'int', kernel_size: 'int'=3):
"""
* `heads` is the number of heads
* `d_k` is the number of channels in each head
"""
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv1d(in_channels=d_k * heads, out_channels=d_k *
heads, kernel_size=(kernel_size,), padding=(kernel_size - 1,),
groups=d_k * heads)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | SpatialDepthWisePerHeadConvolution | false | 16,569 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
Squash | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ym/cym3ccudngmvatoe6w7myo62gop3lu5z7s5oobh4dsa5ywnpodvj.py
# Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, mul], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# pow_1 => pow_1
# s2 => sum_1
# sqrt => sqrt
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %div_1), kwargs = {})
triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp10 / tmp12
tmp15 = 1e-08
tmp16 = tmp10 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp14 / tmp17
tmp19 = tmp13 * tmp18
tl.store(out_ptr0 + (x2), tmp19, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, mul], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
import torch.utils.data
import torch.nn.functional
import torch.autograd
class Squash(Module):
'\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n '
def __init__(self, epsilon=1e-08):
super().__init__()
self.epsilon = epsilon
def forward(self, s: 'torch.Tensor'):
"""
The shape of `s` is `[batch_size, n_capsules, n_features]`
"""
s2 = (s ** 2).sum(dim=-1, keepdims=True)
return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp10 / tmp12
tmp15 = 1e-08
tmp16 = tmp10 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp14 / tmp17
tmp19 = tmp13 * tmp18
tl.store(out_ptr0 + x2, tmp19, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](arg0_1, buf0,
256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SquashNew(Module):
'\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n '
def __init__(self, epsilon=1e-08):
super().__init__()
self.epsilon = epsilon
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | Squash | false | 16,570 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
SpacialGatingUnit | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/m6/cm6bwhdk6ccdc7sc4qacfvqqjzmregk7iugudvoesmhwtekpv57y.py
# Topologically Sorted Source Nodes: [z2_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# z2_1 => clone, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/tp/ctprz4mscsdm7l4jvnnrdw6hhotjnj3e7dfnm67popopmu3ntjay.py
# Topologically Sorted Source Nodes: [z2_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# z2_1 => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_3), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp3 - tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 - tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp10 = 2.0
tmp11 = tmp9 / tmp10
tmp12 = 1e-05
tmp13 = tmp11 + tmp12
tmp14 = libdevice.rsqrt(tmp13)
tmp15 = tmp2 * tmp14
tmp17 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp19, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/42/c42m6aelphl7hlr7hwg5usoio6dqarsont3w6ceadrk4ycaves4f.py
# Topologically Sorted Source Nodes: [z2_2, mul], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# mul => mul_2
# z2_2 => add_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %unsqueeze_4), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %add_2), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x3 = (xindex // 2)
x4 = xindex
x2 = (xindex // 8)
tmp0 = tl.load(in_ptr0 + (x0 + (4*x3)), xmask)
tmp1 = tl.load(in_out_ptr0 + (x4), xmask)
tmp2 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [z2_1], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [z2_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, primals_2, primals_3, buf1, buf2, 32, grid=grid(32), stream=stream0)
del buf0
del primals_2
del primals_3
buf3 = empty_strided_cuda((1, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_4, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 8), (0, 8, 1), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 2), (8, 2, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [z2_2, mul], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_2.run(buf4, primals_1, primals_5, 32, grid=grid(32), stream=stream0)
del primals_5
return (buf4, reinterpret_tensor(primals_1, (4, 4, 2), (16, 4, 1), 0), buf1, reinterpret_tensor(primals_4, (1, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (1, 8, 4), (32, 1, 8), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
from typing import Optional
import torch.nn.functional
import torch.autograd
class SpacialGatingUnit(nn.Module):
"""
## Spatial Gating Unit
$$s(Z) = Z_1 \\odot f_{W,b}(Z_2)$$
where $f_{W,b}(Z) = W Z + b$ is a linear transformation along the sequence dimension,
and $\\odot$ is element-wise multiplication.
$Z$ is split into to parts of equal size $Z_1$ and $Z_2$ along the channel dimension (embedding dimension).
"""
def __init__(self, d_z: 'int', seq_len: 'int'):
"""
* `d_z` is the dimensionality of $Z$
* `seq_len` is the sequence length
"""
super().__init__()
self.norm = nn.LayerNorm([d_z // 2])
self.weight = nn.Parameter(torch.zeros(seq_len, seq_len).uniform_(-
0.01, 0.01), requires_grad=True)
self.bias = nn.Parameter(torch.ones(seq_len), requires_grad=True)
def forward(self, z: 'torch.Tensor', mask: 'Optional[torch.Tensor]'=None):
"""
* `z` is the input $Z$ of shape `[seq_len, batch_size, d_z]`
* `mask` is is a boolean mask of shape `[seq_len, seq_len, 1]` that controls the visibility of tokens
among each other. The last dimension of size `1` is the batch, which we have in other transformer
implementations and was left for compatibility.
"""
seq_len = z.shape[0]
z1, z2 = torch.chunk(z, 2, dim=-1)
if mask is not None:
assert mask.shape[0] == 1 or mask.shape[0] == seq_len
assert mask.shape[1] == seq_len
assert mask.shape[2] == 1
mask = mask[:, :, 0]
z2 = self.norm(z2)
weight = self.weight[:seq_len, :seq_len]
if mask is not None:
weight = weight * mask
z2 = torch.einsum('ij,jbd->ibd', weight, z2) + self.bias[:seq_len,
None, None]
return z1 * z2
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d_z': 4, 'seq_len': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp3 - tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 - tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp10 = 2.0
tmp11 = tmp9 / tmp10
tmp12 = 1e-05
tmp13 = tmp11 + tmp12
tmp14 = libdevice.rsqrt(tmp13)
tmp15 = tmp2 * tmp14
tmp17 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp19, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x3 = xindex // 2
x4 = xindex
x2 = xindex // 8
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x3), xmask)
tmp1 = tl.load(in_out_ptr0 + x4, xmask)
tmp2 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tl.store(in_out_ptr0 + x4, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(32)](primals_1, buf0,
primals_2, primals_3, buf1, buf2, 32, XBLOCK=32, num_warps=1,
num_stages=1)
del buf0
del primals_2
del primals_3
buf3 = empty_strided_cuda((1, 4, 8), (32, 8, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_4, (1, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf2, (1, 4, 8), (0, 8, 1), 0), out=buf3
)
buf4 = reinterpret_tensor(buf3, (4, 4, 2), (8, 2, 1), 0)
del buf3
triton_poi_fused_add_mul_2[grid(32)](buf4, primals_1, primals_5, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_5
return buf4, reinterpret_tensor(primals_1, (4, 4, 2), (16, 4, 1), 0
), buf1, reinterpret_tensor(primals_4, (1, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf2, (1, 8, 4), (32, 1, 8), 0)
class SpacialGatingUnitNew(nn.Module):
"""
## Spatial Gating Unit
$$s(Z) = Z_1 \\odot f_{W,b}(Z_2)$$
where $f_{W,b}(Z) = W Z + b$ is a linear transformation along the sequence dimension,
and $\\odot$ is element-wise multiplication.
$Z$ is split into to parts of equal size $Z_1$ and $Z_2$ along the channel dimension (embedding dimension).
"""
def __init__(self, d_z: 'int', seq_len: 'int'):
"""
* `d_z` is the dimensionality of $Z$
* `seq_len` is the sequence length
"""
super().__init__()
self.norm = nn.LayerNorm([d_z // 2])
self.weight = nn.Parameter(torch.zeros(seq_len, seq_len).uniform_(-
0.01, 0.01), requires_grad=True)
self.bias = nn.Parameter(torch.ones(seq_len), requires_grad=True)
def forward(self, input_0):
primals_4 = self.weight
primals_5 = self.bias
primals_2 = self.norm.weight
primals_3 = self.norm.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | SpacialGatingUnit | false | 16,571 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
SpatialDepthWiseConvolution | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6j/c6jwd535crsaxcf2vn6fo7tivf6rewo3kc7wmj2smnibmmu6vbwp.py
# Topologically Sorted Source Nodes: [res, mul_1, iadd, mul_2, iadd_1], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# iadd => add
# iadd_1 => add_1
# mul_1 => mul_1
# mul_2 => mul_2
# res => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_2, %view_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_1, %mul_1), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%mul, %add, 0, 1, 9223372036854775807), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %slice_3, 0, 1, 9223372036854775807), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_10, %view_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_11, %mul_2), kwargs = {})
# %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %add_1, 0, 2, 9223372036854775807), kwargs = {})
# %slice_scatter_default_3 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %slice_12, 0, 2, 9223372036854775807), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 22, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x4 = xindex
x0 = xindex % 4
tmp61 = tl.load(in_ptr0 + (x4), xmask)
tmp62 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp0 = x2
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 >= tmp3
tmp5 = tmp4 & tmp2
tmp6 = tmp4 & tmp5
tmp7 = tl.load(in_ptr0 + (x4), tmp6 & xmask, other=0.0)
tmp8 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tmp7 * tmp8
tmp10 = tl.load(in_ptr0 + ((-64) + x4), tmp6 & xmask, other=0.0)
tmp11 = tl.load(in_ptr1 + (4 + x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 * tmp11
tmp13 = tmp9 + tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.load(in_ptr0 + (x4), tmp5 & xmask, other=0.0)
tmp17 = tl.load(in_ptr1 + (x0), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tmp16 * tmp17
tmp19 = tl.where(tmp4, tmp15, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp5, tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + ((-64) + x4), tmp5 & xmask, other=0.0)
tmp23 = tl.load(in_ptr1 + (4 + x0), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tmp22 * tmp23
tmp25 = tmp18 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp5, tmp25, tmp26)
tmp28 = tl.load(in_ptr0 + (x4), tmp2 & xmask, other=0.0)
tmp29 = tl.load(in_ptr1 + (x0), tmp2 & xmask, eviction_policy='evict_last', other=0.0)
tmp30 = tmp28 * tmp29
tmp31 = tl.where(tmp4, tmp27, tmp30)
tmp32 = tl.where(tmp4, tmp21, tmp31)
tmp33 = tl.load(in_ptr0 + ((-128) + x4), tmp2 & xmask, other=0.0)
tmp34 = tl.load(in_ptr1 + (8 + x0), tmp2 & xmask, eviction_policy='evict_last', other=0.0)
tmp35 = tmp33 * tmp34
tmp36 = tmp32 + tmp35
tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype)
tmp38 = tl.where(tmp2, tmp36, tmp37)
tmp39 = tmp4 & tmp4
tmp40 = tl.load(in_ptr0 + (x4), tmp39 & xmask, other=0.0)
tmp41 = tl.load(in_ptr1 + (x0), tmp39 & xmask, eviction_policy='evict_last', other=0.0)
tmp42 = tmp40 * tmp41
tmp43 = tl.load(in_ptr0 + ((-64) + x4), tmp39 & xmask, other=0.0)
tmp44 = tl.load(in_ptr1 + (4 + x0), tmp39 & xmask, eviction_policy='evict_last', other=0.0)
tmp45 = tmp43 * tmp44
tmp46 = tmp42 + tmp45
tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype)
tmp48 = tl.where(tmp39, tmp46, tmp47)
tmp49 = tl.load(in_ptr0 + (x4), tmp4 & xmask, other=0.0)
tmp50 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp51 = tmp49 * tmp50
tmp52 = tl.where(tmp4, tmp48, tmp51)
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp4, tmp52, tmp53)
tmp55 = tl.load(in_ptr0 + ((-64) + x4), tmp4 & xmask, other=0.0)
tmp56 = tl.load(in_ptr1 + (4 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tmp55 * tmp56
tmp58 = tmp51 + tmp57
tmp59 = tl.full(tmp58.shape, 0.0, tmp58.dtype)
tmp60 = tl.where(tmp4, tmp58, tmp59)
tmp63 = tmp61 * tmp62
tmp64 = tl.where(tmp4, tmp60, tmp63)
tmp65 = tl.where(tmp4, tmp54, tmp64)
tmp66 = tl.where(tmp2, tmp38, tmp65)
tmp67 = tl.where(tmp2, tmp66, tmp66)
tl.store(in_out_ptr0 + (x4), tmp67, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (3, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [res, mul_1, iadd, mul_2, iadd_1], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(buf1, primals_2, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
class SpatialDepthWiseConvolution(Module):
"""
## Spatial Depth Wise Convolution
This is actually slower
"""
def __init__(self, d_k: 'int', kernel_size: 'int'=3):
"""
* `d_k` is the number of channels in each head
"""
super().__init__()
self.kernel_size = kernel_size
rng = 1 / math.sqrt(kernel_size)
self.kernels = nn.Parameter(torch.zeros((kernel_size, d_k)).
uniform_(-rng, rng))
def forward(self, x: 'torch.Tensor'):
"""
`x` has shape `[seq_len, batch_size, heads, d_k]`
"""
res = x * self.kernels[0].view(1, 1, 1, -1)
for i in range(1, len(self.kernels)):
res[i:] += x[:-i] * self.kernels[i].view(1, 1, 1, -1)
return res
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_k': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
import math
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x4 = xindex
x0 = xindex % 4
tmp61 = tl.load(in_ptr0 + x4, xmask)
tmp62 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp0 = x2
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 >= tmp3
tmp5 = tmp4 & tmp2
tmp6 = tmp4 & tmp5
tmp7 = tl.load(in_ptr0 + x4, tmp6 & xmask, other=0.0)
tmp8 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last',
other=0.0)
tmp9 = tmp7 * tmp8
tmp10 = tl.load(in_ptr0 + (-64 + x4), tmp6 & xmask, other=0.0)
tmp11 = tl.load(in_ptr1 + (4 + x0), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 * tmp11
tmp13 = tmp9 + tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.load(in_ptr0 + x4, tmp5 & xmask, other=0.0)
tmp17 = tl.load(in_ptr1 + x0, tmp5 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp18 = tmp16 * tmp17
tmp19 = tl.where(tmp4, tmp15, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp5, tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + (-64 + x4), tmp5 & xmask, other=0.0)
tmp23 = tl.load(in_ptr1 + (4 + x0), tmp5 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tmp22 * tmp23
tmp25 = tmp18 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp5, tmp25, tmp26)
tmp28 = tl.load(in_ptr0 + x4, tmp2 & xmask, other=0.0)
tmp29 = tl.load(in_ptr1 + x0, tmp2 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp30 = tmp28 * tmp29
tmp31 = tl.where(tmp4, tmp27, tmp30)
tmp32 = tl.where(tmp4, tmp21, tmp31)
tmp33 = tl.load(in_ptr0 + (-128 + x4), tmp2 & xmask, other=0.0)
tmp34 = tl.load(in_ptr1 + (8 + x0), tmp2 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp35 = tmp33 * tmp34
tmp36 = tmp32 + tmp35
tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype)
tmp38 = tl.where(tmp2, tmp36, tmp37)
tmp39 = tmp4 & tmp4
tmp40 = tl.load(in_ptr0 + x4, tmp39 & xmask, other=0.0)
tmp41 = tl.load(in_ptr1 + x0, tmp39 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp42 = tmp40 * tmp41
tmp43 = tl.load(in_ptr0 + (-64 + x4), tmp39 & xmask, other=0.0)
tmp44 = tl.load(in_ptr1 + (4 + x0), tmp39 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp45 = tmp43 * tmp44
tmp46 = tmp42 + tmp45
tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype)
tmp48 = tl.where(tmp39, tmp46, tmp47)
tmp49 = tl.load(in_ptr0 + x4, tmp4 & xmask, other=0.0)
tmp50 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp51 = tmp49 * tmp50
tmp52 = tl.where(tmp4, tmp48, tmp51)
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp4, tmp52, tmp53)
tmp55 = tl.load(in_ptr0 + (-64 + x4), tmp4 & xmask, other=0.0)
tmp56 = tl.load(in_ptr1 + (4 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp57 = tmp55 * tmp56
tmp58 = tmp51 + tmp57
tmp59 = tl.full(tmp58.shape, 0.0, tmp58.dtype)
tmp60 = tl.where(tmp4, tmp58, tmp59)
tmp63 = tmp61 * tmp62
tmp64 = tl.where(tmp4, tmp60, tmp63)
tmp65 = tl.where(tmp4, tmp54, tmp64)
tmp66 = tl.where(tmp2, tmp38, tmp65)
tmp67 = tl.where(tmp2, tmp66, tmp66)
tl.store(in_out_ptr0 + x4, tmp67, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (3, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](buf1, primals_2, primals_1,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf1, primals_2
class SpatialDepthWiseConvolutionNew(Module):
"""
## Spatial Depth Wise Convolution
This is actually slower
"""
def __init__(self, d_k: 'int', kernel_size: 'int'=3):
"""
* `d_k` is the number of channels in each head
"""
super().__init__()
self.kernel_size = kernel_size
rng = 1 / math.sqrt(kernel_size)
self.kernels = nn.Parameter(torch.zeros((kernel_size, d_k)).
uniform_(-rng, rng))
def forward(self, input_0):
primals_1 = self.kernels
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | SpatialDepthWiseConvolution | false | 16,572 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
PatchEmbeddings | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
return (reinterpret_tensor(buf1, (1, 4, 4), (1, 4, 1), 0), primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
class PatchEmbeddings(Module):
"""
<a id="PatchEmbeddings"></a>
## Get patch embeddings
The paper splits the image into patches of equal size and do a linear transformation
on the flattened pixels for each patch.
We implement the same thing through a convolution layer, because it's simpler to implement.
"""
def __init__(self, d_model: 'int', patch_size: 'int', in_channels: 'int'):
"""
* `d_model` is the transformer embeddings size
* `patch_size` is the size of the patch
* `in_channels` is the number of channels in the input image (3 for rgb)
"""
super().__init__()
self.conv = nn.Conv2d(in_channels, d_model, patch_size, stride=
patch_size)
def forward(self, x: 'torch.Tensor'):
"""
* `x` is the input image of shape `[batch_size, channels, height, width]`
"""
x = self.conv(x)
bs, c, h, w = x.shape
x = x.permute(2, 3, 0, 1)
x = x.view(h * w, bs, c)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'patch_size': 4, 'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4,
4), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (1, 4, 4), (1, 4, 1), 0
), primals_1, primals_3
class PatchEmbeddingsNew(Module):
"""
<a id="PatchEmbeddings"></a>
## Get patch embeddings
The paper splits the image into patches of equal size and do a linear transformation
on the flattened pixels for each patch.
We implement the same thing through a convolution layer, because it's simpler to implement.
"""
def __init__(self, d_model: 'int', patch_size: 'int', in_channels: 'int'):
"""
* `d_model` is the transformer embeddings size
* `patch_size` is the size of the patch
* `in_channels` is the number of channels in the input image (3 for rgb)
"""
super().__init__()
self.conv = nn.Conv2d(in_channels, d_model, patch_size, stride=
patch_size)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | PatchEmbeddings | false | 16,573 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
ToRGB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/t6/ct6tjcg37hwxssa3rmolxu36szytdluhb36zohxf24euvezqpnz3.py
# Topologically Sorted Source Nodes: [weights_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# weights_1 => mul_2
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_3, %unsqueeze_2), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ce/ccebvj5ndujasz3ies2kagzmfbbfis526scj32d65l5wlmbl3ve2.py
# Topologically Sorted Source Nodes: [add, leaky_relu], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add => add
# leaky_relu => gt, mul_3, where
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %unsqueeze_6), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul_3), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_2 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [style], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_5, buf1, buf2, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf3, (1, 12, 4, 4), (192, 16, 4, 1))
buf4 = reinterpret_tensor(buf3, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf3 # reuse
buf5 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [add, leaky_relu], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_2.run(buf4, primals_6, buf5, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf4, primals_3, primals_5, buf1, reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (12, 4, 1, 1), (4, 1, 1, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
from typing import List
import torch.nn.functional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class ToRGB(nn.Module):
"""
<a id="to_rgb"></a>
### To RGB

---*$A$ denotes a linear layer.*---
Generates an RGB image from a feature map using $1 imes 1$ convolution.
"""
def __init__(self, d_latent: 'int', features: 'int'):
"""
* `d_latent` is the dimensionality of $w$
* `features` is the number of features in the feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, features, bias=1.0)
self.conv = Conv2dWeightModulate(features, 3, kernel_size=1,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(3))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
"""
style = self.to_style(w)
x = self.conv(x, style)
return self.activation(x + self.bias[None, :, None, None])
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_latent': 4, 'features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
from typing import List
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_2(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_mul_1[grid(48)](primals_5, buf1, buf2, 48, XBLOCK=
64, num_warps=1, num_stages=1)
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf3, (1, 12, 4, 4), (192, 16, 4, 1))
buf4 = reinterpret_tensor(buf3, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf3
buf5 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_2[grid(192)](buf4,
primals_6, buf5, 192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
return buf4, primals_3, primals_5, buf1, reinterpret_tensor(primals_4,
(1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (12, 4,
1, 1), (4, 1, 1, 1), 0), buf5
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class ToRGBNew(nn.Module):
"""
<a id="to_rgb"></a>
### To RGB

---*$A$ denotes a linear layer.*---
Generates an RGB image from a feature map using $1 imes 1$ convolution.
"""
def __init__(self, d_latent: 'int', features: 'int'):
"""
* `d_latent` is the dimensionality of $w$
* `features` is the number of features in the feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, features, bias=1.0)
self.conv = Conv2dWeightModulate(features, 3, kernel_size=1,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(3))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_2 = self.to_style.bias
primals_1 = self.to_style.weight.weight
primals_5 = self.conv.weight.weight
primals_4 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | ToRGB | false | 16,574 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yn/cynbldmr7p3iqlxaz2m4g3wb7mwkas4tipve2qeoi5wjsayi7bng.py
# Topologically Sorted Source Nodes: [mul, intersection, sum_2, sum_3], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# intersection => sum_1
# mul => mul
# sum_2 => sum_2
# sum_3 => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [1]), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp7, xmask)
tl.store(out_ptr1 + (x0), tmp11, xmask)
tl.store(out_ptr2 + (x0), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3k/c3kv2daba65ym5jpbiaw4bhf5crwsemu3nswcg3rtinfrderhiza.py
# Topologically Sorted Source Nodes: [mul_1, add, add_1, add_2, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# loss => sub
# loss_1 => mean
# mul_1 => mul_1
# truediv => div
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {})
triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp6 = tl.load(in_ptr2 + (r0), None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = tmp3 - tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 16.0
tmp15 = tmp13 / tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((16, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul, intersection, sum_2, sum_3], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, buf1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [mul_1, add, add_1, add_2, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 16, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.hub
def dice_loss(input, target):
smooth = 1.0
input = torch.sigmoid(input)
if input.dim() == 4:
B, C, _H, _W = input.size()
iflat = input.view(B * C, -1)
tflat = target.view(B * C, -1)
else:
assert input.dim() == 3
B, _H, _W = input.size()
iflat = input.view(B, -1)
tflat = target.view(B, -1)
intersection = (iflat * tflat).sum(dim=1)
loss = 1 - (2.0 * intersection + smooth) / (iflat.sum(dim=1) + tflat.
sum(dim=1) + smooth)
loss = loss.mean()
return loss
class DiceLoss(nn.Module):
def __init__(self):
super().__init__()
pass
def forward(self, input, target):
return dice_loss(input, target)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.hub
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
tl.store(out_ptr1 + x0, tmp11, xmask)
tl.store(out_ptr2 + x0, tmp15, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp6 = tl.load(in_ptr2 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = tmp3 - tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 16.0
tmp15 = tmp13 / tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16,), (1,), torch.float32)
buf1 = empty_strided_cuda((16,), (1,), torch.float32)
buf2 = empty_strided_cuda((16,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(16)](arg0_1, arg1_1, buf0, buf1,
buf2, 16, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1,
buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
return buf4,
def dice_loss(input, target):
smooth = 1.0
input = torch.sigmoid(input)
if input.dim() == 4:
B, C, _H, _W = input.size()
iflat = input.view(B * C, -1)
tflat = target.view(B * C, -1)
else:
assert input.dim() == 3
B, _H, _W = input.size()
iflat = input.view(B, -1)
tflat = target.view(B, -1)
intersection = (iflat * tflat).sum(dim=1)
loss = 1 - (2.0 * intersection + smooth) / (iflat.sum(dim=1) + tflat.
sum(dim=1) + smooth)
loss = loss.mean()
return loss
class DiceLossNew(nn.Module):
def __init__(self):
super().__init__()
pass
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| thangnx183/kaggle-understanding-clouds | DiceLoss | false | 16,575 | [
"BSD-2-Clause"
] | 207 | 15ad2a9029958262437b899cb00525579da23911 | https://github.com/thangnx183/kaggle-understanding-clouds/tree/15ad2a9029958262437b899cb00525579da23911 |
StyleBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wz/cwznwckxjekzcxlkjcgq2jhezeju57iivq5nhdjaezb3fvcxcau2.py
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# pow_1 => pow_1
# sigma_inv => rsqrt
# sum_1 => sum_1
# weights_1 => mul_2
# weights_2 => mul_3
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_3, %unsqueeze_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %rsqrt), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_1 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 9)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (36*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (36*x4)), tmp13, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ra/cray4k4us3bbwyahj4pt3p7tsuiw557n7abg5krmhhniiqoibtti.py
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, leaky_relu], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_2 => add_2
# leaky_relu => gt, mul_5, where
# mul_4 => mul_4
# x_3 => add_1
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_6, %primals_6), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %mul_4), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %unsqueeze_9), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_2, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_2, %mul_5), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + (x3), tmp12, xmask)
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf0 # reuse
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf3, primals_5, buf1, buf4, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, leaky_relu], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2.run(buf6, primals_7, primals_6, primals_8, buf7, 256, grid=grid(256), stream=stream0)
del primals_7
del primals_8
return (buf6, primals_3, primals_5, primals_6, buf1, buf3, reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
from typing import Optional
from typing import List
import torch.nn.functional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlock(nn.Module):
"""
<a id="style_block"></a>
### Style Block

---*$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).*---
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Optional[torch.Tensor]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tensor of shape `[batch_size, 1, height, width]`
"""
s = self.to_style(w)
x = self.conv(x, s)
if noise is not None:
x = x + self.scale_noise[None, :, None, None] * noise
return self.activation(x + self.bias[None, :, None, None])
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_latent': 4, 'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
from typing import List
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = rindex // 9
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 36 * x0), rmask & xmask, eviction_policy
='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), rmask & xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 36 * x4), tmp13, rmask & xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf0
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf3, primals_5,
buf1, buf4, 16, 36, XBLOCK=8, num_warps=4, num_stages=1)
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4,
3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2[grid(256)](
buf6, primals_7, primals_6, primals_8, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
del primals_8
return (buf6, primals_3, primals_5, primals_6, buf1, buf3,
reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0),
reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), buf7)
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlockNew(nn.Module):
"""
<a id="style_block"></a>
### Style Block

---*$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).*---
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, input_0, input_1, input_2):
primals_7 = self.scale_noise
primals_2 = self.bias
primals_8 = self.to_style.bias
primals_1 = self.to_style.weight.weight
primals_5 = self.conv.weight.weight
primals_4 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | StyleBlock | false | 16,576 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
AddTensors | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3r/c3rcleexr5nwq4qvwylgjpelwulrq7jjyvy54eszp24wxfm6tszs.py
# Topologically Sorted Source Nodes: [add, add_1, add_2, add_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select, 0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %select_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %select_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %select_3), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp7 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, add_2, add_3], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.hub
class AddTensors(nn.Module):
""" Adds all its inputs together. """
def forward(self, xs):
return sum(xs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.hub
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp7 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class AddTensorsNew(nn.Module):
""" Adds all its inputs together. """
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| theoway/raster-vision | AddTensors | false | 16,577 | [
"Apache-2.0"
] | 1,577 | dab675517f904771e2ce8c052494f8a6f1ddc026 | https://github.com/theoway/raster-vision/tree/dab675517f904771e2ce8c052494f8a6f1ddc026 |
ACGANDiscriminator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/n3/cn3pwfiylc5cth7jk5f77jeway5lcoukpfnrppapdazr3hrkmrrq.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (48*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ov/covqd7o7g6fvrjwyuxsobtroi2lyqqwvw5dfkitsf3alpk5tc4qp.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ba/cbayuw2by4w6xwduhs5qdriinmydiep6bpw7fyi37s377up7lrcm.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/p4/cp4wei76b6qz5pfcuwd2x5aoj7ndozsklvusxdkgxnnrk6js5dww.py
# Topologically Sorted Source Nodes: [add, add_1, add_2, output], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# output => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %slice_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %slice_12), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %slice_16), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 4), kwargs = {})
triton_poi_fused_add_div_3 = async_compile.triton('triton_poi_fused_add_div_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3) % 2
x2 = (xindex // 6)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (6*x1) + (24*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (12 + x0 + (6*x1) + (24*x2)), xmask)
tmp3 = tl.load(in_ptr0 + (3 + x0 + (6*x1) + (24*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (15 + x0 + (6*x1) + (24*x2)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pl/cpl772kzk2untbywfegzyzg7aminsnqthl2mysgs73mlh244x4zg.py
# Topologically Sorted Source Nodes: [output_2, output_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# output_2 => convolution_1
# output_3 => relu
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rl/crlq37bavp6co3onxc4bvk2y6jotsfh5uv6o2wo6pnims7pb6tee.py
# Topologically Sorted Source Nodes: [output_1, add_3, add_4, add_5, output_5, output_6, output_9], Original ATen: [aten.convolution, aten.add, aten.div, aten.relu]
# Source node to ATen node mapping:
# add_3 => add_3
# add_4 => add_4
# add_5 => add_5
# output_1 => convolution
# output_5 => div_1
# output_6 => add_6
# output_9 => relu_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_20, %slice_24), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %slice_28), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %slice_32), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_5, 4), kwargs = {})
# %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %div_1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_6,), kwargs = {})
triton_poi_fused_add_convolution_div_relu_5 = async_compile.triton('triton_poi_fused_add_convolution_div_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_div_relu_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 128
x1 = (xindex // 128) % 2
x2 = (xindex // 256)
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (256*x1) + (1024*x2)), None)
tmp4 = tl.load(in_ptr2 + (x0), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (512 + x0 + (256*x1) + (1024*x2)), None)
tmp9 = tl.load(in_ptr1 + (128 + x0 + (256*x1) + (1024*x2)), None)
tmp12 = tl.load(in_ptr1 + (640 + x0 + (256*x1) + (1024*x2)), None)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = tmp6 + tmp4
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp4
tmp11 = tmp8 + tmp10
tmp13 = tmp12 + tmp4
tmp14 = tmp11 + tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tmp2 + tmp16
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = triton_helpers.maximum(tmp18, tmp17)
tl.store(in_out_ptr0 + (x3), tmp17, None)
tl.store(out_ptr0 + (x3), tmp19, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3t/c3tqr5dg2huh5t7vqxogki255lx3taiv6rgufakqwbt7jujz6pxs.py
# Topologically Sorted Source Nodes: [output_10, output_11], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# output_10 => convolution_4
# output_11 => relu_2
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gn/cgnp54wk2tj3nwsovfq7bzvyzskl2pmvcf567vjoeqnqpwigkh3l.py
# Topologically Sorted Source Nodes: [add_7, add_8, add_9, output_8, add_10, add_11, add_12, output_13, output_14, output_16], Original ATen: [aten.add, aten.div, aten.relu]
# Source node to ATen node mapping:
# add_10 => add_10
# add_11 => add_11
# add_12 => add_12
# add_7 => add_7
# add_8 => add_8
# add_9 => add_9
# output_13 => div_3
# output_14 => add_13
# output_16 => relu_3
# output_8 => div_2
# Graph fragment:
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_36, %slice_40), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %slice_44), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %slice_48), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_9, 4), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_52, %slice_56), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %slice_60), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %slice_64), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_12, 4), kwargs = {})
# %add_13 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_2, %div_3), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_13,), kwargs = {})
triton_poi_fused_add_div_relu_7 = async_compile.triton('triton_poi_fused_add_div_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_relu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_relu_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 128
x1 = (xindex // 128)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (512*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (256 + x0 + (512*x1)), xmask)
tmp6 = tl.load(in_ptr0 + (128 + x0 + (512*x1)), xmask)
tmp9 = tl.load(in_ptr0 + (384 + x0 + (512*x1)), xmask)
tmp14 = tl.load(in_ptr2 + (x0 + (512*x1)), xmask)
tmp15 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr2 + (256 + x0 + (512*x1)), xmask)
tmp20 = tl.load(in_ptr2 + (128 + x0 + (512*x1)), xmask)
tmp23 = tl.load(in_ptr2 + (384 + x0 + (512*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tmp16 = tmp14 + tmp15
tmp18 = tmp17 + tmp15
tmp19 = tmp16 + tmp18
tmp21 = tmp20 + tmp15
tmp22 = tmp19 + tmp21
tmp24 = tmp23 + tmp15
tmp25 = tmp22 + tmp24
tmp26 = tmp25 * tmp12
tmp27 = tmp13 + tmp26
tmp28 = tl.full([1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.store(out_ptr0 + (x2), tmp27, xmask)
tl.store(out_ptr1 + (x2), tmp29, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ju/cjug5s7yxvqegp25wrcwctyzzf4nzvn5u4j2c2c2ssbfavokgljt.py
# Topologically Sorted Source Nodes: [output_17, output_18], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# output_17 => convolution_6
# output_18 => relu_4
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/eb/cebdtxa2fysqjh5ltamrku7rghltuysq5yrxppjy3uhb2l3dia4u.py
# Topologically Sorted Source Nodes: [output_19, output_20, output_22], Original ATen: [aten.convolution, aten.add, aten.relu]
# Source node to ATen node mapping:
# output_19 => convolution_7
# output_20 => add_14
# output_22 => relu_5
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %convolution_7), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_14,), kwargs = {})
triton_poi_fused_add_convolution_relu_9 = async_compile.triton('triton_poi_fused_add_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_relu_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/f4/cf4t43lvbp3onfgc6ycqi5drwnxpbwjrxhfple54ghh72fvcvf7u.py
# Topologically Sorted Source Nodes: [output_19, output_20, output_25, output_26, output_28, mean, out_feat, output_29], Original ATen: [aten.convolution, aten.add, aten.relu, aten.mean, aten.threshold_backward]
# Source node to ATen node mapping:
# mean => mean
# out_feat => mean_1
# output_19 => convolution_7
# output_20 => add_14
# output_25 => convolution_9
# output_26 => add_15
# output_28 => relu_7
# output_29 => mean_3
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %convolution_7), kwargs = {})
# %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_20, %primals_21, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_14, %convolution_9), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_15,), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_7, [3]), kwargs = {})
# %mean_1 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2]), kwargs = {})
# %mean_3 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2]), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {})
triton_poi_fused_add_convolution_mean_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_add_convolution_mean_relu_threshold_backward_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mean_relu_threshold_backward_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mean_relu_threshold_backward_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x2), xmask)
tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = 1.0
tmp12 = tmp10 / tmp11
tmp13 = tmp12 / tmp11
tmp14 = 0.0
tmp15 = tmp10 <= tmp14
tl.store(out_ptr0 + (x2), tmp13, xmask)
tl.store(out_ptr1 + (x2), tmp13, xmask)
tl.store(out_ptr2 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_2, (128, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_3, (128, ), (1, ))
assert_size_stride(primals_4, (128, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128, ), (1, ))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128, ), (1, ))
assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (128, ), (1, ))
assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_19, (128, ), (1, ))
assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_21, (128, ), (1, ))
assert_size_stride(primals_22, (1, 128), (128, 1))
assert_size_stride(primals_23, (1, ), (1, ))
assert_size_stride(primals_24, (10, 128), (128, 1))
assert_size_stride(primals_25, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 1, 12, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 12, 16, grid=grid(12, 16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((128, 3, 3, 3), (27, 1, 9, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_4, buf1, 384, 9, grid=grid(384, 9), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_6, buf2, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_6
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_10, buf3, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_10
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_12, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_12
buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_14, buf5, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_14
buf6 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_16, buf6, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_16
buf7 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_18, buf7, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_18
buf8 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_20, buf8, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_20
buf9 = empty_strided_cuda((4, 3, 2, 2), (12, 1, 6, 3), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, add_2, output], Original ATen: [aten.add, aten.div]
triton_poi_fused_add_div_3.run(buf0, buf9, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 2, 2), (512, 1, 256, 128))
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 128, 4, 4), (2048, 1, 512, 128))
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [output_2, output_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf12, primals_5, 8192, grid=grid(8192), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(buf12, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 128, 4, 4), (2048, 1, 512, 128))
buf14 = buf10; del buf10 # reuse
buf16 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32)
# Topologically Sorted Source Nodes: [output_1, add_3, add_4, add_5, output_5, output_6, output_9], Original ATen: [aten.convolution, aten.add, aten.div, aten.relu]
triton_poi_fused_add_convolution_div_relu_5.run(buf14, primals_3, buf13, primals_7, buf16, 2048, grid=grid(2048), stream=stream0)
del buf13
del primals_3
del primals_7
# Topologically Sorted Source Nodes: [output_7], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 2, 2), (512, 1, 256, 128))
# Topologically Sorted Source Nodes: [output_10], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 128, 2, 2), (512, 1, 256, 128))
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [output_10, output_11], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf18, primals_11, 2048, grid=grid(2048), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [output_12], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128))
buf20 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 512, 512), torch.float32)
buf21 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [add_7, add_8, add_9, output_8, add_10, add_11, add_12, output_13, output_14, output_16], Original ATen: [aten.add, aten.div, aten.relu]
triton_poi_fused_add_div_relu_7.run(buf15, primals_9, buf19, primals_13, buf20, buf21, 512, grid=grid(512), stream=stream0)
del buf15
del buf19
del primals_13
del primals_9
# Topologically Sorted Source Nodes: [output_17], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 1, 1), (128, 1, 128, 128))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [output_17, output_18], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf23, primals_15, 512, grid=grid(512), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [output_19], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 128, 1, 1), (128, 1, 128, 128))
buf25 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [output_19, output_20, output_22], Original ATen: [aten.convolution, aten.add, aten.relu]
triton_poi_fused_add_convolution_relu_9.run(buf20, buf24, primals_17, buf25, 512, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [output_23], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf25, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 128, 1, 1), (128, 1, 128, 128))
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [output_23, output_24], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf27, primals_19, 512, grid=grid(512), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [output_25], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 128, 1, 1), (128, 1, 128, 128))
buf29 = buf20; del buf20 # reuse
buf30 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
buf31 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
buf35 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 128, 128), torch.bool)
# Topologically Sorted Source Nodes: [output_19, output_20, output_25, output_26, output_28, mean, out_feat, output_29], Original ATen: [aten.convolution, aten.add, aten.relu, aten.mean, aten.threshold_backward]
triton_poi_fused_add_convolution_mean_relu_threshold_backward_10.run(buf29, buf24, primals_17, buf28, primals_21, buf30, buf31, buf35, 512, grid=grid(512), stream=stream0)
del buf24
del buf28
del buf29
del primals_17
del primals_21
buf33 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_dis], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_23, buf31, reinterpret_tensor(primals_22, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf33)
del primals_23
buf34 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_cls], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_25, buf30, reinterpret_tensor(primals_24, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf34)
del primals_25
return (reinterpret_tensor(buf33, (4, ), (1, ), 0), buf34, buf30, buf0, primals_2, buf1, buf2, primals_8, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf12, buf14, buf16, buf18, buf21, buf23, buf25, buf27, buf30, buf31, primals_24, primals_22, buf35, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.utils as utils
import torch.nn.functional as F
from torchvision import utils
def global_pooling(input, pooling='mean'):
if pooling == 'mean':
return input.mean(3).mean(2)
elif pooling == 'sum':
return input.sum(3).sum(2)
else:
raise NotImplementedError()
class CustomConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=None, bias=True, spectral_norm=False, residual_init=True):
super(CustomConv2d, self).__init__()
self.residual_init = residual_init
if padding is None:
padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, bias=bias)
if spectral_norm:
self.conv = utils.spectral_norm(self.conv)
def forward(self, input):
return self.conv(input)
class CustomLinear(nn.Module):
def __init__(self, in_features, out_features, bias=True, spectral_norm=
False):
super(CustomLinear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
if spectral_norm:
self.linear = utils.spectral_norm(self.linear)
def forward(self, input):
return self.linear(input)
class ConvMeanPool(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(ConvMeanPool, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = self.conv(output)
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
return output
class MeanPoolConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(MeanPoolConv, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
output = self.conv(output)
return output
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, resample=
None, spectral_norm=False):
super(ResidualBlock, self).__init__()
if in_channels != out_channels or resample is not None:
self.learnable_shortcut = True
else:
self.learnable_shortcut = False
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
if resample == 'down':
self.conv_shortcut = ConvMeanPool(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm, residual_init=False
)
self.conv1 = CustomConv2d(in_channels, in_channels, kernel_size
=kernel_size, spectral_norm=spectral_norm)
self.conv2 = ConvMeanPool(in_channels, out_channels,
kernel_size=kernel_size, spectral_norm=spectral_norm)
elif resample is None:
if self.learnable_shortcut:
self.conv_shortcut = CustomConv2d(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm,
residual_init=False)
self.conv1 = CustomConv2d(in_channels, out_channels,
kernel_size=kernel_size, spectral_norm=spectral_norm)
self.conv2 = CustomConv2d(out_channels, out_channels,
kernel_size=kernel_size, spectral_norm=spectral_norm)
else:
raise NotImplementedError()
def forward(self, input):
if self.learnable_shortcut:
shortcut = self.conv_shortcut(input)
else:
shortcut = input
output = input
output = self.relu1(output)
output = self.conv1(output)
output = self.relu2(output)
output = self.conv2(output)
return shortcut + output
class OptimizedResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
spectral_norm=False):
super(OptimizedResidualBlock, self).__init__()
self.conv1 = CustomConv2d(in_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv2 = ConvMeanPool(out_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv_shortcut = MeanPoolConv(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm, residual_init=False)
self.relu2 = nn.ReLU()
def forward(self, input):
shortcut = self.conv_shortcut(input)
output = input
output = self.conv1(output)
output = self.relu2(output)
output = self.conv2(output)
return shortcut + output
class ACGANDiscriminator(nn.Module):
def __init__(self, num_classes=10, channels=128, dropout=False,
spectral_norm=False, pooling='mean'):
super(ACGANDiscriminator, self).__init__()
self.num_classes = num_classes
self.channels = channels
self.dropout = dropout
self.spectral_norm = spectral_norm
self.pooling = pooling
self.block1 = OptimizedResidualBlock(3, channels, 3, spectral_norm=
spectral_norm)
self.block2 = ResidualBlock(channels, channels, 3, resample='down',
spectral_norm=spectral_norm)
self.block3 = ResidualBlock(channels, channels, 3, resample=None,
spectral_norm=spectral_norm)
self.block4 = ResidualBlock(channels, channels, 3, resample=None,
spectral_norm=spectral_norm)
self.relu5 = nn.ReLU()
self.linear5dis = CustomLinear(channels, 1, spectral_norm=spectral_norm
)
self.linear5cls = CustomLinear(channels, num_classes)
def forward(self, input, dropout=None):
if dropout is None:
dropout = self.dropout
output = input
output = self.block1(output)
output = self.block2(output)
output = F.dropout(output, p=0.2, training=dropout)
output = self.block3(output)
output = F.dropout(output, p=0.5, training=dropout)
output = self.block4(output)
output = F.dropout(output, p=0.5, training=dropout)
output = self.relu5(output)
out_feat = global_pooling(output, 'mean')
output = global_pooling(output, self.pooling)
out_dis = self.linear5dis(output)
out_cls = self.linear5cls(out_feat)
return out_dis.squeeze(), out_cls.squeeze(), out_feat
def get_inputs():
return [torch.rand([4, 3, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.utils as utils
from torchvision import utils
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 48 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_add_div_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3 % 2
x2 = xindex // 6
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 6 * x1 + 24 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (12 + x0 + 6 * x1 + 24 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (3 + x0 + 6 * x1 + 24 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (15 + x0 + 6 * x1 + 24 * x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_add_convolution_div_relu_5(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 128
x1 = xindex // 128 % 2
x2 = xindex // 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 256 * x1 + 1024 * x2), None)
tmp4 = tl.load(in_ptr2 + x0, None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (512 + x0 + 256 * x1 + 1024 * x2), None)
tmp9 = tl.load(in_ptr1 + (128 + x0 + 256 * x1 + 1024 * x2), None)
tmp12 = tl.load(in_ptr1 + (640 + x0 + 256 * x1 + 1024 * x2), None)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = tmp6 + tmp4
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp4
tmp11 = tmp8 + tmp10
tmp13 = tmp12 + tmp4
tmp14 = tmp11 + tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tmp2 + tmp16
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = triton_helpers.maximum(tmp18, tmp17)
tl.store(in_out_ptr0 + x3, tmp17, None)
tl.store(out_ptr0 + x3, tmp19, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_add_div_relu_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 128
x1 = xindex // 128
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (256 + x0 + 512 * x1), xmask)
tmp6 = tl.load(in_ptr0 + (128 + x0 + 512 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (384 + x0 + 512 * x1), xmask)
tmp14 = tl.load(in_ptr2 + (x0 + 512 * x1), xmask)
tmp15 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr2 + (256 + x0 + 512 * x1), xmask)
tmp20 = tl.load(in_ptr2 + (128 + x0 + 512 * x1), xmask)
tmp23 = tl.load(in_ptr2 + (384 + x0 + 512 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tmp16 = tmp14 + tmp15
tmp18 = tmp17 + tmp15
tmp19 = tmp16 + tmp18
tmp21 = tmp20 + tmp15
tmp22 = tmp19 + tmp21
tmp24 = tmp23 + tmp15
tmp25 = tmp22 + tmp24
tmp26 = tmp25 * tmp12
tmp27 = tmp13 + tmp26
tmp28 = tl.full([1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.store(out_ptr0 + x2, tmp27, xmask)
tl.store(out_ptr1 + x2, tmp29, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_relu_9(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_convolution_mean_relu_threshold_backward_10(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1,
out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x2, xmask)
tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = 1.0
tmp12 = tmp10 / tmp11
tmp13 = tmp12 / tmp11
tmp14 = 0.0
tmp15 = tmp10 <= tmp14
tl.store(out_ptr0 + x2, tmp13, xmask)
tl.store(out_ptr1 + x2, tmp13, xmask)
tl.store(out_ptr2 + x2, tmp15, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25) = args
args.clear()
assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_2, (128, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_3, (128,), (1,))
assert_size_stride(primals_4, (128, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128,), (1,))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128,), (1,))
assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (128,), (1,))
assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_19, (128,), (1,))
assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_21, (128,), (1,))
assert_size_stride(primals_22, (1, 128), (128, 1))
assert_size_stride(primals_23, (1,), (1,))
assert_size_stride(primals_24, (10, 128), (128, 1))
assert_size_stride(primals_25, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 4, 4), (48, 1, 12, 3), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(12, 16)](primals_1, buf0, 12, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((128, 3, 3, 3), (27, 1, 9, 3), torch.float32)
triton_poi_fused_1[grid(384, 9)](primals_4, buf1, 384, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(16384, 9)](primals_6, buf2, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(16384, 9)](primals_10, buf3, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(16384, 9)](primals_12, buf4, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(16384, 9)](primals_14, buf5, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_14
buf6 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(16384, 9)](primals_16, buf6, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_16
buf7 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(16384, 9)](primals_18, buf7, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_18
buf8 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(16384, 9)](primals_20, buf8, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_20
buf9 = empty_strided_cuda((4, 3, 2, 2), (12, 1, 6, 3), torch.float32)
triton_poi_fused_add_div_3[grid(48)](buf0, buf9, 48, XBLOCK=64,
num_warps=1, num_stages=1)
buf10 = extern_kernels.convolution(buf9, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 2, 2), (512, 1, 256, 128))
buf11 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 128, 4, 4), (2048, 1, 512, 128))
buf12 = buf11
del buf11
triton_poi_fused_convolution_relu_4[grid(8192)](buf12, primals_5,
8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf13 = extern_kernels.convolution(buf12, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 128, 4, 4), (2048, 1, 512, 128))
buf14 = buf10
del buf10
buf16 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128),
torch.float32)
triton_poi_fused_add_convolution_div_relu_5[grid(2048)](buf14,
primals_3, buf13, primals_7, buf16, 2048, XBLOCK=256, num_warps
=4, num_stages=1)
del buf13
del primals_3
del primals_7
buf15 = extern_kernels.convolution(buf14, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 2, 2), (512, 1, 256, 128))
buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 128, 2, 2), (512, 1, 256, 128))
buf18 = buf17
del buf17
triton_poi_fused_convolution_relu_6[grid(2048)](buf18, primals_11,
2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf19 = extern_kernels.convolution(buf18, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128))
buf20 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 512, 512),
torch.float32)
buf21 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 128, 128),
torch.float32)
triton_poi_fused_add_div_relu_7[grid(512)](buf15, primals_9, buf19,
primals_13, buf20, buf21, 512, XBLOCK=128, num_warps=4,
num_stages=1)
del buf15
del buf19
del primals_13
del primals_9
buf22 = extern_kernels.convolution(buf21, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 1, 1), (128, 1, 128, 128))
buf23 = buf22
del buf22
triton_poi_fused_convolution_relu_8[grid(512)](buf23, primals_15,
512, XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
buf24 = extern_kernels.convolution(buf23, buf6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 128, 1, 1), (128, 1, 128, 128))
buf25 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 128, 128),
torch.float32)
triton_poi_fused_add_convolution_relu_9[grid(512)](buf20, buf24,
primals_17, buf25, 512, XBLOCK=256, num_warps=4, num_stages=1)
buf26 = extern_kernels.convolution(buf25, buf7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 128, 1, 1), (128, 1, 128, 128))
buf27 = buf26
del buf26
triton_poi_fused_convolution_relu_8[grid(512)](buf27, primals_19,
512, XBLOCK=256, num_warps=4, num_stages=1)
del primals_19
buf28 = extern_kernels.convolution(buf27, buf8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 128, 1, 1), (128, 1, 128, 128))
buf29 = buf20
del buf20
buf30 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
buf31 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
buf35 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 128, 128),
torch.bool)
triton_poi_fused_add_convolution_mean_relu_threshold_backward_10[grid
(512)](buf29, buf24, primals_17, buf28, primals_21, buf30,
buf31, buf35, 512, XBLOCK=256, num_warps=4, num_stages=1)
del buf24
del buf28
del buf29
del primals_17
del primals_21
buf33 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_23, buf31, reinterpret_tensor(
primals_22, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf33)
del primals_23
buf34 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_25, buf30, reinterpret_tensor(
primals_24, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf34)
del primals_25
return (reinterpret_tensor(buf33, (4,), (1,), 0), buf34, buf30, buf0,
primals_2, buf1, buf2, primals_8, buf3, buf4, buf5, buf6, buf7,
buf8, buf9, buf12, buf14, buf16, buf18, buf21, buf23, buf25, buf27,
buf30, buf31, primals_24, primals_22, buf35)
def global_pooling(input, pooling='mean'):
if pooling == 'mean':
return input.mean(3).mean(2)
elif pooling == 'sum':
return input.sum(3).sum(2)
else:
raise NotImplementedError()
class CustomConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=None, bias=True, spectral_norm=False, residual_init=True):
super(CustomConv2d, self).__init__()
self.residual_init = residual_init
if padding is None:
padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, bias=bias)
if spectral_norm:
self.conv = utils.spectral_norm(self.conv)
def forward(self, input):
return self.conv(input)
class CustomLinear(nn.Module):
def __init__(self, in_features, out_features, bias=True, spectral_norm=
False):
super(CustomLinear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
if spectral_norm:
self.linear = utils.spectral_norm(self.linear)
def forward(self, input):
return self.linear(input)
class ConvMeanPool(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(ConvMeanPool, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = self.conv(output)
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
return output
class MeanPoolConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(MeanPoolConv, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
output = self.conv(output)
return output
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, resample=
None, spectral_norm=False):
super(ResidualBlock, self).__init__()
if in_channels != out_channels or resample is not None:
self.learnable_shortcut = True
else:
self.learnable_shortcut = False
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
if resample == 'down':
self.conv_shortcut = ConvMeanPool(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm, residual_init=False
)
self.conv1 = CustomConv2d(in_channels, in_channels, kernel_size
=kernel_size, spectral_norm=spectral_norm)
self.conv2 = ConvMeanPool(in_channels, out_channels,
kernel_size=kernel_size, spectral_norm=spectral_norm)
elif resample is None:
if self.learnable_shortcut:
self.conv_shortcut = CustomConv2d(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm,
residual_init=False)
self.conv1 = CustomConv2d(in_channels, out_channels,
kernel_size=kernel_size, spectral_norm=spectral_norm)
self.conv2 = CustomConv2d(out_channels, out_channels,
kernel_size=kernel_size, spectral_norm=spectral_norm)
else:
raise NotImplementedError()
def forward(self, input):
if self.learnable_shortcut:
shortcut = self.conv_shortcut(input)
else:
shortcut = input
output = input
output = self.relu1(output)
output = self.conv1(output)
output = self.relu2(output)
output = self.conv2(output)
return shortcut + output
class OptimizedResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
spectral_norm=False):
super(OptimizedResidualBlock, self).__init__()
self.conv1 = CustomConv2d(in_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv2 = ConvMeanPool(out_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv_shortcut = MeanPoolConv(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm, residual_init=False)
self.relu2 = nn.ReLU()
def forward(self, input):
shortcut = self.conv_shortcut(input)
output = input
output = self.conv1(output)
output = self.relu2(output)
output = self.conv2(output)
return shortcut + output
class ACGANDiscriminatorNew(nn.Module):
def __init__(self, num_classes=10, channels=128, dropout=False,
spectral_norm=False, pooling='mean'):
super(ACGANDiscriminatorNew, self).__init__()
self.num_classes = num_classes
self.channels = channels
self.dropout = dropout
self.spectral_norm = spectral_norm
self.pooling = pooling
self.block1 = OptimizedResidualBlock(3, channels, 3, spectral_norm=
spectral_norm)
self.block2 = ResidualBlock(channels, channels, 3, resample='down',
spectral_norm=spectral_norm)
self.block3 = ResidualBlock(channels, channels, 3, resample=None,
spectral_norm=spectral_norm)
self.block4 = ResidualBlock(channels, channels, 3, resample=None,
spectral_norm=spectral_norm)
self.relu5 = nn.ReLU()
self.linear5dis = CustomLinear(channels, 1, spectral_norm=spectral_norm
)
self.linear5cls = CustomLinear(channels, num_classes)
def forward(self, input_0):
primals_4 = self.block1.conv1.conv.weight
primals_3 = self.block1.conv1.conv.bias
primals_6 = self.block1.conv2.conv.conv.weight
primals_5 = self.block1.conv2.conv.conv.bias
primals_2 = self.block1.conv_shortcut.conv.conv.weight
primals_7 = self.block1.conv_shortcut.conv.conv.bias
primals_8 = self.block2.conv_shortcut.conv.conv.weight
primals_9 = self.block2.conv_shortcut.conv.conv.bias
primals_10 = self.block2.conv1.conv.weight
primals_11 = self.block2.conv1.conv.bias
primals_12 = self.block2.conv2.conv.conv.weight
primals_13 = self.block2.conv2.conv.conv.bias
primals_14 = self.block3.conv1.conv.weight
primals_15 = self.block3.conv1.conv.bias
primals_16 = self.block3.conv2.conv.weight
primals_17 = self.block3.conv2.conv.bias
primals_18 = self.block4.conv1.conv.weight
primals_19 = self.block4.conv1.conv.bias
primals_20 = self.block4.conv2.conv.weight
primals_21 = self.block4.conv2.conv.bias
primals_22 = self.linear5dis.linear.weight
primals_23 = self.linear5dis.linear.bias
primals_24 = self.linear5cls.linear.weight
primals_25 = self.linear5cls.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25])
return output[0], output[1], output[2]
| takuhirok/rGAN | ACGANDiscriminator | false | 16,578 | [
"MIT"
] | 103 | 6f7a092de5814c662fd17224b3d48bebe7e03c2f | https://github.com/takuhirok/rGAN/tree/6f7a092de5814c662fd17224b3d48bebe7e03c2f |
EqualizedLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del buf0
del primals_2
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
from typing import List
import torch.nn.functional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import numpy as np
from torch import nn
import torch.utils.data
from typing import List
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del buf0
del primals_2
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinearNew(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, input_0):
primals_2 = self.bias
primals_1 = self.weight.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | EqualizedLinear | false | 16,579 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
SymmetricBCELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jh/cjhtwuvzekeny3gg2m46kcjwgm2k5zv7spmwat2qizuv7clubbmm.py
# Topologically Sorted Source Nodes: [loss_ce, y_pred_2, log, mul, loss_rce, y_true_2, log_1, mul_1, add], Original ATen: [aten.xlogy, aten.clamp, aten.log, aten.mul, aten.sub, aten.mean, aten.add]
# Source node to ATen node mapping:
# add => add
# log => log
# log_1 => log_2
# loss_ce => eq, full_default, full_default_1, isnan, log_1, mean, mul, mul_1, sub, where, where_1
# loss_rce => eq_1, full_default_2, full_default_3, isnan_1, log_3, mean_1, mul_2, mul_3, sub_1, where_2, where_3
# mul => mul_4
# mul_1 => mul_5
# y_pred_2 => clamp_max, clamp_min
# y_true_2 => clamp_max_1, clamp_min_1
# Graph fragment:
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%view,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %log_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_1, 1e-07), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_max,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %log), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.1), kwargs = {})
# %isnan_1 : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%view_1,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_1, 0), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view_1,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %log_3), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default_2, %mul_3), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan_1, %full_default_3, %where_2), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view, 0.0001), kwargs = {})
# %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_max_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %log_2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_3, %mul_2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {})
triton_per_fused_add_clamp_log_mean_mul_sub_xlogy_0 = async_compile.triton('triton_per_fused_add_clamp_log_mean_mul_sub_xlogy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_log_mean_mul_sub_xlogy_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_log_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr1 + (r0), None)
tmp1 = libdevice.isnan(tmp0).to(tl.int1)
tmp2 = 0.0
tmp3 = tmp0 == tmp2
tmp4 = tl_math.log(tmp0)
tmp5 = tmp0 * tmp4
tmp6 = tl.where(tmp3, tmp2, tmp5)
tmp7 = float("nan")
tmp8 = tl.where(tmp1, tmp7, tmp6)
tmp10 = tl.sigmoid(tmp9)
tmp11 = 1e-07
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tmp15 = tl_math.log(tmp14)
tmp16 = tmp0 * tmp15
tmp17 = tmp8 - tmp16
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = libdevice.isnan(tmp10).to(tl.int1)
tmp22 = tmp10 == tmp2
tmp23 = tl_math.log(tmp10)
tmp24 = tmp10 * tmp23
tmp25 = tl.where(tmp22, tmp2, tmp24)
tmp26 = tl.where(tmp21, tmp7, tmp25)
tmp27 = 0.0001
tmp28 = triton_helpers.maximum(tmp0, tmp27)
tmp29 = triton_helpers.minimum(tmp28, tmp13)
tmp30 = tl_math.log(tmp29)
tmp31 = tmp10 * tmp30
tmp32 = tmp26 - tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = 256.0
tmp37 = tmp20 / tmp36
tmp38 = 0.1
tmp39 = tmp37 * tmp38
tmp40 = tmp35 / tmp36
tmp41 = tmp40 * tmp38
tmp42 = tmp39 + tmp41
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp42, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss_ce, y_pred_2, log, mul, loss_rce, y_true_2, log_1, mul_1, add], Original ATen: [aten.xlogy, aten.clamp, aten.log, aten.mul, aten.sub, aten.mean, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_log_mean_mul_sub_xlogy_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.hub
class SymmetricBCELoss(nn.Module):
def __init__(self, alpha=0.1, beta=0.1):
super().__init__()
self.alpha = alpha
self.beta = beta
def forward(self, input, target):
y_true = target
y_pred = torch.sigmoid(input)
y_true = y_true.view(-1, 1)
y_pred = y_pred.view(-1, 1)
y_true_1 = y_true
y_pred_1 = y_pred
y_true_2 = y_true
y_pred_2 = y_pred
y_pred_1 = torch.clamp(y_pred_1, 1e-07, 1.0)
y_true_2 = torch.clamp(y_true_2, 0.0001, 1.0)
loss_ce = F.kl_div(torch.log(y_pred_1), y_true_1)
loss_rce = F.kl_div(torch.log(y_true_2), y_pred_2)
return self.alpha * loss_ce + self.beta * loss_rce
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.hub
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_log_mean_mul_sub_xlogy_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr1 + r0, None)
tmp1 = libdevice.isnan(tmp0).to(tl.int1)
tmp2 = 0.0
tmp3 = tmp0 == tmp2
tmp4 = tl_math.log(tmp0)
tmp5 = tmp0 * tmp4
tmp6 = tl.where(tmp3, tmp2, tmp5)
tmp7 = float('nan')
tmp8 = tl.where(tmp1, tmp7, tmp6)
tmp10 = tl.sigmoid(tmp9)
tmp11 = 1e-07
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tmp15 = tl_math.log(tmp14)
tmp16 = tmp0 * tmp15
tmp17 = tmp8 - tmp16
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = libdevice.isnan(tmp10).to(tl.int1)
tmp22 = tmp10 == tmp2
tmp23 = tl_math.log(tmp10)
tmp24 = tmp10 * tmp23
tmp25 = tl.where(tmp22, tmp2, tmp24)
tmp26 = tl.where(tmp21, tmp7, tmp25)
tmp27 = 0.0001
tmp28 = triton_helpers.maximum(tmp0, tmp27)
tmp29 = triton_helpers.minimum(tmp28, tmp13)
tmp30 = tl_math.log(tmp29)
tmp31 = tmp10 * tmp30
tmp32 = tmp26 - tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = 256.0
tmp37 = tmp20 / tmp36
tmp38 = 0.1
tmp39 = tmp37 * tmp38
tmp40 = tmp35 / tmp36
tmp41 = tmp40 * tmp38
tmp42 = tmp39 + tmp41
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp42, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_clamp_log_mean_mul_sub_xlogy_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class SymmetricBCELossNew(nn.Module):
def __init__(self, alpha=0.1, beta=0.1):
super().__init__()
self.alpha = alpha
self.beta = beta
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| thangnx183/kaggle-understanding-clouds | SymmetricBCELoss | false | 16,580 | [
"BSD-2-Clause"
] | 207 | 15ad2a9029958262437b899cb00525579da23911 | https://github.com/thangnx183/kaggle-understanding-clouds/tree/15ad2a9029958262437b899cb00525579da23911 |
UpSample | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ff/cffhfyg22xbribwqqqct5kdcsfampxjsxm645cabtsik2vspgfca.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
# Source node to ATen node mapping:
# interpolate => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_4, add_5, add_6, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6
# Graph fragment:
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.5), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 3, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tmp13 = x0
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp14 + tmp2
tmp16 = tmp15 * tmp2
tmp17 = tmp16 - tmp2
tmp18 = triton_helpers.maximum(tmp17, tmp6)
tmp19 = tmp18.to(tl.int32)
tmp20 = tmp19 + tmp9
tmp21 = triton_helpers.minimum(tmp20, tmp11)
tmp22 = tl.load(in_ptr0 + (tmp21 + (4*tmp12) + (16*x2)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (tmp19 + (4*tmp12) + (16*x2)), xmask, eviction_policy='evict_last')
tmp24 = tmp22 - tmp23
tmp25 = tmp19.to(tl.float32)
tmp26 = tmp18 - tmp25
tmp27 = triton_helpers.maximum(tmp26, tmp6)
tmp28 = 1.0
tmp29 = triton_helpers.minimum(tmp27, tmp28)
tmp30 = tmp24 * tmp29
tmp31 = tmp23 + tmp30
tmp32 = tl.load(in_ptr0 + (tmp19 + (4*tmp8) + (16*x2)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp21 + (4*tmp8) + (16*x2)), xmask, eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp29
tmp36 = tmp32 + tmp35
tmp37 = tmp31 - tmp36
tmp38 = tmp8.to(tl.float32)
tmp39 = tmp7 - tmp38
tmp40 = triton_helpers.maximum(tmp39, tmp6)
tmp41 = triton_helpers.minimum(tmp40, tmp28)
tmp42 = tmp37 * tmp41
tmp43 = tmp36 + tmp42
tl.store(in_out_ptr0 + (x4), tmp43, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/n3/cn3uxzu2hel4oq46hrfe2umbpvgsbsbptwqhsvbq3yzjtmhnf4c6.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# x_1 => _unsafe_index_4, _unsafe_index_5
# Graph fragment:
# %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_2, [None, None, %clamp_max_4, None]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %clamp_max_5]), kwargs = {})
triton_poi_fused_replication_pad2d_1 = async_compile.triton('triton_poi_fused_replication_pad2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = (xindex // 10) % 10
x2 = (xindex // 100)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((8*((7) * ((7) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (7)))) + (64*x2) + ((7) * ((7) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (7)))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf2, arg0_1, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((16, 1, 10, 10), (100, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.replication_pad2d]
triton_poi_fused_replication_pad2d_1.run(buf2, buf3, 1600, grid=grid(1600), stream=stream0)
del buf2
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.replication_pad2d, aten.convolution]
buf4 = extern_kernels.convolution(buf3, arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (16, 1, 8, 8), (64, 64, 8, 1))
del arg1_1
del buf3
return (reinterpret_tensor(buf4, (4, 4, 8, 8), (256, 64, 8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
import torch.autograd
class Smooth(nn.Module):
"""
<a id="smooth"></a>
### Smoothing Layer
This layer blurs each channel
"""
def __init__(self):
super().__init__()
kernel = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]
kernel = torch.tensor([[kernel]], dtype=torch.float)
kernel /= kernel.sum()
self.kernel = nn.Parameter(kernel, requires_grad=False)
self.pad = nn.ReplicationPad2d(1)
def forward(self, x: 'torch.Tensor'):
b, c, h, w = x.shape
x = x.view(-1, 1, h, w)
x = self.pad(x)
x = F.conv2d(x, self.kernel)
return x.view(b, c, h, w)
class UpSample(nn.Module):
"""
<a id="up_sample"></a>
### Up-sample
The up-sample operation scales the image up by $2 imes$ and [smoothens](#smooth) each feature channel.
This is based on the paper
[Making Convolutional Networks Shift-Invariant Again](https://papers.labml.ai/paper/1904.11486).
"""
def __init__(self):
super().__init__()
self.up_sample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
self.smooth = Smooth()
def forward(self, x: 'torch.Tensor'):
return self.smooth(self.up_sample(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(
in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 3, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tmp13 = x0
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp14 + tmp2
tmp16 = tmp15 * tmp2
tmp17 = tmp16 - tmp2
tmp18 = triton_helpers.maximum(tmp17, tmp6)
tmp19 = tmp18.to(tl.int32)
tmp20 = tmp19 + tmp9
tmp21 = triton_helpers.minimum(tmp20, tmp11)
tmp22 = tl.load(in_ptr0 + (tmp21 + 4 * tmp12 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (tmp19 + 4 * tmp12 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp24 = tmp22 - tmp23
tmp25 = tmp19.to(tl.float32)
tmp26 = tmp18 - tmp25
tmp27 = triton_helpers.maximum(tmp26, tmp6)
tmp28 = 1.0
tmp29 = triton_helpers.minimum(tmp27, tmp28)
tmp30 = tmp24 * tmp29
tmp31 = tmp23 + tmp30
tmp32 = tl.load(in_ptr0 + (tmp19 + 4 * tmp8 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp21 + 4 * tmp8 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp29
tmp36 = tmp32 + tmp35
tmp37 = tmp31 - tmp36
tmp38 = tmp8.to(tl.float32)
tmp39 = tmp7 - tmp38
tmp40 = triton_helpers.maximum(tmp39, tmp6)
tmp41 = triton_helpers.minimum(tmp40, tmp28)
tmp42 = tmp37 * tmp41
tmp43 = tmp36 + tmp42
tl.store(in_out_ptr0 + x4, tmp43, xmask)
@triton.jit
def triton_poi_fused_replication_pad2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = xindex // 10 % 10
x2 = xindex // 100
x3 = xindex
tmp0 = tl.load(in_ptr0 + (8 * (7 * (7 <= 0 * (0 >= -1 + x1) + (-1 + x1) *
(-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) *
(0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 7)) + 64 * x2 + (
7 * (7 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + (0 * (0 >=
-1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 +
x0) * (-1 + x0 > 0) < 7))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf1 = buf0
del buf0
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(1024)](buf2, arg0_1, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((16, 1, 10, 10), (100, 100, 10, 1), torch
.float32)
triton_poi_fused_replication_pad2d_1[grid(1600)](buf2, buf3, 1600,
XBLOCK=256, num_warps=4, num_stages=1)
del buf2
buf4 = extern_kernels.convolution(buf3, arg1_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (16, 1, 8, 8), (64, 64, 8, 1))
del arg1_1
del buf3
return reinterpret_tensor(buf4, (4, 4, 8, 8), (256, 64, 8, 1), 0),
class Smooth(nn.Module):
"""
<a id="smooth"></a>
### Smoothing Layer
This layer blurs each channel
"""
def __init__(self):
super().__init__()
kernel = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]
kernel = torch.tensor([[kernel]], dtype=torch.float)
kernel /= kernel.sum()
self.kernel = nn.Parameter(kernel, requires_grad=False)
self.pad = nn.ReplicationPad2d(1)
def forward(self, x: 'torch.Tensor'):
b, c, h, w = x.shape
x = x.view(-1, 1, h, w)
x = self.pad(x)
x = F.conv2d(x, self.kernel)
return x.view(b, c, h, w)
class UpSampleNew(nn.Module):
"""
<a id="up_sample"></a>
### Up-sample
The up-sample operation scales the image up by $2 imes$ and [smoothens](#smooth) each feature channel.
This is based on the paper
[Making Convolutional Networks Shift-Invariant Again](https://papers.labml.ai/paper/1904.11486).
"""
def __init__(self):
super().__init__()
self.up_sample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
self.smooth = Smooth()
def forward(self, input_0):
arg1_1 = self.smooth.kernel
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | UpSample | false | 16,581 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
BertAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/iz/ciztqj6kop3hxov46yrmzprkzfir3eljcic4mkqznz2j5cfeaudr.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = float("-inf")
tmp27 = tmp2 == tmp26
tmp28 = tmp27 == 0
tmp29 = tmp28.to(tl.int64)
tmp30 = (tmp29 != 0)
tmp31 = tmp5 == tmp26
tmp32 = tmp31 == 0
tmp33 = tmp32.to(tl.int64)
tmp34 = (tmp33 != 0)
tmp35 = tmp30 | tmp34
tmp36 = tmp9 == tmp26
tmp37 = tmp36 == 0
tmp38 = tmp37.to(tl.int64)
tmp39 = (tmp38 != 0)
tmp40 = tmp35 | tmp39
tmp41 = tmp13 == tmp26
tmp42 = tmp41 == 0
tmp43 = tmp42.to(tl.int64)
tmp44 = (tmp43 != 0)
tmp45 = tmp40 | tmp44
tl.store(out_ptr0 + (x2), tmp14, xmask)
tl.store(out_ptr1 + (x2), tmp25, xmask)
tl.store(out_ptr2 + (x2), tmp45, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/x5/cx5uvbfethxuwwkwxf3xaualzhlcwqsz4jxqpbhintggaypzjwqf.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 4)
x4 = xindex
x5 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1)
tmp2 = tl.load(in_out_ptr0 + (x4), xmask)
tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tmp0 == 0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp1, tmp10, tmp9)
tl.store(in_out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py
# Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add_1 => add_1
# hidden_states_2 => var_mean
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_1, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/l3/cl3bnd5pv2p4ydfmlj74bv4mbiwr2ntrdvbubnjubetyhosmxag6.py
# Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add_1 => add_1
# hidden_states_2 => add_2, add_3, mul, mul_1, rsqrt, sub_1
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, primals_8, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf9, buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf8
del primals_8
buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_5.run(buf13, primals_3, buf14, buf15, 16, grid=grid(16), stream=stream0)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(buf13, primals_3, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0)
del buf14
del buf15
del primals_12
return (buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
class BertSelfAttention(nn.Module):
"""
self attention层
原理可看这篇博客: http://jalammar.github.io/illustrated-transformer/
"""
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_eps)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
"""
实现 self attention + Add & Norm
"""
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5,
layer_norm_eps=1)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = float('-inf')
tmp27 = tmp2 == tmp26
tmp28 = tmp27 == 0
tmp29 = tmp28.to(tl.int64)
tmp30 = tmp29 != 0
tmp31 = tmp5 == tmp26
tmp32 = tmp31 == 0
tmp33 = tmp32.to(tl.int64)
tmp34 = tmp33 != 0
tmp35 = tmp30 | tmp34
tmp36 = tmp9 == tmp26
tmp37 = tmp36 == 0
tmp38 = tmp37.to(tl.int64)
tmp39 = tmp38 != 0
tmp40 = tmp35 | tmp39
tmp41 = tmp13 == tmp26
tmp42 = tmp41 == 0
tmp43 = tmp42.to(tl.int64)
tmp44 = tmp43 != 0
tmp45 = tmp40 | tmp44
tl.store(out_ptr0 + x2, tmp14, xmask)
tl.store(out_ptr1 + x2, tmp25, xmask)
tl.store(out_ptr2 + x2, tmp45, xmask)
@triton.jit
def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 4
x4 = xindex
x5 = xindex % 64
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp2 = tl.load(in_out_ptr0 + x4, xmask)
tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last')
tmp1 = tmp0 == 0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp1, tmp10, tmp9)
tl.store(in_out_ptr0 + x4, tmp11, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool)
triton_poi_fused_1[grid(64)](buf5, primals_8, buf6, buf7, buf8, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_2[grid(256)](buf9, buf8, primals_8, buf6, buf7,
256, XBLOCK=128, num_warps=4, num_stages=1)
del buf8
del primals_8
buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf10, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_native_layer_norm_5[grid(16)](buf13, primals_3,
buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_6[grid(64)](buf13, primals_3,
buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf14
del buf15
del primals_12
return buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, (
16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4,
1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0
), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9
class BertSelfAttention(nn.Module):
"""
self attention层
原理可看这篇博客: http://jalammar.github.io/illustrated-transformer/
"""
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_eps)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttentionNew(nn.Module):
"""
实现 self attention + Add & Norm
"""
def __init__(self, config):
super(BertAttentionNew, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_0, input_1):
primals_1 = self.self.query.weight
primals_2 = self.self.query.bias
primals_4 = self.self.key.weight
primals_5 = self.self.key.bias
primals_6 = self.self.value.weight
primals_7 = self.self.value.bias
primals_9 = self.output.dense.weight
primals_10 = self.output.dense.bias
primals_11 = self.output.LayerNorm.weight
primals_12 = self.output.LayerNorm.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| techthiyanes/nlp-notebook | BertAttention | false | 16,582 | [
"MIT"
] | 136 | 0e5f4b75e635128d4056c89a6c65bea60c15e836 | https://github.com/techthiyanes/nlp-notebook/tree/0e5f4b75e635128d4056c89a6c65bea60c15e836 |
moving_avg | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lt/cltmx7l3jx75f5n76p3gf3jhkvk3mvpqrgcjaor5qn3d7ssnzsgz.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%repeat, %arg0_1, %repeat_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 6
x0 = xindex % 4
x2 = (xindex // 24)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (x0 + (4*((-1) + x1)) + (16*x2)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 6, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wz/cwzylg4eb3aqxqkrml6khdtgxujb4phx76ox5xkbrov2svlklot3.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_1 => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (24*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (24*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (24*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (24*x1)), xmask)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4), (24, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 96, grid=grid(96), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 3), (12, 1, 48, 4), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_1.run(buf0, buf1, 48, grid=grid(48), stream=stream0)
del buf0
return (reinterpret_tensor(buf1, (4, 3, 4), (12, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class moving_avg(nn.Module):
"""
Moving average block to highlight the trend of time series
"""
def __init__(self, kernel_size, stride):
super(moving_avg, self).__init__()
self.kernel_size = kernel_size
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride,
padding=0)
def forward(self, x):
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
x = torch.cat([front, x, end], dim=1)
x = self.avg(x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4, 'stride': 1}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 6
x0 = xindex % 4
x2 = xindex // 24
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (x0 + 4 * (-1 + x1) + 16 * x2), tmp9 & xmask,
other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 6, tl.int64)
tmp14 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 24 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 24 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 24 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 24 * x1), xmask)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4), (24, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(96)](arg0_1, buf0, 96, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 3), (12, 1, 48, 4), torch.float32)
triton_poi_fused_avg_pool2d_1[grid(48)](buf0, buf1, 48, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
return reinterpret_tensor(buf1, (4, 3, 4), (12, 4, 1), 0),
class moving_avgNew(nn.Module):
"""
Moving average block to highlight the trend of time series
"""
def __init__(self, kernel_size, stride):
super(moving_avgNew, self).__init__()
self.kernel_size = kernel_size
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride,
padding=0)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| thuml/Autoformer | moving_avg | false | 16,583 | [
"MIT"
] | 263 | 6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab | https://github.com/thuml/Autoformer/tree/6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab |
GeneratorBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wz/cwznwckxjekzcxlkjcgq2jhezeju57iivq5nhdjaezb3fvcxcau2.py
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# pow_1 => pow_1
# sigma_inv => rsqrt
# sum_1 => sum_1
# weights_1 => mul_2
# weights_2 => mul_3
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_3, %unsqueeze_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %rsqrt), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_1 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 9)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (36*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (36*x4)), tmp13, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mk/cmk6aftvifk5vtxtg2lvcslfabqnrroho76zhtuahfdwmzysuwiw.py
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, x_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_2 => add_2
# mul_4 => mul_4
# x_3 => add_1
# x_4 => gt, mul_5, where
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_6, %select), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %mul_4), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %unsqueeze_9), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_2, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_2, %mul_5), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (x4), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cy/ccy6r6r4kfbnktjfnh5b72535yhbr4r6gtvhdjage2wywifwywz3.py
# Topologically Sorted Source Nodes: [mul_9, x_8, add_5, x_9], Original ATen: [aten.mul, aten.add, aten.leaky_relu]
# Source node to ATen node mapping:
# add_5 => add_5
# mul_9 => mul_10
# x_8 => add_4
# x_9 => gt_1, mul_11, where_1
# Graph fragment:
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_16, %select_1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_6, %mul_10), kwargs = {})
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %unsqueeze_19), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_5, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_5, %mul_11), kwargs = {})
triton_poi_fused_add_leaky_relu_mul_3 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/tx/ctxhwgwusrrp4juzika66nlcnovoipxygsfsg3yjbj3mt4mcuato.py
# Topologically Sorted Source Nodes: [weights_9], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# weights_9 => mul_14
# Graph fragment:
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_23, %unsqueeze_22), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/q6/cq6266xbhcci7slv2fgafadqumjuzj6rlg3czend3eybumfoaegp.py
# Topologically Sorted Source Nodes: [add_6, rgb], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_6 => add_6
# rgb => gt_2, mul_15, where_2
# Graph fragment:
# %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %unsqueeze_26), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_6, 0), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 0.2), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_6, %mul_15), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_2, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (1, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_17, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf0 # reuse
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf3, primals_6, buf1, buf4, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_5], Original ATen: [aten.mul]
triton_poi_fused_mul_0.run(primals_9, buf6, 16, grid=grid(16), stream=stream0)
del primals_9
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, primals_4, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_10
buf8 = reinterpret_tensor(buf6, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf6 # reuse
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf8 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_5, pow_2, sum_2, add_3, sigma_inv_1, weights_6], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf9, primals_11, buf7, buf10, 16, 36, grid=grid(16), stream=stream0)
buf11 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, x_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2.run(buf11, primals_7, primals_1, primals_8, buf20, 256, grid=grid(256), stream=stream0)
del primals_7
del primals_8
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16, 4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf12, (1, 16, 4, 4), (256, 16, 4, 1))
buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf12 # reuse
# Topologically Sorted Source Nodes: [mul_9, x_8, add_5, x_9], Original ATen: [aten.mul, aten.add, aten.leaky_relu]
triton_poi_fused_add_leaky_relu_mul_3.run(buf13, primals_12, primals_1, primals_13, 256, grid=grid(256), stream=stream0)
del primals_12
del primals_13
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_10], Original ATen: [aten.mul]
triton_poi_fused_mul_0.run(primals_14, buf14, 16, grid=grid(16), stream=stream0)
del primals_14
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [style], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, primals_4, reinterpret_tensor(buf14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del buf14
del primals_15
buf16 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_9], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(primals_16, buf15, buf16, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf17, (1, 12, 4, 4), (192, 16, 4, 1))
buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf17 # reuse
buf19 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [add_6, rgb], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5.run(buf18, primals_17, buf19, 192, grid=grid(192), stream=stream0)
del primals_17
return (buf13, buf18, primals_4, primals_6, primals_11, primals_16, reinterpret_tensor(primals_1, (4, ), (1, ), 0), buf1, buf3, reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(primals_1, (4, ), (1, ), 4), buf7, buf9, reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(buf11, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf13, buf15, reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 1, 1), 0), buf19, buf20, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((3, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
from torch import nn
from typing import Tuple
import torch.nn.functional as F
import torch.utils.data
from typing import Optional
from typing import List
import torch.nn.functional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlock(nn.Module):
"""
<a id="style_block"></a>
### Style Block

---*$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).*---
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Optional[torch.Tensor]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tensor of shape `[batch_size, 1, height, width]`
"""
s = self.to_style(w)
x = self.conv(x, s)
if noise is not None:
x = x + self.scale_noise[None, :, None, None] * noise
return self.activation(x + self.bias[None, :, None, None])
class ToRGB(nn.Module):
"""
<a id="to_rgb"></a>
### To RGB

---*$A$ denotes a linear layer.*---
Generates an RGB image from a feature map using $1 imes 1$ convolution.
"""
def __init__(self, d_latent: 'int', features: 'int'):
"""
* `d_latent` is the dimensionality of $w$
* `features` is the number of features in the feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, features, bias=1.0)
self.conv = Conv2dWeightModulate(features, 3, kernel_size=1,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(3))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
"""
style = self.to_style(w)
x = self.conv(x, style)
return self.activation(x + self.bias[None, :, None, None])
class GeneratorBlock(nn.Module):
"""
<a id="generator_block"></a>
### Generator Block

---*$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is a single channel).
[`toRGB`](#to_rgb) also has a style modulation which is not shown in the diagram to keep it simple.*---
The generator block consists of two [style blocks](#style_block) ($3 imes 3$ convolutions with style modulation)
and an RGB output.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.style_block1 = StyleBlock(d_latent, in_features, out_features)
self.style_block2 = StyleBlock(d_latent, out_features, out_features)
self.to_rgb = ToRGB(d_latent, out_features)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tuple of two noise tensors of shape `[batch_size, 1, height, width]`
"""
x = self.style_block1(x, w, noise[0])
x = self.style_block2(x, w, noise[1])
rgb = self.to_rgb(x, w)
return x, rgb
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_latent': 4, 'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
from typing import Optional
from typing import List
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = rindex // 9
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 36 * x0), rmask & xmask, eviction_policy
='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), rmask & xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 36 * x4), tmp13, rmask & xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + x4, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tl.store(in_out_ptr0 + x4, tmp12, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_5(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (1,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_17, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf0
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf3, primals_6,
buf1, buf4, 16, 36, XBLOCK=8, num_warps=4, num_stages=1)
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_5, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4,
3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_0[grid(16)](primals_9, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_9
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, primals_4, reinterpret_tensor(buf6,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_10
buf8 = reinterpret_tensor(buf6, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf6
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf8
buf10 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf9, primals_11,
buf7, buf10, 16, 36, XBLOCK=8, num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2[grid(256)](
buf11, primals_7, primals_1, primals_8, buf20, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
del primals_8
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16,
4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 3,
3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=
(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias
=None)
assert_size_stride(buf12, (1, 16, 4, 4), (256, 16, 4, 1))
buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf12
triton_poi_fused_add_leaky_relu_mul_3[grid(256)](buf13, primals_12,
primals_1, primals_13, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_12
del primals_13
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_0[grid(16)](primals_14, buf14, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_14
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_15, primals_4, reinterpret_tensor(
buf14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del buf14
del primals_15
buf16 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch
.float32)
triton_poi_fused_mul_4[grid(48)](primals_16, buf15, buf16, 48,
XBLOCK=64, num_warps=1, num_stages=1)
buf17 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 16,
4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf16, (12, 4, 1,
1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(
1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None
)
assert_size_stride(buf17, (1, 12, 4, 4), (192, 16, 4, 1))
buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf17
buf19 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5[grid(192)](buf18,
primals_17, buf19, 192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_17
return (buf13, buf18, primals_4, primals_6, primals_11, primals_16,
reinterpret_tensor(primals_1, (4,), (1,), 0), buf1, buf3,
reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0),
reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(primals_1, (4,), (1,), 4), buf7, buf9,
reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(buf11, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf13,
buf15, reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 1, 1), 0),
buf19, buf20)
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights](#equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlock(nn.Module):
"""
<a id="style_block"></a>
### Style Block

---*$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).*---
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Optional[torch.Tensor]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tensor of shape `[batch_size, 1, height, width]`
"""
s = self.to_style(w)
x = self.conv(x, s)
if noise is not None:
x = x + self.scale_noise[None, :, None, None] * noise
return self.activation(x + self.bias[None, :, None, None])
class ToRGB(nn.Module):
"""
<a id="to_rgb"></a>
### To RGB

---*$A$ denotes a linear layer.*---
Generates an RGB image from a feature map using $1 imes 1$ convolution.
"""
def __init__(self, d_latent: 'int', features: 'int'):
"""
* `d_latent` is the dimensionality of $w$
* `features` is the number of features in the feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, features, bias=1.0)
self.conv = Conv2dWeightModulate(features, 3, kernel_size=1,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(3))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
"""
style = self.to_style(w)
x = self.conv(x, style)
return self.activation(x + self.bias[None, :, None, None])
class GeneratorBlockNew(nn.Module):
"""
<a id="generator_block"></a>
### Generator Block

---*$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is a single channel).
[`toRGB`](#to_rgb) also has a style modulation which is not shown in the diagram to keep it simple.*---
The generator block consists of two [style blocks](#style_block) ($3 imes 3$ convolutions with style modulation)
and an RGB output.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.style_block1 = StyleBlock(d_latent, in_features, out_features)
self.style_block2 = StyleBlock(d_latent, out_features, out_features)
self.to_rgb = ToRGB(d_latent, out_features)
def forward(self, input_0, input_1, input_2):
primals_7 = self.style_block1.scale_noise
primals_3 = self.style_block1.bias
primals_8 = self.style_block1.to_style.bias
primals_1 = self.style_block1.to_style.weight.weight
primals_6 = self.style_block1.conv.weight.weight
primals_12 = self.style_block2.scale_noise
primals_10 = self.style_block2.bias
primals_13 = self.style_block2.to_style.bias
primals_2 = self.style_block2.to_style.weight.weight
primals_11 = self.style_block2.conv.weight.weight
primals_17 = self.to_rgb.bias
primals_15 = self.to_rgb.to_style.bias
primals_4 = self.to_rgb.to_style.weight.weight
primals_16 = self.to_rgb.conv.weight.weight
primals_5 = input_0
primals_9 = input_1
primals_14 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0], output[1]
| techthiyanes/annotated_deep_learning_paper_implementations | GeneratorBlock | false | 16,584 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
BiasAdd | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lp/clpdykiyk36362w7fen67akood534pir74nvcoy7bcv25e3uagio.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf0, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
class BiasAdd(nn.Module):
def __init__(self, channels, opts, act='linear', alpha=None, gain=None,
lrmul=1):
"""
BiasAdd
"""
super(BiasAdd, self).__init__()
self.opts = opts
self.bias = torch.nn.Parameter(torch.zeros(channels, 1, 1) * lrmul)
self.act = act
self.alpha = alpha if alpha is not None else 0.2
self.gain = gain if gain is not None else 1.0
def forward(self, x):
x += self.bias
if self.act == 'linear':
pass
elif self.act == 'lrelu':
x = F.leaky_relu(x, self.alpha, inplace=True)
x = x * np.sqrt(2)
if self.gain != 1:
x = x * self.gain
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'opts': _mock_config()}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf0, buf0
class BiasAddNew(nn.Module):
def __init__(self, channels, opts, act='linear', alpha=None, gain=None,
lrmul=1):
"""
BiasAdd
"""
super(BiasAddNew, self).__init__()
self.opts = opts
self.bias = torch.nn.Parameter(torch.zeros(channels, 1, 1) * lrmul)
self.act = act
self.alpha = alpha if alpha is not None else 0.2
self.gain = gain if gain is not None else 1.0
def forward(self, input_0):
primals_1 = self.bias
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| tomguluson92/StyleGAN2_PyTorch | BiasAdd | false | 16,585 | [
"MIT"
] | 89 | 4ab7354c85cb986d2b77f5238c4a18c5efd1db1b | https://github.com/tomguluson92/StyleGAN2_PyTorch/tree/4ab7354c85cb986d2b77f5238c4a18c5efd1db1b |
GLU | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/mt/cmtjpvemkkbiebqpm4ufe2nfqpi4qmoeltheqp7bk22vzvgkl5lt.py
# Topologically Sorted Source Nodes: [sigmoid, x], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# x => mul
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr1 + (x0), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x0), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (512, 4), (4, 1))
assert_size_stride(primals_2, (512, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (512, 4), (4, 1))
assert_size_stride(primals_5, (512, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 512), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, x], Original ATen: [aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0.run(buf0, buf1, buf2, 32768, grid=grid(32768), stream=stream0)
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def initialize_weight(x):
nn.init.xavier_uniform_(x.weight)
if x.bias is not None:
nn.init.constant_(x.bias, 0)
class GLU(nn.Module):
def __init__(self, in_features, dropout_rate):
super(GLU, self).__init__()
self.sigm = nn.Sigmoid()
self.W = nn.Linear(in_features, out_features=512, bias=True)
self.V = nn.Linear(in_features, out_features=512, bias=True)
initialize_weight(self.W)
initialize_weight(self.V)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, x):
x = self.W(x) * self.sigm(self.V(x))
x = self.dropout(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'dropout_rate': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.load(in_ptr1 + x0, None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x0, tmp3, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (512, 4), (4, 1))
assert_size_stride(primals_2, (512,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (512, 4), (4, 1))
assert_size_stride(primals_5, (512,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 512), (1, 4),
0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0[grid(32768)](buf0, buf1, buf2, 32768,
XBLOCK=256, num_warps=4, num_stages=1)
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf1
def initialize_weight(x):
nn.init.xavier_uniform_(x.weight)
if x.bias is not None:
nn.init.constant_(x.bias, 0)
class GLUNew(nn.Module):
def __init__(self, in_features, dropout_rate):
super(GLUNew, self).__init__()
self.sigm = nn.Sigmoid()
self.W = nn.Linear(in_features, out_features=512, bias=True)
self.V = nn.Linear(in_features, out_features=512, bias=True)
initialize_weight(self.W)
initialize_weight(self.V)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input_0):
primals_1 = self.W.weight
primals_2 = self.W.bias
primals_4 = self.V.weight
primals_5 = self.V.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| tijsmaas/transformer-pytorch | GLU | false | 16,586 | [
"MIT"
] | 237 | bb517979d62c416f68d66325f51826bbbf4ba1bd | https://github.com/tijsmaas/transformer-pytorch/tree/bb517979d62c416f68d66325f51826bbbf4ba1bd |
SquaredErrorBayesRisk | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4m/c4mbktqccghizbaoiq4sp5jwan6vfxof7affhyhr32khwihn5hy7.py
# Topologically Sorted Source Nodes: [alpha, p], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# alpha => add
# p => div
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %unsqueeze), kwargs = {})
triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + ((4*x0) + (64*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp6 = tmp5 + tmp1
tmp7 = tmp4 + tmp6
tmp9 = tmp8 + tmp1
tmp10 = tmp7 + tmp9
tmp12 = tmp11 + tmp1
tmp13 = tmp10 + tmp12
tmp14 = tmp2 / tmp13
tl.store(out_ptr0 + (x3), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kb/ckb3ux77dgnn2btgpdwtpvd62ighfwj3upxaxlwlv65qub5yeef2.py
# Topologically Sorted Source Nodes: [sub, err, sub_1, mul, add_1, var, add_2, loss, mean], Original ATen: [aten.sub, aten.pow, aten.rsub, aten.mul, aten.add, aten.div, aten.sum, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# err => pow_1
# loss => sum_2
# mean => mean
# mul => mul
# sub => sub
# sub_1 => sub_1
# var => div_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %div), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_1, 1), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %div_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_2, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {})
triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 4
r2 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (4*r3), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r3), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + ((16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (1 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (2 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (3 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (1 + (4*r3)), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (1 + (4*r3)), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr2 + (4 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (5 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (6 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr2 + (7 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr0 + (2 + (4*r3)), None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr1 + (2 + (4*r3)), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (8 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (9 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp53 = tl.load(in_ptr2 + (10 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (11 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp63 = tl.load(in_ptr0 + (3 + (4*r3)), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + (4*r3)), None, eviction_policy='evict_last')
tmp69 = tl.load(in_ptr2 + (12 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr2 + (13 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (14 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp77 = tl.load(in_ptr2 + (15 + (16*r0) + (64*r2)), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp6 = tmp1 * tmp5
tmp8 = tmp7 + tmp4
tmp10 = tmp9 + tmp4
tmp11 = tmp8 + tmp10
tmp13 = tmp12 + tmp4
tmp14 = tmp11 + tmp13
tmp16 = tmp15 + tmp4
tmp17 = tmp14 + tmp16
tmp18 = tmp17 + tmp4
tmp19 = tmp6 / tmp18
tmp20 = tmp3 + tmp19
tmp23 = tmp21 - tmp22
tmp24 = tmp23 * tmp23
tmp25 = tmp4 - tmp22
tmp26 = tmp22 * tmp25
tmp28 = tmp27 + tmp4
tmp30 = tmp29 + tmp4
tmp31 = tmp28 + tmp30
tmp33 = tmp32 + tmp4
tmp34 = tmp31 + tmp33
tmp36 = tmp35 + tmp4
tmp37 = tmp34 + tmp36
tmp38 = tmp37 + tmp4
tmp39 = tmp26 / tmp38
tmp40 = tmp24 + tmp39
tmp41 = tmp20 + tmp40
tmp44 = tmp42 - tmp43
tmp45 = tmp44 * tmp44
tmp46 = tmp4 - tmp43
tmp47 = tmp43 * tmp46
tmp49 = tmp48 + tmp4
tmp51 = tmp50 + tmp4
tmp52 = tmp49 + tmp51
tmp54 = tmp53 + tmp4
tmp55 = tmp52 + tmp54
tmp57 = tmp56 + tmp4
tmp58 = tmp55 + tmp57
tmp59 = tmp58 + tmp4
tmp60 = tmp47 / tmp59
tmp61 = tmp45 + tmp60
tmp62 = tmp41 + tmp61
tmp65 = tmp63 - tmp64
tmp66 = tmp65 * tmp65
tmp67 = tmp4 - tmp64
tmp68 = tmp64 * tmp67
tmp70 = tmp69 + tmp4
tmp72 = tmp71 + tmp4
tmp73 = tmp70 + tmp72
tmp75 = tmp74 + tmp4
tmp76 = tmp73 + tmp75
tmp78 = tmp77 + tmp4
tmp79 = tmp76 + tmp78
tmp80 = tmp79 + tmp4
tmp81 = tmp68 / tmp80
tmp82 = tmp66 + tmp81
tmp83 = tmp62 + tmp82
tmp84 = tl.broadcast_to(tmp83, [XBLOCK, RBLOCK])
tmp86 = tl.sum(tmp84, 1)[:, None]
tmp87 = 64.0
tmp88 = tmp86 / tmp87
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp88, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [alpha, p], Original ATen: [aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [sub, err, sub_1, mul, add_1, var, add_2, loss, mean], Original ATen: [aten.sub, aten.pow, aten.rsub, aten.mul, aten.add, aten.div, aten.sum, aten.mean]
triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1.run(buf3, arg1_1, buf0, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
import torch.utils.data
import torch.nn.functional
import torch.autograd
class SquaredErrorBayesRisk(Module):
"""
<a id="SquaredErrorBayesRisk"></a>
## Bayes Risk with Squared Error Loss
Here the cost function is squared error,
$$\\sum_{k=1}^K (y_k - p_k)^2 = \\Vert \\mathbf{y} - \\mathbf{p} \\Vert_2^2$$
We integrate this cost over all $\\mathbf{p}$
egin{align}
\\mathcal{L}(\\Theta)
&= -\\log \\Bigg(
\\int
\\Big[ \\sum_{k=1}^K (y_k - p_k)^2 \\Big]
rac{1}{B( extcolor{orange}{\\mathbf{lpha}})}
\\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1}
d\\mathbf{p}
\\Bigg ) \\
&= \\sum_{k=1}^K \\mathbb{E} \\Big[ y_k^2 -2 y_k p_k + p_k^2 \\Big] \\
&= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big)
\\end{align}
Where $$\\mathbb{E}[p_k] = \\hat{p}_k = rac{ extcolor{orange}{lpha_k}}{S}$$
is the expected probability when sampled from the Dirichlet distribution
and $$\\mathbb{E}[p_k^2] = \\mathbb{E}[p_k]^2 + ext{Var}(p_k)$$
where
$$ ext{Var}(p_k) = rac{ extcolor{orange}{lpha_k}(S - extcolor{orange}{lpha_k})}{S^2 (S + 1)}
= rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1}$$
is the variance.
This gives,
egin{align}
\\mathcal{L}(\\Theta)
&= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\
&= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k]^2 + ext{Var}(p_k) \\Big) \\
&= \\sum_{k=1}^K \\Big( ig( y_k -\\mathbb{E}[p_k] ig)^2 + ext{Var}(p_k) \\Big) \\
&= \\sum_{k=1}^K \\Big( ( y_k -\\hat{p}_k)^2 + rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1} \\Big)
\\end{align}
This first part of the equation $ig(y_k -\\mathbb{E}[p_k]ig)^2$ is the error term and
the second part is the variance.
"""
def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'):
"""
* `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]`
* `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]`
"""
alpha = evidence + 1.0
strength = alpha.sum(dim=-1)
p = alpha / strength[:, None]
err = (target - p) ** 2
var = p * (1 - p) / (strength[:, None] + 1)
loss = (err + var).sum(dim=-1)
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + (4 * x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x0 + 64 * x2), xmask, eviction_policy
='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x0 + 64 * x2), xmask, eviction_policy
='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0 + 64 * x2), xmask,
eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp6 = tmp5 + tmp1
tmp7 = tmp4 + tmp6
tmp9 = tmp8 + tmp1
tmp10 = tmp7 + tmp9
tmp12 = tmp11 + tmp1
tmp13 = tmp10 + tmp12
tmp14 = tmp2 / tmp13
tl.store(out_ptr0 + x3, tmp14, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 4
r2 = rindex // 16
tmp0 = tl.load(in_ptr0 + 4 * r3, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r3, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (16 * r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr2 + (1 + 16 * r0 + 64 * r2), None, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr2 + (2 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (3 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (1 + 4 * r3), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (1 + 4 * r3), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr2 + (4 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (5 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (6 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp35 = tl.load(in_ptr2 + (7 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp42 = tl.load(in_ptr0 + (2 + 4 * r3), None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr1 + (2 + 4 * r3), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (8 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (9 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp53 = tl.load(in_ptr2 + (10 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (11 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp63 = tl.load(in_ptr0 + (3 + 4 * r3), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + 4 * r3), None, eviction_policy='evict_last')
tmp69 = tl.load(in_ptr2 + (12 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp71 = tl.load(in_ptr2 + (13 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (14 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp77 = tl.load(in_ptr2 + (15 + 16 * r0 + 64 * r2), None,
eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp6 = tmp1 * tmp5
tmp8 = tmp7 + tmp4
tmp10 = tmp9 + tmp4
tmp11 = tmp8 + tmp10
tmp13 = tmp12 + tmp4
tmp14 = tmp11 + tmp13
tmp16 = tmp15 + tmp4
tmp17 = tmp14 + tmp16
tmp18 = tmp17 + tmp4
tmp19 = tmp6 / tmp18
tmp20 = tmp3 + tmp19
tmp23 = tmp21 - tmp22
tmp24 = tmp23 * tmp23
tmp25 = tmp4 - tmp22
tmp26 = tmp22 * tmp25
tmp28 = tmp27 + tmp4
tmp30 = tmp29 + tmp4
tmp31 = tmp28 + tmp30
tmp33 = tmp32 + tmp4
tmp34 = tmp31 + tmp33
tmp36 = tmp35 + tmp4
tmp37 = tmp34 + tmp36
tmp38 = tmp37 + tmp4
tmp39 = tmp26 / tmp38
tmp40 = tmp24 + tmp39
tmp41 = tmp20 + tmp40
tmp44 = tmp42 - tmp43
tmp45 = tmp44 * tmp44
tmp46 = tmp4 - tmp43
tmp47 = tmp43 * tmp46
tmp49 = tmp48 + tmp4
tmp51 = tmp50 + tmp4
tmp52 = tmp49 + tmp51
tmp54 = tmp53 + tmp4
tmp55 = tmp52 + tmp54
tmp57 = tmp56 + tmp4
tmp58 = tmp55 + tmp57
tmp59 = tmp58 + tmp4
tmp60 = tmp47 / tmp59
tmp61 = tmp45 + tmp60
tmp62 = tmp41 + tmp61
tmp65 = tmp63 - tmp64
tmp66 = tmp65 * tmp65
tmp67 = tmp4 - tmp64
tmp68 = tmp64 * tmp67
tmp70 = tmp69 + tmp4
tmp72 = tmp71 + tmp4
tmp73 = tmp70 + tmp72
tmp75 = tmp74 + tmp4
tmp76 = tmp73 + tmp75
tmp78 = tmp77 + tmp4
tmp79 = tmp76 + tmp78
tmp80 = tmp79 + tmp4
tmp81 = tmp68 / tmp80
tmp82 = tmp66 + tmp81
tmp83 = tmp62 + tmp82
tmp84 = tl.broadcast_to(tmp83, [XBLOCK, RBLOCK])
tmp86 = tl.sum(tmp84, 1)[:, None]
tmp87 = 64.0
tmp88 = tmp86 / tmp87
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp88, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1[grid(1)](buf3,
arg1_1, buf0, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del buf0
return buf3,
class SquaredErrorBayesRiskNew(Module):
"""
<a id="SquaredErrorBayesRisk"></a>
## Bayes Risk with Squared Error Loss
Here the cost function is squared error,
$$\\sum_{k=1}^K (y_k - p_k)^2 = \\Vert \\mathbf{y} - \\mathbf{p} \\Vert_2^2$$
We integrate this cost over all $\\mathbf{p}$
egin{align}
\\mathcal{L}(\\Theta)
&= -\\log \\Bigg(
\\int
\\Big[ \\sum_{k=1}^K (y_k - p_k)^2 \\Big]
rac{1}{B( extcolor{orange}{\\mathbf{lpha}})}
\\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1}
d\\mathbf{p}
\\Bigg ) \\
&= \\sum_{k=1}^K \\mathbb{E} \\Big[ y_k^2 -2 y_k p_k + p_k^2 \\Big] \\
&= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big)
\\end{align}
Where $$\\mathbb{E}[p_k] = \\hat{p}_k = rac{ extcolor{orange}{lpha_k}}{S}$$
is the expected probability when sampled from the Dirichlet distribution
and $$\\mathbb{E}[p_k^2] = \\mathbb{E}[p_k]^2 + ext{Var}(p_k)$$
where
$$ ext{Var}(p_k) = rac{ extcolor{orange}{lpha_k}(S - extcolor{orange}{lpha_k})}{S^2 (S + 1)}
= rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1}$$
is the variance.
This gives,
egin{align}
\\mathcal{L}(\\Theta)
&= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\
&= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k]^2 + ext{Var}(p_k) \\Big) \\
&= \\sum_{k=1}^K \\Big( ig( y_k -\\mathbb{E}[p_k] ig)^2 + ext{Var}(p_k) \\Big) \\
&= \\sum_{k=1}^K \\Big( ( y_k -\\hat{p}_k)^2 + rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1} \\Big)
\\end{align}
This first part of the equation $ig(y_k -\\mathbb{E}[p_k]ig)^2$ is the error term and
the second part is the variance.
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | SquaredErrorBayesRisk | false | 16,587 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
series_decomp | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/te/ctewxgnp3lhk7tphupxjzgvltd6too7ssyeqjrw6g6jgcpfxzctd.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%repeat, %arg0_1, %repeat_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (8*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (x0 + (4*((-1) + x1)) + (8*x2)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 4, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr0 + (4 + x0 + (8*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pk/cpkn3bgnsy3dppoopoc6rp7olei4o245lri5pr5dgfnj4i7ikjmh.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_1 => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mu/cmuymhtkqbi67hzpmhp4twcizfguzwrjmcim5nvjf2ixscgodjht.py
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# res => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %permute_1), kwargs = {})
triton_poi_fused_sub_2 = async_compile.triton('triton_poi_fused_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 8)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 2, 4), (8, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.sub]
triton_poi_fused_sub_2.run(arg0_1, buf1, buf2, 32, grid=grid(32), stream=stream0)
del arg0_1
return (buf2, reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 2, 4), (8, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class moving_avg(nn.Module):
"""
Moving average block to highlight the trend of time series
"""
def __init__(self, kernel_size, stride):
super(moving_avg, self).__init__()
self.kernel_size = kernel_size
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride,
padding=0)
def forward(self, x):
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
x = torch.cat([front, x, end], dim=1)
x = self.avg(x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
return x
class series_decomp(nn.Module):
"""
Series decomposition block
"""
def __init__(self, kernel_size):
super(series_decomp, self).__init__()
self.moving_avg = moving_avg(kernel_size, stride=1)
def forward(self, x):
moving_mean = self.moving_avg(x)
res = x - moving_mean
return res, moving_mean
def get_inputs():
return [torch.rand([4, 2, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 8 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (x0 + 4 * (-1 + x1) + 8 * x2), tmp9 & xmask,
other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 4, tl.int64)
tmp14 = tl.load(in_ptr0 + (4 + x0 + 8 * x2), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 8
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 - tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 2, 4), (8, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
triton_poi_fused_avg_pool2d_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
triton_poi_fused_sub_2[grid(32)](arg0_1, buf1, buf2, 32, XBLOCK=32,
num_warps=1, num_stages=1)
del arg0_1
return buf2, reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0)
class moving_avg(nn.Module):
"""
Moving average block to highlight the trend of time series
"""
def __init__(self, kernel_size, stride):
super(moving_avg, self).__init__()
self.kernel_size = kernel_size
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride,
padding=0)
def forward(self, x):
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
x = torch.cat([front, x, end], dim=1)
x = self.avg(x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
return x
class series_decompNew(nn.Module):
"""
Series decomposition block
"""
def __init__(self, kernel_size):
super(series_decompNew, self).__init__()
self.moving_avg = moving_avg(kernel_size, stride=1)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1]
| thuml/Autoformer | series_decomp | false | 16,588 | [
"MIT"
] | 263 | 6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab | https://github.com/thuml/Autoformer/tree/6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab |
DilatedNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py
# Topologically Sorted Source Nodes: [conv2d, fst], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# fst => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [2, 2], [2, 2], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ux/cuxgiwuszechecyc4fzfkfjhnrh56ejhadc6qhttydnrjl6eqczg.py
# Topologically Sorted Source Nodes: [conv2d_3, fourth, add, add_1, add_2, add_3], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# conv2d_3 => convolution_3
# fourth => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [16, 16], [16, 16], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %relu), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %relu_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %relu_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %relu_3), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp3 = tl.load(in_ptr2 + (x3), xmask)
tmp5 = tl.load(in_ptr3 + (x3), xmask)
tmp7 = tl.load(in_ptr4 + (x3), xmask)
tmp8 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp6 + tmp11
tmp13 = 0.0
tmp14 = tmp11 <= tmp13
tl.store(out_ptr0 + (x3), tmp12, xmask)
tl.store(out_ptr1 + (x3), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, fst], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, snd], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(8, 8), dilation=(8, 8), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, thrd], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(16, 16), dilation=(16, 16), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_3, fourth, add, add_1, add_2, add_3], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_convolution_relu_threshold_backward_1.run(primals_3, buf1, buf3, buf5, buf6, primals_9, buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf6
del primals_9
return (buf7, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torchvision.transforms.functional as F
from torch.nn import functional as F
from torch import nn
class DilatedNet(nn.Module):
def __init__(self, filters):
super().__init__()
self.filters = filters
self.conv1 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=2, dilation=2)
self.conv2 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=4, dilation=4)
self.conv3 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=8, dilation=8)
self.conv4 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=16, dilation=16)
def forward(self, x):
fst = F.relu(self.conv1(x))
snd = F.relu(self.conv2(fst))
thrd = F.relu(self.conv3(snd))
fourth = F.relu(self.conv4(thrd))
return x + fst + snd + thrd + fourth
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'filters': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr2 + x3, xmask)
tmp5 = tl.load(in_ptr3 + x3, xmask)
tmp7 = tl.load(in_ptr4 + x3, xmask)
tmp8 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp6 + tmp11
tmp13 = 0.0
tmp14 = tmp11 <= tmp13
tl.store(out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr1 + x3, tmp14, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(4, 4), dilation=(4, 4), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(256)](buf3, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(8, 8), dilation=(8, 8), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_0[grid(256)](buf5, primals_7, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(16, 16), dilation=(16, 16), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(256)](
primals_3, buf1, buf3, buf5, buf6, primals_9, buf7, buf8, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf6
del primals_9
return (buf7, primals_1, primals_3, primals_4, primals_6, primals_8,
buf1, buf3, buf5, buf8)
class DilatedNetNew(nn.Module):
def __init__(self, filters):
super().__init__()
self.filters = filters
self.conv1 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=2, dilation=2)
self.conv2 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=4, dilation=4)
self.conv3 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=8, dilation=8)
self.conv4 = nn.Conv2d(self.filters[-1], self.filters[-1], 3,
padding=16, dilation=16)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| tilacyn/dsb2018_topcoders | DilatedNet | false | 16,589 | [
"MIT"
] | 413 | e0f95ef70bc062d4dea321d2aa73231a9538cd63 | https://github.com/tilacyn/dsb2018_topcoders/tree/e0f95ef70bc062d4dea321d2aa73231a9538cd63 |
my_Layernorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py
# Topologically Sorted Source Nodes: [x_hat], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x_hat => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py
# Topologically Sorted Source Nodes: [x_hat], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x_hat => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/c6/cc6bquvrwn4byrcqha47sf3vkoxgdn67xthiyhl7b4736izdb4dj.py
# Topologically Sorted Source Nodes: [bias, sub], Original ATen: [aten.repeat, aten.sub]
# Source node to ATen node mapping:
# bias => repeat
# sub => sub_1
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [1, 4, 1]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %repeat), kwargs = {})
triton_poi_fused_repeat_sub_2 = async_compile.triton('triton_poi_fused_repeat_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [x_hat], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_hat], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, grid=grid(64), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, sub], Original ATen: [aten.repeat, aten.sub]
triton_poi_fused_repeat_sub_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
del buf2
return (buf3, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class my_Layernorm(nn.Module):
"""
Special designed layernorm for the seasonal part
"""
def __init__(self, channels):
super(my_Layernorm, self).__init__()
self.layernorm = nn.LayerNorm(channels)
def forward(self, x):
x_hat = self.layernorm(x)
bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
return x_hat - bias
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_repeat_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x3, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_repeat_sub_2[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf2
return buf3, primals_3
class my_LayernormNew(nn.Module):
"""
Special designed layernorm for the seasonal part
"""
def __init__(self, channels):
super(my_LayernormNew, self).__init__()
self.layernorm = nn.LayerNorm(channels)
def forward(self, input_0):
primals_1 = self.layernorm.weight
primals_2 = self.layernorm.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| thuml/Autoformer | my_Layernorm | false | 16,590 | [
"MIT"
] | 263 | 6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab | https://github.com/thuml/Autoformer/tree/6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab |
Minibatch_stddev_layer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/kd/ckdiefxtppglvtsgjgaajhzhyzrxhhjcgisaniawn5rbjhy5zgvd.py
# Topologically Sorted Source Nodes: [mean, y_1, pow_1, y_2, add, y_3, y_4, y_5, y_6], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat]
# Source node to ATen node mapping:
# add => add
# mean => mean
# pow_1 => pow_1
# y_1 => sub
# y_2 => mean_1
# y_3 => sqrt
# y_4 => mean_2
# y_5 => mean_3
# y_6 => repeat
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [0]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [2, 3, 4], True), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_2, [2]), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%mean_3, [4, 1, 4, 4]), kwargs = {})
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tmp29 = 1.0
tmp30 = tmp28 / tmp29
tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [XBLOCK, RBLOCK])), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yi/cyidf2yj3fms5jdxlfe7fdijzfj6p5a5q2qxo4llkuxnpqh6fj5o.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %repeat], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [mean, y_1, pow_1, y_2, add, y_3, y_4, y_5, y_6], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0.run(arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Minibatch_stddev_layer(nn.Module):
"""
Minibatch standard deviation layer. (D_stylegan2)
"""
def __init__(self, group_size=4, num_new_features=1):
super().__init__()
self.group_size = group_size
self.num_new_features = num_new_features
def forward(self, x):
n, c, h, w = x.shape
group_size = min(n, self.group_size)
y = x.view(group_size, -1, self.num_new_features, c // self.
num_new_features, h, w)
y = y - torch.mean(y, dim=0, keepdim=True)
y = torch.mean(y ** 2, dim=0)
y = torch.sqrt(y + 1e-08)
y = torch.mean(y, dim=[2, 3, 4], keepdim=True)
y = torch.mean(y, dim=2)
y = y.repeat(group_size, 1, h, w)
return torch.cat([x, y], 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = rindex // 16
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tmp29 = 1.0
tmp30 = tmp28 / tmp29
tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [XBLOCK, RBLOCK]),
tmp30, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64)
get_raw_stream(0)
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0[grid(1)](arg0_1,
buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0)
triton_poi_fused_cat_1[grid(256)](arg0_1, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf3,
class Minibatch_stddev_layerNew(nn.Module):
"""
Minibatch standard deviation layer. (D_stylegan2)
"""
def __init__(self, group_size=4, num_new_features=1):
super().__init__()
self.group_size = group_size
self.num_new_features = num_new_features
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| tomguluson92/StyleGAN2_PyTorch | Minibatch_stddev_layer | false | 16,591 | [
"MIT"
] | 89 | 4ab7354c85cb986d2b77f5238c4a18c5efd1db1b | https://github.com/tomguluson92/StyleGAN2_PyTorch/tree/4ab7354c85cb986d2b77f5238c4a18c5efd1db1b |
LearnedPositionalEmbeddings | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/26/c26shuqxjhfilaoens27tm25ij3y3e5ctdjjfr7fuwafpcfebmdi.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %select), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (5000, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((5000, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
class LearnedPositionalEmbeddings(Module):
"""
<a id="LearnedPositionalEmbeddings"></a>
## Add parameterized positional encodings
This adds learned positional embeddings to patch embeddings.
"""
def __init__(self, d_model: 'int', max_len: 'int'=5000):
"""
* `d_model` is the transformer embeddings size
* `max_len` is the maximum number of patches
"""
super().__init__()
self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1,
d_model), requires_grad=True)
def forward(self, x: 'torch.Tensor'):
"""
* `x` is the patch embeddings of shape `[patches, batch_size, d_model]`
"""
pe = self.positional_encodings[x.shape[0]]
return x + pe
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (5000, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf0,
class LearnedPositionalEmbeddingsNew(Module):
"""
<a id="LearnedPositionalEmbeddings"></a>
## Add parameterized positional encodings
This adds learned positional embeddings to patch embeddings.
"""
def __init__(self, d_model: 'int', max_len: 'int'=5000):
"""
* `d_model` is the transformer embeddings size
* `max_len` is the maximum number of patches
"""
super().__init__()
self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1,
d_model), requires_grad=True)
def forward(self, input_0):
primals_1 = self.positional_encodings
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | LearnedPositionalEmbeddings | false | 16,592 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
Aggregator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/to/ctoyzdhnandcesxf3taaspouwk6elycbpsvcjgls7pcwh2pzzjfg.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 64
x0 = xindex % 64
x2 = (xindex // 4096)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.0625
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yv/cyvvzwqfsuedhtdcuo3yqbwxs7zit7ejzgfq3gembsjiztf3doaw.py
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 65536, grid=grid(65536), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_3, buf3, 65536, grid=grid(65536), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torchvision.transforms.functional as F
from torch.nn import functional as F
from torch import nn
class Aggregator(nn.Module):
def __init__(self, in_channels, mid_channels, upsample_factor):
super().__init__()
self.upsample = nn.Upsample(scale_factor=2 ** upsample_factor)
self.conv = nn.Conv2d(in_channels, mid_channels, 3, padding=1)
def forward(self, x):
x = self.upsample(x)
x = F.relu(self.conv(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'mid_channels': 4, 'upsample_factor': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 64
x0 = xindex % 64
x2 = xindex // 4096
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.0625
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), None,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, None)
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(65536)](primals_1, buf0,
65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(65536)](
buf2, primals_3, buf3, 65536, XBLOCK=512, num_warps=4, num_stages=1
)
del primals_3
return buf2, primals_2, buf0, buf3
class AggregatorNew(nn.Module):
def __init__(self, in_channels, mid_channels, upsample_factor):
super().__init__()
self.upsample = nn.Upsample(scale_factor=2 ** upsample_factor)
self.conv = nn.Conv2d(in_channels, mid_channels, 3, padding=1)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| tilacyn/dsb2018_topcoders | Aggregator | false | 16,593 | [
"MIT"
] | 413 | e0f95ef70bc062d4dea321d2aa73231a9538cd63 | https://github.com/tilacyn/dsb2018_topcoders/tree/e0f95ef70bc062d4dea321d2aa73231a9538cd63 |
AdaptiveMaxPool2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ju/cjufs2s6kpppx2j7dlywrgo5ev3w5gafdyq6omiw6xrpch72eive.py
# Topologically Sorted Source Nodes: [adaptive_max_pool2d, gt], Original ATen: [aten.adaptive_max_pool2d, aten.gt]
# Source node to ATen node mapping:
# adaptive_max_pool2d => adaptive_max_pool2d
# gt => gt
# Graph fragment:
# %adaptive_max_pool2d : [num_users=2] = call_function[target=torch.ops.aten.adaptive_max_pool2d.default](args = (%arg0_1, [4, 4]), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%getitem, 0), kwargs = {})
triton_poi_fused_adaptive_max_pool2d_gt_0 = async_compile.triton('triton_poi_fused_adaptive_max_pool2d_gt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_adaptive_max_pool2d_gt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_gt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jd/cjdkkc7dnkw7542bfmhd6kpfaq53672wcboiwj6vm5uysgviskdd.py
# Topologically Sorted Source Nodes: [trace], Original ATen: [aten.index]
# Source node to ATen node mapping:
# trace => index
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [%getitem_1]), kwargs = {})
triton_poi_fused_index_1 = async_compile.triton('triton_poi_fused_index_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = (xindex // 64)
x4 = xindex % 1024
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (x5), tmp1, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (16, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [adaptive_max_pool2d, gt], Original ATen: [aten.adaptive_max_pool2d, aten.gt]
stream0 = get_raw_stream(0)
triton_poi_fused_adaptive_max_pool2d_gt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4, 4, 4, 4), (4096, 1024, 256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [trace], Original ATen: [aten.index]
triton_poi_fused_index_1.run(arg0_1, arg1_1, buf1, 16384, grid=grid(16384), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((16, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class _SpikeAdaptiveMaxPoolNd(nn.Module):
def __init__(self, output_size):
super(_SpikeAdaptiveMaxPoolNd, self).__init__()
self.output_size = output_size
self.return_indices = True
def reset_state(self):
pass
class AdaptiveMaxPool2d(_SpikeAdaptiveMaxPoolNd):
"""Simple port of PyTorch AdaptiveMaxPool2d with small adjustment for spiking operations.
Currently pooling only supports operations on floating point numbers, thus it casts the uint8 spikes to floats back and forth.
The trace of the 'maximum' spike is also returned. In case of multiple spikes within pooling window, returns first spike of
the window (top left corner).
"""
def forward(self, x, trace):
x = x
x, idx = F.adaptive_max_pool2d(x, self.output_size, self.return_indices
)
trace = trace[idx]
return x > 0, trace
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([16, 4, 4, 4])]
def get_init_inputs():
return [[], {'output_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_gt_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex // 64
x4 = xindex % 1024
x5 = xindex
tl.load(in_ptr0 + x3, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last')
tl.store(out_ptr0 + x5, tmp1, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (16, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_adaptive_max_pool2d_gt_0[grid(256)](arg0_1, buf0,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4, 4, 4, 4), (4096, 1024, 256,
64, 16, 4, 1), torch.float32)
triton_poi_fused_index_1[grid(16384)](arg0_1, arg1_1, buf1, 16384,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1
class _SpikeAdaptiveMaxPoolNd(nn.Module):
def __init__(self, output_size):
super(_SpikeAdaptiveMaxPoolNd, self).__init__()
self.output_size = output_size
self.return_indices = True
def reset_state(self):
pass
class AdaptiveMaxPool2dNew(_SpikeAdaptiveMaxPoolNd):
"""Simple port of PyTorch AdaptiveMaxPool2d with small adjustment for spiking operations.
Currently pooling only supports operations on floating point numbers, thus it casts the uint8 spikes to floats back and forth.
The trace of the 'maximum' spike is also returned. In case of multiple spikes within pooling window, returns first spike of
the window (top left corner).
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
| tomking/PySNN | AdaptiveMaxPool2d | false | 16,594 | [
"MIT"
] | 175 | c99ba6cd28a518dc07cab765acac9b69ac6fe36b | https://github.com/tomking/PySNN/tree/c99ba6cd28a518dc07cab765acac9b69ac6fe36b |
TokenEmbedding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wf/cwfgpodivarq2gzz7nodlok35jybiut5djlrlgyaw23yzzih2tt7.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.copy]
# Source node to ATen node mapping:
# pad => copy
# Graph fragment:
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1, %slice_2), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%empty, %copy, 2, 1, 5), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %slice_7, 2, 0, 1), kwargs = {})
# %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %slice_12, 2, 5, 6), kwargs = {})
triton_poi_fused_copy_0 = async_compile.triton('triton_poi_fused_copy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_copy_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 24
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y0 = yindex % 6
x2 = xindex
y1 = (yindex // 6)
tmp0 = y0
tmp1 = tl.full([1, 1], 5, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.broadcast_to((-4) + y0, [XBLOCK, YBLOCK])
tmp4 = tl.full([1, 1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = tl.broadcast_to(y0, [XBLOCK, YBLOCK])
tmp8 = tmp7 >= tmp4
tmp9 = tmp7 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tmp10 & tmp6
tmp12 = tl.load(in_ptr0 + ((-4) + x2 + (4*y0) + (16*y1)), tmp11 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp13 = float("nan")
tmp14 = tl.where(tmp10, tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp6, tmp14, tmp15)
tmp17 = tmp3 >= tmp4
tmp18 = tmp3 < tmp1
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp2
tmp21 = tl.load(in_ptr0 + ((-20) + x2 + (4*y0) + (16*y1)), tmp20 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.where(tmp19, tmp21, tmp13)
tmp23 = tl.where(tmp5, tmp16, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp2, tmp23, tmp24)
tmp26 = tmp0 < tmp4
tmp27 = tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK])
tmp28 = tmp27 >= tmp4
tmp29 = tmp27 < tmp1
tmp30 = tmp28 & tmp29
tmp31 = tmp30 & tmp26
tmp32 = tl.load(in_ptr0 + (12 + x2 + (4*y0) + (16*y1)), tmp31 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tl.where(tmp30, tmp32, tmp13)
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp26, tmp33, tmp34)
tmp36 = tmp0 >= tmp4
tmp37 = tmp0 < tmp1
tmp38 = tmp36 & tmp37
tmp39 = tl.load(in_ptr0 + ((-4) + x2 + (4*y0) + (16*y1)), tmp38 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.where(tmp38, tmp39, tmp13)
tmp41 = tl.where(tmp26, tmp35, tmp40)
tmp42 = tl.where(tmp2, tmp25, tmp41)
tl.store(out_ptr0 + (y0 + (6*x2) + (24*y1)), tmp42, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 6), (24, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.copy]
stream0 = get_raw_stream(0)
triton_poi_fused_copy_0.run(primals_1, buf1, 24, 4, grid=grid(24, 4), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class TokenEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(TokenEmbedding, self).__init__()
padding = 1 if torch.__version__ >= '1.5.0' else 2
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
kernel_size=3, padding=padding, padding_mode='circular', bias=False
)
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_in',
nonlinearity='leaky_relu')
def forward(self, x):
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'c_in': 4, 'd_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_copy_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 24
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y0 = yindex % 6
x2 = xindex
y1 = yindex // 6
tmp0 = y0
tmp1 = tl.full([1, 1], 5, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.broadcast_to(-4 + y0, [XBLOCK, YBLOCK])
tmp4 = tl.full([1, 1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = tl.broadcast_to(y0, [XBLOCK, YBLOCK])
tmp8 = tmp7 >= tmp4
tmp9 = tmp7 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tmp10 & tmp6
tmp12 = tl.load(in_ptr0 + (-4 + x2 + 4 * y0 + 16 * y1), tmp11 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp13 = float('nan')
tmp14 = tl.where(tmp10, tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp6, tmp14, tmp15)
tmp17 = tmp3 >= tmp4
tmp18 = tmp3 < tmp1
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp2
tmp21 = tl.load(in_ptr0 + (-20 + x2 + 4 * y0 + 16 * y1), tmp20 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.where(tmp19, tmp21, tmp13)
tmp23 = tl.where(tmp5, tmp16, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp2, tmp23, tmp24)
tmp26 = tmp0 < tmp4
tmp27 = tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK])
tmp28 = tmp27 >= tmp4
tmp29 = tmp27 < tmp1
tmp30 = tmp28 & tmp29
tmp31 = tmp30 & tmp26
tmp32 = tl.load(in_ptr0 + (12 + x2 + 4 * y0 + 16 * y1), tmp31 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tl.where(tmp30, tmp32, tmp13)
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp26, tmp33, tmp34)
tmp36 = tmp0 >= tmp4
tmp37 = tmp0 < tmp1
tmp38 = tmp36 & tmp37
tmp39 = tl.load(in_ptr0 + (-4 + x2 + 4 * y0 + 16 * y1), tmp38 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.where(tmp38, tmp39, tmp13)
tmp41 = tl.where(tmp26, tmp35, tmp40)
tmp42 = tl.where(tmp2, tmp25, tmp41)
tl.store(out_ptr0 + (y0 + 6 * x2 + 24 * y1), tmp42, xmask & ymask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 6), (24, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_copy_0[grid(24, 4)](primals_1, buf1, 24, 4, XBLOCK
=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf1
class TokenEmbeddingNew(nn.Module):
def __init__(self, c_in, d_model):
super(TokenEmbeddingNew, self).__init__()
padding = 1 if torch.__version__ >= '1.5.0' else 2
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
kernel_size=3, padding=padding, padding_mode='circular', bias=False
)
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_in',
nonlinearity='leaky_relu')
def forward(self, input_0):
primals_2 = self.tokenConv.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| thuml/Autoformer | TokenEmbedding | false | 16,595 | [
"MIT"
] | 263 | 6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab | https://github.com/thuml/Autoformer/tree/6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab |
ActNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/n3/cn3wlek7bl5jirlp73pieiarvuadnzcb6uy5z3ieztq35hnq6trv.py
# Topologically Sorted Source Nodes: [exp, mul, z], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# z => add
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %exp), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_exp_mul_0 = async_compile.triton('triton_poi_fused_add_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hj/chjctndcct3uy5zpfj56qun4jpqjq3jp7qekxbult5tkzhebqoca.py
# Topologically Sorted Source Nodes: [log_det], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# log_det => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%primals_1,), kwargs = {})
triton_per_fused_sum_1 = async_compile.triton('triton_per_fused_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, mul, z], Original ATen: [aten.exp, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_exp_mul_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [log_det], Original ATen: [aten.sum]
triton_per_fused_sum_1.run(primals_1, buf1, 1, 4, grid=grid(1), stream=stream0)
return (buf0, buf1, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ActNorm(nn.Module):
"""
ActNorm layer.
[Kingma and Dhariwal, 2018.]
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
self.mu = nn.Parameter(torch.zeros(dim, dtype=torch.float))
self.log_sigma = nn.Parameter(torch.zeros(dim, dtype=torch.float))
def forward(self, x):
z = x * torch.exp(self.log_sigma) + self.mu
log_det = torch.sum(self.log_sigma)
return z, log_det
def inverse(self, z):
x = (z - self.mu) / torch.exp(self.log_sigma)
log_det = -torch.sum(self.log_sigma)
return x, log_det
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_exp_mul_0[grid(256)](primals_2, primals_1,
primals_3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_sum_1[grid(1)](primals_1, buf1, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
return buf0, buf1, primals_1, primals_2
class ActNormNew(nn.Module):
"""
ActNorm layer.
[Kingma and Dhariwal, 2018.]
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
self.mu = nn.Parameter(torch.zeros(dim, dtype=torch.float))
self.log_sigma = nn.Parameter(torch.zeros(dim, dtype=torch.float))
def inverse(self, z):
x = (z - self.mu) / torch.exp(self.log_sigma)
log_det = -torch.sum(self.log_sigma)
return x, log_det
def forward(self, input_0):
primals_1 = self.mu
primals_3 = self.log_sigma
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| tonyduan/hybrid-models | ActNorm | false | 16,596 | [
"MIT"
] | 238 | a29bff4756d8306cd24515f2fb825763a71c3d90 | https://github.com/tonyduan/hybrid-models/tree/a29bff4756d8306cd24515f2fb825763a71c3d90 |
GatedMaskedConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lk/clkvmfnc5ppj6ffcl2v3tvac6pbvz3y7mizzrdi65zokiejjhua3.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 5
x0 = xindex % 6
x2 = (xindex // 30)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = (-1) + x0
tmp4 = tmp3 >= tmp1
tmp5 = tl.full([1], 4, tl.int64)
tmp6 = tmp3 < tmp5
tmp7 = tmp2 & tmp4
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp8 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pj/cpjc45ogatjtexy7be6gijiwluzdhthxjvcnnqmgqlinbpzrsmbi.py
# Topologically Sorted Source Nodes: [conv2d, pad_1], Original ATen: [aten.convolution, aten.constant_pad_nd]
# Source node to ATen node mapping:
# conv2d => convolution
# pad_1 => constant_pad_nd_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %constant_pad_nd_1 : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [0, 0, 1, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_convolution_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 5
x4 = (xindex // 20)
x5 = xindex % 20
x2 = (xindex // 20) % 8
x6 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + ((-4) + x5 + (16*x4)), tmp2 & xmask, other=0.0)
tmp4 = tl.load(in_ptr1 + (x2), tmp2 & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tmp3 + tmp4
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp2, tmp5, tmp6)
tl.store(out_ptr0 + (x6), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/es/ceshmhutmeo5xl2yl3dxwxrpje5njiwcfwwoj52wrkr3mcl5lhub.py
# Topologically Sorted Source Nodes: [tanh, sigmoid, v_map_out], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# tanh => tanh
# v_map_out => mul
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%slice_6,), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%slice_8,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16) % 4
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (20*x1) + (160*x2)), xmask)
tmp2 = tl.load(in_ptr0 + (80 + x0 + (20*x1) + (160*x2)), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp1 * tmp3
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4b/c4bwymcjfsik2yzrr5le4v2j3mroi4pfhlquggnmpgqwjxzshdbs.py
# Topologically Sorted Source Nodes: [pad_2], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad_2 => constant_pad_nd_2
# Graph fragment:
# %constant_pad_nd_2 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_6, [1, 0, 0, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_3 = async_compile.triton('triton_poi_fused_constant_pad_nd_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = (-1) + x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1)), tmp2 & xmask, other=0.0)
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/md/cmdddio6ujcwbhy6hgzu6huywjuoh3klsp37w5ygk2v4gwwrdoev.py
# Topologically Sorted Source Nodes: [tanh_1, sigmoid_1, h_out_2], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# h_out_2 => mul_1
# sigmoid_1 => sigmoid_1
# tanh_1 => tanh_1
# Graph fragment:
# %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%slice_10,), kwargs = {})
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%slice_12,), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh_1, %sigmoid_1), kwargs = {})
triton_poi_fused_mul_sigmoid_tanh_4 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x4 = xindex % 64
x1 = (xindex // 16) % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (64 + x4 + (128*x2)), xmask)
tmp9 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (64 + x4 + (128*x2)), xmask)
tmp12 = tl.load(in_ptr3 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tmp10 = tmp8 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp7 * tmp15
tl.store(out_ptr0 + (x3), tmp7, xmask)
tl.store(out_ptr1 + (x3), tmp15, xmask)
tl.store(out_ptr2 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ti/ctitm3fmik35mxgmabf5id22xrqrvhqyrxpmktt2s2eg77n2c7xt.py
# Topologically Sorted Source Nodes: [h_map_out, h_map_out_1], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# h_map_out => convolution_3
# h_map_out_1 => add_1
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_1, %primals_9, %primals_10, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_3, %primals_6), kwargs = {})
triton_poi_fused_add_convolution_5 = async_compile.triton('triton_poi_fused_add_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 2, 3), (24, 6, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (8, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (8, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (8, 4, 1, 2), (8, 2, 2, 1))
assert_size_stride(primals_8, (8, ), (1, ))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 6), (120, 30, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 480, grid=grid(480), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4, 4), (128, 16, 4, 1))
buf2 = empty_strided_cuda((4, 8, 5, 4), (160, 20, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, pad_1], Original ATen: [aten.convolution, aten.constant_pad_nd]
triton_poi_fused_constant_pad_nd_convolution_1.run(buf1, primals_3, buf2, 640, grid=grid(640), stream=stream0)
del buf1
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, sigmoid, v_map_out], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_tanh_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [vh], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(buf2, (4, 8, 4, 4), (160, 20, 4, 1), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 8, 4, 4), (128, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad_2], Original ATen: [aten.constant_pad_nd]
triton_poi_fused_constant_pad_nd_3.run(primals_6, buf5, 320, grid=grid(320), stream=stream0)
# Topologically Sorted Source Nodes: [h_out], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 8, 4, 4), (128, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh_1, sigmoid_1, h_out_2], Original ATen: [aten.tanh, aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_tanh_4.run(buf6, primals_8, buf4, primals_5, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf4
del buf6
del primals_5
del primals_8
# Topologically Sorted Source Nodes: [h_map_out], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [h_map_out, h_map_out_1], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_5.run(buf11, primals_10, primals_6, 256, grid=grid(256), stream=stream0)
del primals_10
del primals_6
return (buf3, buf11, primals_2, primals_4, primals_7, primals_9, buf0, reinterpret_tensor(buf2, (4, 8, 4, 4), (160, 20, 4, 1), 0), buf5, buf7, buf8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 2, 3), (24, 6, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((8, 4, 1, 2), (8, 2, 2, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
class GatedMaskedConv2d(nn.Module):
def __init__(self, in_dim, out_dim=None, kernel_size=3, mask='B'):
super(GatedMaskedConv2d, self).__init__()
if out_dim is None:
out_dim = in_dim
self.dim = out_dim
self.size = kernel_size
self.mask = mask
pad = self.size // 2
self.v_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(pad + 1,
self.size))
self.v_pad1 = nn.ConstantPad2d((pad, pad, pad, 0), 0)
self.v_pad2 = nn.ConstantPad2d((0, 0, 1, 0), 0)
self.vh_conv = nn.Conv2d(2 * self.dim, 2 * self.dim, kernel_size=1)
self.h_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(1, pad + 1))
self.h_pad1 = nn.ConstantPad2d((self.size // 2, 0, 0, 0), 0)
self.h_pad2 = nn.ConstantPad2d((1, 0, 0, 0), 0)
self.h_conv_res = nn.Conv2d(self.dim, self.dim, 1)
def forward(self, v_map, h_map):
v_out = self.v_pad2(self.v_conv(self.v_pad1(v_map)))[:, :, :-1, :]
v_map_out = F.tanh(v_out[:, :self.dim]) * F.sigmoid(v_out[:, self.dim:]
)
vh = self.vh_conv(v_out)
h_out = self.h_conv(self.h_pad1(h_map))
if self.mask == 'A':
h_out = self.h_pad2(h_out)[:, :, :, :-1]
h_out = h_out + vh
h_out = F.tanh(h_out[:, :self.dim]) * F.sigmoid(h_out[:, self.dim:])
h_map_out = self.h_conv_res(h_out)
if self.mask == 'B':
h_map_out = h_map_out + h_map
return v_map_out, h_map_out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 5
x0 = xindex % 6
x2 = xindex // 30
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = -1 + x0
tmp4 = tmp3 >= tmp1
tmp5 = tl.full([1], 4, tl.int64)
tmp6 = tmp3 < tmp5
tmp7 = tmp2 & tmp4
tmp8 = tmp7 & tmp6
tmp9 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp8 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_constant_pad_nd_convolution_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 5
x4 = xindex // 20
x5 = xindex % 20
x2 = xindex // 20 % 8
x6 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + (-4 + x5 + 16 * x4), tmp2 & xmask, other=0.0)
tmp4 = tl.load(in_ptr1 + x2, tmp2 & xmask, eviction_policy='evict_last',
other=0.0)
tmp5 = tmp3 + tmp4
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp2, tmp5, tmp6)
tl.store(out_ptr0 + x6, tmp7, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 4
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 20 * x1 + 160 * x2), xmask)
tmp2 = tl.load(in_ptr0 + (80 + x0 + 20 * x1 + 160 * x2), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp1 * tmp3
tl.store(out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_constant_pad_nd_3(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = -1 + x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1), tmp2 & xmask, other=0.0)
tl.store(out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x4 = xindex % 64
x1 = xindex // 16 % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (64 + x4 + 128 * x2), xmask)
tmp9 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (64 + x4 + 128 * x2), xmask)
tmp12 = tl.load(in_ptr3 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tmp10 = tmp8 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp7 * tmp15
tl.store(out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr1 + x3, tmp15, xmask)
tl.store(out_ptr2 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 2, 3), (24, 6, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (8, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (8,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (8, 4, 1, 2), (8, 2, 2, 1))
assert_size_stride(primals_8, (8,), (1,))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 6), (120, 30, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(480)](primals_1, buf0, 480,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4, 4), (128, 16, 4, 1))
buf2 = empty_strided_cuda((4, 8, 5, 4), (160, 20, 4, 1), torch.float32)
triton_poi_fused_constant_pad_nd_convolution_1[grid(640)](buf1,
primals_3, buf2, 640, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_tanh_2[grid(256)](buf2, buf3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(buf2, (4, 8, 4,
4), (160, 20, 4, 1), 0), primals_4, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf4, (4, 8, 4, 4), (128, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
triton_poi_fused_constant_pad_nd_3[grid(320)](primals_6, buf5, 320,
XBLOCK=256, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 8, 4, 4), (128, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_tanh_4[grid(256)](buf6, primals_8,
buf4, primals_5, buf7, buf8, buf9, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf4
del buf6
del primals_5
del primals_8
buf10 = extern_kernels.convolution(buf9, primals_9, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10
del buf10
triton_poi_fused_add_convolution_5[grid(256)](buf11, primals_10,
primals_6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_10
del primals_6
return (buf3, buf11, primals_2, primals_4, primals_7, primals_9, buf0,
reinterpret_tensor(buf2, (4, 8, 4, 4), (160, 20, 4, 1), 0), buf5,
buf7, buf8, buf9)
class GatedMaskedConv2dNew(nn.Module):
def __init__(self, in_dim, out_dim=None, kernel_size=3, mask='B'):
super(GatedMaskedConv2dNew, self).__init__()
if out_dim is None:
out_dim = in_dim
self.dim = out_dim
self.size = kernel_size
self.mask = mask
pad = self.size // 2
self.v_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(pad + 1,
self.size))
self.v_pad1 = nn.ConstantPad2d((pad, pad, pad, 0), 0)
self.v_pad2 = nn.ConstantPad2d((0, 0, 1, 0), 0)
self.vh_conv = nn.Conv2d(2 * self.dim, 2 * self.dim, kernel_size=1)
self.h_conv = nn.Conv2d(in_dim, 2 * self.dim, kernel_size=(1, pad + 1))
self.h_pad1 = nn.ConstantPad2d((self.size // 2, 0, 0, 0), 0)
self.h_pad2 = nn.ConstantPad2d((1, 0, 0, 0), 0)
self.h_conv_res = nn.Conv2d(self.dim, self.dim, 1)
def forward(self, input_0, input_1):
primals_2 = self.v_conv.weight
primals_3 = self.v_conv.bias
primals_4 = self.vh_conv.weight
primals_5 = self.vh_conv.bias
primals_7 = self.h_conv.weight
primals_8 = self.h_conv.bias
primals_9 = self.h_conv_res.weight
primals_10 = self.h_conv_res.bias
primals_1 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0], output[1]
| tom-pelsmaeker/vae-lagging-encoder | GatedMaskedConv2d | false | 16,597 | [
"MIT"
] | 173 | b190239019a94c85858d188a0853886eb48ce4be | https://github.com/tom-pelsmaeker/vae-lagging-encoder/tree/b190239019a94c85858d188a0853886eb48ce4be |
MaxPool2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/el/celxe74tyyqfbi4jfjnsckgl5t4splv2pudvtrmxrgkiifbz7rkd.py
# Topologically Sorted Source Nodes: [max_pool2d, gt, trace], Original ATen: [aten.max_pool2d_with_indices, aten.gt, aten.index]
# Source node to ATen node mapping:
# gt => gt
# max_pool2d => _low_memory_max_pool2d_with_offsets
# trace => index
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [4, 4], [4, 4], [0, 0], [1, 1], False), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%getitem, 0), kwargs = {})
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%view, [%view_1]), kwargs = {})
triton_poi_fused_gt_index_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_gt_index_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_index_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gt_index_max_pool2d_with_indices_0(in_ptr0, in_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 > tmp0
tmp32 = tl.full([1], 1, tl.int8)
tmp33 = tl.full([1], 0, tl.int8)
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp3 > tmp2
tmp36 = tl.full([1], 2, tl.int8)
tmp37 = tl.where(tmp35, tmp36, tmp34)
tmp38 = tmp5 > tmp4
tmp39 = tl.full([1], 3, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp37)
tmp41 = tmp7 > tmp6
tmp42 = tl.full([1], 4, tl.int8)
tmp43 = tl.where(tmp41, tmp42, tmp40)
tmp44 = tmp9 > tmp8
tmp45 = tl.full([1], 5, tl.int8)
tmp46 = tl.where(tmp44, tmp45, tmp43)
tmp47 = tmp11 > tmp10
tmp48 = tl.full([1], 6, tl.int8)
tmp49 = tl.where(tmp47, tmp48, tmp46)
tmp50 = tmp13 > tmp12
tmp51 = tl.full([1], 7, tl.int8)
tmp52 = tl.where(tmp50, tmp51, tmp49)
tmp53 = tmp15 > tmp14
tmp54 = tl.full([1], 8, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp52)
tmp56 = tmp17 > tmp16
tmp57 = tl.full([1], 9, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp19 > tmp18
tmp60 = tl.full([1], 10, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp21 > tmp20
tmp63 = tl.full([1], 11, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp23 > tmp22
tmp66 = tl.full([1], 12, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp25 > tmp24
tmp69 = tl.full([1], 13, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp27 > tmp26
tmp72 = tl.full([1], 14, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp29 > tmp28
tmp75 = tl.full([1], 15, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = 0.0
tmp78 = tmp30 > tmp77
tmp79 = tl.full([1], 4, tl.int32)
tmp80 = tl.where((tmp76 < 0) != (tmp79 < 0), tl.where(tmp76 % tmp79 != 0, tmp76 // tmp79 - 1, tmp76 // tmp79), tmp76 // tmp79)
tmp81 = tmp80 * tmp79
tmp82 = tmp76 - tmp81
tmp83 = tl.full([1], 0, tl.int64)
tmp84 = tmp83 + tmp80
tmp85 = tmp83 + tmp82
tmp86 = tl.full([1], 4, tl.int64)
tmp87 = tmp84 * tmp86
tmp88 = tmp87 + tmp85
tmp89 = tl.full([XBLOCK], 256, tl.int32)
tmp90 = tmp88 + tmp89
tmp91 = tmp88 < 0
tmp92 = tl.where(tmp91, tmp90, tmp88)
tl.device_assert(((0 <= tmp92) & (tmp92 < 256)) | ~(xmask), "index out of bounds: 0 <= tmp92 < 256")
tmp94 = tl.load(in_ptr1 + (tmp92), xmask, eviction_policy='evict_last')
tl.store(out_ptr2 + (x0), tmp78, xmask)
tl.store(out_ptr3 + (x0), tmp94, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
buf3 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d, gt, trace], Original ATen: [aten.max_pool2d_with_indices, aten.gt, aten.index]
stream0 = get_raw_stream(0)
triton_poi_fused_gt_index_max_pool2d_with_indices_0.run(arg0_1, arg1_1, buf2, buf3, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
return (buf2, reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class _SpikeMaxPoolNd(nn.Module):
def __init__(self, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False):
super(_SpikeMaxPoolNd, self).__init__()
self.kernel_size = kernel_size
self.stride = stride or kernel_size
self.padding = padding
self.dilation = dilation
self.ceil_mode = ceil_mode
self.return_indices = True
def reset_state(self):
pass
class MaxPool2d(_SpikeMaxPoolNd):
"""Simple port of PyTorch MaxPool2d with small adjustment for spiking operations.
Currently pooling only supports operations on floating point numbers, thus it casts the uint8 spikes to floats back and forth.
The trace of the 'maximum' spike is also returned. In case of multiple spikes within pooling window, returns first spike of
the window (top left corner).
"""
def forward(self, x, trace):
x = x
x, idx = F.max_pool2d(x, self.kernel_size, self.stride, self.
padding, self.dilation, self.ceil_mode, self.return_indices)
trace = trace.view(-1)[idx.view(-1)]
trace = trace.view(idx.shape)
return x > 0, trace
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_gt_index_max_pool2d_with_indices_0(in_ptr0, in_ptr1,
out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 > tmp0
tmp32 = tl.full([1], 1, tl.int8)
tmp33 = tl.full([1], 0, tl.int8)
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp3 > tmp2
tmp36 = tl.full([1], 2, tl.int8)
tmp37 = tl.where(tmp35, tmp36, tmp34)
tmp38 = tmp5 > tmp4
tmp39 = tl.full([1], 3, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp37)
tmp41 = tmp7 > tmp6
tmp42 = tl.full([1], 4, tl.int8)
tmp43 = tl.where(tmp41, tmp42, tmp40)
tmp44 = tmp9 > tmp8
tmp45 = tl.full([1], 5, tl.int8)
tmp46 = tl.where(tmp44, tmp45, tmp43)
tmp47 = tmp11 > tmp10
tmp48 = tl.full([1], 6, tl.int8)
tmp49 = tl.where(tmp47, tmp48, tmp46)
tmp50 = tmp13 > tmp12
tmp51 = tl.full([1], 7, tl.int8)
tmp52 = tl.where(tmp50, tmp51, tmp49)
tmp53 = tmp15 > tmp14
tmp54 = tl.full([1], 8, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp52)
tmp56 = tmp17 > tmp16
tmp57 = tl.full([1], 9, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp19 > tmp18
tmp60 = tl.full([1], 10, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp21 > tmp20
tmp63 = tl.full([1], 11, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp23 > tmp22
tmp66 = tl.full([1], 12, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp25 > tmp24
tmp69 = tl.full([1], 13, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp27 > tmp26
tmp72 = tl.full([1], 14, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp29 > tmp28
tmp75 = tl.full([1], 15, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = 0.0
tmp78 = tmp30 > tmp77
tmp79 = tl.full([1], 4, tl.int32)
tmp80 = tl.where((tmp76 < 0) != (tmp79 < 0), tl.where(tmp76 % tmp79 !=
0, tmp76 // tmp79 - 1, tmp76 // tmp79), tmp76 // tmp79)
tmp81 = tmp80 * tmp79
tmp82 = tmp76 - tmp81
tmp83 = tl.full([1], 0, tl.int64)
tmp84 = tmp83 + tmp80
tmp85 = tmp83 + tmp82
tmp86 = tl.full([1], 4, tl.int64)
tmp87 = tmp84 * tmp86
tmp88 = tmp87 + tmp85
tmp89 = tl.full([XBLOCK], 256, tl.int32)
tmp90 = tmp88 + tmp89
tmp91 = tmp88 < 0
tmp92 = tl.where(tmp91, tmp90, tmp88)
tl.device_assert((0 <= tmp92) & (tmp92 < 256) | ~xmask,
'index out of bounds: 0 <= tmp92 < 256')
tmp94 = tl.load(in_ptr1 + tmp92, xmask, eviction_policy='evict_last')
tl.store(out_ptr2 + x0, tmp78, xmask)
tl.store(out_ptr3 + x0, tmp94, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
buf3 = empty_strided_cuda((16,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_gt_index_max_pool2d_with_indices_0[grid(16)](arg0_1,
arg1_1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf2, reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0)
class _SpikeMaxPoolNd(nn.Module):
def __init__(self, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False):
super(_SpikeMaxPoolNd, self).__init__()
self.kernel_size = kernel_size
self.stride = stride or kernel_size
self.padding = padding
self.dilation = dilation
self.ceil_mode = ceil_mode
self.return_indices = True
def reset_state(self):
pass
class MaxPool2dNew(_SpikeMaxPoolNd):
"""Simple port of PyTorch MaxPool2d with small adjustment for spiking operations.
Currently pooling only supports operations on floating point numbers, thus it casts the uint8 spikes to floats back and forth.
The trace of the 'maximum' spike is also returned. In case of multiple spikes within pooling window, returns first spike of
the window (top left corner).
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
| tomking/PySNN | MaxPool2d | false | 16,598 | [
"MIT"
] | 175 | c99ba6cd28a518dc07cab765acac9b69ac6fe36b | https://github.com/tomking/PySNN/tree/c99ba6cd28a518dc07cab765acac9b69ac6fe36b |
DisAlignFastRCNNOutputLayers | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jt/cjt3jbpkn43oz2wvjw7bykbd6f6up6xa6tqayp3o3kx3seitgexv.py
# Topologically Sorted Source Nodes: [aligned_scores], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# aligned_scores => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_1, %view], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.sigmoid(tmp5)
tmp7 = tl.load(in_ptr1 + ((5*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tl.load(in_ptr2 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tmp7 * tmp8
tmp10 = tl.load(in_ptr3 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tmp6 * tmp11
tmp13 = 1.0
tmp14 = tmp13 - tmp6
tmp15 = tmp14 * tmp7
tmp16 = tmp12 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tmp20 = tl.full([1], 5, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tl.load(in_ptr1 + (4 + (5*x1)), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tl.where(tmp4, tmp18, tmp22)
tl.store(out_ptr0 + (x2), tmp23, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (5, 4), (4, 1))
assert_size_stride(primals_3, (5, ), (1, ))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [scores], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (4, 5), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_4
del primals_5
buf3 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [aligned_scores], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf2, buf0, primals_6, primals_7, buf3, 20, grid=grid(20), stream=stream0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proposal_deltas], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, primals_1, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
return (buf3, buf4, primals_1, primals_6, primals_7, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
def cat(tensors, dim=0):
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
class DisAlignFastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(self, input_size, num_classes, cls_agnostic_bbox_reg,
box_dim=4):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int): number of foreground classes
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
box_dim (int): the dimension of bounding boxes.
Example box dimensions: 4 for regular XYXY boxes and 5 for rotated XYWHA boxes
"""
super(DisAlignFastRCNNOutputLayers, self).__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
self.logit_scale = nn.Parameter(torch.ones(num_classes))
self.logit_bias = nn.Parameter(torch.zeros(num_classes))
self.confidence_layer = nn.Linear(input_size, 1)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.confidence_layer.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for layer in [self.cls_score, self.confidence_layer, self.bbox_pred]:
nn.init.constant_(layer.bias, 0)
def forward(self, x):
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
scores = self.cls_score(x)
confidence = self.confidence_layer(x).sigmoid()
scores_tmp = confidence * (scores[:, :-1] * self.logit_scale + self
.logit_bias)
scores_tmp = scores_tmp + (1 - confidence) * scores[:, :-1]
aligned_scores = cat([scores_tmp, scores[:, -1].view(-1, 1)], dim=1)
proposal_deltas = self.bbox_pred(x)
return aligned_scores, proposal_deltas
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'num_classes': 4, 'cls_agnostic_bbox_reg': 4}
]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
import torch.nn as nn
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tl.sigmoid(tmp5)
tmp7 = tl.load(in_ptr1 + (5 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp8 = tl.load(in_ptr2 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp9 = tmp7 * tmp8
tmp10 = tl.load(in_ptr3 + x0, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tmp6 * tmp11
tmp13 = 1.0
tmp14 = tmp13 - tmp6
tmp15 = tmp14 * tmp7
tmp16 = tmp12 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp22 = tl.load(in_ptr1 + (4 + 5 * x1), tmp19 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp23 = tl.where(tmp4, tmp18, tmp22)
tl.store(out_ptr0 + x2, tmp23, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (5, 4), (4, 1))
assert_size_stride(primals_3, (5,), (1,))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(
primals_2, (4, 5), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(
primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_4
del primals_5
buf3 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(20)](buf2, buf0, primals_6, primals_7,
buf3, 20, XBLOCK=32, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, primals_1, reinterpret_tensor(
primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
return buf3, buf4, primals_1, primals_6, primals_7, buf0, buf2
def cat(tensors, dim=0):
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
class DisAlignFastRCNNOutputLayersNew(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(self, input_size, num_classes, cls_agnostic_bbox_reg,
box_dim=4):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int): number of foreground classes
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
box_dim (int): the dimension of bounding boxes.
Example box dimensions: 4 for regular XYXY boxes and 5 for rotated XYWHA boxes
"""
super(DisAlignFastRCNNOutputLayersNew, self).__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
self.logit_scale = nn.Parameter(torch.ones(num_classes))
self.logit_bias = nn.Parameter(torch.zeros(num_classes))
self.confidence_layer = nn.Linear(input_size, 1)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.confidence_layer.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for layer in [self.cls_score, self.confidence_layer, self.bbox_pred]:
nn.init.constant_(layer.bias, 0)
def forward(self, input_0):
primals_6 = self.logit_scale
primals_7 = self.logit_bias
primals_2 = self.cls_score.weight
primals_3 = self.cls_score.bias
primals_1 = self.bbox_pred.weight
primals_9 = self.bbox_pred.bias
primals_4 = self.confidence_layer.weight
primals_5 = self.confidence_layer.bias
primals_8 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
| tonysy/cvpods | DisAlignFastRCNNOutputLayers | false | 16,599 | [
"Apache-2.0"
] | 548 | e322d7842ca0e34b1ef6237ea6d350633efc793a | https://github.com/tonysy/cvpods/tree/e322d7842ca0e34b1ef6237ea6d350633efc793a |
RNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_combined => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ih/cihkol22ojnmrk724q4odcm6ilz575wmbnulie74gzdcgue24tib.py
# Topologically Sorted Source Nodes: [output_combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# output_combined => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%addmm, %addmm_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gd/cgdq755g3clp3t5icrbudwx4ir4xygtoz6ug4jo2euegtyg5mdnp.py
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_3 => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j5/cj5hwj7ockkcleq56wmrpwxavcu7lllqodtnsxnd6sbzznn7lu6j.py
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_3 => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_3 = async_compile.triton('triton_poi_fused__log_softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_combined], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf0, reinterpret_tensor(primals_6, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0) # alias
# Topologically Sorted Source Nodes: [output_combined], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf3, 16, grid=grid(16), stream=stream0)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0)
buf7 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_3.run(buf6, buf7, 16, grid=grid(16), stream=stream0)
del buf6
return (buf7, buf1, buf0, buf4, buf7, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, all_categories,
n_categories, all_letters, n_letters):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.all_categories = all_categories
self.n_categories = n_categories
self.all_letters = all_letters
self.n_letters = n_letters
self.i2h = nn.Linear(n_categories + input_size + hidden_size,
hidden_size)
self.i2o = nn.Linear(n_categories + input_size + hidden_size,
output_size)
self.o2o = nn.Linear(hidden_size + output_size, output_size)
self.dropout = nn.Dropout(0.1)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, category, input_tensor, hidden):
input_combined = torch.cat((category, input_tensor, hidden), 1)
hidden = self.i2h(input_combined)
output = self.i2o(input_combined)
output_combined = torch.cat((hidden, output), 1)
output = self.o2o(output_combined)
output = self.dropout(output)
output = self.softmax(output)
return output, hidden
def init_hidden(self):
return Variable(torch.zeros(1, self.hidden_size))
@staticmethod
def gen_input_tensor(all_letters, n_letters, line):
tensor = torch.zeros(len(line), 1, n_letters)
for li in range(len(line)):
letter = line[li]
tensor[li][0][all_letters.find(letter)] = 1
return tensor
@staticmethod
def gen_category_tensor(all_categories, n_categories, category):
li = all_categories.index(category)
tensor = torch.zeros(1, n_categories)
tensor[0][li] = 1
return tensor
def sample(self, category, start_letter='A'):
category_tensor = Variable(self.gen_category_tensor(self.
all_categories, self.n_categories, category))
input_tensor = Variable(self.gen_input_tensor(self.all_letters,
self.n_letters, start_letter))
hidden = self.init_hidden()
output_name = start_letter
max_length = 20
for i in range(max_length):
output, hidden = self.forward(category_tensor, input_tensor[0],
hidden)
_topv, topi = output.data.topk(1)
topi = topi[0][0]
if topi == self.n_letters - 1:
break
else:
letter = self.all_letters[topi]
output_name += letter
input_tensor = Variable(self.gen_input_tensor(self.all_letters,
self.n_letters, letter))
return output_name
def samples(self, category, start_letters='ABC'):
for start_letter in start_letters:
yield self.sample(category, start_letter)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4,
'all_categories': 4, 'n_categories': 4, 'all_letters': 4,
'n_letters': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4)
extern_kernels.addmm(primals_7, buf0, reinterpret_tensor(primals_6,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0)
triton_poi_fused_cat_1[grid(16)](buf1, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf7 = buf5
del buf5
triton_poi_fused__log_softmax_3[grid(16)](buf6, buf7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf6
return buf7, buf1, buf0, buf4, buf7, primals_8
class RNNNew(nn.Module):
def __init__(self, input_size, hidden_size, output_size, all_categories,
n_categories, all_letters, n_letters):
super(RNNNew, self).__init__()
self.hidden_size = hidden_size
self.all_categories = all_categories
self.n_categories = n_categories
self.all_letters = all_letters
self.n_letters = n_letters
self.i2h = nn.Linear(n_categories + input_size + hidden_size,
hidden_size)
self.i2o = nn.Linear(n_categories + input_size + hidden_size,
output_size)
self.o2o = nn.Linear(hidden_size + output_size, output_size)
self.dropout = nn.Dropout(0.1)
self.softmax = nn.LogSoftmax(dim=1)
def init_hidden(self):
return Variable(torch.zeros(1, self.hidden_size))
@staticmethod
def gen_input_tensor(all_letters, n_letters, line):
tensor = torch.zeros(len(line), 1, n_letters)
for li in range(len(line)):
letter = line[li]
tensor[li][0][all_letters.find(letter)] = 1
return tensor
@staticmethod
def gen_category_tensor(all_categories, n_categories, category):
li = all_categories.index(category)
tensor = torch.zeros(1, n_categories)
tensor[0][li] = 1
return tensor
def sample(self, category, start_letter='A'):
category_tensor = Variable(self.gen_category_tensor(self.
all_categories, self.n_categories, category))
input_tensor = Variable(self.gen_input_tensor(self.all_letters,
self.n_letters, start_letter))
hidden = self.init_hidden()
output_name = start_letter
max_length = 20
for i in range(max_length):
output, hidden = self.forward(category_tensor, input_tensor[0],
hidden)
_topv, topi = output.data.topk(1)
topi = topi[0][0]
if topi == self.n_letters - 1:
break
else:
letter = self.all_letters[topi]
output_name += letter
input_tensor = Variable(self.gen_input_tensor(self.all_letters,
self.n_letters, letter))
return output_name
def samples(self, category, start_letters='ABC'):
for start_letter in start_letters:
yield self.sample(category, start_letter)
def forward(self, input_0, input_1, input_2):
primals_4 = self.i2h.weight
primals_5 = self.i2h.bias
primals_6 = self.i2o.weight
primals_7 = self.i2o.bias
primals_8 = self.o2o.weight
primals_9 = self.o2o.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
| tom-kuchler/vhive | RNN | false | 16,600 | [
"MIT"
] | 138 | ae1f2f5920e7607e9902ed1060bda62b56e332ac | https://github.com/tom-kuchler/vhive/tree/ae1f2f5920e7607e9902ed1060bda62b56e332ac |
Upsample2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/s5/cs53ve6ff5smmuu5zxn6uwnvgsi32uuuvewmis3iy7oejdcvopvs.py
# Topologically Sorted Source Nodes: [y_5], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# y_5 => constant_pad_nd_1
# Graph fragment:
# %constant_pad_nd_1 : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%view_2, [0, 0, 1, 0, 1, 0, 0, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 72) % 2
x1 = (xindex // 8) % 9
x0 = xindex % 8
x3 = (xindex // 144)
x7 = xindex
tmp0 = (-1) + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = (-1) + x1
tmp4 = tmp3 >= tmp1
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (((-1) + x1) % 2)
tmp7 = tmp6 >= tmp1
tmp8 = (-1) + (x0 % 2)
tmp9 = tmp8 >= tmp1
tmp10 = tmp7 & tmp9
tmp11 = tmp10 & tmp5
tmp12 = tl.load(in_ptr0 + ((4*((((-1) + x1) // 2) % 4)) + (16*x3) + (x0 // 2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp5, tmp12, tmp13)
tl.store(out_ptr0 + (x7), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qb/cqbibvks2cjhauc3nur2g3ih7ql3ix5qhuh7srxpiit2lwdgiiiw.py
# Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# y_9 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_3, %arg1_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 8], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 128
xnumel = 8
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = (yindex // 8)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (144*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (8*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zd/czdxbktkc7fglcerxemcjxwvuh5ktql4jw5x5gevz5yr4c7hicmg.py
# Topologically Sorted Source Nodes: [y_11], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
# Source node to ATen node mapping:
# y_11 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_4, add_5, add_6, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6
# Graph fragment:
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_5, torch.int64), kwargs = {})
# %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.625), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 4, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = x0
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 + tmp2
tmp17 = tmp16 * tmp4
tmp18 = tmp17 - tmp2
tmp19 = triton_helpers.maximum(tmp18, tmp7)
tmp20 = tmp19.to(tl.int32)
tmp21 = tmp20 + tmp10
tmp22 = triton_helpers.minimum(tmp21, tmp12)
tmp23 = tl.load(in_ptr0 + (tmp22 + (5*tmp13) + (25*x2)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (tmp20 + (5*tmp13) + (25*x2)), xmask, eviction_policy='evict_last')
tmp25 = tmp23 - tmp24
tmp26 = tmp20.to(tl.float32)
tmp27 = tmp19 - tmp26
tmp28 = triton_helpers.maximum(tmp27, tmp7)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp25 * tmp30
tmp32 = tl.load(in_ptr0 + (tmp20 + (5*tmp9) + (25*x2)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp22 + (5*tmp9) + (25*x2)), xmask, eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp30
tmp36 = tmp32 + tmp35
tmp37 = tmp24 + tmp31
tmp38 = tmp37 - tmp36
tmp39 = tmp9.to(tl.float32)
tmp40 = tmp8 - tmp39
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = triton_helpers.minimum(tmp41, tmp29)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tl.store(in_out_ptr0 + (x3), tmp44, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 4, 4), (16, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 2, 9, 8), (144, 72, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_5], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 2304, grid=grid(2304), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((16, 1, 8, 8), (64, 1, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf0, buf1, 128, 8, grid=grid(128, 8), stream=stream0)
del buf0
# Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (16, 1, 5, 5), (25, 1, 5, 1))
del arg1_1
buf3 = reinterpret_tensor(buf1, (16, 1, 8, 8), (64, 1024, 8, 1), 0); del buf1 # reuse
buf5 = buf3; del buf3 # reuse
buf6 = reinterpret_tensor(buf5, (16, 1, 8, 8), (64, 1, 8, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [y_11], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2.run(buf6, buf2, 1024, grid=grid(1024), stream=stream0)
del buf2
return (reinterpret_tensor(buf6, (4, 4, 8, 8), (256, 64, 8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def _setup_kernel(k):
k = np.asarray(k, dtype=np.float32)
if k.ndim == 1:
k = np.outer(k, k)
k /= np.sum(k)
assert k.ndim == 2
assert k.shape[0] == k.shape[1]
return k
class Upsample2d(nn.Module):
def __init__(self, opts, k=[1, 3, 3, 1], factor=2, down=1, gain=1):
"""
Upsample2d method in G_synthesis_stylegan2.
:param k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
The default is `[1] * factor`, which corresponds to average pooling.
:param factor: Integer downsampling factor (default: 2).
:param gain: Scaling factor for signal magnitude (default: 1.0).
Returns: Tensor of the shape `[N, C, H // factor, W // factor]`
"""
super().__init__()
assert isinstance(factor, int
) and factor >= 1, 'factor must be larger than 1! (default: 2)'
self.gain = gain
self.factor = factor
self.opts = opts
self.k = _setup_kernel(k) * (self.gain * factor ** 2)
self.k = torch.FloatTensor(self.k).unsqueeze(0).unsqueeze(0)
self.k = torch.flip(self.k, [2, 3])
self.k = nn.Parameter(self.k, requires_grad=False)
self.p = self.k.shape[0] - self.factor
self.padx0, self.pady0 = (self.p + 1) // 2 + factor - 1, (self.p + 1
) // 2 + factor - 1
self.padx1, self.pady1 = self.p // 2, self.p // 2
self.kernelH, self.kernelW = self.k.shape[2:]
self.down = down
def forward(self, x):
y = x.clone()
y = y.reshape([-1, x.shape[2], x.shape[3], 1])
inC, inH, inW = x.shape[1:]
y = torch.reshape(y, (-1, inH, 1, inW, 1, 1))
y = F.pad(y, (0, 0, self.factor - 1, 0, 0, 0, self.factor - 1, 0, 0,
0, 0, 0))
y = torch.reshape(y, (-1, 1, inH * self.factor, inW * self.factor))
y = F.pad(y, (0, 0, max(self.pady0, 0), max(self.pady1, 0), max(
self.padx0, 0), max(self.padx1, 0), 0, 0))
y = y[:, max(-self.pady0, 0):y.shape[1] - max(-self.pady1, 0), max(
-self.padx0, 0):y.shape[2] - max(-self.padx1, 0), :]
y = y.permute(0, 3, 1, 2)
y = y.reshape(-1, 1, inH * self.factor + self.pady0 + self.pady1,
inW * self.factor + self.padx0 + self.padx1)
y = F.conv2d(y, self.k)
y = y.view(-1, 1, inH * self.factor + self.pady0 + self.pady1 -
self.kernelH + 1, inW * self.factor + self.padx0 + self.padx1 -
self.kernelW + 1)
if inH * self.factor != y.shape[1]:
y = F.interpolate(y, size=(inH * self.factor, inW * self.factor
), mode='bilinear')
y = y.permute(0, 2, 3, 1)
y = y.reshape(-1, inC, inH * self.factor, inW * self.factor)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'opts': _mock_config()}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 72 % 2
x1 = xindex // 8 % 9
x0 = xindex % 8
x3 = xindex // 144
x7 = xindex
tmp0 = -1 + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = -1 + x1
tmp4 = tmp3 >= tmp1
tmp5 = tmp2 & tmp4
tmp6 = -1 + (-1 + x1) % 2
tmp7 = tmp6 >= tmp1
tmp8 = -1 + x0 % 2
tmp9 = tmp8 >= tmp1
tmp10 = tmp7 & tmp9
tmp11 = tmp10 & tmp5
tmp12 = tl.load(in_ptr0 + (4 * ((-1 + x1) // 2 % 4) + 16 * x3 + x0 // 2
), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp5, tmp12, tmp13)
tl.store(out_ptr0 + x7, tmp14, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 8
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = yindex // 8
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 144 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 8 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2(
in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 4, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = x0
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 + tmp2
tmp17 = tmp16 * tmp4
tmp18 = tmp17 - tmp2
tmp19 = triton_helpers.maximum(tmp18, tmp7)
tmp20 = tmp19.to(tl.int32)
tmp21 = tmp20 + tmp10
tmp22 = triton_helpers.minimum(tmp21, tmp12)
tmp23 = tl.load(in_ptr0 + (tmp22 + 5 * tmp13 + 25 * x2), xmask,
eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (tmp20 + 5 * tmp13 + 25 * x2), xmask,
eviction_policy='evict_last')
tmp25 = tmp23 - tmp24
tmp26 = tmp20.to(tl.float32)
tmp27 = tmp19 - tmp26
tmp28 = triton_helpers.maximum(tmp27, tmp7)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp25 * tmp30
tmp32 = tl.load(in_ptr0 + (tmp20 + 5 * tmp9 + 25 * x2), xmask,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp22 + 5 * tmp9 + 25 * x2), xmask,
eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp30
tmp36 = tmp32 + tmp35
tmp37 = tmp24 + tmp31
tmp38 = tmp37 - tmp36
tmp39 = tmp9.to(tl.float32)
tmp40 = tmp8 - tmp39
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = triton_helpers.minimum(tmp41, tmp29)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tl.store(in_out_ptr0 + x3, tmp44, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 4, 4), (16, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 2, 9, 8), (144, 72, 8, 1), torch.float32
)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(2304)](arg0_1, buf0, 2304,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((16, 1, 8, 8), (64, 1, 8, 1), torch.float32)
triton_poi_fused_convolution_1[grid(128, 8)](buf0, buf1, 128, 8,
XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1)
del buf0
buf2 = extern_kernels.convolution(buf1, arg1_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (16, 1, 5, 5), (25, 1, 5, 1))
del arg1_1
buf3 = reinterpret_tensor(buf1, (16, 1, 8, 8), (64, 1024, 8, 1), 0)
del buf1
buf5 = buf3
del buf3
buf6 = reinterpret_tensor(buf5, (16, 1, 8, 8), (64, 1, 8, 1), 0)
del buf5
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2[grid
(1024)](buf6, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del buf2
return reinterpret_tensor(buf6, (4, 4, 8, 8), (256, 64, 8, 1), 0),
def _setup_kernel(k):
k = np.asarray(k, dtype=np.float32)
if k.ndim == 1:
k = np.outer(k, k)
k /= np.sum(k)
assert k.ndim == 2
assert k.shape[0] == k.shape[1]
return k
class Upsample2dNew(nn.Module):
def __init__(self, opts, k=[1, 3, 3, 1], factor=2, down=1, gain=1):
"""
Upsample2d method in G_synthesis_stylegan2.
:param k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
The default is `[1] * factor`, which corresponds to average pooling.
:param factor: Integer downsampling factor (default: 2).
:param gain: Scaling factor for signal magnitude (default: 1.0).
Returns: Tensor of the shape `[N, C, H // factor, W // factor]`
"""
super().__init__()
assert isinstance(factor, int
) and factor >= 1, 'factor must be larger than 1! (default: 2)'
self.gain = gain
self.factor = factor
self.opts = opts
self.k = _setup_kernel(k) * (self.gain * factor ** 2)
self.k = torch.FloatTensor(self.k).unsqueeze(0).unsqueeze(0)
self.k = torch.flip(self.k, [2, 3])
self.k = nn.Parameter(self.k, requires_grad=False)
self.p = self.k.shape[0] - self.factor
self.padx0, self.pady0 = (self.p + 1) // 2 + factor - 1, (self.p + 1
) // 2 + factor - 1
self.padx1, self.pady1 = self.p // 2, self.p // 2
self.kernelH, self.kernelW = self.k.shape[2:]
self.down = down
def forward(self, input_0):
arg1_1 = self.k
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
| tomguluson92/StyleGAN2_PyTorch | Upsample2d | false | 16,601 | [
"MIT"
] | 89 | 4ab7354c85cb986d2b77f5238c4a18c5efd1db1b | https://github.com/tomguluson92/StyleGAN2_PyTorch/tree/4ab7354c85cb986d2b77f5238c4a18c5efd1db1b |
OptimizedResidualBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bm/cbmrhif3lbp3fphqot3udpfwjleoia3nr4y44mr3ouepnl6xvum6.py
# Topologically Sorted Source Nodes: [add, add_1, add_2, output], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# output => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %slice_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %slice_12), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %slice_16), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 4), kwargs = {})
triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wr/cwrnvbcrqbwio7a7rmvbucor4fxeporot7ddnzmcwkeqmvvr3dnk.py
# Topologically Sorted Source Nodes: [output_2, output_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# output_2 => convolution_1
# output_3 => relu
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 9) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dh/cdhl7radi5y64ogaso4om5izyjakfvfpac7ljxek3l6lxikmcuzq.py
# Topologically Sorted Source Nodes: [add_3, add_4, add_5, output_5], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add_3 => add_3
# add_4 => add_4
# add_5 => add_5
# output_5 => div_1
# Graph fragment:
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_20, %slice_24), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %slice_28), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %slice_32), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_5, 4), kwargs = {})
triton_poi_fused_add_div_2 = async_compile.triton('triton_poi_fused_add_div_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4q/c4qhi5mwosilbpvrh52quhx24qbjckg4ntwd5hzhkozvrvrpmofd.py
# Topologically Sorted Source Nodes: [output_1, add_3, add_4, add_5, output_5, add_6], Original ATen: [aten.convolution, aten.add, aten.div]
# Source node to ATen node mapping:
# add_3 => add_3
# add_4 => add_4
# add_5 => add_5
# add_6 => add_6
# output_1 => convolution
# output_5 => div_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_20, %slice_24), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %slice_28), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %slice_32), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_5, 4), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %div_1), kwargs = {})
triton_poi_fused_add_convolution_div_3 = async_compile.triton('triton_poi_fused_add_convolution_div_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_div_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
x4 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, add_2, output], Original ATen: [aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 3, 3), (36, 9, 3, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [output_2, output_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 144, grid=grid(144), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 2, 2), (16, 4, 2, 1))
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [add_3, add_4, add_5, output_5], Original ATen: [aten.add, aten.div]
triton_poi_fused_add_div_2.run(buf4, primals_7, buf5, 16, grid=grid(16), stream=stream0)
del buf4
del primals_7
buf6 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output_1, add_3, add_4, add_5, output_5, add_6], Original ATen: [aten.convolution, aten.add, aten.div]
triton_poi_fused_add_convolution_div_3.run(buf6, primals_3, buf5, 64, grid=grid(64), stream=stream0)
del buf5
del primals_3
return (buf6, primals_1, primals_2, primals_4, primals_6, buf0, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.utils as utils
from torchvision import utils
class CustomConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=None, bias=True, spectral_norm=False, residual_init=True):
super(CustomConv2d, self).__init__()
self.residual_init = residual_init
if padding is None:
padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, bias=bias)
if spectral_norm:
self.conv = utils.spectral_norm(self.conv)
def forward(self, input):
return self.conv(input)
class ConvMeanPool(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(ConvMeanPool, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = self.conv(output)
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
return output
class MeanPoolConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(MeanPoolConv, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
output = self.conv(output)
return output
class OptimizedResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
spectral_norm=False):
super(OptimizedResidualBlock, self).__init__()
self.conv1 = CustomConv2d(in_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv2 = ConvMeanPool(out_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv_shortcut = MeanPoolConv(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm, residual_init=False)
self.relu2 = nn.ReLU()
def forward(self, input):
shortcut = self.conv_shortcut(input)
output = input
output = self.conv1(output)
output = self.relu2(output)
output = self.conv2(output)
return shortcut + output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.utils as utils
from torchvision import utils
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 9 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tmp7 = tmp6 + tmp1
tmp8 = tmp5 + tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 + tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_convolution_div_3(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
x4 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 3, 3), (36, 9, 3, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(144)](buf3, primals_5, 144,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 2, 2), (16, 4, 2, 1))
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
triton_poi_fused_add_div_2[grid(16)](buf4, primals_7, buf5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del buf4
del primals_7
buf6 = buf1
del buf1
triton_poi_fused_add_convolution_div_3[grid(64)](buf6, primals_3,
buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf5
del primals_3
return buf6, primals_1, primals_2, primals_4, primals_6, buf0, buf3
class CustomConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=None, bias=True, spectral_norm=False, residual_init=True):
super(CustomConv2d, self).__init__()
self.residual_init = residual_init
if padding is None:
padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, bias=bias)
if spectral_norm:
self.conv = utils.spectral_norm(self.conv)
def forward(self, input):
return self.conv(input)
class ConvMeanPool(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(ConvMeanPool, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = self.conv(output)
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
return output
class MeanPoolConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True,
spectral_norm=False, residual_init=True):
super(MeanPoolConv, self).__init__()
self.conv = CustomConv2d(in_channels, out_channels, kernel_size,
bias=bias, spectral_norm=spectral_norm, residual_init=residual_init
)
def forward(self, input):
output = input
output = (output[:, :, ::2, ::2] + output[:, :, 1::2, ::2] + output
[:, :, ::2, 1::2] + output[:, :, 1::2, 1::2]) / 4
output = self.conv(output)
return output
class OptimizedResidualBlockNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
spectral_norm=False):
super(OptimizedResidualBlockNew, self).__init__()
self.conv1 = CustomConv2d(in_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv2 = ConvMeanPool(out_channels, out_channels, kernel_size=
kernel_size, spectral_norm=spectral_norm)
self.conv_shortcut = MeanPoolConv(in_channels, out_channels,
kernel_size=1, spectral_norm=spectral_norm, residual_init=False)
self.relu2 = nn.ReLU()
def forward(self, input_0):
primals_1 = self.conv1.conv.weight
primals_3 = self.conv1.conv.bias
primals_4 = self.conv2.conv.conv.weight
primals_5 = self.conv2.conv.conv.bias
primals_2 = self.conv_shortcut.conv.conv.weight
primals_7 = self.conv_shortcut.conv.conv.bias
primals_6 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| takuhirok/rGAN | OptimizedResidualBlock | false | 16,602 | [
"MIT"
] | 103 | 6f7a092de5814c662fd17224b3d48bebe7e03c2f | https://github.com/takuhirok/rGAN/tree/6f7a092de5814c662fd17224b3d48bebe7e03c2f |
WassersteinGeneratorLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ki/ckivxu6u7mrscvnpecxlyyzlxm7gqbwpixyjztmguny3ofhbig7t.py
# Topologically Sorted Source Nodes: [mul, mean], Original ATen: [aten.mul, aten.mean]
# Source node to ATen node mapping:
# mean => mean
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -1.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {})
triton_per_fused_mean_mul_0 = async_compile.triton('triton_per_fused_mean_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = -1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = 256.0
tmp7 = tmp5 / tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, mean], Original ATen: [aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_mul_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def reduce(x, reduction=None):
"""Applies reduction on a torch.Tensor.
Args:
x (torch.Tensor): The tensor on which reduction is to be applied.
reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the
Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the
above then the Tensor is returning without any change.
Returns:
As per the above ``reduction`` convention.
"""
if reduction == 'mean':
return torch.mean(x)
elif reduction == 'sum':
return torch.sum(x)
else:
return x
def wasserstein_generator_loss(fgz, reduction='mean'):
return reduce(-1.0 * fgz, reduction)
class GeneratorLoss(nn.Module):
"""Base class for all generator losses.
.. note:: All Losses meant to be minimized for optimizing the Generator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(GeneratorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_generator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_generator,
device, batch_size, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``generator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value = discriminator(fake)`
3. :math:`loss = loss\\_function(value)`
4. Backpropagate by computing :math:`\\nabla loss`
5. Run a step of the optimizer for generator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_generator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``generator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(generator, discriminator,
optimizer_generator, device, batch_size, labels)
else:
if labels is None and generator.label_type == 'required':
raise Exception('GAN model requires labels for training')
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
optimizer_generator.zero_grad()
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
elif generator.label_type == 'generated':
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake)
elif generator.label_type == 'generated':
dgz = discriminator(fake, label_gen)
else:
dgz = discriminator(fake, labels)
loss = self.forward(dgz)
loss.backward()
optimizer_generator.step()
return loss.item()
class WassersteinGeneratorLoss(GeneratorLoss):
"""Wasserstein GAN generator loss from
`"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper
The loss can be described as:
.. math:: L(G) = -f(G(z))
where
- :math:`G` : Generator
- :math:`f` : Critic/Discriminator
- :math:`z` : A sample from the noise prior
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def forward(self, fgz):
"""Computes the loss for the given input.
Args:
dgz (torch.Tensor) : Output of the Discriminator with generated data. It must have the
dimensions (N, \\*) where \\* means any number of additional
dimensions.
Returns:
scalar if reduction is applied else Tensor with dimensions (N, \\*).
"""
return wasserstein_generator_loss(fgz, self.reduction)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_mul_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = -1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = 256.0
tmp7 = tmp5 / tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp7, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_mul_0[grid(1)](buf1, arg0_1, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf1,
def reduce(x, reduction=None):
"""Applies reduction on a torch.Tensor.
Args:
x (torch.Tensor): The tensor on which reduction is to be applied.
reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the
Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the
above then the Tensor is returning without any change.
Returns:
As per the above ``reduction`` convention.
"""
if reduction == 'mean':
return torch.mean(x)
elif reduction == 'sum':
return torch.sum(x)
else:
return x
def wasserstein_generator_loss(fgz, reduction='mean'):
return reduce(-1.0 * fgz, reduction)
class GeneratorLoss(nn.Module):
"""Base class for all generator losses.
.. note:: All Losses meant to be minimized for optimizing the Generator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(GeneratorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_generator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_generator,
device, batch_size, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``generator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value = discriminator(fake)`
3. :math:`loss = loss\\_function(value)`
4. Backpropagate by computing :math:`\\nabla loss`
5. Run a step of the optimizer for generator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_generator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``generator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(generator, discriminator,
optimizer_generator, device, batch_size, labels)
else:
if labels is None and generator.label_type == 'required':
raise Exception('GAN model requires labels for training')
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
optimizer_generator.zero_grad()
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
elif generator.label_type == 'generated':
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake)
elif generator.label_type == 'generated':
dgz = discriminator(fake, label_gen)
else:
dgz = discriminator(fake, labels)
loss = self.forward(dgz)
loss.backward()
optimizer_generator.step()
return loss.item()
class WassersteinGeneratorLossNew(GeneratorLoss):
"""Wasserstein GAN generator loss from
`"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper
The loss can be described as:
.. math:: L(G) = -f(G(z))
where
- :math:`G` : Generator
- :math:`f` : Critic/Discriminator
- :math:`z` : A sample from the noise prior
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| torchgan/torchgan | WassersteinGeneratorLoss | false | 16,603 | [
"MIT"
] | 1,300 | f4139537ac2d3d8609d5aecc859a6fb797b107a1 | https://github.com/torchgan/torchgan/tree/f4139537ac2d3d8609d5aecc859a6fb797b107a1 |
Buck | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/kz/ckzkv4zq547mt5lgrn3gqnn4fzqr6zudb44tp5ljyz5my7mmgbyd.py
# Topologically Sorted Source Nodes: [neg, mul, exp, mul_1, pow_1, truediv, sub], Original ATen: [aten.neg, aten.mul, aten.exp, aten.pow, aten.div, aten.sub]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# mul_1 => mul_1
# neg => neg
# pow_1 => pow_1
# sub => sub
# truediv => div
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%primals_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %primals_4), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %exp), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_4, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_3, %pow_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %div), kwargs = {})
triton_poi_fused_div_exp_mul_neg_pow_sub_0 = async_compile.triton('triton_poi_fused_div_exp_mul_neg_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_exp_mul_neg_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_exp_mul_neg_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp5 = tl.load(in_ptr2 + (x0), xmask)
tmp9 = tl.load(in_ptr3 + (0))
tmp10 = tl.broadcast_to(tmp9, [XBLOCK])
tmp4 = -tmp3
tmp6 = tmp4 * tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp1 * tmp7
tmp11 = tmp5 * tmp5
tmp12 = tmp11 * tmp5
tmp13 = tmp12 * tmp12
tmp14 = tmp10 / tmp13
tmp15 = tmp8 - tmp14
tl.store(out_ptr0 + (x0), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (1, ), (1, ))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [neg, mul, exp, mul_1, pow_1, truediv, sub], Original ATen: [aten.neg, aten.mul, aten.exp, aten.pow, aten.div, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_div_exp_mul_neg_pow_sub_0.run(primals_1, primals_2, primals_4, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf0, primals_1, primals_2, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
class Buck(torch.nn.Module):
def __init__(self, A=1.0, B=1.0, C=1.0):
super(Buck, self).__init__()
self.A = torch.nn.Parameter(torch.Tensor([A]))
self.B = torch.nn.Parameter(torch.Tensor([B]))
self.C = torch.nn.Parameter(torch.Tensor([C]))
def Buckingham(self, r, A, B, C):
return A * torch.exp(-B * r) - C / r ** 6
def forward(self, x):
return self.Buckingham(x, self.A, self.B, self.C)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_exp_mul_neg_pow_sub_0(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp5 = tl.load(in_ptr2 + x0, xmask)
tmp9 = tl.load(in_ptr3 + 0)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK])
tmp4 = -tmp3
tmp6 = tmp4 * tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp1 * tmp7
tmp11 = tmp5 * tmp5
tmp12 = tmp11 * tmp5
tmp13 = tmp12 * tmp12
tmp14 = tmp10 / tmp13
tmp15 = tmp8 - tmp14
tl.store(out_ptr0 + x0, tmp15, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (1,), (1,))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_exp_mul_neg_pow_sub_0[grid(256)](primals_1,
primals_2, primals_4, primals_3, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
return buf0, primals_1, primals_2, primals_4
class BuckNew(torch.nn.Module):
def __init__(self, A=1.0, B=1.0, C=1.0):
super(BuckNew, self).__init__()
self.A = torch.nn.Parameter(torch.Tensor([A]))
self.B = torch.nn.Parameter(torch.Tensor([B]))
self.C = torch.nn.Parameter(torch.Tensor([C]))
def Buckingham(self, r, A, B, C):
return A * torch.exp(-B * r) - C / r ** 6
def forward(self, input_0):
primals_1 = self.A
primals_2 = self.B
primals_3 = self.C
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| torchmd/mdgrad | Buck | false | 16,604 | [
"MIT"
] | 54 | 77bd7685b74b41acf54a9483546e1e8cb545eb01 | https://github.com/torchmd/mdgrad/tree/77bd7685b74b41acf54a9483546e1e8cb545eb01 |
ParityPonderGRU | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/7e/c7edgnsiuilw7uzwau7radvkvvtmowm7d7uh56mczbhieiykfrnx.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.new_zeros]
# Source node to ATen node mapping:
# h => full_default
# Graph fragment:
# %full_default : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_zeros_0 = async_compile.triton('triton_poi_fused_new_zeros_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zw/czwxbu6nuxhoujusu3krfetmqzx7rxloioah6gicy4ie2wmv6tqi.py
# Topologically Sorted Source Nodes: [stack_3], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack_3 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_8, %primals_8, %primals_8, %primals_8, %primals_6, %primals_6, %primals_6],), kwargs = {})
triton_poi_fused_stack_1 = async_compile.triton('triton_poi_fused_stack_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 28
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (x0), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + (x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 5, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr1 + (x0), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 6, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tmp26 & tmp28
tmp30 = tl.load(in_ptr1 + (x0), tmp29 & xmask, eviction_policy='evict_last', other=0.0)
tmp31 = tmp0 >= tmp27
tmp32 = tl.full([1], 7, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tl.load(in_ptr1 + (x0), tmp31 & xmask, eviction_policy='evict_last', other=0.0)
tmp35 = tl.where(tmp29, tmp30, tmp34)
tmp36 = tl.where(tmp24, tmp25, tmp35)
tmp37 = tl.where(tmp19, tmp20, tmp36)
tmp38 = tl.where(tmp14, tmp15, tmp37)
tmp39 = tl.where(tmp9, tmp10, tmp38)
tmp40 = tl.where(tmp4, tmp5, tmp39)
tl.store(out_ptr0 + (x2), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hq/chq2ihz43k5f3canufmvrzz3vy4seaa7ohwwzmv2o6szsqgwtn4r.py
# Topologically Sorted Source Nodes: [stack_4], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack_4 => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_9, %primals_9, %primals_9, %primals_9, %primals_7, %primals_7, %primals_7],), kwargs = {})
triton_poi_fused_stack_2 = async_compile.triton('triton_poi_fused_stack_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp5 = tl.load(in_ptr0 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp23 = tl.load(in_ptr1 + (0))
tmp24 = tl.broadcast_to(tmp23, [XBLOCK])
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp7 = tmp0 >= tmp3
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tmp0 < tmp8
tmp10 = tmp7 & tmp9
tmp11 = tmp0 >= tmp8
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tmp0 >= tmp12
tmp16 = tl.full([1], 4, tl.int64)
tmp17 = tmp0 < tmp16
tmp18 = tmp15 & tmp17
tmp19 = tmp0 >= tmp16
tmp20 = tl.full([1], 5, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp25 = tmp0 >= tmp20
tmp26 = tl.full([1], 6, tl.int64)
tmp27 = tmp0 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp0 >= tmp26
tmp30 = tl.full([1], 7, tl.int64)
tmp31 = tmp0 < tmp30
tmp32 = tl.where(tmp28, tmp24, tmp24)
tmp33 = tl.where(tmp22, tmp24, tmp32)
tmp34 = tl.where(tmp18, tmp6, tmp33)
tmp35 = tl.where(tmp14, tmp6, tmp34)
tmp36 = tl.where(tmp10, tmp6, tmp35)
tmp37 = tl.where(tmp4, tmp6, tmp36)
tl.store(out_ptr0 + (x0), tmp37, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/g2/cg23xreycdv6fxtkdfop75dzuhabmjs3xhrvq22ytdld2qihmoyg.py
# Topologically Sorted Source Nodes: [stack_2], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack_2 => cat_2
# Graph fragment:
# %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_2, %getitem_4, %getitem_6, %getitem, %getitem_2, %getitem_4],), kwargs = {})
triton_poi_fused_stack_3 = async_compile.triton('triton_poi_fused_stack_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 112
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1))), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4*((-8) + x1))), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + (4*((-12) + x1))), tmp19 & xmask, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (x0 + (4*((-16) + x1))), tmp24 & xmask, other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 24, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tmp26 & tmp28
tmp30 = tl.load(in_ptr1 + (x0 + (4*((-20) + x1))), tmp29 & xmask, other=0.0)
tmp31 = tmp0 >= tmp27
tmp32 = tl.full([1], 28, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tl.load(in_ptr2 + (x0 + (4*((-24) + x1))), tmp31 & xmask, other=0.0)
tmp35 = tl.where(tmp29, tmp30, tmp34)
tmp36 = tl.where(tmp24, tmp25, tmp35)
tmp37 = tl.where(tmp19, tmp20, tmp36)
tmp38 = tl.where(tmp14, tmp15, tmp37)
tmp39 = tl.where(tmp9, tmp10, tmp38)
tmp40 = tl.where(tmp4, tmp5, tmp39)
tl.store(out_ptr0 + (x2), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/oo/coo3437vo4xsrwedl7lcrwfswym3k6uq6mzbtutpnydbupg5rgob.py
# Topologically Sorted Source Nodes: [p_m, sigmoid_2, sub_8, bernoulli_2, sigmoid_1, sub_4, bernoulli_1, sigmoid, un_halted_prob_1, p_n_1, un_halted_prob_2, p_n_2, p_n_3, bernoulli, halted_1, sub_2, mul_3, mul_4, p_m_1, halt_1, sub_6, mul_10, mul_11, p_m_2, halted_2, sub_9, halt_2, sub_10, mul_17, mul_18, p_m_3, halted_3, mul_20, mul_13, mul_6, y_m_1, mul_12, y_m_2, mul_19, y_m_3, lambda_n_3, bernoulli_3, sub_13, halt_3, sub_14, mul_24, mul_25, p_m_4, mul_26, mul_27, y_m_4], Original ATen: [aten.new_zeros, aten.sigmoid, aten.rsub, aten.bernoulli, aten.mul, aten.add, aten.new_ones]
# Source node to ATen node mapping:
# bernoulli => lt_2
# bernoulli_1 => convert_element_type_1, lt_1
# bernoulli_2 => convert_element_type, lt
# bernoulli_3 => convert_element_type_3, lt_3
# halt_1 => mul_10
# halt_2 => mul_13
# halt_3 => mul_23
# halted_1 => convert_element_type_2
# halted_2 => add_4
# halted_3 => add_6
# lambda_n_3 => full_default_6
# mul_10 => mul_11
# mul_11 => mul_12
# mul_12 => mul_19
# mul_13 => mul_17
# mul_17 => mul_14
# mul_18 => mul_15
# mul_19 => mul_20
# mul_20 => mul_16
# mul_24 => mul_24
# mul_25 => mul_25
# mul_26 => mul_26
# mul_27 => mul_27
# mul_3 => mul_7
# mul_4 => mul_8
# mul_6 => mul_18
# p_m => full_default_3
# p_m_1 => add_1
# p_m_2 => add_3
# p_m_3 => add_5
# p_m_4 => add_10
# p_n_1 => mul_2
# p_n_2 => mul_4
# p_n_3 => mul_5
# sigmoid => sigmoid_2
# sigmoid_1 => sigmoid_1
# sigmoid_2 => sigmoid
# sub_10 => sub_10
# sub_13 => sub_13
# sub_14 => sub_14
# sub_2 => sub_4
# sub_4 => sub_2
# sub_6 => sub_7
# sub_8 => sub_1
# sub_9 => sub_9
# un_halted_prob_1 => sub_3
# un_halted_prob_2 => mul_3
# y_m_1 => add_7
# y_m_2 => add_8
# y_m_3 => add_9
# y_m_4 => add_11
# Graph fragment:
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_14,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select), kwargs = {})
# %lt : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand, %select), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {})
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_13,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_1), kwargs = {})
# %lt_1 : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand_1, %select_1), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt_1, torch.float32), kwargs = {})
# %sigmoid_2 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_12,), kwargs = {})
# %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_2), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %select_1), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %sub_2), kwargs = {})
# %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %select), kwargs = {})
# %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_1), kwargs = {})
# %lt_2 : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand_2, %select_2), kwargs = {})
# %convert_element_type_2 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt_2, torch.float32), kwargs = {})
# %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type_2), kwargs = {})
# %mul_7 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default_3, %sub_4), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %convert_element_type_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %mul_8), kwargs = {})
# %mul_10 : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %sub_4), kwargs = {})
# %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_10), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %sub_7), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %mul_10), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_11, %mul_12), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, %mul_10), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add_4), kwargs = {})
# %mul_13 : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %sub_9), kwargs = {})
# %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_13), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, %sub_10), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %mul_13), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_14, %mul_15), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_13), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %mul_13), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %mul_10), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %convert_element_type_2), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %mul_18), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, %sub_7), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_19, %mul_17), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, %sub_10), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_20, %mul_16), kwargs = {})
# %full_default_6 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %lt_3 : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand_3, %full_default_6), kwargs = {})
# %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt_3, torch.float32), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add_6), kwargs = {})
# %mul_23 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_3, %sub_13), kwargs = {})
# %sub_14 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_23), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, %sub_14), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %mul_23), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_24, %mul_25), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, %sub_14), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_6, %mul_23), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %mul_27), kwargs = {})
triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4 = async_compile.triton('triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*i1', 13: '*i1', 14: '*i1', 15: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (4))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp5 = tl.load(in_ptr2 + (16 + x0), xmask)
tmp8 = tl.load(in_ptr1 + (5))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (20 + x0), xmask)
tmp13 = tl.load(in_ptr1 + (6))
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp15 = tl.load(in_ptr2 + (24 + x0), xmask)
tmp18 = tl.load(in_ptr3 + (x0), xmask)
tmp20 = tl.load(in_ptr4 + (x0), xmask)
tmp22 = tl.load(in_ptr5 + (x0), xmask)
tmp59 = tl.load(in_ptr1 + (0))
tmp60 = tl.broadcast_to(tmp59, [XBLOCK])
tmp61 = tl.load(in_ptr2 + (x0), xmask)
tmp66 = tl.load(in_ptr1 + (1))
tmp67 = tl.broadcast_to(tmp66, [XBLOCK])
tmp68 = tl.load(in_ptr2 + (4 + x0), xmask)
tmp73 = tl.load(in_ptr1 + (2))
tmp74 = tl.broadcast_to(tmp73, [XBLOCK])
tmp75 = tl.load(in_ptr2 + (8 + x0), xmask)
tmp80 = tl.load(in_ptr1 + (3))
tmp81 = tl.broadcast_to(tmp80, [XBLOCK])
tmp82 = tl.load(in_ptr2 + (12 + x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 < tmp1
tmp6 = tmp4 + tmp5
tmp7 = tl.sigmoid(tmp6)
tmp11 = tmp9 + tmp10
tmp12 = tl.sigmoid(tmp11)
tmp16 = tmp14 + tmp15
tmp17 = tl.sigmoid(tmp16)
tmp19 = tmp18 < tmp17
tmp21 = tmp20 < tmp12
tmp23 = tmp22 < tmp7
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp1 - tmp24
tmp26 = 0.0
tmp27 = tmp26 * tmp25
tmp28 = tmp7 * tmp24
tmp29 = tmp27 + tmp28
tmp30 = tmp21.to(tl.float32)
tmp31 = tmp30 * tmp25
tmp32 = tmp1 - tmp31
tmp33 = tmp29 * tmp32
tmp34 = tmp1 - tmp7
tmp35 = tmp34 * tmp12
tmp36 = tmp35 * tmp31
tmp37 = tmp33 + tmp36
tmp38 = tmp19.to(tl.float32)
tmp39 = tmp24 + tmp31
tmp40 = tmp1 - tmp39
tmp41 = tmp38 * tmp40
tmp42 = tmp1 - tmp41
tmp43 = tmp37 * tmp42
tmp44 = tmp1 - tmp12
tmp45 = tmp34 * tmp44
tmp46 = tmp45 * tmp17
tmp47 = tmp46 * tmp41
tmp48 = tmp43 + tmp47
tmp49 = tmp2.to(tl.float32)
tmp50 = tmp39 + tmp41
tmp51 = tmp1 - tmp50
tmp52 = tmp49 * tmp51
tmp53 = tmp1 - tmp52
tmp54 = tmp48 * tmp53
tmp55 = tmp1 - tmp17
tmp56 = tmp45 * tmp55
tmp57 = tmp56 * tmp52
tmp58 = tmp54 + tmp57
tmp62 = tmp60 + tmp61
tmp63 = tmp62 * tmp24
tmp64 = tmp27 + tmp63
tmp65 = tmp64 * tmp32
tmp69 = tmp67 + tmp68
tmp70 = tmp69 * tmp31
tmp71 = tmp65 + tmp70
tmp72 = tmp71 * tmp42
tmp76 = tmp74 + tmp75
tmp77 = tmp76 * tmp41
tmp78 = tmp72 + tmp77
tmp79 = tmp78 * tmp53
tmp83 = tmp81 + tmp82
tmp84 = tmp83 * tmp52
tmp85 = tmp79 + tmp84
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp7, xmask)
tl.store(out_ptr2 + (x0), tmp12, xmask)
tl.store(out_ptr3 + (x0), tmp17, xmask)
tl.store(out_ptr4 + (x0), tmp19, xmask)
tl.store(out_ptr5 + (x0), tmp21, xmask)
tl.store(out_ptr6 + (x0), tmp23, xmask)
tl.store(in_out_ptr0 + (x0), tmp58, xmask)
tl.store(in_out_ptr1 + (x0), tmp85, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jy/cjys3iopkrrusczes7dimlrpecwecndhklisdis5ynngdb4dpi3f.py
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack => cat_3
# Graph fragment:
# %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select_2, %mul_2, %mul_4, %mul_5],), kwargs = {})
triton_poi_fused_stack_5 = async_compile.triton('triton_poi_fused_stack_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = 1.0
tmp12 = tmp11 - tmp10
tmp13 = tl.load(in_ptr1 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tmp12 * tmp13
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp9, tmp14, tmp15)
tmp17 = tmp0 >= tmp7
tmp18 = tl.full([1], 12, tl.int64)
tmp19 = tmp0 < tmp18
tmp20 = tmp17 & tmp19
tmp21 = tl.load(in_ptr0 + ((-8) + x0), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tmp11 - tmp21
tmp23 = tl.load(in_ptr1 + ((-8) + x0), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tmp11 - tmp23
tmp25 = tmp22 * tmp24
tmp26 = tl.load(in_ptr2 + ((-8) + x0), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp27 = tmp25 * tmp26
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp20, tmp27, tmp28)
tmp30 = tmp0 >= tmp18
tmp31 = tl.full([1], 16, tl.int64)
tmp32 = tmp0 < tmp31
tmp33 = tl.load(in_ptr0 + ((-12) + x0), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp34 = tmp11 - tmp33
tmp35 = tl.load(in_ptr1 + ((-12) + x0), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp36 = tmp11 - tmp35
tmp37 = tmp34 * tmp36
tmp38 = tl.load(in_ptr2 + ((-12) + x0), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tmp11 - tmp38
tmp40 = tmp37 * tmp39
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp30, tmp40, tmp41)
tmp43 = tl.where(tmp20, tmp29, tmp42)
tmp44 = tl.where(tmp9, tmp16, tmp43)
tmp45 = tl.where(tmp4, tmp5, tmp44)
tl.store(out_ptr0 + (x0), tmp45, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/o4/co4faoo6vn5p4s7le2cjisym3ezxxx6wg265nankhpf5szhdz3rv.py
# Topologically Sorted Source Nodes: [stack_1], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack_1 => cat_4
# Graph fragment:
# %cat_4 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select_5, %select_4, %select_3, %select_6],), kwargs = {})
triton_poi_fused_stack_6 = async_compile.triton('triton_poi_fused_stack_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp5 = tl.load(in_ptr0 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp15 = tl.load(in_ptr0 + (1))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp25 = tl.load(in_ptr0 + (2))
tmp26 = tl.broadcast_to(tmp25, [XBLOCK])
tmp34 = tl.load(in_ptr0 + (3))
tmp35 = tl.broadcast_to(tmp34, [XBLOCK])
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp7 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tmp12 = tl.full([1], 8, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp17 = tl.load(in_ptr1 + (4 + ((-4) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tmp16 + tmp17
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tmp0 >= tmp12
tmp22 = tl.full([1], 12, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp27 = tl.load(in_ptr1 + (8 + ((-8) + x0)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tmp26 + tmp27
tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype)
tmp30 = tl.where(tmp24, tmp28, tmp29)
tmp31 = tmp0 >= tmp22
tmp32 = tl.full([1], 16, tl.int64)
tmp33 = tmp0 < tmp32
tmp36 = tl.load(in_ptr1 + (12 + ((-12) + x0)), tmp31 & xmask, eviction_policy='evict_last', other=0.0)
tmp37 = tmp35 + tmp36
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp31, tmp37, tmp38)
tmp40 = tl.where(tmp24, tmp30, tmp39)
tmp41 = tl.where(tmp14, tmp20, tmp40)
tmp42 = tl.where(tmp4, tmp10, tmp41)
tl.store(out_ptr0 + (x0), tmp42, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, 4), (4, 1))
assert_size_stride(primals_4, (12, ), (1, ))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.new_zeros]
stream0 = get_raw_stream(0)
triton_poi_fused_new_zeros_0.run(buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm]
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf2)
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten._thnn_fused_gru_cell]
buf3 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf2, buf0, primals_4, primals_5)
buf4 = buf3[0]
buf5 = buf3[1]
del buf3
buf6 = empty_strided_cuda((7, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [stack_3], Original ATen: [aten.stack]
triton_poi_fused_stack_1.run(primals_8, primals_6, buf6, 28, grid=grid(28), stream=stream0)
del primals_6
del primals_8
buf7 = empty_strided_cuda((7, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [stack_4], Original ATen: [aten.stack]
triton_poi_fused_stack_2.run(primals_9, primals_7, buf7, 7, grid=grid(7), stream=stream0)
del primals_7
del primals_9
buf8 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.mm]
extern_kernels.mm(buf4, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf8)
# Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten._thnn_fused_gru_cell]
buf9 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf8, buf4, primals_4, primals_5)
buf10 = buf9[0]
buf11 = buf9[1]
del buf9
buf12 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [ret_2], Original ATen: [aten.mm]
extern_kernels.mm(buf10, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf12)
# Topologically Sorted Source Nodes: [ret_2], Original ATen: [aten._thnn_fused_gru_cell]
buf13 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf12, buf10, primals_4, primals_5)
buf14 = buf13[0]
buf15 = buf13[1]
del buf13
buf16 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [ret_3], Original ATen: [aten.mm]
extern_kernels.mm(buf14, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf16)
# Topologically Sorted Source Nodes: [ret_3], Original ATen: [aten._thnn_fused_gru_cell]
buf17 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf16, buf14, primals_4, primals_5)
del buf1
del buf16
del primals_4
del primals_5
buf18 = buf17[0]
buf19 = buf17[1]
del buf17
buf20 = empty_strided_cuda((28, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [stack_2], Original ATen: [aten.stack]
triton_poi_fused_stack_3.run(buf4, buf10, buf14, buf18, buf20, 112, grid=grid(112), stream=stream0)
buf21 = empty_strided_cuda((7, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [baddbmm], Original ATen: [aten.baddbmm]
extern_kernels.bmm(reinterpret_tensor(buf20, (7, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (7, 4, 1), (4, 1, 4), 0), out=buf21)
# Topologically Sorted Source Nodes: [bernoulli_2], Original ATen: [aten.bernoulli]
buf23 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf24 = buf23
del buf23
# Topologically Sorted Source Nodes: [bernoulli_1], Original ATen: [aten.bernoulli]
buf27 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf28 = buf27
del buf27
# Topologically Sorted Source Nodes: [bernoulli], Original ATen: [aten.bernoulli]
buf31 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf32 = buf31
del buf31
# Topologically Sorted Source Nodes: [bernoulli_3], Original ATen: [aten.bernoulli]
buf36 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf37 = buf36
del buf36
buf38 = empty_strided_cuda((4, ), (1, ), torch.bool)
buf30 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf25 = empty_strided_cuda((4, ), (1, ), torch.bool)
buf29 = empty_strided_cuda((4, ), (1, ), torch.bool)
buf33 = empty_strided_cuda((4, ), (1, ), torch.bool)
buf34 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf39 = buf34; del buf34 # reuse
buf35 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf40 = buf35; del buf35 # reuse
# Topologically Sorted Source Nodes: [p_m, sigmoid_2, sub_8, bernoulli_2, sigmoid_1, sub_4, bernoulli_1, sigmoid, un_halted_prob_1, p_n_1, un_halted_prob_2, p_n_2, p_n_3, bernoulli, halted_1, sub_2, mul_3, mul_4, p_m_1, halt_1, sub_6, mul_10, mul_11, p_m_2, halted_2, sub_9, halt_2, sub_10, mul_17, mul_18, p_m_3, halted_3, mul_20, mul_13, mul_6, y_m_1, mul_12, y_m_2, mul_19, y_m_3, lambda_n_3, bernoulli_3, sub_13, halt_3, sub_14, mul_24, mul_25, p_m_4, mul_26, mul_27, y_m_4], Original ATen: [aten.new_zeros, aten.sigmoid, aten.rsub, aten.bernoulli, aten.mul, aten.add, aten.new_ones]
triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4.run(buf39, buf40, buf37, buf7, buf21, buf24, buf28, buf32, buf38, buf30, buf26, buf22, buf25, buf29, buf33, 4, grid=grid(4), stream=stream0)
del buf24
del buf28
del buf32
del buf37
buf41 = reinterpret_tensor(buf18, (16, ), (1, ), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
triton_poi_fused_stack_5.run(buf30, buf26, buf22, buf41, 16, grid=grid(16), stream=stream0)
buf42 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [stack_1], Original ATen: [aten.stack]
triton_poi_fused_stack_6.run(buf7, buf21, buf42, 16, grid=grid(16), stream=stream0)
del buf21
del buf7
return (reinterpret_tensor(buf41, (4, 4), (4, 1), 0), reinterpret_tensor(buf42, (4, 4), (4, 1), 0), buf39, buf40, primals_1, buf0, buf4, buf5, buf10, buf11, buf14, buf15, buf19, buf22, buf25, buf26, buf29, buf30, buf33, buf38, reinterpret_tensor(buf6, (7, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf20, (7, 4, 4), (16, 1, 4), 0), primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch import nn
from typing import Tuple
import torch.utils.data
import torch.nn.functional
import torch.autograd
class ParityPonderGRU(Module):
"""
## PonderNet with GRU for Parity Task
This is a simple model that uses a [GRU Cell](https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html)
as the step function.
This model is for the [Parity Task](../parity.html) where the input is a vector of `n_elems`.
Each element of the vector is either `0`, `1` or `-1` and the output is the parity
- a binary value that is true if the number of `1`s is odd and false otherwise.
The prediction of the model is the log probability of the parity being $1$.
"""
def __init__(self, n_elems: 'int', n_hidden: 'int', max_steps: 'int'):
"""
* `n_elems` is the number of elements in the input vector
* `n_hidden` is the state vector size of the GRU
* `max_steps` is the maximum number of steps $N$
"""
super().__init__()
self.max_steps = max_steps
self.n_hidden = n_hidden
self.gru = nn.GRUCell(n_elems, n_hidden)
self.output_layer = nn.Linear(n_hidden, 1)
self.lambda_layer = nn.Linear(n_hidden, 1)
self.lambda_prob = nn.Sigmoid()
self.is_halt = False
def forward(self, x: 'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor,
torch.Tensor, torch.Tensor]:
"""
* `x` is the input of shape `[batch_size, n_elems]`
This outputs a tuple of four tensors:
1. $p_1 \\dots p_N$ in a tensor of shape `[N, batch_size]`
2. $\\hat{y}_1 \\dots \\hat{y}_N$ in a tensor of shape `[N, batch_size]` - the log probabilities of the parity being $1$
3. $p_m$ of shape `[batch_size]`
4. $\\hat{y}_m$ of shape `[batch_size]` where the computation was halted at step $m$
"""
batch_size = x.shape[0]
h = x.new_zeros((x.shape[0], self.n_hidden))
h = self.gru(x, h)
p = []
y = []
un_halted_prob = h.new_ones((batch_size,))
halted = h.new_zeros((batch_size,))
p_m = h.new_zeros((batch_size,))
y_m = h.new_zeros((batch_size,))
for n in range(1, self.max_steps + 1):
if n == self.max_steps:
lambda_n = h.new_ones(h.shape[0])
else:
lambda_n = self.lambda_prob(self.lambda_layer(h))[:, 0]
y_n = self.output_layer(h)[:, 0]
p_n = un_halted_prob * lambda_n
un_halted_prob = un_halted_prob * (1 - lambda_n)
halt = torch.bernoulli(lambda_n) * (1 - halted)
p.append(p_n)
y.append(y_n)
p_m = p_m * (1 - halt) + p_n * halt
y_m = y_m * (1 - halt) + y_n * halt
halted = halted + halt
h = self.gru(x, h)
if self.is_halt and halted.sum() == batch_size:
break
return torch.stack(p), torch.stack(y), p_m, y_m
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_elems': 4, 'n_hidden': 4, 'max_steps': 4}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_stack_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 28
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + x0, tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + x0, tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + x0, tmp19 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 5, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr1 + x0, tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 6, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tmp26 & tmp28
tmp30 = tl.load(in_ptr1 + x0, tmp29 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp31 = tmp0 >= tmp27
tl.full([1], 7, tl.int64)
tmp34 = tl.load(in_ptr1 + x0, tmp31 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp35 = tl.where(tmp29, tmp30, tmp34)
tmp36 = tl.where(tmp24, tmp25, tmp35)
tmp37 = tl.where(tmp19, tmp20, tmp36)
tmp38 = tl.where(tmp14, tmp15, tmp37)
tmp39 = tl.where(tmp9, tmp10, tmp38)
tmp40 = tl.where(tmp4, tmp5, tmp39)
tl.store(out_ptr0 + x2, tmp40, xmask)
@triton.jit
def triton_poi_fused_stack_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 7
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp5 = tl.load(in_ptr0 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp23 = tl.load(in_ptr1 + 0)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK])
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp7 = tmp0 >= tmp3
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tmp0 < tmp8
tmp10 = tmp7 & tmp9
tmp11 = tmp0 >= tmp8
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tmp0 >= tmp12
tmp16 = tl.full([1], 4, tl.int64)
tmp17 = tmp0 < tmp16
tmp18 = tmp15 & tmp17
tmp19 = tmp0 >= tmp16
tmp20 = tl.full([1], 5, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp25 = tmp0 >= tmp20
tmp26 = tl.full([1], 6, tl.int64)
tmp27 = tmp0 < tmp26
tmp28 = tmp25 & tmp27
tl.full([1], 7, tl.int64)
tmp32 = tl.where(tmp28, tmp24, tmp24)
tmp33 = tl.where(tmp22, tmp24, tmp32)
tmp34 = tl.where(tmp18, tmp6, tmp33)
tmp35 = tl.where(tmp14, tmp6, tmp34)
tmp36 = tl.where(tmp10, tmp6, tmp35)
tmp37 = tl.where(tmp4, tmp6, tmp36)
tl.store(out_ptr0 + x0, tmp37, xmask)
@triton.jit
def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 112
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4 * (-8 + x1)), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + 4 * (-12 + x1)), tmp19 & xmask, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (x0 + 4 * (-16 + x1)), tmp24 & xmask, other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 24, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tmp26 & tmp28
tmp30 = tl.load(in_ptr1 + (x0 + 4 * (-20 + x1)), tmp29 & xmask, other=0.0)
tmp31 = tmp0 >= tmp27
tl.full([1], 28, tl.int64)
tmp34 = tl.load(in_ptr2 + (x0 + 4 * (-24 + x1)), tmp31 & xmask, other=0.0)
tmp35 = tl.where(tmp29, tmp30, tmp34)
tmp36 = tl.where(tmp24, tmp25, tmp35)
tmp37 = tl.where(tmp19, tmp20, tmp36)
tmp38 = tl.where(tmp14, tmp15, tmp37)
tmp39 = tl.where(tmp9, tmp10, tmp38)
tmp40 = tl.where(tmp4, tmp5, tmp39)
tl.store(out_ptr0 + x2, tmp40, xmask)
@triton.jit
def triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4(
in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5,
out_ptr6, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + 4)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp5 = tl.load(in_ptr2 + (16 + x0), xmask)
tmp8 = tl.load(in_ptr1 + 5)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (20 + x0), xmask)
tmp13 = tl.load(in_ptr1 + 6)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp15 = tl.load(in_ptr2 + (24 + x0), xmask)
tmp18 = tl.load(in_ptr3 + x0, xmask)
tmp20 = tl.load(in_ptr4 + x0, xmask)
tmp22 = tl.load(in_ptr5 + x0, xmask)
tmp59 = tl.load(in_ptr1 + 0)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK])
tmp61 = tl.load(in_ptr2 + x0, xmask)
tmp66 = tl.load(in_ptr1 + 1)
tmp67 = tl.broadcast_to(tmp66, [XBLOCK])
tmp68 = tl.load(in_ptr2 + (4 + x0), xmask)
tmp73 = tl.load(in_ptr1 + 2)
tmp74 = tl.broadcast_to(tmp73, [XBLOCK])
tmp75 = tl.load(in_ptr2 + (8 + x0), xmask)
tmp80 = tl.load(in_ptr1 + 3)
tmp81 = tl.broadcast_to(tmp80, [XBLOCK])
tmp82 = tl.load(in_ptr2 + (12 + x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 < tmp1
tmp6 = tmp4 + tmp5
tmp7 = tl.sigmoid(tmp6)
tmp11 = tmp9 + tmp10
tmp12 = tl.sigmoid(tmp11)
tmp16 = tmp14 + tmp15
tmp17 = tl.sigmoid(tmp16)
tmp19 = tmp18 < tmp17
tmp21 = tmp20 < tmp12
tmp23 = tmp22 < tmp7
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp1 - tmp24
tmp26 = 0.0
tmp27 = tmp26 * tmp25
tmp28 = tmp7 * tmp24
tmp29 = tmp27 + tmp28
tmp30 = tmp21.to(tl.float32)
tmp31 = tmp30 * tmp25
tmp32 = tmp1 - tmp31
tmp33 = tmp29 * tmp32
tmp34 = tmp1 - tmp7
tmp35 = tmp34 * tmp12
tmp36 = tmp35 * tmp31
tmp37 = tmp33 + tmp36
tmp38 = tmp19.to(tl.float32)
tmp39 = tmp24 + tmp31
tmp40 = tmp1 - tmp39
tmp41 = tmp38 * tmp40
tmp42 = tmp1 - tmp41
tmp43 = tmp37 * tmp42
tmp44 = tmp1 - tmp12
tmp45 = tmp34 * tmp44
tmp46 = tmp45 * tmp17
tmp47 = tmp46 * tmp41
tmp48 = tmp43 + tmp47
tmp49 = tmp2.to(tl.float32)
tmp50 = tmp39 + tmp41
tmp51 = tmp1 - tmp50
tmp52 = tmp49 * tmp51
tmp53 = tmp1 - tmp52
tmp54 = tmp48 * tmp53
tmp55 = tmp1 - tmp17
tmp56 = tmp45 * tmp55
tmp57 = tmp56 * tmp52
tmp58 = tmp54 + tmp57
tmp62 = tmp60 + tmp61
tmp63 = tmp62 * tmp24
tmp64 = tmp27 + tmp63
tmp65 = tmp64 * tmp32
tmp69 = tmp67 + tmp68
tmp70 = tmp69 * tmp31
tmp71 = tmp65 + tmp70
tmp72 = tmp71 * tmp42
tmp76 = tmp74 + tmp75
tmp77 = tmp76 * tmp41
tmp78 = tmp72 + tmp77
tmp79 = tmp78 * tmp53
tmp83 = tmp81 + tmp82
tmp84 = tmp83 * tmp52
tmp85 = tmp79 + tmp84
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp7, xmask)
tl.store(out_ptr2 + x0, tmp12, xmask)
tl.store(out_ptr3 + x0, tmp17, xmask)
tl.store(out_ptr4 + x0, tmp19, xmask)
tl.store(out_ptr5 + x0, tmp21, xmask)
tl.store(out_ptr6 + x0, tmp23, xmask)
tl.store(in_out_ptr0 + x0, tmp58, xmask)
tl.store(in_out_ptr1 + x0, tmp85, xmask)
@triton.jit
def triton_poi_fused_stack_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (-4 + x0), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = 1.0
tmp12 = tmp11 - tmp10
tmp13 = tl.load(in_ptr1 + (-4 + x0), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tmp12 * tmp13
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp9, tmp14, tmp15)
tmp17 = tmp0 >= tmp7
tmp18 = tl.full([1], 12, tl.int64)
tmp19 = tmp0 < tmp18
tmp20 = tmp17 & tmp19
tmp21 = tl.load(in_ptr0 + (-8 + x0), tmp20 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp22 = tmp11 - tmp21
tmp23 = tl.load(in_ptr1 + (-8 + x0), tmp20 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tmp11 - tmp23
tmp25 = tmp22 * tmp24
tmp26 = tl.load(in_ptr2 + (-8 + x0), tmp20 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp27 = tmp25 * tmp26
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp20, tmp27, tmp28)
tmp30 = tmp0 >= tmp18
tl.full([1], 16, tl.int64)
tmp33 = tl.load(in_ptr0 + (-12 + x0), tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp34 = tmp11 - tmp33
tmp35 = tl.load(in_ptr1 + (-12 + x0), tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp36 = tmp11 - tmp35
tmp37 = tmp34 * tmp36
tmp38 = tl.load(in_ptr2 + (-12 + x0), tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp39 = tmp11 - tmp38
tmp40 = tmp37 * tmp39
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp30, tmp40, tmp41)
tmp43 = tl.where(tmp20, tmp29, tmp42)
tmp44 = tl.where(tmp9, tmp16, tmp43)
tmp45 = tl.where(tmp4, tmp5, tmp44)
tl.store(out_ptr0 + x0, tmp45, xmask)
@triton.jit
def triton_poi_fused_stack_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp5 = tl.load(in_ptr0 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp15 = tl.load(in_ptr0 + 1)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp25 = tl.load(in_ptr0 + 2)
tmp26 = tl.broadcast_to(tmp25, [XBLOCK])
tmp34 = tl.load(in_ptr0 + 3)
tmp35 = tl.broadcast_to(tmp34, [XBLOCK])
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp7 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tmp12 = tl.full([1], 8, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp17 = tl.load(in_ptr1 + (4 + (-4 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tmp16 + tmp17
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tmp0 >= tmp12
tmp22 = tl.full([1], 12, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp27 = tl.load(in_ptr1 + (8 + (-8 + x0)), tmp24 & xmask,
eviction_policy='evict_last', other=0.0)
tmp28 = tmp26 + tmp27
tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype)
tmp30 = tl.where(tmp24, tmp28, tmp29)
tmp31 = tmp0 >= tmp22
tl.full([1], 16, tl.int64)
tmp36 = tl.load(in_ptr1 + (12 + (-12 + x0)), tmp31 & xmask,
eviction_policy='evict_last', other=0.0)
tmp37 = tmp35 + tmp36
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp31, tmp37, tmp38)
tmp40 = tl.where(tmp24, tmp30, tmp39)
tmp41 = tl.where(tmp14, tmp20, tmp40)
tmp42 = tl.where(tmp4, tmp10, tmp41)
tl.store(out_ptr0 + x0, tmp42, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, 4), (4, 1))
assert_size_stride(primals_4, (12,), (1,))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_new_zeros_0[grid(16)](buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 12),
(1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (4, 12), (1,
4), 0), out=buf2)
buf3 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf2, buf0,
primals_4, primals_5)
buf4 = buf3[0]
buf5 = buf3[1]
del buf3
buf6 = empty_strided_cuda((7, 4), (4, 1), torch.float32)
triton_poi_fused_stack_1[grid(28)](primals_8, primals_6, buf6, 28,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_6
del primals_8
buf7 = empty_strided_cuda((7,), (1,), torch.float32)
triton_poi_fused_stack_2[grid(7)](primals_9, primals_7, buf7, 7,
XBLOCK=8, num_warps=1, num_stages=1)
del primals_7
del primals_9
buf8 = buf2
del buf2
extern_kernels.mm(buf4, reinterpret_tensor(primals_3, (4, 12), (1,
4), 0), out=buf8)
buf9 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf8, buf4,
primals_4, primals_5)
buf10 = buf9[0]
buf11 = buf9[1]
del buf9
buf12 = buf8
del buf8
extern_kernels.mm(buf10, reinterpret_tensor(primals_3, (4, 12), (1,
4), 0), out=buf12)
buf13 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf12,
buf10, primals_4, primals_5)
buf14 = buf13[0]
buf15 = buf13[1]
del buf13
buf16 = buf12
del buf12
extern_kernels.mm(buf14, reinterpret_tensor(primals_3, (4, 12), (1,
4), 0), out=buf16)
buf17 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf16,
buf14, primals_4, primals_5)
del buf1
del buf16
del primals_4
del primals_5
buf18 = buf17[0]
buf19 = buf17[1]
del buf17
buf20 = empty_strided_cuda((28, 4), (4, 1), torch.float32)
triton_poi_fused_stack_3[grid(112)](buf4, buf10, buf14, buf18,
buf20, 112, XBLOCK=128, num_warps=4, num_stages=1)
buf21 = empty_strided_cuda((7, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf20, (7, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf6, (7, 4, 1), (4, 1, 4), 0), out=buf21)
buf23 = torch.ops.aten.rand.default([4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf24 = buf23
del buf23
buf27 = torch.ops.aten.rand.default([4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf28 = buf27
del buf27
buf31 = torch.ops.aten.rand.default([4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf32 = buf31
del buf31
buf36 = torch.ops.aten.rand.default([4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf37 = buf36
del buf36
buf38 = empty_strided_cuda((4,), (1,), torch.bool)
buf30 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf25 = empty_strided_cuda((4,), (1,), torch.bool)
buf29 = empty_strided_cuda((4,), (1,), torch.bool)
buf33 = empty_strided_cuda((4,), (1,), torch.bool)
buf34 = empty_strided_cuda((4,), (1,), torch.float32)
buf39 = buf34
del buf34
buf35 = empty_strided_cuda((4,), (1,), torch.float32)
buf40 = buf35
del buf35
triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4[
grid(4)](buf39, buf40, buf37, buf7, buf21, buf24, buf28, buf32,
buf38, buf30, buf26, buf22, buf25, buf29, buf33, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del buf24
del buf28
del buf32
del buf37
buf41 = reinterpret_tensor(buf18, (16,), (1,), 0)
del buf18
triton_poi_fused_stack_5[grid(16)](buf30, buf26, buf22, buf41, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf42 = empty_strided_cuda((16,), (1,), torch.float32)
triton_poi_fused_stack_6[grid(16)](buf7, buf21, buf42, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del buf21
del buf7
return (reinterpret_tensor(buf41, (4, 4), (4, 1), 0),
reinterpret_tensor(buf42, (4, 4), (4, 1), 0), buf39, buf40,
primals_1, buf0, buf4, buf5, buf10, buf11, buf14, buf15, buf19,
buf22, buf25, buf26, buf29, buf30, buf33, buf38, reinterpret_tensor
(buf6, (7, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf20, (7, 4, 4
), (16, 1, 4), 0), primals_3)
class ParityPonderGRUNew(Module):
"""
## PonderNet with GRU for Parity Task
This is a simple model that uses a [GRU Cell](https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html)
as the step function.
This model is for the [Parity Task](../parity.html) where the input is a vector of `n_elems`.
Each element of the vector is either `0`, `1` or `-1` and the output is the parity
- a binary value that is true if the number of `1`s is odd and false otherwise.
The prediction of the model is the log probability of the parity being $1$.
"""
def __init__(self, n_elems: 'int', n_hidden: 'int', max_steps: 'int'):
"""
* `n_elems` is the number of elements in the input vector
* `n_hidden` is the state vector size of the GRU
* `max_steps` is the maximum number of steps $N$
"""
super().__init__()
self.max_steps = max_steps
self.n_hidden = n_hidden
self.gru = nn.GRUCell(n_elems, n_hidden)
self.output_layer = nn.Linear(n_hidden, 1)
self.lambda_layer = nn.Linear(n_hidden, 1)
self.lambda_prob = nn.Sigmoid()
self.is_halt = False
def forward(self, input_0):
primals_2 = self.gru.weight_ih
primals_3 = self.gru.weight_hh
primals_4 = self.gru.bias_ih
primals_5 = self.gru.bias_hh
primals_6 = self.output_layer.weight
primals_7 = self.output_layer.bias
primals_8 = self.lambda_layer.weight
primals_9 = self.lambda_layer.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1], output[2], output[3]
| techthiyanes/annotated_deep_learning_paper_implementations | ParityPonderGRU | false | 16,605 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
WassersteinDiscriminatorLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/b3/cb3pc2vp6wrlkpzdz67xefuwj5y5w37f2osmgvolg5bcw2n4mtuq.py
# Topologically Sorted Source Nodes: [sub, mean], Original ATen: [aten.sub, aten.mean]
# Source node to ATen node mapping:
# mean => mean
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {})
triton_per_fused_mean_sub_0 = async_compile.triton('triton_per_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = 256.0
tmp7 = tmp5 / tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, mean], Original ATen: [aten.sub, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def reduce(x, reduction=None):
"""Applies reduction on a torch.Tensor.
Args:
x (torch.Tensor): The tensor on which reduction is to be applied.
reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the
Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the
above then the Tensor is returning without any change.
Returns:
As per the above ``reduction`` convention.
"""
if reduction == 'mean':
return torch.mean(x)
elif reduction == 'sum':
return torch.sum(x)
else:
return x
def wasserstein_discriminator_loss(fx, fgz, reduction='mean'):
return reduce(fgz - fx, reduction)
class DiscriminatorLoss(nn.Module):
"""Base class for all discriminator losses.
.. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(DiscriminatorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value_1 = discriminator(fake)`
3. :math:`value_2 = discriminator(real)`
4. :math:`loss = loss\\_function(value_1, value_2)`
5. Backpropagate by computing :math:`\\nabla loss`
6. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(self, generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if labels is None and (generator.label_type == 'required' or
discriminator.label_type == 'required'):
raise Exception('GAN model requires labels for training')
batch_size = real_inputs.size(0)
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
optimizer_discriminator.zero_grad()
if discriminator.label_type == 'none':
dx = discriminator(real_inputs)
elif discriminator.label_type == 'required':
dx = discriminator(real_inputs, labels)
else:
dx = discriminator(real_inputs, label_gen)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
else:
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake.detach())
elif generator.label_type == 'generated':
dgz = discriminator(fake.detach(), label_gen)
else:
dgz = discriminator(fake.detach(), labels)
loss = self.forward(dx, dgz)
loss.backward()
optimizer_discriminator.step()
return loss.item()
class WassersteinDiscriminatorLoss(DiscriminatorLoss):
"""Wasserstein GAN generator loss from
`"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper
The loss can be described as:
.. math:: L(D) = f(G(z)) - f(x)
where
- :math:`G` : Generator
- :math:`f` : Critic/Discriminator
- :math:`x` : A sample from the data distribution
- :math:`z` : A sample from the noise prior
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
clip (tuple, optional): Tuple that specifies the maximum and minimum parameter
clamping to be applied, as per the original version of the Wasserstein loss
without Gradient Penalty.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def __init__(self, reduction='mean', clip=None, override_train_ops=None):
super(WassersteinDiscriminatorLoss, self).__init__(reduction,
override_train_ops)
if (isinstance(clip, tuple) or isinstance(clip, list)) and len(clip
) > 1:
self.clip = clip
else:
self.clip = None
def forward(self, fx, fgz):
"""Computes the loss for the given input.
Args:
fx (torch.Tensor) : Output of the Discriminator with real data. It must have the
dimensions (N, \\*) where \\* means any number of additional
dimensions.
fgz (torch.Tensor) : Output of the Discriminator with generated data. It must have the
dimensions (N, \\*) where \\* means any number of additional
dimensions.
Returns:
scalar if reduction is applied else Tensor with dimensions (N, \\*).
"""
return wasserstein_discriminator_loss(fx, fgz, self.reduction)
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by wasserstein discriminator loss.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. Clamp the discriminator parameters to satisfy :math:`lipschitz\\ condition`
2. :math:`fake = generator(noise)`
3. :math:`value_1 = discriminator(fake)`
4. :math:`value_2 = discriminator(real)`
5. :math:`loss = loss\\_function(value_1, value_2)`
6. Backpropagate by computing :math:`\\nabla loss`
7. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if self.clip is not None:
for p in discriminator.parameters():
p.data.clamp_(self.clip[0], self.clip[1])
return super(WassersteinDiscriminatorLoss, self).train_ops(
generator, discriminator, optimizer_discriminator,
real_inputs, device, labels)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = 256.0
tmp7 = tmp5 / tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp7, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce(x, reduction=None):
"""Applies reduction on a torch.Tensor.
Args:
x (torch.Tensor): The tensor on which reduction is to be applied.
reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the
Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the
above then the Tensor is returning without any change.
Returns:
As per the above ``reduction`` convention.
"""
if reduction == 'mean':
return torch.mean(x)
elif reduction == 'sum':
return torch.sum(x)
else:
return x
def wasserstein_discriminator_loss(fx, fgz, reduction='mean'):
return reduce(fgz - fx, reduction)
class DiscriminatorLoss(nn.Module):
"""Base class for all discriminator losses.
.. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(DiscriminatorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value_1 = discriminator(fake)`
3. :math:`value_2 = discriminator(real)`
4. :math:`loss = loss\\_function(value_1, value_2)`
5. Backpropagate by computing :math:`\\nabla loss`
6. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(self, generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if labels is None and (generator.label_type == 'required' or
discriminator.label_type == 'required'):
raise Exception('GAN model requires labels for training')
batch_size = real_inputs.size(0)
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
optimizer_discriminator.zero_grad()
if discriminator.label_type == 'none':
dx = discriminator(real_inputs)
elif discriminator.label_type == 'required':
dx = discriminator(real_inputs, labels)
else:
dx = discriminator(real_inputs, label_gen)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
else:
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake.detach())
elif generator.label_type == 'generated':
dgz = discriminator(fake.detach(), label_gen)
else:
dgz = discriminator(fake.detach(), labels)
loss = self.forward(dx, dgz)
loss.backward()
optimizer_discriminator.step()
return loss.item()
class WassersteinDiscriminatorLossNew(DiscriminatorLoss):
"""Wasserstein GAN generator loss from
`"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper
The loss can be described as:
.. math:: L(D) = f(G(z)) - f(x)
where
- :math:`G` : Generator
- :math:`f` : Critic/Discriminator
- :math:`x` : A sample from the data distribution
- :math:`z` : A sample from the noise prior
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
clip (tuple, optional): Tuple that specifies the maximum and minimum parameter
clamping to be applied, as per the original version of the Wasserstein loss
without Gradient Penalty.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def __init__(self, reduction='mean', clip=None, override_train_ops=None):
super(WassersteinDiscriminatorLossNew, self).__init__(reduction,
override_train_ops)
if (isinstance(clip, tuple) or isinstance(clip, list)) and len(clip
) > 1:
self.clip = clip
else:
self.clip = None
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by wasserstein discriminator loss.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. Clamp the discriminator parameters to satisfy :math:`lipschitz\\ condition`
2. :math:`fake = generator(noise)`
3. :math:`value_1 = discriminator(fake)`
4. :math:`value_2 = discriminator(real)`
5. :math:`loss = loss\\_function(value_1, value_2)`
6. Backpropagate by computing :math:`\\nabla loss`
7. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if self.clip is not None:
for p in discriminator.parameters():
p.data.clamp_(self.clip[0], self.clip[1])
return super(WassersteinDiscriminatorLossNew, self).train_ops(
generator, discriminator, optimizer_discriminator,
real_inputs, device, labels)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| torchgan/torchgan | WassersteinDiscriminatorLoss | false | 16,606 | [
"MIT"
] | 1,300 | f4139537ac2d3d8609d5aecc859a6fb797b107a1 | https://github.com/torchgan/torchgan/tree/f4139537ac2d3d8609d5aecc859a6fb797b107a1 |
NormalizedLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.div]
# Source node to ATen node mapping:
# inputs => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xq/cxqusq75hwmr62uwu6yk5o74t3l5fybelvjedksxnzws64lv4efg.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# output_1 => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %mm), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
triton_poi_fused_div_0.run(primals_2, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_3, buf2, buf3, 16, grid=grid(16), stream=stream0)
return (buf3, primals_2, primals_3, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
class NormalizedLinear(torch.nn.Module):
"""
A advanced Linear layer which supports weight normalization or cosine normalization.
"""
def __init__(self, in_features, out_features, bias=False, feat_norm=
True, scale_mode='learn', scale_init=1.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.feat_norm = feat_norm
self.scale_mode = scale_mode
self.scale_init = scale_init
self.weight = torch.nn.Parameter(torch.Tensor(out_features,
in_features))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if self.scale_mode == 'constant':
self.scale = scale_init
elif self.scale_mode == 'learn':
self.scale = torch.nn.Parameter(torch.ones(1) * scale_init)
else:
raise NotImplementedError
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight
)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, inputs):
"""
Args:
inputs (torch.Tensor): (N, C)
Return:
output (torch.Tensor): (N, D)
"""
if self.feat_norm:
inputs = torch.nn.functional.normalize(inputs, dim=1)
output = inputs.mm(torch.nn.functional.normalize(self.weight, dim=1
).t())
output = self.scale * output
return output
def extra_repr(self):
s = 'in_features={in_features}, out_features={out_features}'
if self.bias is None:
s += ', bias=False'
s += ', feat_norm={feat_norm}'
s += ', scale_mode={scale_mode}'
s += ', scale_init={scale_init}'
return s.format(**self.__dict__)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_0[grid(16)](primals_2, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
out=buf2)
buf3 = buf1
del buf1
triton_poi_fused_mul_1[grid(16)](primals_3, buf2, buf3, 16, XBLOCK=
16, num_warps=1, num_stages=1)
return buf3, primals_2, primals_3, buf0, buf2
class NormalizedLinearNew(torch.nn.Module):
"""
A advanced Linear layer which supports weight normalization or cosine normalization.
"""
def __init__(self, in_features, out_features, bias=False, feat_norm=
True, scale_mode='learn', scale_init=1.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.feat_norm = feat_norm
self.scale_mode = scale_mode
self.scale_init = scale_init
self.weight = torch.nn.Parameter(torch.Tensor(out_features,
in_features))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if self.scale_mode == 'constant':
self.scale = scale_init
elif self.scale_mode == 'learn':
self.scale = torch.nn.Parameter(torch.ones(1) * scale_init)
else:
raise NotImplementedError
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight
)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def extra_repr(self):
s = 'in_features={in_features}, out_features={out_features}'
if self.bias is None:
s += ', bias=False'
s += ', feat_norm={feat_norm}'
s += ', scale_mode={scale_mode}'
s += ', scale_init={scale_init}'
return s.format(**self.__dict__)
def forward(self, input_0):
primals_1 = self.weight
primals_3 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| tonysy/cvpods | NormalizedLinear | false | 16,607 | [
"Apache-2.0"
] | 548 | e322d7842ca0e34b1ef6237ea6d350633efc793a | https://github.com/tonysy/cvpods/tree/e322d7842ca0e34b1ef6237ea6d350633efc793a |
Value | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (1, 64), (64, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_values], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Value(nn.Module):
def __init__(self, num_inputs):
super(Value, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.value_head = nn.Linear(64, 1)
self.value_head.weight.data.mul_(0.1)
self.value_head.bias.data.mul_(0.0)
def forward(self, x):
x = F.tanh(self.affine1(x))
x = F.tanh(self.affine2(x))
state_values = self.value_head(x)
return state_values
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (1, 64), (64, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(4096)](buf1, primals_2, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 1), (1, 64), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, primals_6, primals_4
class ValueNew(nn.Module):
def __init__(self, num_inputs):
super(ValueNew, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.value_head = nn.Linear(64, 1)
self.value_head.weight.data.mul_(0.1)
self.value_head.bias.data.mul_(0.0)
def forward(self, input_0):
primals_1 = self.affine1.weight
primals_2 = self.affine1.bias
primals_4 = self.affine2.weight
primals_5 = self.affine2.bias
primals_6 = self.value_head.weight
primals_7 = self.value_head.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| tpbarron/pytorch-ppo | Value | false | 16,608 | [
"MIT"
] | 47 | f73226865e34443f93dbec58939329c9278828e8 | https://github.com/tpbarron/pytorch-ppo/tree/f73226865e34443f93dbec58939329c9278828e8 |
MinimaxDiscriminatorLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ie/cielolrevovxc3jw6so752kawirsv5asxwujo5d3qeptlgin4mmh.py
# Topologically Sorted Source Nodes: [loss, binary_cross_entropy_with_logits_1, loss_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.add]
# Source node to ATen node mapping:
# binary_cross_entropy_with_logits_1 => abs_2, exp_1, full_default_3, log1p_1, mean_1, minimum_1, neg_1, sub_4, sub_5
# loss => abs_1, exp, full_default, full_default_1, log1p, mean, minimum, mul_1, neg, sub_1, sub_2
# loss_1 => add
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %arg0_1), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_3, %arg1_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_1, %log1p_1), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %sub_4), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_5,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {})
triton_per_fused_add_binary_cross_entropy_with_logits_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp13 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.0
tmp2 = tmp1 * tmp0
tmp3 = triton_helpers.minimum(tmp1, tmp0)
tmp4 = tl_math.abs(tmp0)
tmp5 = -tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tmp3 - tmp7
tmp9 = tmp2 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp14 = triton_helpers.minimum(tmp1, tmp13)
tmp15 = tl_math.abs(tmp13)
tmp16 = -tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = libdevice.log1p(tmp17)
tmp19 = tmp14 - tmp18
tmp20 = tmp13 - tmp19
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tmp24 = 256.0
tmp25 = tmp12 / tmp24
tmp26 = tmp23 / tmp24
tmp27 = tmp25 + tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss, binary_cross_entropy_with_logits_1, loss_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def minimax_discriminator_loss(dx, dgz, label_smoothing=0.0, reduction='mean'):
target_ones = torch.ones_like(dgz) * (1.0 - label_smoothing)
target_zeros = torch.zeros_like(dx)
loss = F.binary_cross_entropy_with_logits(dx, target_ones, reduction=
reduction)
loss += F.binary_cross_entropy_with_logits(dgz, target_zeros, reduction
=reduction)
return loss
class DiscriminatorLoss(nn.Module):
"""Base class for all discriminator losses.
.. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(DiscriminatorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value_1 = discriminator(fake)`
3. :math:`value_2 = discriminator(real)`
4. :math:`loss = loss\\_function(value_1, value_2)`
5. Backpropagate by computing :math:`\\nabla loss`
6. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(self, generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if labels is None and (generator.label_type == 'required' or
discriminator.label_type == 'required'):
raise Exception('GAN model requires labels for training')
batch_size = real_inputs.size(0)
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
optimizer_discriminator.zero_grad()
if discriminator.label_type == 'none':
dx = discriminator(real_inputs)
elif discriminator.label_type == 'required':
dx = discriminator(real_inputs, labels)
else:
dx = discriminator(real_inputs, label_gen)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
else:
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake.detach())
elif generator.label_type == 'generated':
dgz = discriminator(fake.detach(), label_gen)
else:
dgz = discriminator(fake.detach(), labels)
loss = self.forward(dx, dgz)
loss.backward()
optimizer_discriminator.step()
return loss.item()
class MinimaxDiscriminatorLoss(DiscriminatorLoss):
"""Minimax game discriminator loss from the original GAN paper `"Generative Adversarial Networks
by Goodfellow et. al." <https://arxiv.org/abs/1406.2661>`_
The loss can be described as:
.. math:: L(D) = -[log(D(x)) + log(1 - D(G(z)))]
where
- :math:`G` : Generator
- :math:`D` : Discriminator
- :math:`x` : A sample from the data distribution
- :math:`z` : A sample from the noise prior
Args:
label_smoothing (float, optional): The factor by which the labels (1 in this case) needs
to be smoothened. For example, label_smoothing = 0.2 changes the value of the real
labels to 0.8.
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def __init__(self, label_smoothing=0.0, reduction='mean',
override_train_ops=None):
super(MinimaxDiscriminatorLoss, self).__init__(reduction,
override_train_ops)
self.label_smoothing = label_smoothing
def forward(self, dx, dgz):
"""Computes the loss for the given input.
Args:
dx (torch.Tensor) : Output of the Discriminator with real data. It must have the
dimensions (N, \\*) where \\* means any number of additional
dimensions.
dgz (torch.Tensor) : Output of the Discriminator with generated data. It must have the
dimensions (N, \\*) where \\* means any number of additional
dimensions.
Returns:
scalar if reduction is applied else Tensor with dimensions (N, \\*).
"""
return minimax_discriminator_loss(dx, dgz, label_smoothing=self.
label_smoothing, reduction=self.reduction)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp13 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.0
tmp2 = tmp1 * tmp0
tmp3 = triton_helpers.minimum(tmp1, tmp0)
tmp4 = tl_math.abs(tmp0)
tmp5 = -tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tmp3 - tmp7
tmp9 = tmp2 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp14 = triton_helpers.minimum(tmp1, tmp13)
tmp15 = tl_math.abs(tmp13)
tmp16 = -tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = libdevice.log1p(tmp17)
tmp19 = tmp14 - tmp18
tmp20 = tmp13 - tmp19
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tmp24 = 256.0
tmp25 = tmp12 / tmp24
tmp26 = tmp23 / tmp24
tmp27 = tmp25 + tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
def minimax_discriminator_loss(dx, dgz, label_smoothing=0.0, reduction='mean'):
target_ones = torch.ones_like(dgz) * (1.0 - label_smoothing)
target_zeros = torch.zeros_like(dx)
loss = F.binary_cross_entropy_with_logits(dx, target_ones, reduction=
reduction)
loss += F.binary_cross_entropy_with_logits(dgz, target_zeros, reduction
=reduction)
return loss
class DiscriminatorLoss(nn.Module):
"""Base class for all discriminator losses.
.. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this.
Args:
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size.
If ``sum`` the elements of the output are summed.
override_train_ops (function, optional): Function to be used in place of the default ``train_ops``
"""
def __init__(self, reduction='mean', override_train_ops=None):
super(DiscriminatorLoss, self).__init__()
self.reduction = reduction
self.override_train_ops = override_train_ops
self.arg_map = {}
def set_arg_map(self, value):
"""Updates the ``arg_map`` for passing a different value to the ``train_ops``.
Args:
value (dict): A mapping of the ``argument name`` in the method signature and the
variable name in the ``Trainer`` it corresponds to.
.. note::
If the ``train_ops`` signature is
``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)``
then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``.
In this case we make the following function call
``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``.
"""
self.arg_map.update(value)
def train_ops(self, generator, discriminator, optimizer_discriminator,
real_inputs, device, labels=None):
"""Defines the standard ``train_ops`` used by most losses. Losses which have a different
training procedure can either ``subclass`` it **(recommended approach)** or make use of
``override_train_ops`` argument.
The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops
is as follows:
1. :math:`fake = generator(noise)`
2. :math:`value_1 = discriminator(fake)`
3. :math:`value_2 = discriminator(real)`
4. :math:`loss = loss\\_function(value_1, value_2)`
5. Backpropagate by computing :math:`\\nabla loss`
6. Run a step of the optimizer for discriminator
Args:
generator (torchgan.models.Generator): The model to be optimized.
discriminator (torchgan.models.Discriminator): The discriminator which judges the
performance of the generator.
optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters``
of the ``discriminator``.
real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``.
device (torch.device): Device on which the ``generator`` and ``discriminator`` is present.
batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``.
labels (torch.Tensor, optional): Labels for the data.
Returns:
Scalar value of the loss.
"""
if self.override_train_ops is not None:
return self.override_train_ops(self, generator, discriminator,
optimizer_discriminator, real_inputs, device, labels)
else:
if labels is None and (generator.label_type == 'required' or
discriminator.label_type == 'required'):
raise Exception('GAN model requires labels for training')
batch_size = real_inputs.size(0)
noise = torch.randn(batch_size, generator.encoding_dims, device
=device)
if generator.label_type == 'generated':
label_gen = torch.randint(0, generator.num_classes, (
batch_size,), device=device)
optimizer_discriminator.zero_grad()
if discriminator.label_type == 'none':
dx = discriminator(real_inputs)
elif discriminator.label_type == 'required':
dx = discriminator(real_inputs, labels)
else:
dx = discriminator(real_inputs, label_gen)
if generator.label_type == 'none':
fake = generator(noise)
elif generator.label_type == 'required':
fake = generator(noise, labels)
else:
fake = generator(noise, label_gen)
if discriminator.label_type == 'none':
dgz = discriminator(fake.detach())
elif generator.label_type == 'generated':
dgz = discriminator(fake.detach(), label_gen)
else:
dgz = discriminator(fake.detach(), labels)
loss = self.forward(dx, dgz)
loss.backward()
optimizer_discriminator.step()
return loss.item()
class MinimaxDiscriminatorLossNew(DiscriminatorLoss):
"""Minimax game discriminator loss from the original GAN paper `"Generative Adversarial Networks
by Goodfellow et. al." <https://arxiv.org/abs/1406.2661>`_
The loss can be described as:
.. math:: L(D) = -[log(D(x)) + log(1 - D(G(z)))]
where
- :math:`G` : Generator
- :math:`D` : Discriminator
- :math:`x` : A sample from the data distribution
- :math:`z` : A sample from the noise prior
Args:
label_smoothing (float, optional): The factor by which the labels (1 in this case) needs
to be smoothened. For example, label_smoothing = 0.2 changes the value of the real
labels to 0.8.
reduction (str, optional): Specifies the reduction to apply to the output.
If ``none`` no reduction will be applied. If ``mean`` the mean of the output.
If ``sum`` the elements of the output will be summed.
override_train_ops (function, optional): A function is passed to this argument,
if the default ``train_ops`` is not to be used.
"""
def __init__(self, label_smoothing=0.0, reduction='mean',
override_train_ops=None):
super(MinimaxDiscriminatorLossNew, self).__init__(reduction,
override_train_ops)
self.label_smoothing = label_smoothing
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| torchgan/torchgan | MinimaxDiscriminatorLoss | false | 16,609 | [
"MIT"
] | 1,300 | f4139537ac2d3d8609d5aecc859a6fb797b107a1 | https://github.com/torchgan/torchgan/tree/f4139537ac2d3d8609d5aecc859a6fb797b107a1 |
VirtualBatchNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/23/c23jg33pa2prp4iwyevdetkedocjv56blfdlx3hu2waow3n2qbb3.py
# Topologically Sorted Source Nodes: [mu, var], Original ATen: [aten.mean, aten.var]
# Source node to ATen node mapping:
# mu => mean
# var => var
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [0], True), kwargs = {})
# %var : [num_users=2] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [0]), kwargs = {correction: 1, keepdim: True})
triton_poi_fused_mean_var_0 = async_compile.triton('triton_poi_fused_mean_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/w2/cw2sqrlevlzzmj3khrkrchps3gaeoh3ly45dxijk5luzkvnebeie.py
# Topologically Sorted Source Nodes: [add, std, sub, x, mul, out], Original ATen: [aten.add, aten.sqrt, aten.sub, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# out => add_1
# std => sqrt
# sub => sub
# x => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_1), kwargs = {})
triton_poi_fused_add_div_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_add_div_mul_sqrt_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1e-05
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tmp2 / tmp6
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tl.store(out_ptr0 + (x3), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu, var], Original ATen: [aten.mean, aten.var]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_var_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, std, sub, x, mul, out], Original ATen: [aten.add, aten.sqrt, aten.sub, aten.div, aten.mul]
triton_poi_fused_add_div_mul_sqrt_sub_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf2, buf1, buf0, primals_1, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class VirtualBatchNorm(nn.Module):
"""Virtual Batch Normalization Module as proposed in the paper
`"Improved Techniques for Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_
Performs Normalizes the features of a batch based on the statistics collected on a reference
batch of samples that are chosen once and fixed from the start, as opposed to regular
batch normalization that uses the statistics of the batch being normalized
Virtual Batch Normalization requires that the size of the batch being normalized is at least
a multiple of (and ideally equal to) the size of the reference batch. Keep this in mind while
choosing the batch size in ```torch.utils.data.DataLoader``` or use ```drop_last=True```
.. math:: y = \\frac{x - \\mathrm{E}[x_{ref}]}{\\sqrt{\\mathrm{Var}[x_{ref}] + \\epsilon}} * \\gamma + \\beta
where
- :math:`x` : Batch Being Normalized
- :math:`x_{ref}` : Reference Batch
Args:
in_features (int): Size of the input dimension to be normalized
eps (float, optional): Value to be added to variance for numerical stability while normalizing
"""
def __init__(self, in_features, eps=1e-05):
super(VirtualBatchNorm, self).__init__()
self.in_features = in_features
self.scale = nn.Parameter(torch.ones(in_features))
self.bias = nn.Parameter(torch.zeros(in_features))
self.ref_mu = None
self.ref_var = None
self.eps = eps
def _batch_stats(self, x):
"""Computes the statistics of the batch ``x``.
Args:
x (torch.Tensor): Tensor whose statistics need to be computed.
Returns:
A tuple of the mean and variance of the batch ``x``.
"""
mu = torch.mean(x, dim=0, keepdim=True)
var = torch.var(x, dim=0, keepdim=True)
return mu, var
def _normalize(self, x, mu, var):
"""Normalizes the tensor ``x`` using the statistics ``mu`` and ``var``.
Args:
x (torch.Tensor): The Tensor to be normalized.
mu (torch.Tensor): Mean using which the Tensor is to be normalized.
var (torch.Tensor): Variance used in the normalization of ``x``.
Returns:
Normalized Tensor ``x``.
"""
std = torch.sqrt(self.eps + var)
x = (x - mu) / std
sizes = list(x.size())
for dim, i in enumerate(x.size()):
if dim != 1:
sizes[dim] = 1
scale = self.scale.view(*sizes)
bias = self.bias.view(*sizes)
return x * scale + bias
def forward(self, x, clear=True):
"""Computes the output of the Virtual Batch Normalization
Args:
x (torch.Tensor): A Torch Tensor of dimension at least 2 which is to be Normalized
Returns:
Torch Tensor of the same dimension after normalizing with respect to the statistics of the reference batch
"""
assert x.size(1) == self.in_features
if self.ref_mu is None or self.ref_var is None:
self.ref_mu, self.ref_var = self._batch_stats(x)
self.ref_mu = self.ref_mu.clone().detach()
self.ref_var = self.ref_var.clone().detach()
out = self._normalize(x, self.ref_mu, self.ref_var)
else:
out = self._normalize(x, self.ref_mu, self.ref_var)
if clear:
self.ref_mu = None
self.ref_var = None
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp21, xmask)
@triton.jit
def triton_poi_fused_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1e-05
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tmp2 / tmp6
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tl.store(out_ptr0 + x3, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_var_0[grid(64)](primals_1, buf0, buf1, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mul_sqrt_sub_1[grid(256)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_2
del primals_3
return buf2, buf1, buf0, primals_1, buf0, buf1
class VirtualBatchNormNew(nn.Module):
"""Virtual Batch Normalization Module as proposed in the paper
`"Improved Techniques for Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_
Performs Normalizes the features of a batch based on the statistics collected on a reference
batch of samples that are chosen once and fixed from the start, as opposed to regular
batch normalization that uses the statistics of the batch being normalized
Virtual Batch Normalization requires that the size of the batch being normalized is at least
a multiple of (and ideally equal to) the size of the reference batch. Keep this in mind while
choosing the batch size in ```torch.utils.data.DataLoader``` or use ```drop_last=True```
.. math:: y = \\frac{x - \\mathrm{E}[x_{ref}]}{\\sqrt{\\mathrm{Var}[x_{ref}] + \\epsilon}} * \\gamma + \\beta
where
- :math:`x` : Batch Being Normalized
- :math:`x_{ref}` : Reference Batch
Args:
in_features (int): Size of the input dimension to be normalized
eps (float, optional): Value to be added to variance for numerical stability while normalizing
"""
def __init__(self, in_features, eps=1e-05):
super(VirtualBatchNormNew, self).__init__()
self.in_features = in_features
self.scale = nn.Parameter(torch.ones(in_features))
self.bias = nn.Parameter(torch.zeros(in_features))
self.ref_mu = None
self.ref_var = None
self.eps = eps
def _batch_stats(self, x):
"""Computes the statistics of the batch ``x``.
Args:
x (torch.Tensor): Tensor whose statistics need to be computed.
Returns:
A tuple of the mean and variance of the batch ``x``.
"""
mu = torch.mean(x, dim=0, keepdim=True)
var = torch.var(x, dim=0, keepdim=True)
return mu, var
def _normalize(self, x, mu, var):
"""Normalizes the tensor ``x`` using the statistics ``mu`` and ``var``.
Args:
x (torch.Tensor): The Tensor to be normalized.
mu (torch.Tensor): Mean using which the Tensor is to be normalized.
var (torch.Tensor): Variance used in the normalization of ``x``.
Returns:
Normalized Tensor ``x``.
"""
std = torch.sqrt(self.eps + var)
x = (x - mu) / std
sizes = list(x.size())
for dim, i in enumerate(x.size()):
if dim != 1:
sizes[dim] = 1
scale = self.scale.view(*sizes)
bias = self.bias.view(*sizes)
return x * scale + bias
def forward(self, input_0):
primals_2 = self.scale
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| torchgan/torchgan | VirtualBatchNorm | false | 16,610 | [
"MIT"
] | 1,300 | f4139537ac2d3d8609d5aecc859a6fb797b107a1 | https://github.com/torchgan/torchgan/tree/f4139537ac2d3d8609d5aecc859a6fb797b107a1 |
CosineFastRCNNOutputLayers | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.div]
# Source node to ATen node mapping:
# inputs => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fk/cfk3au6bpii4t2zk7fuswzhjd4lviqkrkh2zykiukyxmuklrwoxj.py
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize_1 => div_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pt/cptezbtn24n3kxwvir5vn3gemn7jrmd4py73p6z2543wpzbl6lwt.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# output_1 => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %mm), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (5, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((5, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
triton_poi_fused_div_1.run(primals_2, buf1, 20, grid=grid(20), stream=stream0)
buf2 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 5), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf1, (4, 5), (5, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_3, buf2, buf3, 20, grid=grid(20), stream=stream0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proposal_deltas], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_4
del primals_5
return (buf3, buf4, primals_1, primals_2, primals_3, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
class NormalizedLinear(torch.nn.Module):
"""
A advanced Linear layer which supports weight normalization or cosine normalization.
"""
def __init__(self, in_features, out_features, bias=False, feat_norm=
True, scale_mode='learn', scale_init=1.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.feat_norm = feat_norm
self.scale_mode = scale_mode
self.scale_init = scale_init
self.weight = torch.nn.Parameter(torch.Tensor(out_features,
in_features))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if self.scale_mode == 'constant':
self.scale = scale_init
elif self.scale_mode == 'learn':
self.scale = torch.nn.Parameter(torch.ones(1) * scale_init)
else:
raise NotImplementedError
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight
)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, inputs):
"""
Args:
inputs (torch.Tensor): (N, C)
Return:
output (torch.Tensor): (N, D)
"""
if self.feat_norm:
inputs = torch.nn.functional.normalize(inputs, dim=1)
output = inputs.mm(torch.nn.functional.normalize(self.weight, dim=1
).t())
output = self.scale * output
return output
def extra_repr(self):
s = 'in_features={in_features}, out_features={out_features}'
if self.bias is None:
s += ', bias=False'
s += ', feat_norm={feat_norm}'
s += ', scale_mode={scale_mode}'
s += ', scale_init={scale_init}'
return s.format(**self.__dict__)
class CosineFastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(self, input_size, num_classes, cls_agnostic_bbox_reg,
box_dim=4, scale_mode='learn', scale_init=20.0):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int): number of foreground classes
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
box_dim (int): the dimension of bounding boxes.
Example box dimensions: 4 for regular XYXY boxes and 5 for rotated XYWHA boxes
"""
super(CosineFastRCNNOutputLayers, self).__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
self.cls_score = NormalizedLinear(input_size, num_classes + 1,
scale_mode=scale_mode, scale_init=scale_init)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for layer in [self.cls_score, self.bbox_pred]:
if layer.bias is not None:
nn.init.constant_(layer.bias, 0)
def forward(self, x):
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
scores = self.cls_score(x)
proposal_deltas = self.bbox_pred(x)
return scores, proposal_deltas
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'num_classes': 4, 'cls_agnostic_bbox_reg': 4}
]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
import torch.nn as nn
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (5, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((5, 4), (4, 1), torch.float32)
triton_poi_fused_div_1[grid(20)](primals_2, buf1, 20, XBLOCK=32,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 5), (1, 4), 0),
out=buf2)
buf3 = reinterpret_tensor(buf1, (4, 5), (5, 1), 0)
del buf1
triton_poi_fused_mul_2[grid(20)](primals_3, buf2, buf3, 20, XBLOCK=
32, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(
primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_4
del primals_5
return buf3, buf4, primals_1, primals_2, primals_3, buf0, buf2
class NormalizedLinear(torch.nn.Module):
"""
A advanced Linear layer which supports weight normalization or cosine normalization.
"""
def __init__(self, in_features, out_features, bias=False, feat_norm=
True, scale_mode='learn', scale_init=1.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.feat_norm = feat_norm
self.scale_mode = scale_mode
self.scale_init = scale_init
self.weight = torch.nn.Parameter(torch.Tensor(out_features,
in_features))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if self.scale_mode == 'constant':
self.scale = scale_init
elif self.scale_mode == 'learn':
self.scale = torch.nn.Parameter(torch.ones(1) * scale_init)
else:
raise NotImplementedError
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight
)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, inputs):
"""
Args:
inputs (torch.Tensor): (N, C)
Return:
output (torch.Tensor): (N, D)
"""
if self.feat_norm:
inputs = torch.nn.functional.normalize(inputs, dim=1)
output = inputs.mm(torch.nn.functional.normalize(self.weight, dim=1
).t())
output = self.scale * output
return output
def extra_repr(self):
s = 'in_features={in_features}, out_features={out_features}'
if self.bias is None:
s += ', bias=False'
s += ', feat_norm={feat_norm}'
s += ', scale_mode={scale_mode}'
s += ', scale_init={scale_init}'
return s.format(**self.__dict__)
class CosineFastRCNNOutputLayersNew(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(self, input_size, num_classes, cls_agnostic_bbox_reg,
box_dim=4, scale_mode='learn', scale_init=20.0):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int): number of foreground classes
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
box_dim (int): the dimension of bounding boxes.
Example box dimensions: 4 for regular XYXY boxes and 5 for rotated XYWHA boxes
"""
super(CosineFastRCNNOutputLayersNew, self).__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
self.cls_score = NormalizedLinear(input_size, num_classes + 1,
scale_mode=scale_mode, scale_init=scale_init)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for layer in [self.cls_score, self.bbox_pred]:
if layer.bias is not None:
nn.init.constant_(layer.bias, 0)
def forward(self, input_0):
primals_2 = self.cls_score.weight
primals_3 = self.cls_score.scale
primals_1 = self.bbox_pred.weight
primals_5 = self.bbox_pred.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
| tonysy/cvpods | CosineFastRCNNOutputLayers | false | 16,611 | [
"Apache-2.0"
] | 548 | e322d7842ca0e34b1ef6237ea6d350633efc793a | https://github.com/tonysy/cvpods/tree/e322d7842ca0e34b1ef6237ea6d350633efc793a |
MinibatchDiscrimination1d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qj/cqjzt26fu5t4hqresf5x3iq3urrpyjfmcfaj3pqbi57msamyo7jz.py
# Topologically Sorted Source Nodes: [sub, abs_1, sum_1, neg, exp], Original ATen: [aten.sub, aten.abs, aten.sum, aten.neg, aten.exp]
# Source node to ATen node mapping:
# abs_1 => abs_1
# exp => exp
# neg => neg
# sub => sub
# sum_1 => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %permute), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [3]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
triton_per_fused_abs_exp_neg_sub_sum_0 = async_compile.triton('triton_per_fused_abs_exp_neg_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_exp_neg_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_exp_neg_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x5 = xindex % 16
x0 = xindex % 4
x2 = (xindex // 16)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r3 + (16*x5)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (r3 + (16*x0) + (64*x2)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qh/cqhzpumg4wbpb7oef2bjhb6pmbbehhgep2m33qeyftdvpglrcodp.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %sub_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (16 + (4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.load(in_ptr1 + (32 + (4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = tl.load(in_ptr1 + (48 + (4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = 1.0
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp6, tmp17, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + (x2), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 16), (64, 16, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [M], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [sub, abs_1, sum_1, neg, exp], Original ATen: [aten.sub, aten.abs, aten.sum, aten.neg, aten.exp]
stream0 = get_raw_stream(0)
triton_per_fused_abs_exp_neg_sub_sum_0.run(buf2, buf0, 64, 16, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_2, buf2, buf3, 32, grid=grid(32), stream=stream0)
return (buf3, buf0, buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 16), (64, 16, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MinibatchDiscrimination1d(nn.Module):
"""1D Minibatch Discrimination Module as proposed in the paper `"Improved Techniques for
Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_
Allows the Discriminator to easily detect mode collapse by augmenting the activations to the succeeding
layer with side information that allows it to determine the 'closeness' of the minibatch examples
with each other
.. math :: M_i = T * f(x_{i})
.. math :: c_b(x_{i}, x_{j}) = \\exp(-||M_{i, b} - M_{j, b}||_1) \\in \\mathbb{R}.
.. math :: o(x_{i})_b &= \\sum_{j=1}^{n} c_b(x_{i},x_{j}) \\in \\mathbb{R} \\\\
.. math :: o(x_{i}) &= \\Big[ o(x_{i})_1, o(x_{i})_2, \\dots, o(x_{i})_B \\Big] \\in \\mathbb{R}^B \\\\
.. math :: o(X) \\in \\mathbb{R}^{n \\times B}
This is followed by concatenating :math:`o(x_{i})` and :math:`f(x_{i})`
where
- :math:`f(x_{i}) \\in \\mathbb{R}^A` : Activations from an intermediate layer
- :math:`f(x_{i}) \\in \\mathbb{R}^A` : Parameter Tensor for generating minibatch discrimination matrix
Args:
in_features (int): Features input corresponding to dimension :math:`A`
out_features (int): Number of output features that are to be concatenated corresponding to dimension :math:`B`
intermediate_features (int): Intermediate number of features corresponding to dimension :math:`C`
Returns:
A Tensor of size :math:`(N, in_features + out_features)` where :math:`N` is the batch size
"""
def __init__(self, in_features, out_features, intermediate_features=16):
super(MinibatchDiscrimination1d, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.intermediate_features = intermediate_features
self.T = nn.Parameter(torch.Tensor(in_features, out_features,
intermediate_features))
nn.init.normal_(self.T)
def forward(self, x):
"""Computes the output of the Minibatch Discrimination Layer
Args:
x (torch.Tensor): A Torch Tensor of dimensions :math: `(N, infeatures)`
Returns:
3D Torch Tensor of size :math: `(N,infeatures + outfeatures)` after applying Minibatch Discrimination
"""
M = torch.mm(x, self.T.view(self.in_features, -1))
M = M.view(-1, self.out_features, self.intermediate_features
).unsqueeze(0)
M_t = M.permute(1, 0, 2, 3)
out = torch.sum(torch.exp(-torch.abs(M - M_t).sum(3)), dim=0) - 1
return torch.cat([x, out], 1)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_abs_exp_neg_sub_sum_0(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x5 = xindex % 16
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r3 + 16 * x5), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (r3 + 16 * x0 + 64 * x2), xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (16 + 4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.load(in_ptr1 + (32 + 4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = tl.load(in_ptr1 + (48 + 4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = 1.0
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp6, tmp17, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + x2, tmp20, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 16), (64, 16, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 64),
(64, 1), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_abs_exp_neg_sub_sum_0[grid(64)](buf2, buf0, 64, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_2, buf2, buf3, 32, XBLOCK=
32, num_warps=1, num_stages=1)
return buf3, buf0, buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0)
class MinibatchDiscrimination1dNew(nn.Module):
"""1D Minibatch Discrimination Module as proposed in the paper `"Improved Techniques for
Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_
Allows the Discriminator to easily detect mode collapse by augmenting the activations to the succeeding
layer with side information that allows it to determine the 'closeness' of the minibatch examples
with each other
.. math :: M_i = T * f(x_{i})
.. math :: c_b(x_{i}, x_{j}) = \\exp(-||M_{i, b} - M_{j, b}||_1) \\in \\mathbb{R}.
.. math :: o(x_{i})_b &= \\sum_{j=1}^{n} c_b(x_{i},x_{j}) \\in \\mathbb{R} \\\\
.. math :: o(x_{i}) &= \\Big[ o(x_{i})_1, o(x_{i})_2, \\dots, o(x_{i})_B \\Big] \\in \\mathbb{R}^B \\\\
.. math :: o(X) \\in \\mathbb{R}^{n \\times B}
This is followed by concatenating :math:`o(x_{i})` and :math:`f(x_{i})`
where
- :math:`f(x_{i}) \\in \\mathbb{R}^A` : Activations from an intermediate layer
- :math:`f(x_{i}) \\in \\mathbb{R}^A` : Parameter Tensor for generating minibatch discrimination matrix
Args:
in_features (int): Features input corresponding to dimension :math:`A`
out_features (int): Number of output features that are to be concatenated corresponding to dimension :math:`B`
intermediate_features (int): Intermediate number of features corresponding to dimension :math:`C`
Returns:
A Tensor of size :math:`(N, in_features + out_features)` where :math:`N` is the batch size
"""
def __init__(self, in_features, out_features, intermediate_features=16):
super(MinibatchDiscrimination1dNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.intermediate_features = intermediate_features
self.T = nn.Parameter(torch.Tensor(in_features, out_features,
intermediate_features))
nn.init.normal_(self.T)
def forward(self, input_0):
primals_1 = self.T
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| torchgan/torchgan | MinibatchDiscrimination1d | false | 16,612 | [
"MIT"
] | 1,300 | f4139537ac2d3d8609d5aecc859a6fb797b107a1 | https://github.com/torchgan/torchgan/tree/f4139537ac2d3d8609d5aecc859a6fb797b107a1 |
GaussMembFunc | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4z/c4z5f5sypbvdzckwli2vgwoo37wqsejweryvcktm6nccmzns6jtu.py
# Topologically Sorted Source Nodes: [sub, pow_1, neg, pow_2, mul, truediv, val], Original ATen: [aten.sub, aten.pow, aten.neg, aten.mul, aten.div, aten.exp]
# Source node to ATen node mapping:
# mul => mul
# neg => neg
# pow_1 => pow_1
# pow_2 => pow_2
# sub => sub
# truediv => div
# val => exp
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_1,), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {})
triton_poi_fused_div_exp_mul_neg_pow_sub_0 = async_compile.triton('triton_poi_fused_div_exp_mul_neg_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_exp_mul_neg_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_exp_mul_neg_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr2 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp3 = tmp0 - tmp2
tmp4 = tmp3 * tmp3
tmp5 = -tmp4
tmp8 = tmp7 * tmp7
tmp9 = 2.0
tmp10 = tmp8 * tmp9
tmp11 = tmp5 / tmp10
tmp12 = tl_math.exp(tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, pow_1, neg, pow_2, mul, truediv, val], Original ATen: [aten.sub, aten.pow, aten.neg, aten.mul, aten.div, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_div_exp_mul_neg_pow_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, primals_3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
def _mk_param(val):
"""Make a torch parameter from a scalar value"""
if isinstance(val, torch.Tensor):
val = val.item()
return torch.nn.Parameter(torch.tensor(val, dtype=torch.float))
class GaussMembFunc(torch.nn.Module):
"""
Gaussian membership functions, defined by two parameters:
mu, the mean (center)
sigma, the standard deviation.
"""
def __init__(self, mu, sigma):
super(GaussMembFunc, self).__init__()
self.register_parameter('mu', _mk_param(mu))
self.register_parameter('sigma', _mk_param(sigma))
def forward(self, x):
val = torch.exp(-torch.pow(x - self.mu, 2) / (2 * self.sigma ** 2))
return val
def pretty(self):
return 'GaussMembFunc {} {}'.format(self.mu, self.sigma)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'mu': 4, 'sigma': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_exp_mul_neg_pow_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr2 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp3 = tmp0 - tmp2
tmp4 = tmp3 * tmp3
tmp5 = -tmp4
tmp8 = tmp7 * tmp7
tmp9 = 2.0
tmp10 = tmp8 * tmp9
tmp11 = tmp5 / tmp10
tmp12 = tl_math.exp(tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_exp_mul_neg_pow_sub_0[grid(256)](primals_2,
primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4,
num_stages=1)
return buf0, primals_1, primals_2, primals_3, buf0
def _mk_param(val):
"""Make a torch parameter from a scalar value"""
if isinstance(val, torch.Tensor):
val = val.item()
return torch.nn.Parameter(torch.tensor(val, dtype=torch.float))
class GaussMembFuncNew(torch.nn.Module):
"""
Gaussian membership functions, defined by two parameters:
mu, the mean (center)
sigma, the standard deviation.
"""
def __init__(self, mu, sigma):
super(GaussMembFuncNew, self).__init__()
self.register_parameter('mu', _mk_param(mu))
self.register_parameter('sigma', _mk_param(sigma))
def pretty(self):
return 'GaussMembFunc {} {}'.format(self.mu, self.sigma)
def forward(self, input_0):
primals_1 = self.mu
primals_3 = self.sigma
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| trituenhantaoio/anfis-pytorch | GaussMembFunc | false | 16,613 | [
"MIT"
] | 66 | 7a6bf123d69b550e46abeddd5b4a776243d43aa6 | https://github.com/trituenhantaoio/anfis-pytorch/tree/7a6bf123d69b550e46abeddd5b4a776243d43aa6 |
DisAlignCosineFastRCNNOutputLayers | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.div]
# Source node to ATen node mapping:
# inputs => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fk/cfk3au6bpii4t2zk7fuswzhjd4lviqkrkh2zykiukyxmuklrwoxj.py
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize_1 => div_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ta/ctayfyl2z6cnkebmnknzla3kln7iz6yv2atmlaug4fqou3wrwrt6.py
# Topologically Sorted Source Nodes: [aligned_scores], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# aligned_scores => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_1, %view], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp7 = tl.load(in_ptr1 + (0))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.sigmoid(tmp5)
tmp9 = tl.load(in_ptr2 + ((5*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp8 * tmp9
tmp11 = tl.load(in_ptr3 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 * tmp11
tmp13 = tl.load(in_ptr4 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tmp12 + tmp13
tmp15 = tmp6 * tmp14
tmp16 = 1.0
tmp17 = tmp16 - tmp6
tmp18 = tmp17 * tmp10
tmp19 = tmp15 + tmp18
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp4, tmp19, tmp20)
tmp22 = tmp0 >= tmp3
tmp23 = tl.full([1], 5, tl.int64)
tmp24 = tmp0 < tmp23
tmp25 = tl.load(in_ptr2 + (4 + (5*x1)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp26 = tmp8 * tmp25
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp22, tmp26, tmp27)
tmp29 = tl.where(tmp4, tmp21, tmp28)
tl.store(out_ptr0 + (x2), tmp29, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (5, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((5, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
triton_poi_fused_div_1.run(primals_2, buf1, 20, grid=grid(20), stream=stream0)
buf2 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 5), (1, 4), 0), out=buf2)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_4
del primals_5
buf5 = reinterpret_tensor(buf1, (4, 5), (5, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [aligned_scores], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf4, primals_3, buf2, primals_6, primals_7, buf5, 20, grid=grid(20), stream=stream0)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proposal_deltas], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, primals_1, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
del primals_9
return (buf5, buf6, primals_1, primals_2, primals_3, primals_6, primals_7, buf0, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
def cat(tensors, dim=0):
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
class NormalizedLinear(torch.nn.Module):
"""
A advanced Linear layer which supports weight normalization or cosine normalization.
"""
def __init__(self, in_features, out_features, bias=False, feat_norm=
True, scale_mode='learn', scale_init=1.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.feat_norm = feat_norm
self.scale_mode = scale_mode
self.scale_init = scale_init
self.weight = torch.nn.Parameter(torch.Tensor(out_features,
in_features))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if self.scale_mode == 'constant':
self.scale = scale_init
elif self.scale_mode == 'learn':
self.scale = torch.nn.Parameter(torch.ones(1) * scale_init)
else:
raise NotImplementedError
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight
)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, inputs):
"""
Args:
inputs (torch.Tensor): (N, C)
Return:
output (torch.Tensor): (N, D)
"""
if self.feat_norm:
inputs = torch.nn.functional.normalize(inputs, dim=1)
output = inputs.mm(torch.nn.functional.normalize(self.weight, dim=1
).t())
output = self.scale * output
return output
def extra_repr(self):
s = 'in_features={in_features}, out_features={out_features}'
if self.bias is None:
s += ', bias=False'
s += ', feat_norm={feat_norm}'
s += ', scale_mode={scale_mode}'
s += ', scale_init={scale_init}'
return s.format(**self.__dict__)
class DisAlignCosineFastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(self, input_size, num_classes, cls_agnostic_bbox_reg,
box_dim=4, scale_mode='learn', scale_init=20.0):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int): number of foreground classes
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
box_dim (int): the dimension of bounding boxes.
Example box dimensions: 4 for regular XYXY boxes and 5 for rotated XYWHA boxes
"""
super(DisAlignCosineFastRCNNOutputLayers, self).__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
self.cls_score = NormalizedLinear(input_size, num_classes + 1,
scale_mode=scale_mode, scale_init=scale_init)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
self.logit_scale = nn.Parameter(torch.ones(num_classes))
self.logit_bias = nn.Parameter(torch.zeros(num_classes))
self.confidence_layer = nn.Linear(input_size, 1)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.confidence_layer.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for layer in [self.cls_score, self.confidence_layer, self.bbox_pred]:
if layer.bias is not None:
nn.init.constant_(layer.bias, 0)
def forward(self, x):
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
scores = self.cls_score(x)
confidence = self.confidence_layer(x).sigmoid()
scores_tmp = confidence * (scores[:, :-1] * self.logit_scale + self
.logit_bias)
scores_tmp = scores_tmp + (1 - confidence) * scores[:, :-1]
aligned_scores = cat([scores_tmp, scores[:, -1].view(-1, 1)], dim=1)
proposal_deltas = self.bbox_pred(x)
return aligned_scores, proposal_deltas
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'num_classes': 4, 'cls_agnostic_bbox_reg': 4}
]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
import torch.nn as nn
import torch.utils.data
from itertools import product as product
from math import sqrt as sqrt
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp7 = tl.load(in_ptr1 + 0)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tl.sigmoid(tmp5)
tmp9 = tl.load(in_ptr2 + (5 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tmp8 * tmp9
tmp11 = tl.load(in_ptr3 + x0, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 * tmp11
tmp13 = tl.load(in_ptr4 + x0, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tmp12 + tmp13
tmp15 = tmp6 * tmp14
tmp16 = 1.0
tmp17 = tmp16 - tmp6
tmp18 = tmp17 * tmp10
tmp19 = tmp15 + tmp18
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp4, tmp19, tmp20)
tmp22 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp25 = tl.load(in_ptr2 + (4 + 5 * x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp26 = tmp8 * tmp25
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp22, tmp26, tmp27)
tmp29 = tl.where(tmp4, tmp21, tmp28)
tl.store(out_ptr0 + x2, tmp29, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (5, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((5, 4), (4, 1), torch.float32)
triton_poi_fused_div_1[grid(20)](primals_2, buf1, 20, XBLOCK=32,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 5), (1, 4), 0),
out=buf2)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(
primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_4
del primals_5
buf5 = reinterpret_tensor(buf1, (4, 5), (5, 1), 0)
del buf1
triton_poi_fused_cat_2[grid(20)](buf4, primals_3, buf2, primals_6,
primals_7, buf5, 20, XBLOCK=32, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, primals_1, reinterpret_tensor(
primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
del primals_9
return (buf5, buf6, primals_1, primals_2, primals_3, primals_6,
primals_7, buf0, buf2, buf4)
def cat(tensors, dim=0):
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
class NormalizedLinear(torch.nn.Module):
"""
A advanced Linear layer which supports weight normalization or cosine normalization.
"""
def __init__(self, in_features, out_features, bias=False, feat_norm=
True, scale_mode='learn', scale_init=1.0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.feat_norm = feat_norm
self.scale_mode = scale_mode
self.scale_init = scale_init
self.weight = torch.nn.Parameter(torch.Tensor(out_features,
in_features))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if self.scale_mode == 'constant':
self.scale = scale_init
elif self.scale_mode == 'learn':
self.scale = torch.nn.Parameter(torch.ones(1) * scale_init)
else:
raise NotImplementedError
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight
)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, inputs):
"""
Args:
inputs (torch.Tensor): (N, C)
Return:
output (torch.Tensor): (N, D)
"""
if self.feat_norm:
inputs = torch.nn.functional.normalize(inputs, dim=1)
output = inputs.mm(torch.nn.functional.normalize(self.weight, dim=1
).t())
output = self.scale * output
return output
def extra_repr(self):
s = 'in_features={in_features}, out_features={out_features}'
if self.bias is None:
s += ', bias=False'
s += ', feat_norm={feat_norm}'
s += ', scale_mode={scale_mode}'
s += ', scale_init={scale_init}'
return s.format(**self.__dict__)
class DisAlignCosineFastRCNNOutputLayersNew(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(self, input_size, num_classes, cls_agnostic_bbox_reg,
box_dim=4, scale_mode='learn', scale_init=20.0):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int): number of foreground classes
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
box_dim (int): the dimension of bounding boxes.
Example box dimensions: 4 for regular XYXY boxes and 5 for rotated XYWHA boxes
"""
super(DisAlignCosineFastRCNNOutputLayersNew, self).__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
self.cls_score = NormalizedLinear(input_size, num_classes + 1,
scale_mode=scale_mode, scale_init=scale_init)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
self.logit_scale = nn.Parameter(torch.ones(num_classes))
self.logit_bias = nn.Parameter(torch.zeros(num_classes))
self.confidence_layer = nn.Linear(input_size, 1)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.confidence_layer.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for layer in [self.cls_score, self.confidence_layer, self.bbox_pred]:
if layer.bias is not None:
nn.init.constant_(layer.bias, 0)
def forward(self, input_0):
primals_6 = self.logit_scale
primals_7 = self.logit_bias
primals_2 = self.cls_score.weight
primals_3 = self.cls_score.scale
primals_1 = self.bbox_pred.weight
primals_9 = self.bbox_pred.bias
primals_4 = self.confidence_layer.weight
primals_5 = self.confidence_layer.bias
primals_8 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
| tonysy/cvpods | DisAlignCosineFastRCNNOutputLayers | false | 16,615 | [
"Apache-2.0"
] | 548 | e322d7842ca0e34b1ef6237ea6d350633efc793a | https://github.com/tonysy/cvpods/tree/e322d7842ca0e34b1ef6237ea6d350633efc793a |
Policy | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/53/c5336tes3fejn37nhb2iijuur7spy3qcasflywbbqklxwgjxpcvr.py
# Topologically Sorted Source Nodes: [action_std], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# action_std => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%expand,), kwargs = {})
triton_poi_fused_exp_1 = async_compile.triton('triton_poi_fused_exp_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + (x2), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_mean], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_std], Original ATen: [aten.exp]
triton_poi_fused_exp_1.run(primals_8, buf5, 256, grid=grid(256), stream=stream0)
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_8, (4, 4, 4, 4), (0, 0, 0, 1), 0), buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import copy
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def square(a):
return torch.pow(a, 2.0)
class Policy(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(Policy, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.action_mean = nn.Linear(64, num_outputs)
self.action_mean.weight.data.mul_(0.1)
self.action_mean.bias.data.mul_(0.0)
self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs))
self.module_list_current = [self.affine1, self.affine2, self.
action_mean, self.action_log_std]
self.module_list_old = [None] * len(self.module_list_current)
self.backup()
def backup(self):
for i in range(len(self.module_list_current)):
self.module_list_old[i] = copy.deepcopy(self.module_list_current[i]
)
def kl_div_p_q(self, p_mean, p_std, q_mean, q_std):
"""KL divergence D_{KL}[p(x)||q(x)] for a fully factorized Gaussian"""
numerator = square(p_mean - q_mean) + square(p_std) - square(q_std)
denominator = 2.0 * square(q_std) + eps
return torch.sum(numerator / denominator + torch.log(q_std) - torch
.log(p_std))
def kl_old_new(self):
"""Gives kld from old params to new params"""
kl_div = self.kl_div_p_q(self.module_list_old[-2], self.
module_list_old[-1], self.action_mean, self.action_log_std)
return kl_div
def entropy(self):
"""Gives entropy of current defined prob dist"""
ent = torch.sum(self.action_log_std + 0.5 * torch.log(2.0 * np.pi *
np.e))
return ent
def forward(self, x, old=False):
if old:
x = F.tanh(self.module_list_old[0](x))
x = F.tanh(self.module_list_old[1](x))
action_mean = self.module_list_old[2](x)
action_log_std = self.module_list_old[3].expand_as(action_mean)
action_std = torch.exp(action_log_std)
else:
x = F.tanh(self.affine1(x))
x = F.tanh(self.affine2(x))
action_mean = self.action_mean(x)
action_log_std = self.action_log_std.expand_as(action_mean)
action_std = torch.exp(action_log_std)
return action_mean, action_log_std, action_std
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_outputs': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import copy
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
@triton.jit
def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + x2, tmp1, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(4096)](buf1, primals_2, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_exp_1[grid(256)](primals_8, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_8, (4, 4, 4, 4), (0, 0, 0, 1), 0
), buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, buf5, primals_6, primals_4
def square(a):
return torch.pow(a, 2.0)
class PolicyNew(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(PolicyNew, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.action_mean = nn.Linear(64, num_outputs)
self.action_mean.weight.data.mul_(0.1)
self.action_mean.bias.data.mul_(0.0)
self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs))
self.module_list_current = [self.affine1, self.affine2, self.
action_mean, self.action_log_std]
self.module_list_old = [None] * len(self.module_list_current)
self.backup()
def backup(self):
for i in range(len(self.module_list_current)):
self.module_list_old[i] = copy.deepcopy(self.module_list_current[i]
)
def kl_div_p_q(self, p_mean, p_std, q_mean, q_std):
"""KL divergence D_{KL}[p(x)||q(x)] for a fully factorized Gaussian"""
numerator = square(p_mean - q_mean) + square(p_std) - square(q_std)
denominator = 2.0 * square(q_std) + eps
return torch.sum(numerator / denominator + torch.log(q_std) - torch
.log(p_std))
def kl_old_new(self):
"""Gives kld from old params to new params"""
kl_div = self.kl_div_p_q(self.module_list_old[-2], self.
module_list_old[-1], self.action_mean, self.action_log_std)
return kl_div
def entropy(self):
"""Gives entropy of current defined prob dist"""
ent = torch.sum(self.action_log_std + 0.5 * torch.log(2.0 * np.pi *
np.e))
return ent
def forward(self, input_0):
primals_8 = self.action_log_std
primals_1 = self.affine1.weight
primals_2 = self.affine1.bias
primals_4 = self.affine2.weight
primals_5 = self.affine2.bias
primals_6 = self.action_mean.weight
primals_7 = self.action_mean.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1], output[2]
| tpbarron/pytorch-ppo | Policy | false | 16,616 | [
"MIT"
] | 47 | f73226865e34443f93dbec58939329c9278828e8 | https://github.com/tpbarron/pytorch-ppo/tree/f73226865e34443f93dbec58939329c9278828e8 |
ActorCritic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/53/c5336tes3fejn37nhb2iijuur7spy3qcasflywbbqklxwgjxpcvr.py
# Topologically Sorted Source Nodes: [action_std], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# action_std => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%expand,), kwargs = {})
triton_poi_fused_exp_1 = async_compile.triton('triton_poi_fused_exp_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + (x2), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1, 64), (64, 1))
assert_size_stride(primals_10, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_mean], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_std], Original ATen: [aten.exp]
triton_poi_fused_exp_1.run(primals_8, buf5, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_9, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf7)
del primals_10
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_8, (4, 4, 4, 4), (0, 0, 0, 1), 0), buf5, reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, primals_9, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
class ActorCritic(nn.Module):
def __init__(self, num_inputs, num_outputs, hidden=64):
super(ActorCritic, self).__init__()
self.affine1 = nn.Linear(num_inputs, hidden)
self.affine2 = nn.Linear(hidden, hidden)
self.action_mean = nn.Linear(hidden, num_outputs)
self.action_mean.weight.data.mul_(0.1)
self.action_mean.bias.data.mul_(0.0)
self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs))
self.value_head = nn.Linear(hidden, 1)
self.module_list_current = [self.affine1, self.affine2, self.
action_mean, self.action_log_std, self.value_head]
self.module_list_old = [None] * len(self.module_list_current)
self.backup()
def backup(self):
for i in range(len(self.module_list_current)):
self.module_list_old[i] = copy.deepcopy(self.module_list_current[i]
)
def forward(self, x, old=False):
if old:
x = F.tanh(self.module_list_old[0](x))
x = F.tanh(self.module_list_old[1](x))
action_mean = self.module_list_old[2](x)
action_log_std = self.module_list_old[3].expand_as(action_mean)
action_std = torch.exp(action_log_std)
value = self.module_list_old[4](x)
else:
x = F.tanh(self.affine1(x))
x = F.tanh(self.affine2(x))
action_mean = self.action_mean(x)
action_log_std = self.action_log_std.expand_as(action_mean)
action_std = torch.exp(action_log_std)
value = self.value_head(x)
return action_mean, action_log_std, action_std, value
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_outputs': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import copy
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
@triton.jit
def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + x2, tmp1, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1, 64), (64, 1))
assert_size_stride(primals_10, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(4096)](buf1, primals_2, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_exp_1[grid(256)](primals_8, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_10, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_9, (64, 1), (1, 64), 0),
alpha=1, beta=1, out=buf7)
del primals_10
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_8, (4, 4, 4, 4), (0, 0, 0, 1), 0
), buf5, reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, buf5, primals_9, primals_6, primals_4
class ActorCriticNew(nn.Module):
def __init__(self, num_inputs, num_outputs, hidden=64):
super(ActorCriticNew, self).__init__()
self.affine1 = nn.Linear(num_inputs, hidden)
self.affine2 = nn.Linear(hidden, hidden)
self.action_mean = nn.Linear(hidden, num_outputs)
self.action_mean.weight.data.mul_(0.1)
self.action_mean.bias.data.mul_(0.0)
self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs))
self.value_head = nn.Linear(hidden, 1)
self.module_list_current = [self.affine1, self.affine2, self.
action_mean, self.action_log_std, self.value_head]
self.module_list_old = [None] * len(self.module_list_current)
self.backup()
def backup(self):
for i in range(len(self.module_list_current)):
self.module_list_old[i] = copy.deepcopy(self.module_list_current[i]
)
def forward(self, input_0):
primals_8 = self.action_log_std
primals_1 = self.affine1.weight
primals_2 = self.affine1.bias
primals_4 = self.affine2.weight
primals_5 = self.affine2.bias
primals_6 = self.action_mean.weight
primals_7 = self.action_mean.bias
primals_9 = self.value_head.weight
primals_10 = self.value_head.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0], output[1], output[2], output[3]
| tpbarron/pytorch-ppo | ActorCritic | false | 16,617 | [
"MIT"
] | 47 | f73226865e34443f93dbec58939329c9278828e8 | https://github.com/tpbarron/pytorch-ppo/tree/f73226865e34443f93dbec58939329c9278828e8 |
BellMembFunc | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/eb/cebvdz62qer4oz5rwrmgolin6f7xce7tjvzcl2p4jvitglhropzk.py
# Topologically Sorted Source Nodes: [sub, truediv, dist, pow_2, add, reciprocal], Original ATen: [aten.sub, aten.div, aten.pow, aten.add, aten.reciprocal]
# Source node to ATen node mapping:
# add => add
# dist => pow_1
# pow_2 => pow_2
# reciprocal => reciprocal
# sub => sub
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %primals_3), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%pow_1, %primals_4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {})
triton_poi_fused_add_div_pow_reciprocal_sub_0 = async_compile.triton('triton_poi_fused_add_div_pow_reciprocal_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_reciprocal_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_pow_reciprocal_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp8 = tl.load(in_ptr3 + (0))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp3 = tmp0 - tmp2
tmp6 = tmp3 / tmp5
tmp7 = tmp6 * tmp6
tmp10 = libdevice.pow(tmp7, tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tl.full([1], 1, tl.int32)
tmp14 = tmp13 / tmp12
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, truediv, dist, pow_2, add, reciprocal], Original ATen: [aten.sub, aten.div, aten.pow, aten.add, aten.reciprocal]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_pow_reciprocal_sub_0.run(primals_2, primals_1, primals_3, primals_4, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, primals_3, primals_4, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
def _mk_param(val):
"""Make a torch parameter from a scalar value"""
if isinstance(val, torch.Tensor):
val = val.item()
return torch.nn.Parameter(torch.tensor(val, dtype=torch.float))
class BellMembFunc(torch.nn.Module):
"""
Generalised Bell membership function; defined by three parameters:
a, the half-width (at the crossover point)
b, controls the slope at the crossover point (which is -b/2a)
c, the center point
"""
def __init__(self, a, b, c):
super(BellMembFunc, self).__init__()
self.register_parameter('a', _mk_param(a))
self.register_parameter('b', _mk_param(b))
self.register_parameter('c', _mk_param(c))
self.b.register_hook(BellMembFunc.b_log_hook)
@staticmethod
def b_log_hook(grad):
"""
Possibility of a log(0) in the grad for b, giving a nan.
Fix this by replacing any nan in the grad with ~0.
"""
grad[torch.isnan(grad)] = 1e-09
return grad
def forward(self, x):
dist = torch.pow((x - self.c) / self.a, 2)
return torch.reciprocal(1 + torch.pow(dist, self.b))
def pretty(self):
return 'BellMembFunc {} {} {}'.format(self.a, self.b, self.c)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'a': 4, 'b': 4, 'c': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_pow_reciprocal_sub_0(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp8 = tl.load(in_ptr3 + 0)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp3 = tmp0 - tmp2
tmp6 = tmp3 / tmp5
tmp7 = tmp6 * tmp6
tmp10 = libdevice.pow(tmp7, tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tl.full([1], 1, tl.int32)
tmp14 = tmp13 / tmp12
tl.store(out_ptr0 + x0, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_pow_reciprocal_sub_0[grid(256)](primals_2,
primals_1, primals_3, primals_4, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf0, primals_1, primals_2, primals_3, primals_4, buf0
def _mk_param(val):
"""Make a torch parameter from a scalar value"""
if isinstance(val, torch.Tensor):
val = val.item()
return torch.nn.Parameter(torch.tensor(val, dtype=torch.float))
class BellMembFuncNew(torch.nn.Module):
"""
Generalised Bell membership function; defined by three parameters:
a, the half-width (at the crossover point)
b, controls the slope at the crossover point (which is -b/2a)
c, the center point
"""
def __init__(self, a, b, c):
super(BellMembFuncNew, self).__init__()
self.register_parameter('a', _mk_param(a))
self.register_parameter('b', _mk_param(b))
self.register_parameter('c', _mk_param(c))
self.b.register_hook(BellMembFuncNew.b_log_hook)
@staticmethod
def b_log_hook(grad):
"""
Possibility of a log(0) in the grad for b, giving a nan.
Fix this by replacing any nan in the grad with ~0.
"""
grad[torch.isnan(grad)] = 1e-09
return grad
def pretty(self):
return 'BellMembFunc {} {} {}'.format(self.a, self.b, self.c)
def forward(self, input_0):
primals_1 = self.a
primals_3 = self.b
primals_4 = self.c
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| trituenhantaoio/anfis-pytorch | BellMembFunc | false | 16,618 | [
"MIT"
] | 66 | 7a6bf123d69b550e46abeddd5b4a776243d43aa6 | https://github.com/trituenhantaoio/anfis-pytorch/tree/7a6bf123d69b550e46abeddd5b4a776243d43aa6 |
DataEmbedding_wo_pos | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wf/cwfgpodivarq2gzz7nodlok35jybiut5djlrlgyaw23yzzih2tt7.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.copy]
# Source node to ATen node mapping:
# pad => copy
# Graph fragment:
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1, %slice_2), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%empty, %copy, 2, 1, 5), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %slice_7, 2, 0, 1), kwargs = {})
# %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %slice_12, 2, 5, 6), kwargs = {})
triton_poi_fused_copy_0 = async_compile.triton('triton_poi_fused_copy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_copy_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 24
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y0 = yindex % 6
x2 = xindex
y1 = (yindex // 6)
tmp0 = y0
tmp1 = tl.full([1, 1], 5, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.broadcast_to((-4) + y0, [XBLOCK, YBLOCK])
tmp4 = tl.full([1, 1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = tl.broadcast_to(y0, [XBLOCK, YBLOCK])
tmp8 = tmp7 >= tmp4
tmp9 = tmp7 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tmp10 & tmp6
tmp12 = tl.load(in_ptr0 + ((-4) + x2 + (4*y0) + (16*y1)), tmp11 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp13 = float("nan")
tmp14 = tl.where(tmp10, tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp6, tmp14, tmp15)
tmp17 = tmp3 >= tmp4
tmp18 = tmp3 < tmp1
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp2
tmp21 = tl.load(in_ptr0 + ((-20) + x2 + (4*y0) + (16*y1)), tmp20 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.where(tmp19, tmp21, tmp13)
tmp23 = tl.where(tmp5, tmp16, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp2, tmp23, tmp24)
tmp26 = tmp0 < tmp4
tmp27 = tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK])
tmp28 = tmp27 >= tmp4
tmp29 = tmp27 < tmp1
tmp30 = tmp28 & tmp29
tmp31 = tmp30 & tmp26
tmp32 = tl.load(in_ptr0 + (12 + x2 + (4*y0) + (16*y1)), tmp31 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tl.where(tmp30, tmp32, tmp13)
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp26, tmp33, tmp34)
tmp36 = tmp0 >= tmp4
tmp37 = tmp0 < tmp1
tmp38 = tmp36 & tmp37
tmp39 = tl.load(in_ptr0 + ((-4) + x2 + (4*y0) + (16*y1)), tmp38 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.where(tmp38, tmp39, tmp13)
tmp41 = tl.where(tmp26, tmp35, tmp40)
tmp42 = tl.where(tmp2, tmp25, tmp41)
tl.store(out_ptr0 + (y0 + (6*x2) + (24*y1)), tmp42, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/55/c55evpzrh3fywzeu3r57gxndcuhrqg3gekllkjsulnkdk5oceiwg.py
# Topologically Sorted Source Nodes: [embedding, embedding_1, embedding_2, embedding_3, add, add_1, add_2, add_3, x_2], Original ATen: [aten.embedding, aten.add]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# embedding => embedding
# embedding_1 => embedding_1
# embedding_2 => embedding_2
# embedding_3 => embedding_3
# x_2 => add_4
# Graph fragment:
# %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_4, %select), kwargs = {})
# %embedding_1 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_5, %select_1), kwargs = {})
# %embedding_2 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_6, %select_2), kwargs = {})
# %embedding_3 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_7, %select_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%embedding, %embedding_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %embedding_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %embedding_3), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 0.0), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %add_3), kwargs = {})
triton_poi_fused_add_embedding_1 = async_compile.triton('triton_poi_fused_add_embedding_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_embedding_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_embedding_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1.to(tl.int64)
tmp3 = tl.full([XBLOCK], 24, tl.int32)
tmp4 = tmp2 + tmp3
tmp5 = tmp2 < 0
tmp6 = tl.where(tmp5, tmp4, tmp2)
tl.device_assert(((0 <= tmp6) & (tmp6 < 24)) | ~(xmask), "index out of bounds: 0 <= tmp6 < 24")
tmp8 = tl.load(in_ptr1 + (x1 + (4*tmp6)), xmask, eviction_policy='evict_last')
tmp10 = tmp9.to(tl.int64)
tmp11 = tl.full([XBLOCK], 7, tl.int32)
tmp12 = tmp10 + tmp11
tmp13 = tmp10 < 0
tmp14 = tl.where(tmp13, tmp12, tmp10)
tl.device_assert(((0 <= tmp14) & (tmp14 < 7)) | ~(xmask), "index out of bounds: 0 <= tmp14 < 7")
tmp16 = tl.load(in_ptr2 + (x1 + (4*tmp14)), xmask, eviction_policy='evict_last')
tmp17 = tmp8 + tmp16
tmp19 = tmp18.to(tl.int64)
tmp20 = tl.full([XBLOCK], 32, tl.int32)
tmp21 = tmp19 + tmp20
tmp22 = tmp19 < 0
tmp23 = tl.where(tmp22, tmp21, tmp19)
tl.device_assert(((0 <= tmp23) & (tmp23 < 32)) | ~(xmask), "index out of bounds: 0 <= tmp23 < 32")
tmp25 = tl.load(in_ptr3 + (x1 + (4*tmp23)), xmask, eviction_policy='evict_last')
tmp26 = tmp17 + tmp25
tmp28 = tmp27.to(tl.int64)
tmp29 = tl.full([XBLOCK], 13, tl.int32)
tmp30 = tmp28 + tmp29
tmp31 = tmp28 < 0
tmp32 = tl.where(tmp31, tmp30, tmp28)
tl.device_assert(((0 <= tmp32) & (tmp32 < 13)) | ~(xmask), "index out of bounds: 0 <= tmp32 < 13")
tmp34 = tl.load(in_ptr4 + (x1 + (4*tmp32)), xmask, eviction_policy='evict_last')
tmp35 = tmp26 + tmp34
tmp36 = 0.0
tmp37 = tmp35 + tmp36
tmp38 = tmp0 + tmp37
tl.store(in_out_ptr0 + (x3), tmp38, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (24, 4), (4, 1))
assert_size_stride(primals_5, (7, 4), (4, 1))
assert_size_stride(primals_6, (32, 4), (4, 1))
assert_size_stride(primals_7, (13, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 6), (24, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.copy]
stream0 = get_raw_stream(0)
triton_poi_fused_copy_0.run(primals_1, buf1, 24, 4, grid=grid(24, 4), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [embedding, embedding_1, embedding_2, embedding_3, add, add_1, add_2, add_3, x_2], Original ATen: [aten.embedding, aten.add]
triton_poi_fused_add_embedding_1.run(buf3, primals_3, primals_4, primals_5, primals_6, primals_7, 64, grid=grid(64), stream=stream0)
del primals_3
del primals_4
del primals_5
del primals_6
del primals_7
return (buf3, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((24, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((7, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((13, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEmbedding, self).__init__()
pe = torch.zeros(max_len, d_model).float()
pe.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(
10000.0) / d_model)).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return self.pe[:, :x.size(1)]
class TokenEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(TokenEmbedding, self).__init__()
padding = 1 if torch.__version__ >= '1.5.0' else 2
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
kernel_size=3, padding=padding, padding_mode='circular', bias=False
)
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_in',
nonlinearity='leaky_relu')
def forward(self, x):
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
return x
class FixedEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(FixedEmbedding, self).__init__()
w = torch.zeros(c_in, d_model).float()
w.require_grad = False
position = torch.arange(0, c_in).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(
10000.0) / d_model)).exp()
w[:, 0::2] = torch.sin(position * div_term)
w[:, 1::2] = torch.cos(position * div_term)
self.emb = nn.Embedding(c_in, d_model)
self.emb.weight = nn.Parameter(w, requires_grad=False)
def forward(self, x):
return self.emb(x).detach()
class TemporalEmbedding(nn.Module):
def __init__(self, d_model, embed_type='fixed', freq='h'):
super(TemporalEmbedding, self).__init__()
minute_size = 4
hour_size = 24
weekday_size = 7
day_size = 32
month_size = 13
Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
if freq == 't':
self.minute_embed = Embed(minute_size, d_model)
self.hour_embed = Embed(hour_size, d_model)
self.weekday_embed = Embed(weekday_size, d_model)
self.day_embed = Embed(day_size, d_model)
self.month_embed = Embed(month_size, d_model)
def forward(self, x):
x = x.long()
minute_x = self.minute_embed(x[:, :, 4]) if hasattr(self,
'minute_embed') else 0.0
hour_x = self.hour_embed(x[:, :, 3])
weekday_x = self.weekday_embed(x[:, :, 2])
day_x = self.day_embed(x[:, :, 1])
month_x = self.month_embed(x[:, :, 0])
return hour_x + weekday_x + day_x + month_x + minute_x
class TimeFeatureEmbedding(nn.Module):
def __init__(self, d_model, embed_type='timeF', freq='h'):
super(TimeFeatureEmbedding, self).__init__()
freq_map = {'h': 4, 't': 5, 's': 6, 'm': 1, 'a': 1, 'w': 2, 'd': 3,
'b': 3}
d_inp = freq_map[freq]
self.embed = nn.Linear(d_inp, d_model, bias=False)
def forward(self, x):
return self.embed(x)
class DataEmbedding_wo_pos(nn.Module):
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1
):
super(DataEmbedding_wo_pos, self).__init__()
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
self.position_embedding = PositionalEmbedding(d_model=d_model)
self.temporal_embedding = TemporalEmbedding(d_model=d_model,
embed_type=embed_type, freq=freq
) if embed_type != 'timeF' else TimeFeatureEmbedding(d_model=
d_model, embed_type=embed_type, freq=freq)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x, x_mark):
x = self.value_embedding(x) + self.temporal_embedding(x_mark)
return self.dropout(x)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'c_in': 4, 'd_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_copy_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 24
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y0 = yindex % 6
x2 = xindex
y1 = yindex // 6
tmp0 = y0
tmp1 = tl.full([1, 1], 5, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.broadcast_to(-4 + y0, [XBLOCK, YBLOCK])
tmp4 = tl.full([1, 1], 1, tl.int64)
tmp5 = tmp3 < tmp4
tmp6 = tmp5 & tmp2
tmp7 = tl.broadcast_to(y0, [XBLOCK, YBLOCK])
tmp8 = tmp7 >= tmp4
tmp9 = tmp7 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tmp10 & tmp6
tmp12 = tl.load(in_ptr0 + (-4 + x2 + 4 * y0 + 16 * y1), tmp11 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp13 = float('nan')
tmp14 = tl.where(tmp10, tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp6, tmp14, tmp15)
tmp17 = tmp3 >= tmp4
tmp18 = tmp3 < tmp1
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp2
tmp21 = tl.load(in_ptr0 + (-20 + x2 + 4 * y0 + 16 * y1), tmp20 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.where(tmp19, tmp21, tmp13)
tmp23 = tl.where(tmp5, tmp16, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp2, tmp23, tmp24)
tmp26 = tmp0 < tmp4
tmp27 = tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK])
tmp28 = tmp27 >= tmp4
tmp29 = tmp27 < tmp1
tmp30 = tmp28 & tmp29
tmp31 = tmp30 & tmp26
tmp32 = tl.load(in_ptr0 + (12 + x2 + 4 * y0 + 16 * y1), tmp31 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tl.where(tmp30, tmp32, tmp13)
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp26, tmp33, tmp34)
tmp36 = tmp0 >= tmp4
tmp37 = tmp0 < tmp1
tmp38 = tmp36 & tmp37
tmp39 = tl.load(in_ptr0 + (-4 + x2 + 4 * y0 + 16 * y1), tmp38 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.where(tmp38, tmp39, tmp13)
tmp41 = tl.where(tmp26, tmp35, tmp40)
tmp42 = tl.where(tmp2, tmp25, tmp41)
tl.store(out_ptr0 + (y0 + 6 * x2 + 24 * y1), tmp42, xmask & ymask)
@triton.jit
def triton_poi_fused_add_embedding_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp18 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1.to(tl.int64)
tmp3 = tl.full([XBLOCK], 24, tl.int32)
tmp4 = tmp2 + tmp3
tmp5 = tmp2 < 0
tmp6 = tl.where(tmp5, tmp4, tmp2)
tl.device_assert((0 <= tmp6) & (tmp6 < 24) | ~xmask,
'index out of bounds: 0 <= tmp6 < 24')
tmp8 = tl.load(in_ptr1 + (x1 + 4 * tmp6), xmask, eviction_policy=
'evict_last')
tmp10 = tmp9.to(tl.int64)
tmp11 = tl.full([XBLOCK], 7, tl.int32)
tmp12 = tmp10 + tmp11
tmp13 = tmp10 < 0
tmp14 = tl.where(tmp13, tmp12, tmp10)
tl.device_assert((0 <= tmp14) & (tmp14 < 7) | ~xmask,
'index out of bounds: 0 <= tmp14 < 7')
tmp16 = tl.load(in_ptr2 + (x1 + 4 * tmp14), xmask, eviction_policy=
'evict_last')
tmp17 = tmp8 + tmp16
tmp19 = tmp18.to(tl.int64)
tmp20 = tl.full([XBLOCK], 32, tl.int32)
tmp21 = tmp19 + tmp20
tmp22 = tmp19 < 0
tmp23 = tl.where(tmp22, tmp21, tmp19)
tl.device_assert((0 <= tmp23) & (tmp23 < 32) | ~xmask,
'index out of bounds: 0 <= tmp23 < 32')
tmp25 = tl.load(in_ptr3 + (x1 + 4 * tmp23), xmask, eviction_policy=
'evict_last')
tmp26 = tmp17 + tmp25
tmp28 = tmp27.to(tl.int64)
tmp29 = tl.full([XBLOCK], 13, tl.int32)
tmp30 = tmp28 + tmp29
tmp31 = tmp28 < 0
tmp32 = tl.where(tmp31, tmp30, tmp28)
tl.device_assert((0 <= tmp32) & (tmp32 < 13) | ~xmask,
'index out of bounds: 0 <= tmp32 < 13')
tmp34 = tl.load(in_ptr4 + (x1 + 4 * tmp32), xmask, eviction_policy=
'evict_last')
tmp35 = tmp26 + tmp34
tmp36 = 0.0
tmp37 = tmp35 + tmp36
tmp38 = tmp0 + tmp37
tl.store(in_out_ptr0 + x3, tmp38, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (24, 4), (4, 1))
assert_size_stride(primals_5, (7, 4), (4, 1))
assert_size_stride(primals_6, (32, 4), (4, 1))
assert_size_stride(primals_7, (13, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 6), (24, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_copy_0[grid(24, 4)](primals_1, buf1, 24, 4, XBLOCK
=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0)
del buf2
triton_poi_fused_add_embedding_1[grid(64)](buf3, primals_3,
primals_4, primals_5, primals_6, primals_7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
del primals_4
del primals_5
del primals_6
del primals_7
return buf3, primals_2, buf1
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEmbedding, self).__init__()
pe = torch.zeros(max_len, d_model).float()
pe.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(
10000.0) / d_model)).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return self.pe[:, :x.size(1)]
class TokenEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(TokenEmbedding, self).__init__()
padding = 1 if torch.__version__ >= '1.5.0' else 2
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
kernel_size=3, padding=padding, padding_mode='circular', bias=False
)
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_in',
nonlinearity='leaky_relu')
def forward(self, x):
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
return x
class FixedEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(FixedEmbedding, self).__init__()
w = torch.zeros(c_in, d_model).float()
w.require_grad = False
position = torch.arange(0, c_in).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(
10000.0) / d_model)).exp()
w[:, 0::2] = torch.sin(position * div_term)
w[:, 1::2] = torch.cos(position * div_term)
self.emb = nn.Embedding(c_in, d_model)
self.emb.weight = nn.Parameter(w, requires_grad=False)
def forward(self, x):
return self.emb(x).detach()
class TemporalEmbedding(nn.Module):
def __init__(self, d_model, embed_type='fixed', freq='h'):
super(TemporalEmbedding, self).__init__()
minute_size = 4
hour_size = 24
weekday_size = 7
day_size = 32
month_size = 13
Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
if freq == 't':
self.minute_embed = Embed(minute_size, d_model)
self.hour_embed = Embed(hour_size, d_model)
self.weekday_embed = Embed(weekday_size, d_model)
self.day_embed = Embed(day_size, d_model)
self.month_embed = Embed(month_size, d_model)
def forward(self, x):
x = x.long()
minute_x = self.minute_embed(x[:, :, 4]) if hasattr(self,
'minute_embed') else 0.0
hour_x = self.hour_embed(x[:, :, 3])
weekday_x = self.weekday_embed(x[:, :, 2])
day_x = self.day_embed(x[:, :, 1])
month_x = self.month_embed(x[:, :, 0])
return hour_x + weekday_x + day_x + month_x + minute_x
class TimeFeatureEmbedding(nn.Module):
def __init__(self, d_model, embed_type='timeF', freq='h'):
super(TimeFeatureEmbedding, self).__init__()
freq_map = {'h': 4, 't': 5, 's': 6, 'm': 1, 'a': 1, 'w': 2, 'd': 3,
'b': 3}
d_inp = freq_map[freq]
self.embed = nn.Linear(d_inp, d_model, bias=False)
def forward(self, x):
return self.embed(x)
class DataEmbedding_wo_posNew(nn.Module):
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1
):
super(DataEmbedding_wo_posNew, self).__init__()
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
self.position_embedding = PositionalEmbedding(d_model=d_model)
self.temporal_embedding = TemporalEmbedding(d_model=d_model,
embed_type=embed_type, freq=freq
) if embed_type != 'timeF' else TimeFeatureEmbedding(d_model=
d_model, embed_type=embed_type, freq=freq)
self.dropout = nn.Dropout(p=dropout)
def forward(self, input_0, input_1):
primals_2 = self.value_embedding.tokenConv.weight
primals_4 = self.temporal_embedding.hour_embed.emb.weight
primals_5 = self.temporal_embedding.weekday_embed.emb.weight
primals_6 = self.temporal_embedding.day_embed.emb.weight
primals_7 = self.temporal_embedding.month_embed.emb.weight
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| thuml/Autoformer | DataEmbedding_wo_pos | false | 16,619 | [
"MIT"
] | 263 | 6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab | https://github.com/thuml/Autoformer/tree/6bf300d0bf3e7f3cb4d795dd8ed14ede2000a9ab |
UpsampleConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# input_1 => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 7, 7), (196, 49, 7, 1))
return (buf1, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
def l2normalize(v, esp=1e-08):
return v / (v.norm() + esp)
def sn_weight(weight, u, height, n_power_iterations):
weight.requires_grad_(False)
for _ in range(n_power_iterations):
v = l2normalize(torch.mv(weight.view(height, -1).t(), u))
u = l2normalize(torch.mv(weight.view(height, -1), v))
weight.requires_grad_(True)
sigma = u.dot(weight.view(height, -1).mv(v))
return torch.div(weight, sigma), u
def get_nonlinearity(nonlinearity=None):
if not nonlinearity:
pass
elif callable(nonlinearity):
if nonlinearity == nn.LeakyReLU:
nonlinearity = nonlinearity(0.02, inplace=True)
elif hasattr(nn, nonlinearity):
nonlinearity = getattr(nn, nonlinearity)
if nonlinearity == 'LeakyReLU':
nonlinearity = nonlinearity(0.02, inplace=True)
else:
nonlinearity = nonlinearity()
elif hasattr(nn.functional, nonlinearity):
nonlinearity = getattr(nn.functional, nonlinearity)
else:
raise ValueError(nonlinearity)
return nonlinearity
class SNConv2d(nn.Conv2d):
def __init__(self, *args, n_power_iterations=1, **kwargs):
super(SNConv2d, self).__init__(*args, **kwargs)
self.n_power_iterations = n_power_iterations
self.height = self.weight.shape[0]
self.register_buffer('u', l2normalize(self.weight.new_empty(self.
height).normal_(0, 1)))
def forward(self, input):
w_sn, self.u = sn_weight(self.weight, self.u, self.height, self.
n_power_iterations)
return F.conv2d(input, w_sn, self.bias, self.stride, self.padding,
self.dilation, self.groups)
class UpsampleConv(nn.Module):
def __init__(self, dim_in, dim_out, f_size, nonlinearity=None, prefix=
'', spectral_norm=False):
super(UpsampleConv, self).__init__()
Conv2d = SNConv2d if spectral_norm else nn.Conv2d
models = nn.Sequential()
nonlinearity = get_nonlinearity(nonlinearity)
name = prefix + '_usc'
models.add_module(name + '_up', nn.Upsample(scale_factor=2))
models.add_module(name, Conv2d(dim_in, dim_out, f_size, 1, 1, bias=
False))
if nonlinearity:
models.add_module('{}_{}'.format(name, nonlinearity.__class__.
__name__), nonlinearity)
self.models = models
def forward(self, x):
x = self.models(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4, 'f_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 7, 7), (196, 49, 7, 1))
return buf1, primals_2, buf0
def l2normalize(v, esp=1e-08):
return v / (v.norm() + esp)
def sn_weight(weight, u, height, n_power_iterations):
weight.requires_grad_(False)
for _ in range(n_power_iterations):
v = l2normalize(torch.mv(weight.view(height, -1).t(), u))
u = l2normalize(torch.mv(weight.view(height, -1), v))
weight.requires_grad_(True)
sigma = u.dot(weight.view(height, -1).mv(v))
return torch.div(weight, sigma), u
def get_nonlinearity(nonlinearity=None):
if not nonlinearity:
pass
elif callable(nonlinearity):
if nonlinearity == nn.LeakyReLU:
nonlinearity = nonlinearity(0.02, inplace=True)
elif hasattr(nn, nonlinearity):
nonlinearity = getattr(nn, nonlinearity)
if nonlinearity == 'LeakyReLU':
nonlinearity = nonlinearity(0.02, inplace=True)
else:
nonlinearity = nonlinearity()
elif hasattr(nn.functional, nonlinearity):
nonlinearity = getattr(nn.functional, nonlinearity)
else:
raise ValueError(nonlinearity)
return nonlinearity
class SNConv2d(nn.Conv2d):
def __init__(self, *args, n_power_iterations=1, **kwargs):
super(SNConv2d, self).__init__(*args, **kwargs)
self.n_power_iterations = n_power_iterations
self.height = self.weight.shape[0]
self.register_buffer('u', l2normalize(self.weight.new_empty(self.
height).normal_(0, 1)))
def forward(self, input):
w_sn, self.u = sn_weight(self.weight, self.u, self.height, self.
n_power_iterations)
return F.conv2d(input, w_sn, self.bias, self.stride, self.padding,
self.dilation, self.groups)
class UpsampleConvNew(nn.Module):
def __init__(self, dim_in, dim_out, f_size, nonlinearity=None, prefix=
'', spectral_norm=False):
super(UpsampleConvNew, self).__init__()
Conv2d = SNConv2d if spectral_norm else nn.Conv2d
models = nn.Sequential()
nonlinearity = get_nonlinearity(nonlinearity)
name = prefix + '_usc'
models.add_module(name + '_up', nn.Upsample(scale_factor=2))
models.add_module(name, Conv2d(dim_in, dim_out, f_size, 1, 1, bias=
False))
if nonlinearity:
models.add_module('{}_{}'.format(name, nonlinearity.__class__.
__name__), nonlinearity)
self.models = models
def forward(self, input_0):
primals_1 = self.models._usc.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| tsirif/cortex | UpsampleConv | false | 16,620 | [
"BSD-3-Clause"
] | 109 | 2837b220f9fb73279df3815bb18b274106412c08 | https://github.com/tsirif/cortex/tree/2837b220f9fb73279df3815bb18b274106412c08 |
DQN_RAM | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/oa/coaoyy2tzwhkubpw5yl7y66o2j6ncc2opezn233rb4fu2ccncu3h.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (64, 128), (128, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (18, 64), (64, 1))
assert_size_stride(primals_9, (18, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf8, 8192, grid=grid(8192), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf4 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf7, 4096, grid=grid(4096), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 18), (18, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 18), (1, 64), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (reinterpret_tensor(buf6, (4, 4, 4, 18), (288, 72, 18, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((18, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((18, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class DQN_RAM(nn.Module):
def __init__(self, in_features=4, num_actions=18):
"""
Initialize a deep Q-learning network for testing algorithm
in_features: number of features of input.
num_actions: number of action-value to output, one-to-one correspondence to action in game.
"""
super(DQN_RAM, self).__init__()
self.fc1 = nn.Linear(in_features, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 64)
self.fc4 = nn.Linear(64, num_actions)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return self.fc4(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (64, 128), (128, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (18, 64), (64, 1))
assert_size_stride(primals_9, (18,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf9 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf9, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf8 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3,
primals_5, buf8, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf4
buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
triton_poi_fused_relu_threshold_backward_2[grid(4096)](buf5,
primals_7, buf7, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 18), (18, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_8, (64, 18), (1, 64), 0
), alpha=1, beta=1, out=buf6)
del primals_9
return reinterpret_tensor(buf6, (4, 4, 4, 18), (288, 72, 18, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 128), (128, 1), 0
), reinterpret_tensor(buf5, (64, 64), (64, 1), 0
), primals_8, buf7, primals_6, buf8, primals_4, buf9
class DQN_RAMNew(nn.Module):
def __init__(self, in_features=4, num_actions=18):
"""
Initialize a deep Q-learning network for testing algorithm
in_features: number of features of input.
num_actions: number of action-value to output, one-to-one correspondence to action in game.
"""
super(DQN_RAMNew, self).__init__()
self.fc1 = nn.Linear(in_features, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 64)
self.fc4 = nn.Linear(64, num_actions)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| transedward/pytoch-dqn | DQN_RAM | false | 16,621 | [
"MIT"
] | 358 | 1ffda6f3724b3bb37c3195b09b651b1682d4d4fd | https://github.com/transedward/pytoch-dqn/tree/1ffda6f3724b3bb37c3195b09b651b1682d4d4fd |
MySimpleNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nu/cnuuaznpt4szfn74bn46qfjkdypvlkfa5x44ywjpperdjt2a66rj.py
# Topologically Sorted Source Nodes: [X], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# X => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py
# Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# X_2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/z5/cz5xs7y3thsep5yn6qoths757rduuevog6mtea3nqr4nwnh2olnx.py
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# X_3 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nv/cnvo7i3x3dm4mdtrcmoddo2p4odl6hgahimnieftjxkqwe7ehw54.py
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# X_3 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 10), (10, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
# Topologically Sorted Source Nodes: [X], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 640, grid=grid(640), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 4), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf7, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf4, buf5, 128, grid=grid(128), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf5, buf6, 128, grid=grid(128), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from torch import nn
class MySimpleNet(nn.Module):
"""
Very simple 2-layer net, slightly adapted from the docs:
https://skorch.readthedocs.io/en/stable/user/quickstart.html
"""
def __init__(self, num_in, num_feat, num_hidden=10, nonlin=F.relu):
super(MySimpleNet, self).__init__()
self.dense0 = nn.Linear(num_in, num_hidden)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_hidden, num_feat)
self.output = nn.Linear(num_feat, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X))
return X
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_in': 4, 'num_feat': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 10), (10, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(640)](buf1,
primals_2, buf8, 640, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0),
reinterpret_tensor(primals_4, (10, 4), (1, 10), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3,
primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__softmax_2[grid(128)](buf4, buf5, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf4
triton_poi_fused__softmax_3[grid(128)](buf5, buf6, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class MySimpleNetNew(nn.Module):
"""
Very simple 2-layer net, slightly adapted from the docs:
https://skorch.readthedocs.io/en/stable/user/quickstart.html
"""
def __init__(self, num_in, num_feat, num_hidden=10, nonlin=F.relu):
super(MySimpleNetNew, self).__init__()
self.dense0 = nn.Linear(num_in, num_hidden)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_hidden, num_feat)
self.output = nn.Linear(num_feat, 2)
def forward(self, input_0):
primals_1 = self.dense0.weight
primals_2 = self.dense0.bias
primals_4 = self.dense1.weight
primals_5 = self.dense1.bias
primals_6 = self.output.weight
primals_7 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| trituenhantaoio/anfis-pytorch | MySimpleNet | false | 16,622 | [
"MIT"
] | 66 | 7a6bf123d69b550e46abeddd5b4a776243d43aa6 | https://github.com/trituenhantaoio/anfis-pytorch/tree/7a6bf123d69b550e46abeddd5b4a776243d43aa6 |
MeanPoolConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/l3/cl3qgtljwm55hj7prrlq32vnxhqj5elf2qeptwkrprrhumnm7twn.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# input_1 => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
return (buf1, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
def l2normalize(v, esp=1e-08):
return v / (v.norm() + esp)
def sn_weight(weight, u, height, n_power_iterations):
weight.requires_grad_(False)
for _ in range(n_power_iterations):
v = l2normalize(torch.mv(weight.view(height, -1).t(), u))
u = l2normalize(torch.mv(weight.view(height, -1), v))
weight.requires_grad_(True)
sigma = u.dot(weight.view(height, -1).mv(v))
return torch.div(weight, sigma), u
def get_nonlinearity(nonlinearity=None):
if not nonlinearity:
pass
elif callable(nonlinearity):
if nonlinearity == nn.LeakyReLU:
nonlinearity = nonlinearity(0.02, inplace=True)
elif hasattr(nn, nonlinearity):
nonlinearity = getattr(nn, nonlinearity)
if nonlinearity == 'LeakyReLU':
nonlinearity = nonlinearity(0.02, inplace=True)
else:
nonlinearity = nonlinearity()
elif hasattr(nn.functional, nonlinearity):
nonlinearity = getattr(nn.functional, nonlinearity)
else:
raise ValueError(nonlinearity)
return nonlinearity
class SNConv2d(nn.Conv2d):
def __init__(self, *args, n_power_iterations=1, **kwargs):
super(SNConv2d, self).__init__(*args, **kwargs)
self.n_power_iterations = n_power_iterations
self.height = self.weight.shape[0]
self.register_buffer('u', l2normalize(self.weight.new_empty(self.
height).normal_(0, 1)))
def forward(self, input):
w_sn, self.u = sn_weight(self.weight, self.u, self.height, self.
n_power_iterations)
return F.conv2d(input, w_sn, self.bias, self.stride, self.padding,
self.dilation, self.groups)
class MeanPoolConv(nn.Module):
def __init__(self, dim_in, dim_out, f_size, nonlinearity=None, prefix=
'', spectral_norm=False):
super(MeanPoolConv, self).__init__()
Conv2d = SNConv2d if spectral_norm else nn.Conv2d
models = nn.Sequential()
nonlinearity = get_nonlinearity(nonlinearity)
name = 'mpc' + prefix
models.add_module(name + '_pool', nn.AvgPool2d(2, count_include_pad
=False))
models.add_module(name, Conv2d(dim_in, dim_out, f_size, 1, 1, bias=
False))
if nonlinearity:
models.add_module('{}_{}'.format(name, nonlinearity.__class__.
__name__), nonlinearity)
self.models = models
def forward(self, x):
x = self.models(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4, 'f_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(64)](primals_1, buf0, 64, XBLOCK
=64, num_warps=1, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
return buf1, primals_2, buf0
def l2normalize(v, esp=1e-08):
return v / (v.norm() + esp)
def sn_weight(weight, u, height, n_power_iterations):
weight.requires_grad_(False)
for _ in range(n_power_iterations):
v = l2normalize(torch.mv(weight.view(height, -1).t(), u))
u = l2normalize(torch.mv(weight.view(height, -1), v))
weight.requires_grad_(True)
sigma = u.dot(weight.view(height, -1).mv(v))
return torch.div(weight, sigma), u
def get_nonlinearity(nonlinearity=None):
if not nonlinearity:
pass
elif callable(nonlinearity):
if nonlinearity == nn.LeakyReLU:
nonlinearity = nonlinearity(0.02, inplace=True)
elif hasattr(nn, nonlinearity):
nonlinearity = getattr(nn, nonlinearity)
if nonlinearity == 'LeakyReLU':
nonlinearity = nonlinearity(0.02, inplace=True)
else:
nonlinearity = nonlinearity()
elif hasattr(nn.functional, nonlinearity):
nonlinearity = getattr(nn.functional, nonlinearity)
else:
raise ValueError(nonlinearity)
return nonlinearity
class SNConv2d(nn.Conv2d):
def __init__(self, *args, n_power_iterations=1, **kwargs):
super(SNConv2d, self).__init__(*args, **kwargs)
self.n_power_iterations = n_power_iterations
self.height = self.weight.shape[0]
self.register_buffer('u', l2normalize(self.weight.new_empty(self.
height).normal_(0, 1)))
def forward(self, input):
w_sn, self.u = sn_weight(self.weight, self.u, self.height, self.
n_power_iterations)
return F.conv2d(input, w_sn, self.bias, self.stride, self.padding,
self.dilation, self.groups)
class MeanPoolConvNew(nn.Module):
def __init__(self, dim_in, dim_out, f_size, nonlinearity=None, prefix=
'', spectral_norm=False):
super(MeanPoolConvNew, self).__init__()
Conv2d = SNConv2d if spectral_norm else nn.Conv2d
models = nn.Sequential()
nonlinearity = get_nonlinearity(nonlinearity)
name = 'mpc' + prefix
models.add_module(name + '_pool', nn.AvgPool2d(2, count_include_pad
=False))
models.add_module(name, Conv2d(dim_in, dim_out, f_size, 1, 1, bias=
False))
if nonlinearity:
models.add_module('{}_{}'.format(name, nonlinearity.__class__.
__name__), nonlinearity)
self.models = models
def forward(self, input_0):
primals_1 = self.models.mpc.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| tsirif/cortex | MeanPoolConv | false | 16,623 | [
"BSD-3-Clause"
] | 109 | 2837b220f9fb73279df3815bb18b274106412c08 | https://github.com/tsirif/cortex/tree/2837b220f9fb73279df3815bb18b274106412c08 |
ECB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2v/c2vp4wevd4mmk6p3qeilou7zqojjaarvm3pedrgkmrhhjbggkpqu.py
# Topologically Sorted Source Nodes: [RK], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# RK => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %permute, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qv/cqvr6sl23upg6qmriv4ttfkwdalh2tm5o52kvelb4o7ra7lg6rli.py
# Topologically Sorted Source Nodes: [ones, RB], Original ATen: [aten.ones, aten.mul]
# Source node to ATen node mapping:
# RB => mul
# ones => full_default
# Graph fragment:
# %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 3, 3], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %view), kwargs = {})
triton_poi_fused_mul_ones_1 = async_compile.triton('triton_poi_fused_mul_ones_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_ones_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_ones_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 9)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 * tmp0
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xu/cxuj47chxotact4pqfiotmxhglblpldmsey7mo3ep7qmqeqz3prc.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_4 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_2, %select_23, 0, 2), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 9)
x0 = xindex % 9
x2 = xindex
tmp3 = tl.load(in_ptr0 + (2))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp5 = tl.load(in_ptr1 + (18 + x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp12 = tl.load(in_ptr1 + (9 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (0))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK])
tmp19 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp6 = tmp4 * tmp5
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp1 == tmp7
tmp9 = tmp0 == tmp7
tmp13 = tmp11 * tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = tmp7 == tmp14
tmp16 = tmp0 == tmp14
tmp20 = tmp18 * tmp19
tmp21 = 0.0
tmp22 = tl.where(tmp16, tmp20, tmp21)
tmp23 = tl.where(tmp15, tmp22, tmp21)
tmp24 = tl.where(tmp9, tmp13, tmp23)
tmp25 = tmp1 == tmp14
tmp26 = tl.where(tmp25, tmp22, tmp21)
tmp27 = tl.where(tmp8, tmp24, tmp26)
tmp28 = tl.where(tmp2, tmp6, tmp27)
tl.store(out_ptr0 + (x2), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/c7/cc7ihqsgq5rotyl756evxcxvtv6777phxmntrhx2c7rmoidrzynb.py
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
# Source node to ATen node mapping:
# k1 => full_default_1
# Graph fragment:
# %full_default_1 : [num_users=7] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 3, 3], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %select_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int, %select_1, 0, 0), kwargs = {})
# %select_scatter_default_1 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_1, %select_scatter_default, 0, 0), kwargs = {})
# %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_1, %select_11, 0, 1), kwargs = {})
# %select_scatter_default_3 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %select_scatter_default_2, 0, 1), kwargs = {})
# %select_scatter_default_4 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_2, %select_23, 0, 2), kwargs = {})
# %select_scatter_default_5 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_3, %select_scatter_default_4, 0, 2), kwargs = {})
triton_poi_fused_zeros_3 = async_compile.triton('triton_poi_fused_zeros_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 36)
x3 = xindex % 36
x1 = (xindex // 9) % 4
x0 = xindex % 9
x5 = xindex
tmp3 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (9 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (0))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp17 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp0 = x2
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp4 = tl.full([1], 1, tl.int32)
tmp5 = tmp0 == tmp4
tmp6 = x1
tmp7 = tmp6 == tmp4
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp4 == tmp12
tmp14 = tmp6 == tmp12
tmp18 = tmp16 * tmp17
tmp19 = 0.0
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.where(tmp13, tmp20, tmp19)
tmp22 = tl.where(tmp7, tmp11, tmp21)
tmp23 = tmp0 == tmp12
tmp24 = tl.where(tmp23, tmp20, tmp19)
tmp25 = tl.where(tmp5, tmp22, tmp24)
tmp26 = tl.where(tmp2, tmp3, tmp25)
tl.store(out_ptr0 + (x5), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5x/c5xceeeyore456ayu22cfnjvtsmgwjyflxey6ofmssylko3q6lfr.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_6 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_3, %select_35, 0, 3), kwargs = {})
# %select_scatter_default_7 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_5, %select_scatter_default_6, 0, 3), kwargs = {})
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 36)
x1 = (xindex // 9) % 4
x0 = xindex % 9
x4 = xindex % 36
x5 = xindex
tmp5 = tl.load(in_ptr0 + (3))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr1 + (27 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (108 + x4), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (x5), xmask)
tmp0 = x2
tmp1 = tl.full([1], 3, tl.int32)
tmp2 = tmp0 == tmp1
tmp3 = x1
tmp4 = tmp3 == tmp1
tmp8 = tmp6 * tmp7
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp12 = tl.where(tmp2, tmp10, tmp11)
tl.store(out_ptr0 + (x5), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ki/cki7wq63h3z7dozphgay3ajw62gsf4cu7vseimq4nhjx4q3z7wfq.py
# Topologically Sorted Source Nodes: [add_4, add_5, add_6, RK_4], Original ATen: [aten.add]
# Source node to ATen node mapping:
# RK_4 => add_7
# add_4 => add_4
# add_5 => add_5
# add_6 => add_6
# Graph fragment:
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %convolution_2), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %convolution_4), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %convolution_6), kwargs = {})
triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_out_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp5 = tl.load(in_ptr2 + (x0), xmask)
tmp7 = tl.load(in_ptr3 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tl.store(in_out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cf/ccfkblyhfc7n6sy4opvjgvuymz54pzopsbopwb5m37uo5c26imhp.py
# Topologically Sorted Source Nodes: [RB_1, RB_3, RB_5, RB_7, add_8, add_9, add_10, RB_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# RB_1 => add
# RB_3 => add_1
# RB_5 => add_2
# RB_7 => add_3
# RB_8 => add_11
# add_10 => add_10
# add_8 => add_8
# add_9 => add_9
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_6), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_10), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_15), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_7, %primals_20), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %add), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %add_1), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %add_2), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %add_3), kwargs = {})
triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask)
tmp5 = tl.load(in_out_ptr0 + (x0), xmask)
tmp6 = tl.load(in_ptr3 + (x0), xmask)
tmp9 = tl.load(in_ptr4 + (x0), xmask)
tmp10 = tl.load(in_ptr5 + (x0), xmask)
tmp13 = tl.load(in_ptr6 + (x0), xmask)
tmp14 = tl.load(in_ptr7 + (x0), xmask)
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5m/c5m2qu7dz2ebkep5znwbczbqsg4mko372sguwxrfwe3e75rq7lvp.py
# Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# y => convolution_8
# y_1 => gt, mul_7, where
# Graph fragment:
# %convolution_8 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_22, %add_7, %add_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_8, %convolution_8), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_8, %mul_7), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_7 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = tmp5 * tmp2
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_9, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_13, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_14, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_18, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_19, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_20, (4, ), (1, ))
assert_size_stride(primals_21, (4, ), (1, ))
assert_size_stride(primals_22, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_23, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [RK], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_3, buf0, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [RK], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 3, 3), (36, 9, 3, 1))
buf2 = empty_strided_cuda((1, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [ones, RB], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_5, buf2, 36, grid=grid(36), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (1, 4, 1, 1), (4, 1, 1, 1))
buf4 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_8, primals_9, buf4, 36, grid=grid(36), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
triton_poi_fused_zeros_3.run(buf4, primals_8, primals_9, buf5, 144, grid=grid(144), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, primals_9, buf5, buf6, 144, grid=grid(144), stream=stream0)
del primals_8
buf7 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [RK_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(primals_7, buf7, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [RK_1], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, buf7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 3, 3), (36, 9, 3, 1))
buf9 = reinterpret_tensor(buf4, (1, 4, 3, 3), (36, 9, 3, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [ones, RB_2], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_11, buf9, 36, grid=grid(36), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (1, 4, 1, 1), (4, 1, 1, 1))
buf11 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_13, primals_14, buf11, 36, grid=grid(36), stream=stream0)
buf12 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
triton_poi_fused_zeros_3.run(buf11, primals_13, primals_14, buf12, 144, grid=grid(144), stream=stream0)
buf13 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_13, primals_14, buf12, buf13, 144, grid=grid(144), stream=stream0)
del primals_13
buf14 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [RK_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(primals_12, buf14, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [RK_2], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf13, buf14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 3, 3), (36, 9, 3, 1))
buf16 = reinterpret_tensor(buf11, (1, 4, 3, 3), (36, 9, 3, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [ones, RB_4], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_16, buf16, 36, grid=grid(36), stream=stream0)
del primals_16
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, buf13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (1, 4, 1, 1), (4, 1, 1, 1))
buf18 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_18, primals_19, buf18, 36, grid=grid(36), stream=stream0)
buf19 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [k1], Original ATen: [aten.zeros]
triton_poi_fused_zeros_3.run(buf18, primals_18, primals_19, buf19, 144, grid=grid(144), stream=stream0)
buf20 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_18, primals_19, buf19, buf20, 144, grid=grid(144), stream=stream0)
del buf19
del primals_18
buf21 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [RK_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(primals_17, buf21, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [RK_3], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf20, buf21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 4, 3, 3), (36, 9, 3, 1))
del buf21
buf23 = reinterpret_tensor(buf18, (1, 4, 3, 3), (36, 9, 3, 1), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [ones, RB_6], Original ATen: [aten.ones, aten.mul]
triton_poi_fused_mul_ones_1.run(primals_21, buf23, 36, grid=grid(36), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, buf20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (1, 4, 1, 1), (4, 1, 1, 1))
buf25 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add_4, add_5, add_6, RK_4], Original ATen: [aten.add]
triton_poi_fused_add_5.run(buf25, primals_1, buf8, buf15, buf22, 144, grid=grid(144), stream=stream0)
del buf15
del buf22
del buf8
del primals_1
buf26 = reinterpret_tensor(buf10, (4, ), (1, ), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [RB_1, RB_3, RB_5, RB_7, add_8, add_9, add_10, RB_8], Original ATen: [aten.add]
triton_poi_fused_add_6.run(buf26, primals_2, buf3, primals_6, primals_10, buf17, primals_15, buf24, primals_20, 4, grid=grid(4), stream=stream0)
del buf17
del buf24
del buf3
del primals_10
del primals_15
del primals_2
del primals_20
del primals_6
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(primals_22, buf25, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf28 = buf27; del buf27 # reuse
buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_7.run(buf28, buf26, primals_23, buf29, 256, grid=grid(256), stream=stream0)
del buf26
return (buf29, primals_4, primals_9, primals_14, primals_19, primals_22, primals_23, reinterpret_tensor(primals_3, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf2, buf6, reinterpret_tensor(primals_7, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf9, buf13, reinterpret_tensor(primals_12, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf16, buf20, reinterpret_tensor(primals_17, (4, 4, 1, 1), (1, 4, 1, 1), 0), buf23, buf25, buf28, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class SeqConv3x3(nn.Module):
def __init__(self, seq_type, inp_planes, out_planes, depth_multiplier):
super(SeqConv3x3, self).__init__()
self.type = seq_type
self.inp_planes = inp_planes
self.out_planes = out_planes
if self.type == 'conv1x1-conv3x3':
self.mid_planes = int(out_planes * depth_multiplier)
conv0 = torch.nn.Conv2d(self.inp_planes, self.mid_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_planes,
kernel_size=3)
self.k1 = conv1.weight
self.b1 = conv1.bias
elif self.type == 'conv1x1-sobelx':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(scale)
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(bias)
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 1, 0] = 2.0
self.mask[i, 0, 2, 0] = 1.0
self.mask[i, 0, 0, 2] = -1.0
self.mask[i, 0, 1, 2] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.type == 'conv1x1-sobely':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 0, 1] = 2.0
self.mask[i, 0, 0, 2] = 1.0
self.mask[i, 0, 2, 0] = -1.0
self.mask[i, 0, 2, 1] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.type == 'conv1x1-laplacian':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 1] = 1.0
self.mask[i, 0, 1, 0] = 1.0
self.mask[i, 0, 1, 2] = 1.0
self.mask[i, 0, 2, 1] = 1.0
self.mask[i, 0, 1, 1] = -4.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
else:
raise ValueError('the type of seqconv is not supported!')
def forward(self, x):
if self.type == 'conv1x1-conv3x3':
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
else:
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=
self.bias, stride=1, groups=self.out_planes)
return y1
def rep_params(self):
device = self.k0.get_device()
if device < 0:
device = None
if self.type == 'conv1x1-conv3x3':
RK = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3))
RB = torch.ones(1, self.mid_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
RB = F.conv2d(input=RB, weight=self.k1).view(-1) + self.b1
else:
tmp = self.scale * self.mask
k1 = torch.zeros((self.out_planes, self.out_planes, 3, 3),
device=device)
for i in range(self.out_planes):
k1[i, i, :, :] = tmp[i, 0, :, :]
b1 = self.bias
RK = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
RB = torch.ones(1, self.out_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
RB = F.conv2d(input=RB, weight=k1).view(-1) + b1
return RK, RB
class ECB(nn.Module):
def __init__(self, inp_planes, out_planes, depth_multiplier, act_type=
'prelu', with_idt=False):
super(ECB, self).__init__()
self.depth_multiplier = depth_multiplier
self.inp_planes = inp_planes
self.out_planes = out_planes
self.act_type = act_type
if with_idt and self.inp_planes == self.out_planes:
self.with_idt = True
else:
self.with_idt = False
self.conv3x3 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=3, padding=1)
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.inp_planes,
self.out_planes, self.depth_multiplier)
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.inp_planes,
self.out_planes, -1)
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.inp_planes,
self.out_planes, -1)
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.inp_planes,
self.out_planes, -1)
if self.act_type == 'prelu':
self.act = nn.PReLU(num_parameters=self.out_planes)
elif self.act_type == 'relu':
self.act = nn.ReLU(inplace=True)
elif self.act_type == 'rrelu':
self.act = nn.RReLU(lower=-0.05, upper=0.05)
elif self.act_type == 'softplus':
self.act = nn.Softplus()
elif self.act_type == 'linear':
pass
else:
raise ValueError('The type of activation if not support!')
def forward(self, x):
if self.training:
y = self.conv3x3(x) + self.conv1x1_3x3(x) + self.conv1x1_sbx(x
) + self.conv1x1_sby(x) + self.conv1x1_lpl(x)
if self.with_idt:
y += x
else:
RK, RB = self.rep_params()
y = F.conv2d(input=x, weight=RK, bias=RB, stride=1, padding=1)
if self.act_type != 'linear':
y = self.act(y)
return y
def rep_params(self):
K0, B0 = self.conv3x3.weight, self.conv3x3.bias
K1, B1 = self.conv1x1_3x3.rep_params()
K2, B2 = self.conv1x1_sbx.rep_params()
K3, B3 = self.conv1x1_sby.rep_params()
K4, B4 = self.conv1x1_lpl.rep_params()
RK, RB = K0 + K1 + K2 + K3 + K4, B0 + B1 + B2 + B3 + B4
if self.with_idt:
device = RK.get_device()
if device < 0:
device = None
K_idt = torch.zeros(self.out_planes, self.out_planes, 3, 3,
device=device)
for i in range(self.out_planes):
K_idt[i, i, 1, 1] = 1.0
B_idt = 0.0
RK, RB = RK + K_idt, RB + B_idt
return RK, RB
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inp_planes': 4, 'out_planes': 4, 'depth_multiplier': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_ones_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 9
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 * tmp0
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 36
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 9
x0 = xindex % 9
x2 = xindex
tmp3 = tl.load(in_ptr0 + 2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp5 = tl.load(in_ptr1 + (18 + x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + 1)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp12 = tl.load(in_ptr1 + (9 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + 0)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK])
tmp19 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp6 = tmp4 * tmp5
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp1 == tmp7
tmp9 = tmp0 == tmp7
tmp13 = tmp11 * tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = tmp7 == tmp14
tmp16 = tmp0 == tmp14
tmp20 = tmp18 * tmp19
tmp21 = 0.0
tmp22 = tl.where(tmp16, tmp20, tmp21)
tmp23 = tl.where(tmp15, tmp22, tmp21)
tmp24 = tl.where(tmp9, tmp13, tmp23)
tmp25 = tmp1 == tmp14
tmp26 = tl.where(tmp25, tmp22, tmp21)
tmp27 = tl.where(tmp8, tmp24, tmp26)
tmp28 = tl.where(tmp2, tmp6, tmp27)
tl.store(out_ptr0 + x2, tmp28, xmask)
@triton.jit
def triton_poi_fused_zeros_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 36
x3 = xindex % 36
x1 = xindex // 9 % 4
x0 = xindex % 9
x5 = xindex
tmp3 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + 1)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (9 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + 0)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp17 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp0 = x2
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp4 = tl.full([1], 1, tl.int32)
tmp5 = tmp0 == tmp4
tmp6 = x1
tmp7 = tmp6 == tmp4
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp4 == tmp12
tmp14 = tmp6 == tmp12
tmp18 = tmp16 * tmp17
tmp19 = 0.0
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.where(tmp13, tmp20, tmp19)
tmp22 = tl.where(tmp7, tmp11, tmp21)
tmp23 = tmp0 == tmp12
tmp24 = tl.where(tmp23, tmp20, tmp19)
tmp25 = tl.where(tmp5, tmp22, tmp24)
tmp26 = tl.where(tmp2, tmp3, tmp25)
tl.store(out_ptr0 + x5, tmp26, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 36
x1 = xindex // 9 % 4
x0 = xindex % 9
x4 = xindex % 36
x5 = xindex
tmp5 = tl.load(in_ptr0 + 3)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr1 + (27 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (108 + x4), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + x5, xmask)
tmp0 = x2
tmp1 = tl.full([1], 3, tl.int32)
tmp2 = tmp0 == tmp1
tmp3 = x1
tmp4 = tmp3 == tmp1
tmp8 = tmp6 * tmp7
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp12 = tl.where(tmp2, tmp10, tmp11)
tl.store(out_ptr0 + x5, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_out_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp5 = tl.load(in_ptr2 + x0, xmask)
tmp7 = tl.load(in_ptr3 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tl.store(in_out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask)
tmp5 = tl.load(in_out_ptr0 + x0, xmask)
tmp6 = tl.load(in_ptr3 + x0, xmask)
tmp9 = tl.load(in_ptr4 + x0, xmask)
tmp10 = tl.load(in_ptr5 + x0, xmask)
tmp13 = tl.load(in_ptr6 + x0, xmask)
tmp14 = tl.load(in_ptr7 + x0, xmask)
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_7(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = tmp5 * tmp2
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22, primals_23
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_9, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_13, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_14, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_18, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_19, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_20, (4,), (1,))
assert_size_stride(primals_21, (4,), (1,))
assert_size_stride(primals_22, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_23, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(4, 4)](primals_3, buf0, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 3, 3), (36, 9, 3, 1))
buf2 = empty_strided_cuda((1, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_mul_ones_1[grid(36)](primals_5, buf2, 36, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_5
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (1, 4, 1, 1), (4, 1, 1, 1))
buf4 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
triton_poi_fused_2[grid(36)](primals_8, primals_9, buf4, 36, XBLOCK
=64, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_zeros_3[grid(144)](buf4, primals_8, primals_9,
buf5, 144, XBLOCK=256, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_4[grid(144)](primals_8, primals_9, buf5, buf6, 144,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf7 = buf0
del buf0
triton_poi_fused_convolution_0[grid(4, 4)](primals_7, buf7, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf8 = extern_kernels.convolution(buf6, buf7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 3, 3), (36, 9, 3, 1))
buf9 = reinterpret_tensor(buf4, (1, 4, 3, 3), (36, 9, 3, 1), 0)
del buf4
triton_poi_fused_mul_ones_1[grid(36)](primals_11, buf9, 36, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_11
buf10 = extern_kernels.convolution(buf9, buf6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (1, 4, 1, 1), (4, 1, 1, 1))
buf11 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
triton_poi_fused_2[grid(36)](primals_13, primals_14, buf11, 36,
XBLOCK=64, num_warps=1, num_stages=1)
buf12 = buf5
del buf5
triton_poi_fused_zeros_3[grid(144)](buf11, primals_13, primals_14,
buf12, 144, XBLOCK=256, num_warps=4, num_stages=1)
buf13 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_4[grid(144)](primals_13, primals_14, buf12, buf13,
144, XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
buf14 = buf7
del buf7
triton_poi_fused_convolution_0[grid(4, 4)](primals_12, buf14, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf15 = extern_kernels.convolution(buf13, buf14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 3, 3), (36, 9, 3, 1))
buf16 = reinterpret_tensor(buf11, (1, 4, 3, 3), (36, 9, 3, 1), 0)
del buf11
triton_poi_fused_mul_ones_1[grid(36)](primals_16, buf16, 36, XBLOCK
=64, num_warps=1, num_stages=1)
del primals_16
buf17 = extern_kernels.convolution(buf16, buf13, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (1, 4, 1, 1), (4, 1, 1, 1))
buf18 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32)
triton_poi_fused_2[grid(36)](primals_18, primals_19, buf18, 36,
XBLOCK=64, num_warps=1, num_stages=1)
buf19 = buf12
del buf12
triton_poi_fused_zeros_3[grid(144)](buf18, primals_18, primals_19,
buf19, 144, XBLOCK=256, num_warps=4, num_stages=1)
buf20 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_4[grid(144)](primals_18, primals_19, buf19, buf20,
144, XBLOCK=256, num_warps=4, num_stages=1)
del buf19
del primals_18
buf21 = buf14
del buf14
triton_poi_fused_convolution_0[grid(4, 4)](primals_17, buf21, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf22 = extern_kernels.convolution(buf20, buf21, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 4, 3, 3), (36, 9, 3, 1))
del buf21
buf23 = reinterpret_tensor(buf18, (1, 4, 3, 3), (36, 9, 3, 1), 0)
del buf18
triton_poi_fused_mul_ones_1[grid(36)](primals_21, buf23, 36, XBLOCK
=64, num_warps=1, num_stages=1)
del primals_21
buf24 = extern_kernels.convolution(buf23, buf20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (1, 4, 1, 1), (4, 1, 1, 1))
buf25 = buf1
del buf1
triton_poi_fused_add_5[grid(144)](buf25, primals_1, buf8, buf15,
buf22, 144, XBLOCK=256, num_warps=4, num_stages=1)
del buf15
del buf22
del buf8
del primals_1
buf26 = reinterpret_tensor(buf10, (4,), (1,), 0)
del buf10
triton_poi_fused_add_6[grid(4)](buf26, primals_2, buf3, primals_6,
primals_10, buf17, primals_15, buf24, primals_20, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del buf17
del buf24
del buf3
del primals_10
del primals_15
del primals_2
del primals_20
del primals_6
buf27 = extern_kernels.convolution(primals_22, buf25, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf28 = buf27
del buf27
buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_7[grid(256)](buf28,
buf26, primals_23, buf29, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf26
return (buf29, primals_4, primals_9, primals_14, primals_19, primals_22,
primals_23, reinterpret_tensor(primals_3, (4, 4, 1, 1), (1, 4, 1, 1
), 0), buf2, buf6, reinterpret_tensor(primals_7, (4, 4, 1, 1), (1,
4, 1, 1), 0), buf9, buf13, reinterpret_tensor(primals_12, (4, 4, 1,
1), (1, 4, 1, 1), 0), buf16, buf20, reinterpret_tensor(primals_17,
(4, 4, 1, 1), (1, 4, 1, 1), 0), buf23, buf25, buf28)
class SeqConv3x3(nn.Module):
def __init__(self, seq_type, inp_planes, out_planes, depth_multiplier):
super(SeqConv3x3, self).__init__()
self.type = seq_type
self.inp_planes = inp_planes
self.out_planes = out_planes
if self.type == 'conv1x1-conv3x3':
self.mid_planes = int(out_planes * depth_multiplier)
conv0 = torch.nn.Conv2d(self.inp_planes, self.mid_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_planes,
kernel_size=3)
self.k1 = conv1.weight
self.b1 = conv1.bias
elif self.type == 'conv1x1-sobelx':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(scale)
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(bias)
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 1, 0] = 2.0
self.mask[i, 0, 2, 0] = 1.0
self.mask[i, 0, 0, 2] = -1.0
self.mask[i, 0, 1, 2] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.type == 'conv1x1-sobely':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 0, 1] = 2.0
self.mask[i, 0, 0, 2] = 1.0
self.mask[i, 0, 2, 0] = -1.0
self.mask[i, 0, 2, 1] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.type == 'conv1x1-laplacian':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 0.001
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_planes) * 0.001
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch
.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 1] = 1.0
self.mask[i, 0, 1, 0] = 1.0
self.mask[i, 0, 1, 2] = 1.0
self.mask[i, 0, 2, 1] = 1.0
self.mask[i, 0, 1, 1] = -4.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
else:
raise ValueError('the type of seqconv is not supported!')
def forward(self, x):
if self.type == 'conv1x1-conv3x3':
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
else:
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=
self.bias, stride=1, groups=self.out_planes)
return y1
def rep_params(self):
device = self.k0.get_device()
if device < 0:
device = None
if self.type == 'conv1x1-conv3x3':
RK = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3))
RB = torch.ones(1, self.mid_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
RB = F.conv2d(input=RB, weight=self.k1).view(-1) + self.b1
else:
tmp = self.scale * self.mask
k1 = torch.zeros((self.out_planes, self.out_planes, 3, 3),
device=device)
for i in range(self.out_planes):
k1[i, i, :, :] = tmp[i, 0, :, :]
b1 = self.bias
RK = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
RB = torch.ones(1, self.out_planes, 3, 3, device=device
) * self.b0.view(1, -1, 1, 1)
RB = F.conv2d(input=RB, weight=k1).view(-1) + b1
return RK, RB
class ECBNew(nn.Module):
def __init__(self, inp_planes, out_planes, depth_multiplier, act_type=
'prelu', with_idt=False):
super(ECBNew, self).__init__()
self.depth_multiplier = depth_multiplier
self.inp_planes = inp_planes
self.out_planes = out_planes
self.act_type = act_type
if with_idt and self.inp_planes == self.out_planes:
self.with_idt = True
else:
self.with_idt = False
self.conv3x3 = torch.nn.Conv2d(self.inp_planes, self.out_planes,
kernel_size=3, padding=1)
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.inp_planes,
self.out_planes, self.depth_multiplier)
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.inp_planes,
self.out_planes, -1)
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.inp_planes,
self.out_planes, -1)
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.inp_planes,
self.out_planes, -1)
if self.act_type == 'prelu':
self.act = nn.PReLU(num_parameters=self.out_planes)
elif self.act_type == 'relu':
self.act = nn.ReLU(inplace=True)
elif self.act_type == 'rrelu':
self.act = nn.RReLU(lower=-0.05, upper=0.05)
elif self.act_type == 'softplus':
self.act = nn.Softplus()
elif self.act_type == 'linear':
pass
else:
raise ValueError('The type of activation if not support!')
def rep_params(self):
K0, B0 = self.conv3x3.weight, self.conv3x3.bias
K1, B1 = self.conv1x1_3x3.rep_params()
K2, B2 = self.conv1x1_sbx.rep_params()
K3, B3 = self.conv1x1_sby.rep_params()
K4, B4 = self.conv1x1_lpl.rep_params()
RK, RB = K0 + K1 + K2 + K3 + K4, B0 + B1 + B2 + B3 + B4
if self.with_idt:
device = RK.get_device()
if device < 0:
device = None
K_idt = torch.zeros(self.out_planes, self.out_planes, 3, 3,
device=device)
for i in range(self.out_planes):
K_idt[i, i, 1, 1] = 1.0
B_idt = 0.0
RK, RB = RK + K_idt, RB + B_idt
return RK, RB
def forward(self, input_0):
primals_1 = self.conv3x3.weight
primals_2 = self.conv3x3.bias
primals_3 = self.conv1x1_3x3.k0
primals_5 = self.conv1x1_3x3.b0
primals_4 = self.conv1x1_3x3.k1
primals_6 = self.conv1x1_3x3.b1
primals_7 = self.conv1x1_sbx.k0
primals_10 = self.conv1x1_sbx.b0
primals_8 = self.conv1x1_sbx.scale
primals_11 = self.conv1x1_sbx.bias
primals_9 = self.conv1x1_sbx.mask
primals_12 = self.conv1x1_sby.k0
primals_15 = self.conv1x1_sby.b0
primals_13 = self.conv1x1_sby.scale
primals_16 = self.conv1x1_sby.bias
primals_14 = self.conv1x1_sby.mask
primals_17 = self.conv1x1_lpl.k0
primals_20 = self.conv1x1_lpl.b0
primals_18 = self.conv1x1_lpl.scale
primals_21 = self.conv1x1_lpl.bias
primals_19 = self.conv1x1_lpl.mask
primals_23 = self.act.weight
primals_22 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23])
return output[0]
| thinkreed/ECBSR | ECB | false | 16,624 | [
"Apache-2.0"
] | 162 | 152b9fef9b9fb61b6e5a93677229143652ef305d | https://github.com/thinkreed/ECBSR/tree/152b9fef9b9fb61b6e5a93677229143652ef305d |
XTanhLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bf/cbfpzmtt3thtqbgcg6idcccnjwleeio3zodkjlrehbsb3a4uvfqs.py
# Topologically Sorted Source Nodes: [ey_t, tanh, mul, mean], Original ATen: [aten.sub, aten.tanh, aten.mul, aten.mean]
# Source node to ATen node mapping:
# ey_t => sub
# mean => mean
# mul => mul
# tanh => tanh
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%sub,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %tanh), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {})
triton_per_fused_mean_mul_sub_tanh_0 = async_compile.triton('triton_per_fused_mean_mul_sub_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sub_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_sub_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = 256.0
tmp9 = tmp7 / tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [ey_t, tanh, mul, mean], Original ATen: [aten.sub, aten.tanh, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_mul_sub_tanh_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class XTanhLoss(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, y_t, y_prime_t):
ey_t = y_t - y_prime_t
return torch.mean(ey_t * torch.tanh(ey_t))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_mul_sub_tanh_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = 256.0
tmp9 = tmp7 / tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_mul_sub_tanh_0[grid(1)](buf1, arg0_1, arg1_1,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class XTanhLossNew(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| tuantle/regression-losses-pytorch | XTanhLoss | false | 16,625 | [
"MIT"
] | 82 | 2893f4439ada5df239e3afd0ec7e781dd61403e9 | https://github.com/tuantle/regression-losses-pytorch/tree/2893f4439ada5df239e3afd0ec7e781dd61403e9 |
BondEnergyModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ln/cln5sfyboedlzxyul2rcnb6vanfbljaw6d6z6s36rtu4mggrkfeo.py
# Topologically Sorted Source Nodes: [getitem_1, getitem_3, sub, pow_1, sum_1], Original ATen: [aten.index, aten.sub, aten.pow, aten.sum]
# Source node to ATen node mapping:
# getitem_1 => index
# getitem_3 => index_1
# pow_1 => pow_1
# sub => sub
# sum_1 => sum_1
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [%select]), kwargs = {})
# %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [%select_1]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%index, %index_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
triton_poi_fused_index_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_index_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (4*tmp4), xmask, eviction_policy='evict_last')
tmp8 = tmp7 + tmp1
tmp9 = tmp7 < 0
tmp10 = tl.where(tmp9, tmp8, tmp7)
tl.device_assert(((0 <= tmp10) & (tmp10 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp10 < 4")
tmp12 = tl.load(in_ptr1 + (4*tmp10), xmask, eviction_policy='evict_last')
tmp13 = tmp6 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.load(in_ptr1 + (1 + (4*tmp4)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + (4*tmp10)), xmask, eviction_policy='evict_last')
tmp17 = tmp15 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = tl.load(in_ptr1 + (2 + (4*tmp4)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + (4*tmp10)), xmask, eviction_policy='evict_last')
tmp22 = tmp20 - tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp19 + tmp23
tmp25 = tl.load(in_ptr1 + (3 + (4*tmp4)), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (3 + (4*tmp10)), xmask, eviction_policy='evict_last')
tmp27 = tmp25 - tmp26
tmp28 = tmp27 * tmp27
tmp29 = tmp24 + tmp28
tl.store(out_ptr0 + (x0), tmp29, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/z3/cz33u7nt7d53a53hdopgw4okpvtip6iipriyj3cyx4udjpihvi75.py
# Topologically Sorted Source Nodes: [out, sub_1, pow_2, ebond, scatter_add_], Original ATen: [aten.new_full, aten.sub, aten.pow, aten.mul, aten.scatter_add]
# Source node to ATen node mapping:
# ebond => mul
# out => full_default
# pow_2 => pow_2
# scatter_add_ => scatter_add
# sub_1 => sub_1
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %arg2_1), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg3_1, %pow_2), kwargs = {})
# %scatter_add : [num_users=1] = call_function[target=torch.ops.aten.scatter_add.default](args = (%full_default, 0, %expand, %mul), kwargs = {})
triton_poi_fused_mul_new_full_pow_scatter_add_sub_1 = async_compile.triton('triton_poi_fused_mul_new_full_pow_scatter_add_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_new_full_pow_scatter_add_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_new_full_pow_scatter_add_sub_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/sn/csnw2vyjodfo46s6oav2oggcoxfhq32xoh4ie4dmjmxgofhpqrz3.py
# Topologically Sorted Source Nodes: [out, sub_1, pow_2, ebond, scatter_add_, out_1, scatter_add__1], Original ATen: [aten.new_full, aten.sub, aten.pow, aten.mul, aten.scatter_add]
# Source node to ATen node mapping:
# ebond => mul
# out => full_default
# out_1 => full_default_1
# pow_2 => pow_2
# scatter_add_ => scatter_add
# scatter_add__1 => scatter_add_1
# sub_1 => sub_1
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %arg2_1), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg3_1, %pow_2), kwargs = {})
# %scatter_add : [num_users=1] = call_function[target=torch.ops.aten.scatter_add.default](args = (%full_default, 0, %expand, %mul), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %scatter_add_1 : [num_users=1] = call_function[target=torch.ops.aten.scatter_add.default](args = (%full_default_1, 0, %expand_1, %mul), kwargs = {})
triton_poi_fused_mul_new_full_pow_scatter_add_sub_2 = async_compile.triton('triton_poi_fused_mul_new_full_pow_scatter_add_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_new_full_pow_scatter_add_sub_2', 'mutated_arg_names': ['out_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_new_full_pow_scatter_add_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x2), xmask)
tmp10 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tl.device_assert(((0 <= tmp0) & (tmp0 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp0 < 4")
tmp4 = tmp3.to(tl.float32)
tmp5 = libdevice.sqrt(tmp4)
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tmp2 * tmp8
tl.device_assert(((0 <= tmp10) & (tmp10 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp10 < 4")
tl.atomic_add(out_ptr0 + (x0 + (4*tmp0)), tmp9, xmask, sem='relaxed')
tl.atomic_add(out_ptr1 + (x0 + (4*tmp10)), tmp9, xmask, sem='relaxed')
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ok/cokgncuf6f7tmgioic3xkrdvnzmffcs5db2uut3ibrcrbhfwkee5.py
# Topologically Sorted Source Nodes: [energy, mul_2, energy_1], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# energy => mul_1
# energy_1 => add
# mul_2 => mul_2
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%scatter_add, 0.5), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%scatter_add_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
assert_size_stride(arg3_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [getitem_1, getitem_3, sub, pow_1, sum_1], Original ATen: [aten.index, aten.sub, aten.pow, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_index_pow_sub_sum_0.run(arg0_1, arg1_1, buf0, 4, grid=grid(4), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, sub_1, pow_2, ebond, scatter_add_], Original ATen: [aten.new_full, aten.sub, aten.pow, aten.mul, aten.scatter_add]
triton_poi_fused_mul_new_full_pow_scatter_add_sub_1.run(buf1, 16, grid=grid(16), stream=stream0)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub_1, pow_2, ebond, out_1, scatter_add__1], Original ATen: [aten.sub, aten.pow, aten.mul, aten.new_full, aten.scatter_add]
triton_poi_fused_mul_new_full_pow_scatter_add_sub_1.run(buf3, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out, sub_1, pow_2, ebond, scatter_add_, out_1, scatter_add__1], Original ATen: [aten.new_full, aten.sub, aten.pow, aten.mul, aten.scatter_add]
triton_poi_fused_mul_new_full_pow_scatter_add_sub_2.run(arg0_1, arg3_1, buf0, arg2_1, buf1, buf3, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg2_1
del arg3_1
del buf0
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [energy, mul_2, energy_1], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_3.run(buf1, buf3, buf5, 16, grid=grid(16), stream=stream0)
del buf1
del buf3
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.nn as nn
from itertools import repeat
def gen(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
dim = range(src.dim())[dim]
if index.dim() == 1:
index_size = list(repeat(1, src.dim()))
index_size[dim] = src.size(dim)
index = index.view(index_size).expand_as(src)
if out is None:
dim_size = index.max().item() + 1 if dim_size is None else dim_size
out_size = list(src.size())
out_size[dim] = dim_size
out = src.new_full(out_size, fill_value)
return src, out, index, dim
def scatter_add(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
return out.scatter_add_(dim, index, src)
class BondEnergyModule(nn.Module):
def __init__(self, batch=True):
super().__init__()
def forward(self, xyz, bond_adj, bond_len, bond_par):
e = (xyz[bond_adj[:, 0]] - xyz[bond_adj[:, 1]]).pow(2).sum(1).sqrt()[
:, None]
ebond = bond_par * (e - bond_len) ** 2
energy = 0.5 * scatter_add(src=ebond, index=bond_adj[:, 0], dim=0,
dim_size=xyz.shape[0])
energy += 0.5 * scatter_add(src=ebond, index=bond_adj[:, 1], dim=0,
dim_size=xyz.shape[0])
return energy
def get_inputs():
return [torch.ones([4, 4], dtype=torch.int64), torch.ones([4, 4], dtype
=torch.int64), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn
import torch.nn as nn
from itertools import repeat
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_index_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask,
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + 4 * tmp4, xmask, eviction_policy='evict_last')
tmp8 = tmp7 + tmp1
tmp9 = tmp7 < 0
tmp10 = tl.where(tmp9, tmp8, tmp7)
tl.device_assert((0 <= tmp10) & (tmp10 < 4) | ~xmask,
'index out of bounds: 0 <= tmp10 < 4')
tmp12 = tl.load(in_ptr1 + 4 * tmp10, xmask, eviction_policy='evict_last')
tmp13 = tmp6 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.load(in_ptr1 + (1 + 4 * tmp4), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + (1 + 4 * tmp10), xmask, eviction_policy=
'evict_last')
tmp17 = tmp15 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = tl.load(in_ptr1 + (2 + 4 * tmp4), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr1 + (2 + 4 * tmp10), xmask, eviction_policy=
'evict_last')
tmp22 = tmp20 - tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp19 + tmp23
tmp25 = tl.load(in_ptr1 + (3 + 4 * tmp4), xmask, eviction_policy=
'evict_last')
tmp26 = tl.load(in_ptr1 + (3 + 4 * tmp10), xmask, eviction_policy=
'evict_last')
tmp27 = tmp25 - tmp26
tmp28 = tmp27 * tmp27
tmp29 = tmp24 + tmp28
tl.store(out_ptr0 + x0, tmp29, xmask)
@triton.jit
def triton_poi_fused_mul_new_full_pow_scatter_add_sub_1(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_mul_new_full_pow_scatter_add_sub_2(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x2, xmask)
tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tl.device_assert((0 <= tmp0) & (tmp0 < 4) | ~xmask,
'index out of bounds: 0 <= tmp0 < 4')
tmp4 = tmp3.to(tl.float32)
tmp5 = libdevice.sqrt(tmp4)
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tmp2 * tmp8
tl.device_assert((0 <= tmp10) & (tmp10 < 4) | ~xmask,
'index out of bounds: 0 <= tmp10 < 4')
tl.atomic_add(out_ptr0 + (x0 + 4 * tmp0), tmp9, xmask, sem='relaxed')
tl.atomic_add(out_ptr1 + (x0 + 4 * tmp10), tmp9, xmask, sem='relaxed')
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
assert_size_stride(arg3_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.int64)
get_raw_stream(0)
triton_poi_fused_index_pow_sub_sum_0[grid(4)](arg0_1, arg1_1, buf0,
4, XBLOCK=4, num_warps=1, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_new_full_pow_scatter_add_sub_1[grid(16)](buf1,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_new_full_pow_scatter_add_sub_1[grid(16)](buf3,
16, XBLOCK=16, num_warps=1, num_stages=1)
triton_poi_fused_mul_new_full_pow_scatter_add_sub_2[grid(16)](arg0_1,
arg3_1, buf0, arg2_1, buf1, buf3, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del arg0_1
del arg2_1
del arg3_1
del buf0
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_3[grid(16)](buf1, buf3, buf5, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del buf1
del buf3
return buf5,
def gen(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
dim = range(src.dim())[dim]
if index.dim() == 1:
index_size = list(repeat(1, src.dim()))
index_size[dim] = src.size(dim)
index = index.view(index_size).expand_as(src)
if out is None:
dim_size = index.max().item() + 1 if dim_size is None else dim_size
out_size = list(src.size())
out_size[dim] = dim_size
out = src.new_full(out_size, fill_value)
return src, out, index, dim
def scatter_add(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
return out.scatter_add_(dim, index, src)
class BondEnergyModuleNew(nn.Module):
def __init__(self, batch=True):
super().__init__()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| torchmd/mdgrad | BondEnergyModule | false | 16,626 | [
"MIT"
] | 54 | 77bd7685b74b41acf54a9483546e1e8cb545eb01 | https://github.com/torchmd/mdgrad/tree/77bd7685b74b41acf54a9483546e1e8cb545eb01 |
ConvMeanPool | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xh/cxhp46orx2gsfuhjng7sfgbploywh2r52vjo7ajxglqlsqm7tvny.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# input_2 => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%convolution, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (9*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (9*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + (9*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (4 + (9*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
return (buf1, primals_1, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
def l2normalize(v, esp=1e-08):
return v / (v.norm() + esp)
def sn_weight(weight, u, height, n_power_iterations):
weight.requires_grad_(False)
for _ in range(n_power_iterations):
v = l2normalize(torch.mv(weight.view(height, -1).t(), u))
u = l2normalize(torch.mv(weight.view(height, -1), v))
weight.requires_grad_(True)
sigma = u.dot(weight.view(height, -1).mv(v))
return torch.div(weight, sigma), u
def get_nonlinearity(nonlinearity=None):
if not nonlinearity:
pass
elif callable(nonlinearity):
if nonlinearity == nn.LeakyReLU:
nonlinearity = nonlinearity(0.02, inplace=True)
elif hasattr(nn, nonlinearity):
nonlinearity = getattr(nn, nonlinearity)
if nonlinearity == 'LeakyReLU':
nonlinearity = nonlinearity(0.02, inplace=True)
else:
nonlinearity = nonlinearity()
elif hasattr(nn.functional, nonlinearity):
nonlinearity = getattr(nn.functional, nonlinearity)
else:
raise ValueError(nonlinearity)
return nonlinearity
class SNConv2d(nn.Conv2d):
def __init__(self, *args, n_power_iterations=1, **kwargs):
super(SNConv2d, self).__init__(*args, **kwargs)
self.n_power_iterations = n_power_iterations
self.height = self.weight.shape[0]
self.register_buffer('u', l2normalize(self.weight.new_empty(self.
height).normal_(0, 1)))
def forward(self, input):
w_sn, self.u = sn_weight(self.weight, self.u, self.height, self.
n_power_iterations)
return F.conv2d(input, w_sn, self.bias, self.stride, self.padding,
self.dilation, self.groups)
class ConvMeanPool(nn.Module):
def __init__(self, dim_in, dim_out, f_size, nonlinearity=None, prefix=
'', spectral_norm=False):
super(ConvMeanPool, self).__init__()
Conv2d = SNConv2d if spectral_norm else nn.Conv2d
models = nn.Sequential()
nonlinearity = get_nonlinearity(nonlinearity)
name = 'cmp' + prefix
models.add_module(name, Conv2d(dim_in, dim_out, f_size, 1, 1, bias=
False))
models.add_module(name + '_pool', nn.AvgPool2d(2, count_include_pad
=False))
if nonlinearity:
models.add_module('{}_{}'.format(name, nonlinearity.__class__.
__name__), nonlinearity)
self.models = models
def forward(self, x):
x = self.models(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4, 'f_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 9 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 9 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + 9 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (4 + 9 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf1, primals_1, primals_2, buf0
def l2normalize(v, esp=1e-08):
return v / (v.norm() + esp)
def sn_weight(weight, u, height, n_power_iterations):
weight.requires_grad_(False)
for _ in range(n_power_iterations):
v = l2normalize(torch.mv(weight.view(height, -1).t(), u))
u = l2normalize(torch.mv(weight.view(height, -1), v))
weight.requires_grad_(True)
sigma = u.dot(weight.view(height, -1).mv(v))
return torch.div(weight, sigma), u
def get_nonlinearity(nonlinearity=None):
if not nonlinearity:
pass
elif callable(nonlinearity):
if nonlinearity == nn.LeakyReLU:
nonlinearity = nonlinearity(0.02, inplace=True)
elif hasattr(nn, nonlinearity):
nonlinearity = getattr(nn, nonlinearity)
if nonlinearity == 'LeakyReLU':
nonlinearity = nonlinearity(0.02, inplace=True)
else:
nonlinearity = nonlinearity()
elif hasattr(nn.functional, nonlinearity):
nonlinearity = getattr(nn.functional, nonlinearity)
else:
raise ValueError(nonlinearity)
return nonlinearity
class SNConv2d(nn.Conv2d):
def __init__(self, *args, n_power_iterations=1, **kwargs):
super(SNConv2d, self).__init__(*args, **kwargs)
self.n_power_iterations = n_power_iterations
self.height = self.weight.shape[0]
self.register_buffer('u', l2normalize(self.weight.new_empty(self.
height).normal_(0, 1)))
def forward(self, input):
w_sn, self.u = sn_weight(self.weight, self.u, self.height, self.
n_power_iterations)
return F.conv2d(input, w_sn, self.bias, self.stride, self.padding,
self.dilation, self.groups)
class ConvMeanPoolNew(nn.Module):
def __init__(self, dim_in, dim_out, f_size, nonlinearity=None, prefix=
'', spectral_norm=False):
super(ConvMeanPoolNew, self).__init__()
Conv2d = SNConv2d if spectral_norm else nn.Conv2d
models = nn.Sequential()
nonlinearity = get_nonlinearity(nonlinearity)
name = 'cmp' + prefix
models.add_module(name, Conv2d(dim_in, dim_out, f_size, 1, 1, bias=
False))
models.add_module(name + '_pool', nn.AvgPool2d(2, count_include_pad
=False))
if nonlinearity:
models.add_module('{}_{}'.format(name, nonlinearity.__class__.
__name__), nonlinearity)
self.models = models
def forward(self, input_0):
primals_1 = self.models.cmp.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| tsirif/cortex | ConvMeanPool | false | 16,627 | [
"BSD-3-Clause"
] | 109 | 2837b220f9fb73279df3815bb18b274106412c08 | https://github.com/tsirif/cortex/tree/2837b220f9fb73279df3815bb18b274106412c08 |
XSigmoidLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lu/clugiqev6ishcwjvdmckbnrpr46lqz46s6elgmmzftibvavy5434.py
# Topologically Sorted Source Nodes: [ey_t, mul, sigmoid, mul_1, sub_1, mean], Original ATen: [aten.sub, aten.mul, aten.sigmoid, aten.mean]
# Source node to ATen node mapping:
# ey_t => sub
# mean => mean
# mul => mul
# mul_1 => mul_1
# sigmoid => sigmoid
# sub_1 => sub_1
# Graph fragment:
# %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 2), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%sub,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sigmoid), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %sub), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {})
triton_per_fused_mean_mul_sigmoid_sub_0 = async_compile.triton('triton_per_fused_mean_mul_sigmoid_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = 2.0
tmp4 = tmp2 * tmp3
tmp5 = tl.sigmoid(tmp2)
tmp6 = tmp4 * tmp5
tmp7 = tmp6 - tmp2
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = 256.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [ey_t, mul, sigmoid, mul_1, sub_1, mean], Original ATen: [aten.sub, aten.mul, aten.sigmoid, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_mul_sigmoid_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class XSigmoidLoss(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, y_t, y_prime_t):
ey_t = y_t - y_prime_t
return torch.mean(2 * ey_t * torch.sigmoid(ey_t) - ey_t)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_mul_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = 2.0
tmp4 = tmp2 * tmp3
tmp5 = tl.sigmoid(tmp2)
tmp6 = tmp4 * tmp5
tmp7 = tmp6 - tmp2
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = 256.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_mul_sigmoid_sub_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class XSigmoidLossNew(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| tuantle/regression-losses-pytorch | XSigmoidLoss | false | 16,628 | [
"MIT"
] | 82 | 2893f4439ada5df239e3afd0ec7e781dd61403e9 | https://github.com/tuantle/regression-losses-pytorch/tree/2893f4439ada5df239e3afd0ec7e781dd61403e9 |
BiAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wm/cwm4p6i4onfgzirdknbkkkkalyi643y6ynzifzggmplzobgfpkd4.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2g/c2gow746iojnl6yugujjn3non5klwrqsxgmhc4ib5irxlfwbv7ap.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gb/cgbvhbwg6zjbgpseylzouy4kgopkhyzopan7swcnpk23a2o45zr5.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + (4*x0) + (16*x3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/oz/cozxojbwhgofvogqiimshn6ijmzvg2zn4rlyuttbab5raacnhzht.py
# Topologically Sorted Source Nodes: [add, add_1, output_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# output_2 => add_2
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %unsqueeze), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %unsqueeze_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x2 + (4*x1) + (16*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2 + (4*x0) + (16*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(in_out_ptr0 + (x4), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_6, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(primals_5, buf3, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(primals_2, buf5, 256, grid=grid(256), stream=stream0)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf4, reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), out=buf6)
del buf4
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [add, add_1, output_2], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf7, buf0, buf1, primals_6, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_6
return (buf7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from typing import Optional
import torch.nn as nn
from torch.nn.parameter import Parameter
class BiAttention(nn.Module):
def __init__(self, input_size_encoder: 'int', input_size_decoder: 'int',
num_labels: 'int', biaffine: 'bool'=True, **kwargs) ->None:
super(BiAttention, self).__init__()
self.input_size_encoder = input_size_encoder
self.input_size_decoder = input_size_decoder
self.num_labels = num_labels
self.biaffine = biaffine
self.W_e = Parameter(torch.Tensor(self.num_labels, self.
input_size_encoder))
self.W_d = Parameter(torch.Tensor(self.num_labels, self.
input_size_decoder))
self.b = Parameter(torch.Tensor(self.num_labels, 1, 1))
if self.biaffine:
self.U = Parameter(torch.Tensor(self.num_labels, self.
input_size_decoder, self.input_size_encoder))
else:
self.register_parameter('U', None)
self.reset_parameters()
def reset_parameters(self) ->None:
nn.init.xavier_uniform_(self.W_e)
nn.init.xavier_uniform_(self.W_d)
nn.init.constant_(self.b, 0.0)
if self.biaffine:
nn.init.xavier_uniform_(self.U)
def forward(self, input_d: 'torch.Tensor', input_e: 'torch.Tensor',
mask_d: 'Optional[torch.Tensor]'=None, mask_e:
'Optional[torch.Tensor]'=None) ->torch.Tensor:
assert input_d.size(0) == input_e.size(0)
_batch, _length_decoder, _ = input_d.size()
_, _length_encoder, _ = input_e.size()
out_d = torch.matmul(self.W_d, input_d.transpose(1, 2)).unsqueeze(3)
out_e = torch.matmul(self.W_e, input_e.transpose(1, 2)).unsqueeze(2)
if self.biaffine:
output = torch.matmul(input_d.unsqueeze(1), self.U)
output = torch.matmul(output, input_e.unsqueeze(1).transpose(2, 3))
output = output + out_d + out_e + self.b
else:
output = out_d + out_d + self.b
if mask_d is not None:
output = output * mask_d.unsqueeze(1).unsqueeze(3
) * mask_e.unsqueeze(1).unsqueeze(2)
return output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size_encoder': 4, 'input_size_decoder': 4,
'num_labels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + 4 * x0 + 16 * x3), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + (x2 + 4 * x1 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2 + 4 * x0 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(in_out_ptr0 + x4, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_6, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](primals_1, buf2, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(256)](primals_5, buf3, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4)
buf5 = buf3
del buf3
triton_poi_fused_clone_2[grid(256)](primals_2, buf5, 256, XBLOCK=
128, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf4, reinterpret_tensor(buf5, (16, 4, 4), (16,
4, 1), 0), out=buf6)
del buf4
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_add_3[grid(256)](buf7, buf0, buf1, primals_6, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del buf1
del primals_6
return buf7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(buf5, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0)
class BiAttentionNew(nn.Module):
def __init__(self, input_size_encoder: 'int', input_size_decoder: 'int',
num_labels: 'int', biaffine: 'bool'=True, **kwargs) ->None:
super(BiAttentionNew, self).__init__()
self.input_size_encoder = input_size_encoder
self.input_size_decoder = input_size_decoder
self.num_labels = num_labels
self.biaffine = biaffine
self.W_e = Parameter(torch.Tensor(self.num_labels, self.
input_size_encoder))
self.W_d = Parameter(torch.Tensor(self.num_labels, self.
input_size_decoder))
self.b = Parameter(torch.Tensor(self.num_labels, 1, 1))
if self.biaffine:
self.U = Parameter(torch.Tensor(self.num_labels, self.
input_size_decoder, self.input_size_encoder))
else:
self.register_parameter('U', None)
self.reset_parameters()
def reset_parameters(self) ->None:
nn.init.xavier_uniform_(self.W_e)
nn.init.xavier_uniform_(self.W_d)
nn.init.constant_(self.b, 0.0)
if self.biaffine:
nn.init.xavier_uniform_(self.U)
def forward(self, input_0, input_1):
primals_3 = self.W_e
primals_4 = self.W_d
primals_6 = self.b
primals_1 = self.U
primals_2 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| tucan9389/KLUE-baseline | BiAttention | false | 16,629 | [
"Apache-2.0"
] | 71 | add61158e61f86adfca65087237443828b650090 | https://github.com/tucan9389/KLUE-baseline/tree/add61158e61f86adfca65087237443828b650090 |
AlgebraicLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lu/cluouk7gdqrnj4u4lo6ezibsqwwpiuk3qpwvvj37hsvbls533bqv.py
# Topologically Sorted Source Nodes: [ey_t, mul, mul_1, add, sqrt, truediv, mean], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.mean]
# Source node to ATen node mapping:
# add => add
# ey_t => sub
# mean => mean
# mul => mul
# mul_1 => mul_1
# sqrt => sqrt
# truediv => div
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %sqrt), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {})
triton_per_fused_add_div_mean_mul_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1.0
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tmp3 / tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = 256.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [ey_t, mul, mul_1, add, sqrt, truediv, mean], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_sqrt_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class AlgebraicLoss(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, y_t, y_prime_t):
ey_t = y_t - y_prime_t
return torch.mean(ey_t * ey_t / torch.sqrt(1 + ey_t * ey_t))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mean_mul_sqrt_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1.0
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tmp3 / tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = 256.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_sqrt_sub_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class AlgebraicLossNew(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| tuantle/regression-losses-pytorch | AlgebraicLoss | false | 16,630 | [
"MIT"
] | 82 | 2893f4439ada5df239e3afd0ec7e781dd61403e9 | https://github.com/tuantle/regression-losses-pytorch/tree/2893f4439ada5df239e3afd0ec7e781dd61403e9 |
GPT2Postprocessing | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/mz/cmzntnsms6lzyb35yqnfy7vd7osar32jl5popfgqekaoanmhac6c.py
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# hidden_states => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1.0
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# hidden_states => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lm_logits], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
from torch import nn
class GPT2Postprocessing(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_epsilon)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size,
bias=False)
def forward(self, hidden_states):
hidden_states = self.ln_f(hidden_states)
lm_logits = self.lm_head(hidden_states)
return lm_logits
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, layer_norm_epsilon=1,
vocab_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1.0
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4
class GPT2PostprocessingNew(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_epsilon)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size,
bias=False)
def forward(self, input_0):
primals_1 = self.ln_f.weight
primals_2 = self.ln_f.bias
primals_4 = self.lm_head.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| tunib-ai/large-scale-lm-tutorials | GPT2Postprocessing | false | 16,631 | [
"Apache-2.0"
] | 128 | ca29ff9f945a59abcc3e3f1000c4d83de97973d4 | https://github.com/tunib-ai/large-scale-lm-tutorials/tree/ca29ff9f945a59abcc3e3f1000c4d83de97973d4 |
KLDivergenceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ak/cakm5e6lwgvo4ch6lbxjmcmcar3oco47d3xyxuief4vqkwlft225.py
# Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde], Original ATen: [aten.rsub, aten.add, aten.mul]
# Source node to ATen node mapping:
# alpha => add
# alpha_tilde => add_1
# mul => mul
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %add), kwargs = {})
# %add_1 : [num_users=5] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {})
triton_poi_fused_add_mul_rsub_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp3 + tmp1
tmp5 = tmp2 * tmp4
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fs/cfslznycxlykpj42fqvbg2sgr2rr5ofx6xol4bhm6igaw3efhsg5.py
# Topologically Sorted Source Nodes: [strength_tilde], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# strength_tilde => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [-1]), kwargs = {})
triton_poi_fused_sum_1 = async_compile.triton('triton_poi_fused_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2i/c2izsdx2sqgkyo4pbm7trfgkofg2h276vcut2cdf4alkpa2abztc.py
# Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde, sum_2, lgamma, lgamma_1, sub_1, lgamma_2, sum_3, first, sub_3, sub_4, mul_1, second, loss, mean], Original ATen: [aten.rsub, aten.add, aten.mul, aten.sum, aten.lgamma, aten.sub, aten.mean]
# Source node to ATen node mapping:
# alpha => add
# alpha_tilde => add_1
# first => sub_2
# lgamma => lgamma
# lgamma_1 => full_default
# lgamma_2 => lgamma_2
# loss => add_2
# mean => mean
# mul => mul
# mul_1 => mul_1
# second => sum_4
# sub => sub
# sub_1 => sub_1
# sub_3 => sub_3
# sub_4 => sub_4
# sum_2 => sum_2
# sum_3 => sum_3
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %add), kwargs = {})
# %add_1 : [num_users=5] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [-1]), kwargs = {})
# %lgamma : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%sum_2,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.7917594909667969), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%lgamma, %full_default), kwargs = {})
# %lgamma_2 : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%add_1,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%lgamma_2, [-1]), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %sum_3), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, 1), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%digamma, %unsqueeze), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %sub_4), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_2, %sum_4), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_2,), kwargs = {})
triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2 = async_compile.triton('triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 4
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr3 + ((4*r1) + (16*r3)), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr3 + (1 + (4*r1) + (16*r3)), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp51 = tl.load(in_ptr3 + (2 + (4*r1) + (16*r3)), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp57 = tl.load(in_ptr3 + (3 + (4*r1) + (16*r3)), None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp3 + tmp1
tmp5 = tmp2 * tmp4
tmp6 = tmp0 + tmp5
tmp8 = tmp1 - tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 * tmp10
tmp12 = tmp7 + tmp11
tmp13 = tmp6 + tmp12
tmp15 = tmp1 - tmp14
tmp17 = tmp16 + tmp1
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = tmp13 + tmp19
tmp22 = tmp1 - tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp22 * tmp24
tmp26 = tmp21 + tmp25
tmp27 = tmp20 + tmp26
tmp28 = libdevice.lgamma(tmp27)
tmp29 = 1.7917594909667969
tmp30 = tmp28 - tmp29
tmp31 = libdevice.lgamma(tmp6)
tmp32 = libdevice.lgamma(tmp12)
tmp33 = tmp31 + tmp32
tmp34 = libdevice.lgamma(tmp19)
tmp35 = tmp33 + tmp34
tmp36 = libdevice.lgamma(tmp26)
tmp37 = tmp35 + tmp36
tmp38 = tmp6 - tmp1
tmp41 = tmp39 - tmp40
tmp42 = tmp38 * tmp41
tmp43 = tmp12 - tmp1
tmp46 = tmp44 - tmp45
tmp47 = tmp43 * tmp46
tmp48 = tmp42 + tmp47
tmp49 = tmp19 - tmp1
tmp52 = tmp50 - tmp51
tmp53 = tmp49 * tmp52
tmp54 = tmp48 + tmp53
tmp55 = tmp26 - tmp1
tmp58 = tmp56 - tmp57
tmp59 = tmp55 * tmp58
tmp60 = tmp54 + tmp59
tmp61 = tmp30 - tmp37
tmp62 = tmp61 + tmp60
tmp63 = tl.broadcast_to(tmp62, [XBLOCK, RBLOCK])
tmp65 = tl.sum(tmp63, 1)[:, None]
tmp66 = 64.0
tmp67 = tmp65 / tmp66
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp67, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde], Original ATen: [aten.rsub, aten.add, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_rsub_0.run(arg1_1, arg0_1, buf2, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde, digamma], Original ATen: [aten.rsub, aten.add, aten.mul, aten.digamma]
buf3 = torch.ops.aten.digamma.default(buf2)
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [strength_tilde], Original ATen: [aten.sum]
triton_poi_fused_sum_1.run(buf2, buf5, 64, grid=grid(64), stream=stream0)
del buf2
# Topologically Sorted Source Nodes: [strength_tilde, digamma_1], Original ATen: [aten.sum, aten.digamma]
buf6 = torch.ops.aten.digamma.default(buf5)
del buf5
buf7 = buf6
del buf6
buf9 = empty_strided_cuda((), (), torch.float32)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde, sum_2, lgamma, lgamma_1, sub_1, lgamma_2, sum_3, first, sub_3, sub_4, mul_1, second, loss, mean], Original ATen: [aten.rsub, aten.add, aten.mul, aten.sum, aten.lgamma, aten.sub, aten.mean]
triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2.run(buf10, arg1_1, arg0_1, buf4, buf7, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del buf4
del buf7
return (buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
import torch.utils.data
import torch.nn.functional
import torch.autograd
class KLDivergenceLoss(Module):
"""
<a id="KLDivergenceLoss"></a>
## KL Divergence Regularization Loss
This tries to shrink the total evidence to zero if the sample cannot be correctly classified.
First we calculate $ ilde{lpha}_k = y_k + (1 - y_k) extcolor{orange}{lpha_k}$ the
Dirichlet parameters after remove the correct evidence.
egin{align}
&KL \\Big[ D(\\mathbf{p} ert \\mathbf{ ilde{lpha}}) \\Big \\Vert
D(\\mathbf{p} ert <1, \\dots, 1>\\Big] \\
&= \\log \\Bigg( rac{\\Gamma \\Big( \\sum_{k=1}^K ilde{lpha}_k \\Big)}
{\\Gamma(K) \\prod_{k=1}^K \\Gamma( ilde{lpha}_k)} \\Bigg)
+ \\sum_{k=1}^K ( ilde{lpha}_k - 1)
\\Big[ \\psi( ilde{lpha}_k) - \\psi( ilde{S}) \\Big]
\\end{align}
where $\\Gamma(\\cdot)$ is the gamma function,
$\\psi(\\cdot)$ is the $digamma$ function and
$ ilde{S} = \\sum_{k=1}^K ilde{lpha}_k$
"""
def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'):
"""
* `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]`
* `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]`
"""
alpha = evidence + 1.0
n_classes = evidence.shape[-1]
alpha_tilde = target + (1 - target) * alpha
strength_tilde = alpha_tilde.sum(dim=-1)
first = torch.lgamma(alpha_tilde.sum(dim=-1)) - torch.lgamma(
alpha_tilde.new_tensor(float(n_classes))) - torch.lgamma(
alpha_tilde).sum(dim=-1)
second = ((alpha_tilde - 1) * (torch.digamma(alpha_tilde) - torch.
digamma(strength_tilde)[:, None])).sum(dim=-1)
loss = first + second
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp3 + tmp1
tmp5 = tmp2 * tmp4
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 4
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr3 + (4 * r1 + 16 * r3), None, eviction_policy=
'evict_last')
tmp44 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr3 + (1 + 4 * r1 + 16 * r3), None, eviction_policy
='evict_last')
tmp50 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp51 = tl.load(in_ptr3 + (2 + 4 * r1 + 16 * r3), None, eviction_policy
='evict_last')
tmp56 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp57 = tl.load(in_ptr3 + (3 + 4 * r1 + 16 * r3), None, eviction_policy
='evict_last')
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp3 + tmp1
tmp5 = tmp2 * tmp4
tmp6 = tmp0 + tmp5
tmp8 = tmp1 - tmp7
tmp10 = tmp9 + tmp1
tmp11 = tmp8 * tmp10
tmp12 = tmp7 + tmp11
tmp13 = tmp6 + tmp12
tmp15 = tmp1 - tmp14
tmp17 = tmp16 + tmp1
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = tmp13 + tmp19
tmp22 = tmp1 - tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp22 * tmp24
tmp26 = tmp21 + tmp25
tmp27 = tmp20 + tmp26
tmp28 = libdevice.lgamma(tmp27)
tmp29 = 1.7917594909667969
tmp30 = tmp28 - tmp29
tmp31 = libdevice.lgamma(tmp6)
tmp32 = libdevice.lgamma(tmp12)
tmp33 = tmp31 + tmp32
tmp34 = libdevice.lgamma(tmp19)
tmp35 = tmp33 + tmp34
tmp36 = libdevice.lgamma(tmp26)
tmp37 = tmp35 + tmp36
tmp38 = tmp6 - tmp1
tmp41 = tmp39 - tmp40
tmp42 = tmp38 * tmp41
tmp43 = tmp12 - tmp1
tmp46 = tmp44 - tmp45
tmp47 = tmp43 * tmp46
tmp48 = tmp42 + tmp47
tmp49 = tmp19 - tmp1
tmp52 = tmp50 - tmp51
tmp53 = tmp49 * tmp52
tmp54 = tmp48 + tmp53
tmp55 = tmp26 - tmp1
tmp58 = tmp56 - tmp57
tmp59 = tmp55 * tmp58
tmp60 = tmp54 + tmp59
tmp61 = tmp30 - tmp37
tmp62 = tmp61 + tmp60
tmp63 = tl.broadcast_to(tmp62, [XBLOCK, RBLOCK])
tmp65 = tl.sum(tmp63, 1)[:, None]
tmp66 = 64.0
tmp67 = tmp65 / tmp66
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp67, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_rsub_0[grid(256)](arg1_1, arg0_1, buf2,
256, XBLOCK=256, num_warps=4, num_stages=1)
buf3 = torch.ops.aten.digamma.default(buf2)
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_sum_1[grid(64)](buf2, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf2
buf6 = torch.ops.aten.digamma.default(buf5)
del buf5
buf7 = buf6
del buf6
buf9 = empty_strided_cuda((), (), torch.float32)
buf10 = buf9
del buf9
triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2[grid(1)](buf10,
arg1_1, arg0_1, buf4, buf7, 1, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del arg0_1
del arg1_1
del buf4
del buf7
return buf10,
class KLDivergenceLossNew(Module):
"""
<a id="KLDivergenceLoss"></a>
## KL Divergence Regularization Loss
This tries to shrink the total evidence to zero if the sample cannot be correctly classified.
First we calculate $ ilde{lpha}_k = y_k + (1 - y_k) extcolor{orange}{lpha_k}$ the
Dirichlet parameters after remove the correct evidence.
egin{align}
&KL \\Big[ D(\\mathbf{p} ert \\mathbf{ ilde{lpha}}) \\Big \\Vert
D(\\mathbf{p} ert <1, \\dots, 1>\\Big] \\
&= \\log \\Bigg( rac{\\Gamma \\Big( \\sum_{k=1}^K ilde{lpha}_k \\Big)}
{\\Gamma(K) \\prod_{k=1}^K \\Gamma( ilde{lpha}_k)} \\Bigg)
+ \\sum_{k=1}^K ( ilde{lpha}_k - 1)
\\Big[ \\psi( ilde{lpha}_k) - \\psi( ilde{S}) \\Big]
\\end{align}
where $\\Gamma(\\cdot)$ is the gamma function,
$\\psi(\\cdot)$ is the $digamma$ function and
$ ilde{S} = \\sum_{k=1}^K ilde{lpha}_k$
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | KLDivergenceLoss | false | 16,632 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
Conv2dZeroInit | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/b5/cb5h536lfxehnv2ezobudfl5wugu2y6mu444yw7yei4n22rp33zu.py
# Topologically Sorted Source Nodes: [out, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# mul_1 => mul_1
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {})
triton_poi_fused_convolution_exp_mul_0 = async_compile.triton('triton_poi_fused_convolution_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
tl.store(out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0.run(buf1, primals_2, primals_4, buf2, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf2, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn
class Conv2dZeroInit(nn.Conv2d):
def __init__(self, channels_in, channels_out, filter_size, stride=1,
padding=0, logscale=3.0):
super().__init__(channels_in, channels_out, filter_size, stride=
stride, padding=padding)
self.register_parameter('logs', nn.Parameter(torch.zeros(
channels_out, 1, 1)))
self.logscale_factor = logscale
def reset_parameters(self):
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input):
out = super().forward(input)
return out * torch.exp(self.logs * self.logscale_factor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels_in': 4, 'channels_out': 4, 'filter_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr0 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0[grid(16)](buf1, primals_2,
primals_4, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf2, primals_1, primals_3, primals_4, buf1
class Conv2dZeroInitNew(nn.Conv2d):
def __init__(self, channels_in, channels_out, filter_size, stride=1,
padding=0, logscale=3.0):
super().__init__(channels_in, channels_out, filter_size, stride=
stride, padding=padding)
self.register_parameter('logs', nn.Parameter(torch.zeros(
channels_out, 1, 1)))
self.logscale_factor = logscale
def reset_parameters(self):
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_4 = self.logs
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| tychovdo/RevGAN | Conv2dZeroInit | false | 16,633 | [
"BSD-3-Clause"
] | 79 | 2af25e6a8176eaab3d424db45fb6ee2cfc5dc9a3 | https://github.com/tychovdo/RevGAN/tree/2af25e6a8176eaab3d424db45fb6ee2cfc5dc9a3 |
netmodel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6u/c6uqisdoyak6d6tkodc57kultaxhr4l3kboejc6mikjbvg6t5xmh.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp5 = tl.load(in_ptr0 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp16 = tl.load(in_ptr2 + (0))
tmp17 = tl.broadcast_to(tmp16, [XBLOCK])
tmp0 = x1 + (4*x0)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp7 = 100.0
tmp8 = tmp6 * tmp7
tmp9 = tl.load(in_ptr1 + (4*(x1 + (4*x0))), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp8 * tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tmp14 = tl.full([1], 8, tl.int64)
tmp15 = tmp0 < tmp14
tmp18 = 0.1
tmp19 = tmp17 * tmp18
tmp20 = tl.load(in_ptr1 + (1 + (4*((-4) + x1 + (4*x0)))), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 * tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp13, tmp21, tmp22)
tmp24 = tl.where(tmp4, tmp12, tmp23)
tl.store(out_ptr0 + (x2), tmp24, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, ), (1, ))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, primals_2, primals_3, buf0, 8, grid=grid(8), stream=stream0)
del primals_1
del primals_3
return (buf0, reinterpret_tensor(primals_2, (4, ), (4, ), 0), reinterpret_tensor(primals_2, (4, ), (4, ), 1), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch.nn import Parameter
class netmodel(torch.nn.Module):
def __init__(self):
super(netmodel, self).__init__()
self.w0 = Parameter(torch.Tensor(1))
self.w1 = Parameter(torch.Tensor(1))
self.w0.data.uniform_(-1, 1)
self.w1.data.uniform_(-1, 1)
def forward(self, inputs):
y = torch.stack([100 * self.w0 * inputs[:, 0], 0.1 * self.w1 *
inputs[:, 1]])
y = torch.t(y)
return y.contiguous()
def extract_grad(self):
tot_size = self.count_parameters()
pvec = np.zeros(tot_size, np.float32)
count = 0
for param in self.parameters():
sz = param.grad.data.numpy().flatten().shape[0]
pvec[count:count + sz] = param.grad.data.numpy().flatten()
count += sz
return pvec.copy()
def extract_parameters(self):
tot_size = self.count_parameters()
pvec = np.zeros(tot_size, np.float32)
count = 0
for param in self.parameters():
sz = param.data.numpy().flatten().shape[0]
pvec[count:count + sz] = param.data.numpy().flatten()
count += sz
return pvec.copy()
def inject_parameters(self, pvec):
self.count_parameters()
count = 0
for param in self.parameters():
sz = param.data.numpy().flatten().shape[0]
raw = pvec[count:count + sz]
reshaped = raw.reshape(param.data.numpy().shape)
param.data = torch.from_numpy(reshaped)
count += sz
return pvec
def count_parameters(self):
count = 0
for param in self.parameters():
count += param.data.numpy().flatten().shape[0]
return count
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp5 = tl.load(in_ptr0 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp16 = tl.load(in_ptr2 + 0)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK])
tmp0 = x1 + 4 * x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp7 = 100.0
tmp8 = tmp6 * tmp7
tmp9 = tl.load(in_ptr1 + 4 * (x1 + 4 * x0), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tmp8 * tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp18 = 0.1
tmp19 = tmp17 * tmp18
tmp20 = tl.load(in_ptr1 + (1 + 4 * (-4 + x1 + 4 * x0)), tmp13 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 * tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp13, tmp21, tmp22)
tmp24 = tl.where(tmp4, tmp12, tmp23)
tl.store(out_ptr0 + x2, tmp24, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1,), (1,))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(8)](primals_1, primals_2, primals_3,
buf0, 8, XBLOCK=8, num_warps=1, num_stages=1)
del primals_1
del primals_3
return buf0, reinterpret_tensor(primals_2, (4,), (4,), 0
), reinterpret_tensor(primals_2, (4,), (4,), 1)
class netmodelNew(torch.nn.Module):
def __init__(self):
super(netmodelNew, self).__init__()
self.w0 = Parameter(torch.Tensor(1))
self.w1 = Parameter(torch.Tensor(1))
self.w0.data.uniform_(-1, 1)
self.w1.data.uniform_(-1, 1)
def extract_grad(self):
tot_size = self.count_parameters()
pvec = np.zeros(tot_size, np.float32)
count = 0
for param in self.parameters():
sz = param.grad.data.numpy().flatten().shape[0]
pvec[count:count + sz] = param.grad.data.numpy().flatten()
count += sz
return pvec.copy()
def extract_parameters(self):
tot_size = self.count_parameters()
pvec = np.zeros(tot_size, np.float32)
count = 0
for param in self.parameters():
sz = param.data.numpy().flatten().shape[0]
pvec[count:count + sz] = param.data.numpy().flatten()
count += sz
return pvec.copy()
def inject_parameters(self, pvec):
self.count_parameters()
count = 0
for param in self.parameters():
sz = param.data.numpy().flatten().shape[0]
raw = pvec[count:count + sz]
reshaped = raw.reshape(param.data.numpy().shape)
param.data = torch.from_numpy(reshaped)
count += sz
return pvec
def count_parameters(self):
count = 0
for param in self.parameters():
count += param.data.numpy().flatten().shape[0]
return count
def forward(self, input_0):
primals_1 = self.w0
primals_3 = self.w1
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| uber-common/safemutations | netmodel | false | 16,634 | [
"MIT"
] | 91 | 40e5fd03a244f89bf157d4bedf79201e706aedc1 | https://github.com/uber-common/safemutations/tree/40e5fd03a244f89bf157d4bedf79201e706aedc1 |
DSC_loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jf/cjfduj4aoafs2zdnhlqgoziqbas75hcrxx3dup25kofd3dncr3xu.py
# Topologically Sorted Source Nodes: [mul, sum_1, add_1, sum_2], Original ATen: [aten.mul, aten.sum, aten.add]
# Source node to ATen node mapping:
# add_1 => add_1
# mul => mul
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [1]), kwargs = {})
triton_per_fused_add_mul_sum_0 = async_compile.triton('triton_per_fused_add_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tmp0 + tmp1
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr1 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/av/caveveath64djs35ok3exidhg627rkehcajxu6txrjypmfepefwp.py
# Topologically Sorted Source Nodes: [mul_1, add, add_2, DSC, sum_3, truediv_1, sub], Original ATen: [aten.mul, aten.add, aten.div, aten.sum, aten.rsub]
# Source node to ATen node mapping:
# DSC => div
# add => add
# add_2 => add_2
# mul_1 => mul_1
# sub => sub
# sum_3 => sum_3
# truediv_1 => div_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-06), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%div,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_1), kwargs = {})
triton_per_fused_add_div_mul_rsub_sum_1 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp6 = tmp5 + tmp3
tmp7 = tmp4 / tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.sum(tmp8, 1)[:, None]
tmp11 = 0.25
tmp12 = tmp10 * tmp11
tmp13 = 1.0
tmp14 = tmp13 - tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp14, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul, sum_1, add_1, sum_2], Original ATen: [aten.mul, aten.sum, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_sum_0.run(arg0_1, arg1_1, buf0, buf1, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [mul_1, add, add_2, DSC, sum_3, truediv_1, sub], Original ATen: [aten.mul, aten.add, aten.div, aten.sum, aten.rsub]
triton_per_fused_add_div_mul_rsub_sum_1.run(buf3, buf0, buf1, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DSC_loss(nn.Module):
def __init__(self):
super(DSC_loss, self).__init__()
self.epsilon = 1e-06
return
def forward(self, pred, target):
batch_num = pred.shape[0]
pred = pred.contiguous().view(batch_num, -1)
target = target.contiguous().view(batch_num, -1)
DSC = (2 * (pred * target).sum(1) + self.epsilon) / ((pred + target
).sum(1) + self.epsilon)
return 1 - DSC.sum() / float(batch_num)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tmp0 + tmp1
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr1 + x0, tmp11, xmask)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp6 = tmp5 + tmp3
tmp7 = tmp4 / tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.sum(tmp8, 1)[:, None]
tmp11 = 0.25
tmp12 = tmp10 * tmp11
tmp13 = 1.0
tmp14 = tmp13 - tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp14, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_add_mul_sum_0[grid(4)](arg0_1, arg1_1, buf0, buf1,
4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_add_div_mul_rsub_sum_1[grid(1)](buf3, buf0, buf1,
1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
return buf3,
class DSC_lossNew(nn.Module):
def __init__(self):
super(DSC_lossNew, self).__init__()
self.epsilon = 1e-06
return
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| twni2016/OrganSegRSTN_PyTorch | DSC_loss | false | 16,635 | [
"MIT"
] | 100 | bf571320e718c8f138e04d48645e3b4dfe75801d | https://github.com/twni2016/OrganSegRSTN_PyTorch/tree/bf571320e718c8f138e04d48645e3b4dfe75801d |
ConformerConvBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bs/cbstxeghddltznr7shuzsnth6ngv6mnftr2w7pqzzm5flm72plbl.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xd/cxdkgesb6qc4hbcvbeerj4gwfolzo6uujsc7nr7gmmdljjywjmd6.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2f/c2fbrnmwutoz3lg6i3ej5xgc7434bcb7tt67cl3pv4byjybrp5cg.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.glu]
# Source node to ATen node mapping:
# x_2 => glu
# Graph fragment:
# %glu : [num_users=2] = call_function[target=torch.ops.aten.glu.default](args = (%convolution, 1), kwargs = {})
triton_poi_fused_glu_2 = async_compile.triton('triton_poi_fused_glu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_glu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_glu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (32*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (32*x1)), xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/he/chegxomcbtt6hrgtktw3p5v3t6dte24xroou3x43tjnss6fcsnd3.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => relu
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%glu, %primals_4, %primals_5, [1], [0], [1], False, [0], 4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/py/cpyevk5ui6utpplpcxxmaefjaw6flnsq34pe5bc3kggnsp3mdm5q.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_5 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4), (32, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 128, grid=grid(128), stream=stream0)
del primals_3
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.glu]
triton_poi_fused_glu_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 4), (16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf5, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4), (16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_4.run(buf7, primals_7, 64, grid=grid(64), stream=stream0)
del primals_7
return (reinterpret_tensor(buf7, (4, 4, 4), (1, 16, 4), 0), primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0), buf2, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.cuda
class ConformerConvBlock(nn.Module):
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
super(ConformerConvBlock, self).__init__()
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels,
kernel_size=1, stride=1, padding=0, bias=bias)
self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size,
stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias
=bias)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1,
stride=1, padding=0, bias=bias)
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_normal_(self.pointwise_conv1.weight, nonlinearity=
'relu')
nn.init.kaiming_normal_(self.depthwise_conv.weight, nonlinearity='relu'
)
nn.init.kaiming_normal_(self.pointwise_conv2.weight, nonlinearity=
'relu')
nn.init.constant_(self.pointwise_conv1.bias, 0)
nn.init.constant_(self.pointwise_conv2.bias, 0)
nn.init.constant_(self.depthwise_conv.bias, 0)
def forward(self, x):
"""
:param x: [seq_len x bsz x hidden_size]
:return:
"""
x = x.transpose(0, 1).transpose(1, 2)
x = self.pointwise_conv1(x)
x = F.glu(x, dim=1)
x = self.depthwise_conv(x)
x = self.activation(x)
x = self.pointwise_conv2(x)
x = x.transpose(1, 2).transpose(0, 1)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'kernel_size': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_glu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 32 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 32 * x1), xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4), (32, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(128)](buf2, primals_3, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = buf0
del buf0
triton_poi_fused_glu_2[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 4), (16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_3[grid(64)](buf5, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4), (16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_4[grid(64)](buf7, primals_7, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_7
return reinterpret_tensor(buf7, (4, 4, 4), (1, 16, 4), 0
), primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, (
4, 4, 4), (4, 1, 16), 0), buf2, buf3, buf5
class ConformerConvBlockNew(nn.Module):
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
super(ConformerConvBlockNew, self).__init__()
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels,
kernel_size=1, stride=1, padding=0, bias=bias)
self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size,
stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias
=bias)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1,
stride=1, padding=0, bias=bias)
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_normal_(self.pointwise_conv1.weight, nonlinearity=
'relu')
nn.init.kaiming_normal_(self.depthwise_conv.weight, nonlinearity='relu'
)
nn.init.kaiming_normal_(self.pointwise_conv2.weight, nonlinearity=
'relu')
nn.init.constant_(self.pointwise_conv1.bias, 0)
nn.init.constant_(self.pointwise_conv2.bias, 0)
nn.init.constant_(self.depthwise_conv.bias, 0)
def forward(self, input_0):
primals_2 = self.pointwise_conv1.weight
primals_3 = self.pointwise_conv1.bias
primals_4 = self.depthwise_conv.weight
primals_5 = self.depthwise_conv.bias
primals_6 = self.pointwise_conv2.weight
primals_7 = self.pointwise_conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| tuannamnguyen93/NMTGMinor | ConformerConvBlock | false | 16,636 | [
"MIT"
] | 75 | acde3454343bda7060fae541c110d0ad1a8ac4f4 | https://github.com/tuannamnguyen93/NMTGMinor/tree/acde3454343bda7060fae541c110d0ad1a8ac4f4 |
N2 | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qu/cqus46ccg6zxy23dy53q5ruz2v7a6tr32ti6ki3ofym6a7x3xwoa.py
# Topologically Sorted Source Nodes: [norm, pow_1, sum_1, mul, norm_1, norm_2, pow_2, sum_2, mul_1, norm_3, norm_4, pow_3, sum_3, mul_2, norm_5, norm_6, pow_4, sum_4, mul_3, norm_7, truediv], Original ATen: [aten.linalg_vector_norm, aten.pow, aten.sum, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# norm => pow_1, pow_2, sum_1
# norm_1 => add
# norm_2 => pow_4, pow_5, sum_3
# norm_3 => add_1
# norm_4 => pow_7, pow_8, sum_5
# norm_5 => add_2
# norm_6 => pow_10, pow_11, sum_7
# norm_7 => add_3
# pow_1 => pow_3
# pow_2 => pow_6
# pow_3 => pow_9
# pow_4 => pow_12
# sum_1 => sum_2
# sum_2 => sum_4
# sum_3 => sum_6
# sum_4 => sum_8
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 3), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_1, 2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_4, [1]), kwargs = {})
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 0.5), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_5, 3), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_6,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {})
# %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_2, 2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_7, [1]), kwargs = {})
# %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 0.5), kwargs = {})
# %pow_9 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_8, 3), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_9,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_6, 4), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {})
# %pow_10 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_3, 2), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_10, [1]), kwargs = {})
# %pow_11 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_7, 0.5), kwargs = {})
# %pow_12 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_11, 3), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_12,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_8, 4), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {})
triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 4
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r0 + (16*r1)), None)
tmp2 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), None)
tmp5 = tl.load(in_ptr0 + (8 + r0 + (16*r1)), None)
tmp8 = tl.load(in_ptr0 + (12 + r0 + (16*r1)), None)
tmp17 = tl.load(in_ptr0 + (64 + r0 + (16*r1)), None)
tmp19 = tl.load(in_ptr0 + (68 + r0 + (16*r1)), None)
tmp22 = tl.load(in_ptr0 + (72 + r0 + (16*r1)), None)
tmp25 = tl.load(in_ptr0 + (76 + r0 + (16*r1)), None)
tmp34 = tl.load(in_ptr0 + (128 + r0 + (16*r1)), None)
tmp36 = tl.load(in_ptr0 + (132 + r0 + (16*r1)), None)
tmp39 = tl.load(in_ptr0 + (136 + r0 + (16*r1)), None)
tmp42 = tl.load(in_ptr0 + (140 + r0 + (16*r1)), None)
tmp51 = tl.load(in_ptr0 + (192 + r0 + (16*r1)), None)
tmp53 = tl.load(in_ptr0 + (196 + r0 + (16*r1)), None)
tmp56 = tl.load(in_ptr0 + (200 + r0 + (16*r1)), None)
tmp59 = tl.load(in_ptr0 + (204 + r0 + (16*r1)), None)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = tmp11 * tmp11
tmp13 = tmp12 * tmp11
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = tmp28 * tmp28
tmp30 = tmp29 * tmp28
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp35 = tmp34 * tmp34
tmp37 = tmp36 * tmp36
tmp38 = tmp35 + tmp37
tmp40 = tmp39 * tmp39
tmp41 = tmp38 + tmp40
tmp43 = tmp42 * tmp42
tmp44 = tmp41 + tmp43
tmp45 = libdevice.sqrt(tmp44)
tmp46 = tmp45 * tmp45
tmp47 = tmp46 * tmp45
tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK])
tmp50 = tl.sum(tmp48, 1)[:, None]
tmp52 = tmp51 * tmp51
tmp54 = tmp53 * tmp53
tmp55 = tmp52 + tmp54
tmp57 = tmp56 * tmp56
tmp58 = tmp55 + tmp57
tmp60 = tmp59 * tmp59
tmp61 = tmp58 + tmp60
tmp62 = libdevice.sqrt(tmp61)
tmp63 = tmp62 * tmp62
tmp64 = tmp63 * tmp62
tmp65 = tl.broadcast_to(tmp64, [XBLOCK, RBLOCK])
tmp67 = tl.sum(tmp65, 1)[:, None]
tmp68 = 4.0
tmp69 = tmp16 * tmp68
tmp70 = 0.0
tmp71 = tmp69 + tmp70
tmp72 = tmp33 * tmp68
tmp73 = tmp71 + tmp72
tmp74 = tmp50 * tmp68
tmp75 = tmp73 + tmp74
tmp76 = tmp67 * tmp68
tmp77 = tmp75 + tmp76
tmp78 = 0.25
tmp79 = tmp77 * tmp78
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp79, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [norm, pow_1, sum_1, mul, norm_1, norm_2, pow_2, sum_2, mul_1, norm_3, norm_4, pow_3, sum_3, mul_2, norm_5, norm_6, pow_4, sum_4, mul_3, norm_7, truediv], Original ATen: [aten.linalg_vector_norm, aten.pow, aten.sum, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0.run(buf4, arg0_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from typing import Tuple
from abc import ABC
from abc import abstractmethod
from torch import nn
class Regularizer(nn.Module, ABC):
@abstractmethod
def forward(self, factors: 'Tuple[torch.Tensor]'):
pass
class N2(Regularizer):
def __init__(self, weight: 'float'):
super(N2, self).__init__()
self.weight = weight
def forward(self, factors):
norm = 0
for f in factors:
norm += self.weight * torch.sum(torch.norm(f, 2, 1) ** 3)
return norm / factors[0].shape[0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'weight': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from typing import Tuple
from abc import ABC
from abc import abstractmethod
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0(in_out_ptr0,
in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 4
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + (r0 + 16 * r1), None)
tmp2 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), None)
tmp5 = tl.load(in_ptr0 + (8 + r0 + 16 * r1), None)
tmp8 = tl.load(in_ptr0 + (12 + r0 + 16 * r1), None)
tmp17 = tl.load(in_ptr0 + (64 + r0 + 16 * r1), None)
tmp19 = tl.load(in_ptr0 + (68 + r0 + 16 * r1), None)
tmp22 = tl.load(in_ptr0 + (72 + r0 + 16 * r1), None)
tmp25 = tl.load(in_ptr0 + (76 + r0 + 16 * r1), None)
tmp34 = tl.load(in_ptr0 + (128 + r0 + 16 * r1), None)
tmp36 = tl.load(in_ptr0 + (132 + r0 + 16 * r1), None)
tmp39 = tl.load(in_ptr0 + (136 + r0 + 16 * r1), None)
tmp42 = tl.load(in_ptr0 + (140 + r0 + 16 * r1), None)
tmp51 = tl.load(in_ptr0 + (192 + r0 + 16 * r1), None)
tmp53 = tl.load(in_ptr0 + (196 + r0 + 16 * r1), None)
tmp56 = tl.load(in_ptr0 + (200 + r0 + 16 * r1), None)
tmp59 = tl.load(in_ptr0 + (204 + r0 + 16 * r1), None)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = tmp11 * tmp11
tmp13 = tmp12 * tmp11
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = tmp28 * tmp28
tmp30 = tmp29 * tmp28
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp35 = tmp34 * tmp34
tmp37 = tmp36 * tmp36
tmp38 = tmp35 + tmp37
tmp40 = tmp39 * tmp39
tmp41 = tmp38 + tmp40
tmp43 = tmp42 * tmp42
tmp44 = tmp41 + tmp43
tmp45 = libdevice.sqrt(tmp44)
tmp46 = tmp45 * tmp45
tmp47 = tmp46 * tmp45
tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK])
tmp50 = tl.sum(tmp48, 1)[:, None]
tmp52 = tmp51 * tmp51
tmp54 = tmp53 * tmp53
tmp55 = tmp52 + tmp54
tmp57 = tmp56 * tmp56
tmp58 = tmp55 + tmp57
tmp60 = tmp59 * tmp59
tmp61 = tmp58 + tmp60
tmp62 = libdevice.sqrt(tmp61)
tmp63 = tmp62 * tmp62
tmp64 = tmp63 * tmp62
tmp65 = tl.broadcast_to(tmp64, [XBLOCK, RBLOCK])
tmp67 = tl.sum(tmp65, 1)[:, None]
tmp68 = 4.0
tmp69 = tmp16 * tmp68
tmp70 = 0.0
tmp71 = tmp69 + tmp70
tmp72 = tmp33 * tmp68
tmp73 = tmp71 + tmp72
tmp74 = tmp50 * tmp68
tmp75 = tmp73 + tmp74
tmp76 = tmp67 * tmp68
tmp77 = tmp75 + tmp76
tmp78 = 0.25
tmp79 = tmp77 * tmp78
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp79, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0[grid(1)](buf4
, arg0_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf4,
class Regularizer(nn.Module, ABC):
@abstractmethod
def forward(self, factors: 'Tuple[torch.Tensor]'):
pass
class N2New(Regularizer):
def __init__(self, weight: 'float'):
super(N2New, self).__init__()
self.weight = weight
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| uclnlp/cqd | N2 | false | 16,637 | [
"MIT"
] | 59 | 36148c110f336415250c98873fc27ca847741a78 | https://github.com/uclnlp/cqd/tree/36148c110f336415250c98873fc27ca847741a78 |
L2LossWithLogit | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/im/cimi6y3pvgmp5ek4mtvhvumx2ntdf6v6r2jvajes5xh5km7wyxnh.py
# Topologically Sorted Source Nodes: [p, mse_loss], Original ATen: [aten.sigmoid, aten.mse_loss]
# Source node to ATen node mapping:
# mse_loss => pow_1, sub, sum_1
# p => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
triton_per_fused_mse_loss_sigmoid_0 = async_compile.triton('triton_per_fused_mse_loss_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mse_loss_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mse_loss_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 - tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [p, mse_loss], Original ATen: [aten.sigmoid, aten.mse_loss]
stream0 = get_raw_stream(0)
triton_per_fused_mse_loss_sigmoid_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
from torch import nn
class L2LossWithLogit(nn.Module):
def __init__(self):
super(L2LossWithLogit, self).__init__()
self.mse = nn.MSELoss(reduction='sum')
def forward(self, logits, targets):
p = torch.sigmoid(logits)
return self.mse(p, targets)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mse_loss_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 - tmp2
tmp4 = tmp3 * tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp7, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_mse_loss_sigmoid_0[grid(1)](arg0_1, arg1_1, buf0,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class L2LossWithLogitNew(nn.Module):
def __init__(self):
super(L2LossWithLogitNew, self).__init__()
self.mse = nn.MSELoss(reduction='sum')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ucas-vg/TinyBenchmark | L2LossWithLogit | false | 16,638 | [
"MIT"
] | 495 | 36436df3716d842b6148fb6f6bc7715a2fbdfd92 | https://github.com/ucas-vg/TinyBenchmark/tree/36436df3716d842b6148fb6f6bc7715a2fbdfd92 |
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/tw/ctwsjugie2x4qimo4y2aun3bc6okw62iaakyiqsdnvdysdrgh2wb.py
# Topologically Sorted Source Nodes: [sub, mul, add, truediv, add_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# sub => sub
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand_2, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %expand_3), kwargs = {})
triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr2 + (0))
tmp32 = tl.broadcast_to(tmp31, [XBLOCK])
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = 4.0
tmp11 = tmp9 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp1 * tmp12
tmp14 = tmp3 - tmp11
tmp15 = tmp14 * tmp14
tmp16 = tmp4 - tmp11
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp11
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp8 - tmp11
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = 3.0
tmp26 = tmp24 / tmp25
tmp27 = libdevice.sqrt(tmp26)
tmp28 = 1e-06
tmp29 = tmp27 + tmp28
tmp30 = tmp13 / tmp29
tmp33 = tmp30 + tmp32
tl.store(out_ptr0 + (x2), tmp33, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, mul, add, truediv, add_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-06):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(1))
self.beta = nn.Parameter(torch.zeros(1))
self.eps = eps
def forward(self, x):
mean = x.mean(-1).expand_as(x)
std = x.std(-1).expand_as(x)
return self.gamma.expand_as(x) * (x - mean) / (std + self.eps
) + self.beta.expand_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr2 + 0)
tmp32 = tl.broadcast_to(tmp31, [XBLOCK])
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = 4.0
tmp11 = tmp9 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp1 * tmp12
tmp14 = tmp3 - tmp11
tmp15 = tmp14 * tmp14
tmp16 = tmp4 - tmp11
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp11
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp8 - tmp11
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = 3.0
tmp26 = tmp24 / tmp25
tmp27 = libdevice.sqrt(tmp26)
tmp28 = 1e-06
tmp29 = tmp27 + tmp28
tmp30 = tmp13 / tmp29
tmp33 = tmp30 + tmp32
tl.store(out_ptr0 + x2, tmp33, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0[grid(256)](primals_2, primals_1,
primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class LayerNormNew(nn.Module):
def __init__(self, features, eps=1e-06):
super(LayerNormNew, self).__init__()
self.gamma = nn.Parameter(torch.ones(1))
self.beta = nn.Parameter(torch.zeros(1))
self.eps = eps
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| uber-common/safemutations | LayerNorm | false | 16,639 | [
"MIT"
] | 91 | 40e5fd03a244f89bf157d4bedf79201e706aedc1 | https://github.com/uber-common/safemutations/tree/40e5fd03a244f89bf157d4bedf79201e706aedc1 |
HammingLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ib/cibac72z76u35abtssk2kixl4ye6m3d6p4dsad6tjd46mmcwsdko.py
# Topologically Sorted Source Nodes: [sub, mul, sub_1, mul_1, errors, mean, sum_1], Original ATen: [aten.rsub, aten.mul, aten.add, aten.mean, aten.sum]
# Source node to ATen node mapping:
# errors => add
# mean => mean
# mul => mul
# mul_1 => mul_1
# sub => sub
# sub_1 => sub_1
# sum_1 => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [0]), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mean,), kwargs = {})
triton_per_fused_add_mean_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_mean_mul_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_rsub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_rsub_sum_0(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp8 = tl.load(in_ptr0 + (64 + r0), None)
tmp9 = tl.load(in_ptr1 + (64 + r0), None)
tmp16 = tl.load(in_ptr0 + (128 + r0), None)
tmp17 = tl.load(in_ptr1 + (128 + r0), None)
tmp24 = tl.load(in_ptr0 + (192 + r0), None)
tmp25 = tl.load(in_ptr1 + (192 + r0), None)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp4 = tmp0 * tmp3
tmp5 = tmp2 - tmp0
tmp6 = tmp5 * tmp1
tmp7 = tmp4 + tmp6
tmp10 = tmp2 - tmp9
tmp11 = tmp8 * tmp10
tmp12 = tmp2 - tmp8
tmp13 = tmp12 * tmp9
tmp14 = tmp11 + tmp13
tmp15 = tmp7 + tmp14
tmp18 = tmp2 - tmp17
tmp19 = tmp16 * tmp18
tmp20 = tmp2 - tmp16
tmp21 = tmp20 * tmp17
tmp22 = tmp19 + tmp21
tmp23 = tmp15 + tmp22
tmp26 = tmp2 - tmp25
tmp27 = tmp24 * tmp26
tmp28 = tmp2 - tmp24
tmp29 = tmp28 * tmp25
tmp30 = tmp27 + tmp29
tmp31 = tmp23 + tmp30
tmp32 = 4.0
tmp33 = tmp31 / tmp32
tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK])
tmp36 = tl.sum(tmp34, 1)[:, None]
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp36, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [sub, mul, sub_1, mul_1, errors, mean, sum_1], Original ATen: [aten.rsub, aten.mul, aten.add, aten.mean, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_mul_rsub_sum_0.run(arg1_1, arg0_1, buf1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class HammingLoss(torch.nn.Module):
def forward(self, suggested, target):
errors = suggested * (1.0 - target) + (1.0 - suggested) * target
return errors.mean(dim=0).sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_mul_rsub_sum_0(in_ptr0, in_ptr1, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp8 = tl.load(in_ptr0 + (64 + r0), None)
tmp9 = tl.load(in_ptr1 + (64 + r0), None)
tmp16 = tl.load(in_ptr0 + (128 + r0), None)
tmp17 = tl.load(in_ptr1 + (128 + r0), None)
tmp24 = tl.load(in_ptr0 + (192 + r0), None)
tmp25 = tl.load(in_ptr1 + (192 + r0), None)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp4 = tmp0 * tmp3
tmp5 = tmp2 - tmp0
tmp6 = tmp5 * tmp1
tmp7 = tmp4 + tmp6
tmp10 = tmp2 - tmp9
tmp11 = tmp8 * tmp10
tmp12 = tmp2 - tmp8
tmp13 = tmp12 * tmp9
tmp14 = tmp11 + tmp13
tmp15 = tmp7 + tmp14
tmp18 = tmp2 - tmp17
tmp19 = tmp16 * tmp18
tmp20 = tmp2 - tmp16
tmp21 = tmp20 * tmp17
tmp22 = tmp19 + tmp21
tmp23 = tmp15 + tmp22
tmp26 = tmp2 - tmp25
tmp27 = tmp24 * tmp26
tmp28 = tmp2 - tmp24
tmp29 = tmp28 * tmp25
tmp30 = tmp27 + tmp29
tmp31 = tmp23 + tmp30
tmp32 = 4.0
tmp33 = tmp31 / tmp32
tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK])
tmp36 = tl.sum(tmp34, 1)[:, None]
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp36, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_mean_mul_rsub_sum_0[grid(1)](arg1_1, arg0_1,
buf1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class HammingLossNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| uclnlp/torch-imle | HammingLoss | false | 16,640 | [
"MIT"
] | 205 | f595cd8d527466f6b5db79276f6ceee01d100a1c | https://github.com/uclnlp/torch-imle/tree/f595cd8d527466f6b5db79276f6ceee01d100a1c |
FCGenerator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/et/cetb5tm344c4pwjhwlpvykesfm76nlb2b74rthqhhtbpj2txjaml.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 1024, grid=grid(1024), stream=stream0)
del primals_2
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
import torch.nn.functional as F
class FCGenerator(nn.Module):
def __init__(self, options):
"""
The fully connected generator is initialized by creating a chain of
fully connected layers that perform transformations
d -> 2 * d -> ... -> 2^(k - 1) * d -> n * n
where
d = options.state_size
k = options.generator_layers
n = options.image_size
"""
super(FCGenerator, self).__init__()
self.dropout = options.generator_dropout
self.layers = options.generator_layers
sizes = []
size = options.state_size
for i in range(options.generator_layers):
sizes.append(size)
size *= 2
sizes.append(options.image_size * options.image_size)
for i in range(options.generator_layers):
layer = nn.Linear(sizes[i], sizes[i + 1])
self.add_module(f'linear_{i}', layer)
def forward(self, x):
layers = {}
for name, module in self.named_children():
layers[name] = module
for i in range(self.layers):
layer = layers[f'linear_{i}']
x = layer(x)
if i < self.layers - 1:
x = F.leaky_relu(x, 0.2)
if self.dropout is not None:
x = F.dropout(x, self.dropout)
return torch.tanh(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'options': _mock_config(generator_dropout=0.5,
generator_layers=1, state_size=4, image_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(1024)](buf1, primals_2, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_2
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1
class FCGeneratorNew(nn.Module):
def __init__(self, options):
"""
The fully connected generator is initialized by creating a chain of
fully connected layers that perform transformations
d -> 2 * d -> ... -> 2^(k - 1) * d -> n * n
where
d = options.state_size
k = options.generator_layers
n = options.image_size
"""
super(FCGeneratorNew, self).__init__()
self.dropout = options.generator_dropout
self.layers = options.generator_layers
sizes = []
size = options.state_size
for i in range(options.generator_layers):
sizes.append(size)
size *= 2
sizes.append(options.image_size * options.image_size)
for i in range(options.generator_layers):
layer = nn.Linear(sizes[i], sizes[i + 1])
self.add_module(f'linear_{i}', layer)
def forward(self, input_0):
primals_1 = self.linear_0.weight
primals_2 = self.linear_0.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| unicredit/ganzo | FCGenerator | false | 16,641 | [
"Apache-2.0"
] | 73 | fb1d270f5091073e8f27da76ab508ab24e5d40e9 | https://github.com/unicredit/ganzo/tree/fb1d270f5091073e8f27da76ab508ab24e5d40e9 |
FusedDownsample | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ho/cho65iisnaf25ldqwazqthm4dk6kkvugfqryyb5hcwumhgthhuzm.py
# Topologically Sorted Source Nodes: [add, add_1, add_2, weight_1], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# weight_1 => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %slice_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %slice_12), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %slice_16), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 4), kwargs = {})
triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 5) % 5
x0 = xindex % 5
x2 = (xindex // 25)
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tmp12 = 0.1767766952966369
tmp13 = tmp11 * tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp10, tmp13, tmp14)
tmp16 = (-1) + x1
tmp17 = tmp16 >= tmp1
tmp18 = tmp16 < tmp3
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp6
tmp21 = tmp20 & tmp7
tmp22 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1) + (16*x2)), tmp21 & xmask, other=0.0)
tmp23 = tmp22 * tmp12
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp21, tmp23, tmp24)
tmp26 = tmp15 + tmp25
tmp27 = (-1) + x0
tmp28 = tmp27 >= tmp1
tmp29 = tmp27 < tmp3
tmp30 = tmp8 & tmp28
tmp31 = tmp30 & tmp29
tmp32 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1) + (16*x2)), tmp31 & xmask, other=0.0)
tmp33 = tmp32 * tmp12
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp26 + tmp35
tmp37 = tmp19 & tmp28
tmp38 = tmp37 & tmp29
tmp39 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp38 & xmask, other=0.0)
tmp40 = tmp39 * tmp12
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp36 + tmp42
tmp44 = 0.25
tmp45 = tmp43 * tmp44
tl.store(in_out_ptr0 + (x4), tmp45, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/v4/cv4atvq6obm5chp2mxnillb7x7egcougkhuekco3b76wpvmy35ng.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %div, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 14400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 900) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, add_1, add_2, weight_1], Original ATen: [aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_0.run(buf1, primals_1, 400, grid=grid(400), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 30, 30), (3600, 900, 30, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_2, 14400, grid=grid(14400), stream=stream0)
del primals_2
return (buf3, primals_3, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from torch import nn
from math import sqrt
class FusedDownsample(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, padding=0):
super().__init__()
weight = torch.randn(out_channel, in_channel, kernel_size, kernel_size)
bias = torch.zeros(out_channel)
fan_in = in_channel * kernel_size * kernel_size
self.multiplier = sqrt(2 / fan_in)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
self.pad = padding
def forward(self, input):
weight = F.pad(self.weight * self.multiplier, [1, 1, 1, 1])
weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + weight[:,
:, 1:, :-1] + weight[:, :, :-1, :-1]) / 4
out = F.conv2d(input, weight, self.bias, stride=2, padding=self.pad)
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from math import sqrt
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 5
x0 = xindex % 5
x2 = xindex // 25
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0
)
tmp12 = 0.1767766952966369
tmp13 = tmp11 * tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp10, tmp13, tmp14)
tmp16 = -1 + x1
tmp17 = tmp16 >= tmp1
tmp18 = tmp16 < tmp3
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp6
tmp21 = tmp20 & tmp7
tmp22 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp21 & xmask,
other=0.0)
tmp23 = tmp22 * tmp12
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp21, tmp23, tmp24)
tmp26 = tmp15 + tmp25
tmp27 = -1 + x0
tmp28 = tmp27 >= tmp1
tmp29 = tmp27 < tmp3
tmp30 = tmp8 & tmp28
tmp31 = tmp30 & tmp29
tmp32 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp31 & xmask,
other=0.0)
tmp33 = tmp32 * tmp12
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp26 + tmp35
tmp37 = tmp19 & tmp28
tmp38 = tmp37 & tmp29
tmp39 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp38 & xmask,
other=0.0)
tmp40 = tmp39 * tmp12
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp36 + tmp42
tmp44 = 0.25
tmp45 = tmp43 * tmp44
tl.store(in_out_ptr0 + x4, tmp45, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 14400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 900 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(400)](buf1, primals_1, 400, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(primals_3, buf1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 30, 30), (3600, 900, 30, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(14400)](buf3, primals_2, 14400,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_3, buf1
class FusedDownsampleNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, padding=0):
super().__init__()
weight = torch.randn(out_channel, in_channel, kernel_size, kernel_size)
bias = torch.zeros(out_channel)
fan_in = in_channel * kernel_size * kernel_size
self.multiplier = sqrt(2 / fan_in)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
self.pad = padding
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| uzielroy/StyleGan_FewShot | FusedDownsample | false | 16,642 | [
"MIT"
] | 76 | 94e4c49dbf39d1c6299f33787afb3e471ece11e3 | https://github.com/uzielroy/StyleGan_FewShot/tree/94e4c49dbf39d1c6299f33787afb3e471ece11e3 |
L1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/i5/ci5r22vnwphjxav3oibgww4fkm25q4egp3rofzniyjru2u4b563f.py
# Topologically Sorted Source Nodes: [l1_loss, mul], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul]
# Source node to ATen node mapping:
# l1_loss => abs_1, mean, sub
# mul => mul
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1), kwargs = {})
triton_per_fused_abs_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_mean_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [l1_loss, mul], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_mul_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.onnx
class L1Loss(torch.nn.Module):
"""
L1 loss
"""
def __init__(self, **kwargs):
super(L1Loss, self).__init__()
self.loss_w = kwargs.get('loss_weight', 1)
def forward(self, preds, gts):
return F.l1_loss(preds.view(-1), gts.view(-1)) * self.loss_w
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_mul_sub_0[grid(1)](buf1, arg0_1, arg1_1,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class L1LossNew(torch.nn.Module):
"""
L1 loss
"""
def __init__(self, **kwargs):
super(L1LossNew, self).__init__()
self.loss_w = kwargs.get('loss_weight', 1)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| usutdzxych/CenseoQoE | L1Loss | false | 16,643 | [
"BSD-3-Clause"
] | 75 | 3f653296b223da6190e1e1781e7b9b54ff877102 | https://github.com/usutdzxych/CenseoQoE/tree/3f653296b223da6190e1e1781e7b9b54ff877102 |
Linear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xg/cxg3op264zx2ec3atkmjwmld6htg2wdbd2inqitp272jkpjbeazc.py
# Topologically Sorted Source Nodes: [weight_mean, weight], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# weight => sub
# weight_mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qr/cqryreojrutxg3jcxvklww4odvjbi37hol2vyqn6ekjgauih7gie.py
# Topologically Sorted Source Nodes: [weight_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# weight_1 => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %expand), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp1 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tmp2 - tmp9
tmp13 = tmp12 * tmp12
tmp14 = tmp11 + tmp13
tmp15 = tmp4 - tmp9
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp6 - tmp9
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = 3.0
tmp22 = tmp20 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = tmp0 / tmp25
tl.store(out_ptr0 + (x2), tmp26, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight_mean, weight], Original ATen: [aten.mean, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_sub_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight_1], Original ATen: [aten.div]
triton_poi_fused_div_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
del primals_2
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class Linear(nn.Linear):
def forward(self, x):
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True)
weight = weight - weight_mean
std = weight.std(dim=1, keepdim=True) + 1e-05
weight = weight / std.expand_as(weight)
return F.linear(x, weight, self.bias)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp1 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tmp2 - tmp9
tmp13 = tmp12 * tmp12
tmp14 = tmp11 + tmp13
tmp15 = tmp4 - tmp9
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp6 - tmp9
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = 3.0
tmp22 = tmp20 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = tmp0 / tmp25
tl.store(out_ptr0 + x2, tmp26, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_sub_0[grid(16)](primals_1, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del buf1
del primals_2
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class LinearNew(nn.Linear):
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| untitled-ai/self_supervised | Linear | false | 16,644 | [
"MIT"
] | 370 | 6d14ca0402ecc13feda9b3a9fdc056fd1ac24473 | https://github.com/untitled-ai/self_supervised/tree/6d14ca0402ecc13feda9b3a9fdc056fd1ac24473 |
FusedUpsample | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ho/cho65iisnaf25ldqwazqthm4dk6kkvugfqryyb5hcwumhgthhuzm.py
# Topologically Sorted Source Nodes: [add, add_1, add_2, weight_1], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# weight_1 => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %slice_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %slice_12), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %slice_16), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 4), kwargs = {})
triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 5) % 5
x0 = xindex % 5
x2 = (xindex // 25)
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tmp12 = 0.1767766952966369
tmp13 = tmp11 * tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp10, tmp13, tmp14)
tmp16 = (-1) + x1
tmp17 = tmp16 >= tmp1
tmp18 = tmp16 < tmp3
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp6
tmp21 = tmp20 & tmp7
tmp22 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1) + (16*x2)), tmp21 & xmask, other=0.0)
tmp23 = tmp22 * tmp12
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp21, tmp23, tmp24)
tmp26 = tmp15 + tmp25
tmp27 = (-1) + x0
tmp28 = tmp27 >= tmp1
tmp29 = tmp27 < tmp3
tmp30 = tmp8 & tmp28
tmp31 = tmp30 & tmp29
tmp32 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1) + (16*x2)), tmp31 & xmask, other=0.0)
tmp33 = tmp32 * tmp12
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp26 + tmp35
tmp37 = tmp19 & tmp28
tmp38 = tmp37 & tmp29
tmp39 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp38 & xmask, other=0.0)
tmp40 = tmp39 * tmp12
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp36 + tmp42
tmp44 = 0.25
tmp45 = tmp43 * tmp44
tl.store(in_out_ptr0 + (x4), tmp45, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2q/c2qxl3444r7faal6wdwqwnbo4yy446moujhj4vpwvty2afomxxzq.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %div, %primals_2, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1936
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 121) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, add_1, add_2, weight_1], Original ATen: [aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_0.run(buf1, primals_1, 400, grid=grid(400), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 11, 11), (484, 121, 11, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_2, 1936, grid=grid(1936), stream=stream0)
del primals_2
return (buf3, primals_3, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from torch import nn
from math import sqrt
class FusedUpsample(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, padding=0):
super().__init__()
weight = torch.randn(in_channel, out_channel, kernel_size, kernel_size)
bias = torch.zeros(out_channel)
fan_in = in_channel * kernel_size * kernel_size
self.multiplier = sqrt(2 / fan_in)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
self.pad = padding
def forward(self, input):
weight = F.pad(self.weight * self.multiplier, [1, 1, 1, 1])
weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + weight[:,
:, 1:, :-1] + weight[:, :, :-1, :-1]) / 4
out = F.conv_transpose2d(input, weight, self.bias, stride=2,
padding=self.pad)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from math import sqrt
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 5
x0 = xindex % 5
x2 = xindex // 25
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0
)
tmp12 = 0.1767766952966369
tmp13 = tmp11 * tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp10, tmp13, tmp14)
tmp16 = -1 + x1
tmp17 = tmp16 >= tmp1
tmp18 = tmp16 < tmp3
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp6
tmp21 = tmp20 & tmp7
tmp22 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp21 & xmask,
other=0.0)
tmp23 = tmp22 * tmp12
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp21, tmp23, tmp24)
tmp26 = tmp15 + tmp25
tmp27 = -1 + x0
tmp28 = tmp27 >= tmp1
tmp29 = tmp27 < tmp3
tmp30 = tmp8 & tmp28
tmp31 = tmp30 & tmp29
tmp32 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp31 & xmask,
other=0.0)
tmp33 = tmp32 * tmp12
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp26 + tmp35
tmp37 = tmp19 & tmp28
tmp38 = tmp37 & tmp29
tmp39 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp38 & xmask,
other=0.0)
tmp40 = tmp39 * tmp12
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp36 + tmp42
tmp44 = 0.25
tmp45 = tmp43 * tmp44
tl.store(in_out_ptr0 + x4, tmp45, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1936
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 121 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(400)](buf1, primals_1, 400, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(primals_3, buf1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 11, 11), (484, 121, 11, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(1936)](buf3, primals_2, 1936,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_3, buf1
class FusedUpsampleNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, padding=0):
super().__init__()
weight = torch.randn(in_channel, out_channel, kernel_size, kernel_size)
bias = torch.zeros(out_channel)
fan_in = in_channel * kernel_size * kernel_size
self.multiplier = sqrt(2 / fan_in)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
self.pad = padding
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| uzielroy/StyleGan_FewShot | FusedUpsample | false | 16,645 | [
"MIT"
] | 76 | 94e4c49dbf39d1c6299f33787afb3e471ece11e3 | https://github.com/uzielroy/StyleGan_FewShot/tree/94e4c49dbf39d1c6299f33787afb3e471ece11e3 |
AlbertAttentionWithoutSkipConnection | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/q6/cq65ro6tojzkasrxq7oijwtyo4qp33fmpaic6mwgwszhlikkuosh.py
# Topologically Sorted Source Nodes: [projected_context_layer, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# layernormed_context_layer => var_mean
# projected_context_layer => add
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_9), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (3))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp7 = tmp4 + tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 + tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = tmp3 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tmp7 - tmp20
tmp24 = tmp23 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = tmp12 - tmp20
tmp27 = tmp26 * tmp26
tmp28 = tmp25 + tmp27
tmp29 = tmp17 - tmp20
tmp30 = tmp29 * tmp29
tmp31 = tmp28 + tmp30
tmp32 = tmp31 / tmp19
tl.store(out_ptr0 + (x0), tmp20, xmask)
tl.store(out_ptr1 + (x0), tmp32, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ak/cakuhvbuo5twl4unqfuk6raawu5rlyk4udc3473bb7zjeofptsbg.py
# Topologically Sorted Source Nodes: [projected_context_layer, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# layernormed_context_layer => add_1, add_2, mul, mul_1, rsqrt, sub_1
# projected_context_layer => add
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_9), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_10), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_11), kwargs = {})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (1, 16, 4), (64, 4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf10, (1, 16, 4), (0, 4, 1), 0), reinterpret_tensor(primals_8, (1, 4, 4), (0, 1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [projected_context_layer, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_5.run(buf11, primals_9, buf12, buf13, 16, grid=grid(16), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [projected_context_layer, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(buf11, primals_9, buf12, buf13, primals_10, primals_11, buf14, 64, grid=grid(64), stream=stream0)
del buf12
del buf13
del primals_11
return (buf14, primals_9, primals_10, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), buf11, reinterpret_tensor(buf10, (1, 4, 16), (64, 1, 4), 0), reinterpret_tensor(primals_8, (1, 4, 4), (4, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
import torch.utils.checkpoint
from torch import nn
class AlbertAttentionWithoutSkipConnection(nn.Module):
def __init__(self, config):
super().__init__()
if (config.hidden_size % config.num_attention_heads != 0 and not
hasattr(config, 'embedding_size')):
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = (config.hidden_size // config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob
)
self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_eps)
self.pruned_heads = set()
self.position_embedding_type = getattr(config,
'position_embedding_type', 'absolute')
if (self.position_embedding_type == 'relative_key' or self.
position_embedding_type == 'relative_key_query'):
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.
max_position_embeddings - 1, self.attention_head_size)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, head_mask=None,
output_attentions=False):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if (self.position_embedding_type == 'relative_key' or self.
position_embedding_type == 'relative_key_query'):
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long,
device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long,
device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.
max_position_embeddings - 1)
positional_embedding = positional_embedding
if self.position_embedding_type == 'relative_key':
relative_position_scores = torch.einsum('bhld,lrd->bhlr',
query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == 'relative_key_query':
relative_position_scores_query = torch.einsum('bhld,lrd->bhlr',
query_layer, positional_embedding)
relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr',
key_layer, positional_embedding)
attention_scores = (attention_scores +
relative_position_scores_query +
relative_position_scores_key)
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
w = self.dense.weight.t().view(self.num_attention_heads, self.
attention_head_size, self.hidden_size)
b = self.dense.bias
projected_context_layer = torch.einsum('bfnd,ndh->bfh',
context_layer, w) + b
projected_context_layer_dropout = self.output_dropout(
projected_context_layer)
layernormed_context_layer = self.LayerNorm(
projected_context_layer_dropout)
return (layernormed_context_layer, attention_probs
) if output_attentions else (layernormed_context_layer,)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5,
layer_norm_eps=1, position_embedding_type=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.checkpoint
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 1)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + 2)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr1 + 3)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp7 = tmp4 + tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 + tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = tmp3 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tmp7 - tmp20
tmp24 = tmp23 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = tmp12 - tmp20
tmp27 = tmp26 * tmp26
tmp28 = tmp25 + tmp27
tmp29 = tmp17 - tmp20
tmp30 = tmp29 * tmp29
tmp31 = tmp28 + tmp30
tmp32 = tmp31 / tmp19
tl.store(out_ptr0 + x0, tmp20, xmask)
tl.store(out_ptr1 + x0, tmp32, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf8, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (1, 16, 4), (64, 4, 1), 0)
del buf9
extern_kernels.bmm(reinterpret_tensor(buf10, (1, 16, 4), (0, 4, 1),
0), reinterpret_tensor(primals_8, (1, 4, 4), (0, 1, 4), 0), out
=buf11)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_native_layer_norm_5[grid(16)](buf11, primals_9,
buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_6[grid(64)](buf11, primals_9,
buf12, buf13, primals_10, primals_11, buf14, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf12
del buf13
del primals_11
return buf14, primals_9, primals_10, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0
), buf11, reinterpret_tensor(buf10, (1, 4, 16), (64, 1, 4), 0
), reinterpret_tensor(primals_8, (1, 4, 4), (4, 4, 1), 0)
class AlbertAttentionWithoutSkipConnectionNew(nn.Module):
def __init__(self, config):
super().__init__()
if (config.hidden_size % config.num_attention_heads != 0 and not
hasattr(config, 'embedding_size')):
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = (config.hidden_size // config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob
)
self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_eps)
self.pruned_heads = set()
self.position_embedding_type = getattr(config,
'position_embedding_type', 'absolute')
if (self.position_embedding_type == 'relative_key' or self.
position_embedding_type == 'relative_key_query'):
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.
max_position_embeddings - 1, self.attention_head_size)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_6 = self.value.weight
primals_7 = self.value.bias
primals_8 = self.dense.weight
primals_9 = self.dense.bias
primals_10 = self.LayerNorm.weight
primals_11 = self.LayerNorm.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| twistedcubic/attention-rank-collapse | AlbertAttentionWithoutSkipConnection | false | 16,646 | [
"Apache-2.0"
] | 118 | 38b5df6dc2add25f6d945e48a6baf96862368c20 | https://github.com/twistedcubic/attention-rank-collapse/tree/38b5df6dc2add25f6d945e48a6baf96862368c20 |
FCDiscriminator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ck/cckzkicqhrcfrkfdju5exjvt5jnqvtxaazswol3wnjnjike2p45t.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 16), (16, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 1), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
return (buf1, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
import torch.nn.functional as F
class FCDiscriminator(nn.Module):
def __init__(self, options):
"""
The fully connected generator is initialized by creating a chain of
fully connected layers that perform transformations
n * n -> 2^(k - 1) * d -> ... -> 2 * d -> 1
where
d = options.state_size
k = options.discriminator_layers
n = options.image_size
"""
super(FCDiscriminator, self).__init__()
self.dropout = options.discriminator_dropout
self.layers = options.discriminator_layers
sizes = [options.image_size * options.image_size]
size = options.state_size * 2 ** (options.discriminator_layers - 1)
for i in range(options.discriminator_layers - 1):
sizes.append(size)
size //= 2
sizes.append(1)
for i in range(options.discriminator_layers):
layer = nn.Linear(sizes[i], sizes[i + 1])
self.add_module(f'linear_{i}', layer)
def forward(self, x):
batch_size = x.size()[0]
x = x.view(batch_size, -1)
layers = {}
for name, module in self.named_children():
layers[name] = module
for i in range(self.layers):
layer = layers[f'linear_{i}']
x = layer(x)
if i < self.layers - 1:
x = F.leaky_relu(x, 0.2)
if self.dropout is not None:
x = F.dropout(x, self.dropout)
return torch.sigmoid(x)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'options': _mock_config(discriminator_dropout=0.5,
discriminator_layers=1, image_size=4, state_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 16), (16, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), reinterpret_tensor(primals_2, (16, 1), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(4)](buf1, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
return buf1, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), buf1
class FCDiscriminatorNew(nn.Module):
def __init__(self, options):
"""
The fully connected generator is initialized by creating a chain of
fully connected layers that perform transformations
n * n -> 2^(k - 1) * d -> ... -> 2 * d -> 1
where
d = options.state_size
k = options.discriminator_layers
n = options.image_size
"""
super(FCDiscriminatorNew, self).__init__()
self.dropout = options.discriminator_dropout
self.layers = options.discriminator_layers
sizes = [options.image_size * options.image_size]
size = options.state_size * 2 ** (options.discriminator_layers - 1)
for i in range(options.discriminator_layers - 1):
sizes.append(size)
size //= 2
sizes.append(1)
for i in range(options.discriminator_layers):
layer = nn.Linear(sizes[i], sizes[i + 1])
self.add_module(f'linear_{i}', layer)
def forward(self, input_0):
primals_2 = self.linear_0.weight
primals_3 = self.linear_0.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| unicredit/ganzo | FCDiscriminator | false | 16,647 | [
"Apache-2.0"
] | 73 | fb1d270f5091073e8f27da76ab508ab24e5d40e9 | https://github.com/unicredit/ganzo/tree/fb1d270f5091073e8f27da76ab508ab24e5d40e9 |
Highway | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v6/cv6xv4wyur6p4yumvlnpmbep5pizgsgd3nrhepr7w3wup56yxdwp.py
# Topologically Sorted Source Nodes: [output, gate, mul, sub, mul_1, output_1], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# gate => sigmoid
# mul => mul
# mul_1 => mul_1
# output => relu
# output_1 => add
# sub => sub
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_relu_rsub_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_relu_rsub_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 1.0
tmp8 = tmp7 - tmp2
tmp9 = tmp6 * tmp8
tmp10 = tmp3 + tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output, gate, mul, sub, mul_1, output_1], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_relu_rsub_sigmoid_0.run(primals_1, buf1, buf0, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, primals_1, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
class Highway(nn.Module):
def __init__(self, input_dim, dropout):
super(Highway, self).__init__()
self.input_linear = nn.Linear(input_dim, input_dim)
self.relu = nn.ReLU()
self.gate_linear = nn.Linear(input_dim, input_dim)
self.sigmoid = nn.Sigmoid()
self.dropout = nn.Dropout(dropout)
def forward(self, input_):
input_ = self.dropout(input_)
output = self.relu(self.input_linear(input_))
gate = self.sigmoid(self.gate_linear(input_))
output = input_ * gate + output * (1.0 - gate)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 1.0
tmp8 = tmp7 - tmp2
tmp9 = tmp6 * tmp8
tmp10 = tmp3 + tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_relu_rsub_sigmoid_0[grid(256)](primals_1,
buf1, buf0, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf2, primals_1, buf0, buf1
class HighwayNew(nn.Module):
def __init__(self, input_dim, dropout):
super(HighwayNew, self).__init__()
self.input_linear = nn.Linear(input_dim, input_dim)
self.relu = nn.ReLU()
self.gate_linear = nn.Linear(input_dim, input_dim)
self.sigmoid = nn.Sigmoid()
self.dropout = nn.Dropout(dropout)
def forward(self, input_0):
primals_2 = self.input_linear.weight
primals_3 = self.input_linear.bias
primals_4 = self.gate_linear.weight
primals_5 = self.gate_linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| uwnlp/piqa | Highway | false | 16,648 | [
"Apache-2.0"
] | 89 | e18f2189c93965c94655d5cc943dcecdc2c1ea57 | https://github.com/uwnlp/piqa/tree/e18f2189c93965c94655d5cc943dcecdc2c1ea57 |
Router | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py
# Topologically Sorted Source Nodes: [u_hat], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# u_hat => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ts/cts7q6dfb3copgexqebefx4p456ecsgth6p6xmle2mmldywndoi3.py
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# s => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tmp1 = tl_math.exp(tmp0)
tmp2 = tmp1 + tmp1
tmp3 = tmp2 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp1 / tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gu/cgurb3rc57bwl3qa722rpwfklrhzbjpi2aveuapolt7tdvfpdis7.py
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# s => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex % 4
x2 = (xindex // 4) % 4
x3 = (xindex // 16)
y0 = yindex
x4 = xindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1) + (16*x3) + (64*x2)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4 + (64*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2t/c2t7stxsalfhsthweh45s4auxfz46xrbwkiajexefoyk5kfgiqco.py
# Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, v], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# pow_1 => pow_1
# s2 => sum_2
# sqrt => sqrt
# truediv => div_1
# truediv_1 => div_2
# v => mul
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_7, 2), kwargs = {})
# %sum_2 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_7, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div_2), kwargs = {})
triton_poi_fused_add_div_mul_pow_sqrt_sum_3 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp10 / tmp12
tmp15 = 1e-08
tmp16 = tmp10 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp14 / tmp17
tmp19 = tmp13 * tmp18
tl.store(out_ptr0 + (x2), tmp19, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/n3/cn3o76uutxwnkvtnqyvaxx7tnscbvuwvgsyd6kmrbucnocl6jr5o.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# a => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_13,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex % 4
x2 = (xindex // 4)
y0 = yindex
x3 = xindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3 + (64*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j7/cj7mv2k5l2kigfluq2rwwpouckm4oow7jia7wwvjogp3qlr23xwv.py
# Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# c_1 => amax_1, exp_1, sub_1
# Graph fragment:
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vf/cvfvkiz4k3grvhzidjc6vivbeubtw7idhhjrnb6dlbg5vf7fihed.py
# Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# c_1 => div_3, sum_3
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_3), kwargs = {})
triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + ((4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/32/c32db6tn7hvzhdl4i5logasyamysp275l3si7xspyfcfakibqvvh.py
# Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.bmm]
# Source node to ATen node mapping:
# s_1 => bmm_3
# Graph fragment:
# %bmm_3 : [num_users=2] = call_function[target=torch.ops.aten.bmm.default](args = (%view_12, %view_5), kwargs = {})
triton_poi_fused_bmm_7 = async_compile.triton('triton_poi_fused_bmm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bmm_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(x0 // 4)) + (x0 % 4)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dp/cdpsbcq6jlubfjxv6az2acdud37r3h5vv43z6ggwpbd74blne64h.py
# Topologically Sorted Source Nodes: [b_2, c_2], Original ATen: [aten.add, aten._softmax]
# Source node to ATen node mapping:
# b_2 => add_5
# c_2 => amax_2, exp_2, sub_2, sum_5
# Graph fragment:
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {})
# %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_5, [1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %amax_2), kwargs = {})
# %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {})
triton_poi_fused__softmax_add_8 = async_compile.triton('triton_poi_fused__softmax_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tl.store(out_ptr0 + (x0), tmp14, xmask)
tl.store(out_ptr1 + (x0), tmp25, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xv/cxvds37zsfn7me7vs5spzrzx36owr723owrhlinbklqa5b6xihbd.py
# Topologically Sorted Source Nodes: [b_2, c_2, s_2], Original ATen: [aten.add, aten._softmax, aten.clone]
# Source node to ATen node mapping:
# b_2 => add_5
# c_2 => amax_2, div_6, exp_2, sub_2
# s_2 => clone_7
# Graph fragment:
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {})
# %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_5, [1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %amax_2), kwargs = {})
# %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %div_6 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_5), kwargs = {})
# %clone_7 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_27,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused__softmax_add_clone_9 = async_compile.triton('triton_poi_fused__softmax_add_clone_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_clone_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_clone_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + (x2), tmp7, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/z2/cz245egjx7g4j7mn3wb3p6jf5sptc7kpicetafs56orxfbjbs2fy.py
# Topologically Sorted Source Nodes: [b_2, b_3, c_3], Original ATen: [aten.add, aten._softmax]
# Source node to ATen node mapping:
# b_2 => add_5
# b_3 => add_8
# c_3 => amax_3, exp_3, sub_3, sum_7
# Graph fragment:
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {})
# %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %view_27), kwargs = {})
# %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_8, [1], True), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %amax_3), kwargs = {})
# %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {})
triton_poi_fused__softmax_add_10 = async_compile.triton('triton_poi_fused__softmax_add_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp10, tmp15)
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp16, tmp21)
tmp23 = tmp4 - tmp22
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp9 - tmp22
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp15 - tmp22
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tmp21 - tmp22
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tl.store(out_ptr0 + (x0), tmp22, xmask)
tl.store(out_ptr1 + (x0), tmp33, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ux/cux3mtyatkeh2xctjovuxyuzb6jrzez2afgyw5oaihrzojk4rxa5.py
# Topologically Sorted Source Nodes: [b_2, b_3, c_3, s_3], Original ATen: [aten.add, aten._softmax, aten.clone]
# Source node to ATen node mapping:
# b_2 => add_5
# b_3 => add_8
# c_3 => div_9, exp_3, sub_3
# s_3 => clone_10
# Graph fragment:
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {})
# %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %view_27), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %amax_3), kwargs = {})
# %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %div_9 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_7), kwargs = {})
# %clone_10 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_37,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused__softmax_add_clone_11 = async_compile.triton('triton_poi_fused__softmax_add_clone_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_clone_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_clone_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x2), tmp9, xmask)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jn/cjnqdeixskhije623cnhbvm5o2lfq2nkhcelbbsiuctormqu3kg7.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose]
# Source node to ATen node mapping:
# Graph fragment:
# %permute_74 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%view_12, [0, 2, 1]), kwargs = {})
triton_poi_fused_transpose_12 = async_compile.triton('triton_poi_fused_transpose_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_transpose_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_transpose_12(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [u_hat], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [u_hat], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 1, 16), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf2, 64, grid=grid(64), stream=stream0)
buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf1, buf3, 4, 64, grid=grid(4, 64), stream=stream0)
buf4 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, v], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul]
triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf1, buf6, 4, 64, grid=grid(4, 64), stream=stream0)
del buf1
buf7 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
# Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_5.run(buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_6.run(buf8, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
buf10 = reinterpret_tensor(buf8, (16, 1, 4), (1, 64, 16), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.bmm]
triton_poi_fused_bmm_7.run(buf9, buf10, 64, grid=grid(64), stream=stream0)
buf11 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf10, reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf11)
buf12 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [pow_2, s2_1, add_3, truediv_2, add_4, sqrt_1, truediv_3, v_1], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul]
triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf11, buf12, 64, grid=grid(64), stream=stream0)
buf13 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf12, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf13)
buf14 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [b_2, c_2], Original ATen: [aten.add, aten._softmax]
triton_poi_fused__softmax_add_8.run(buf7, buf13, buf14, buf15, 16, grid=grid(16), stream=stream0)
buf16 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [b_2, c_2, s_2], Original ATen: [aten.add, aten._softmax, aten.clone]
triton_poi_fused__softmax_add_clone_9.run(buf7, buf13, buf14, buf15, buf16, buf17, 64, grid=grid(64), stream=stream0)
buf18 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf17, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf18)
buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_3, s2_2, add_6, truediv_4, add_7, sqrt_2, truediv_5, v_2], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul]
triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf18, buf19, 64, grid=grid(64), stream=stream0)
buf20 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf20)
buf21 = buf15; del buf15 # reuse
buf22 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [b_2, b_3, c_3], Original ATen: [aten.add, aten._softmax]
triton_poi_fused__softmax_add_10.run(buf7, buf13, buf20, buf21, buf22, 16, grid=grid(16), stream=stream0)
buf23 = reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0); del buf13 # reuse
buf24 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [b_2, b_3, c_3, s_3], Original ATen: [aten.add, aten._softmax, aten.clone]
triton_poi_fused__softmax_add_clone_11.run(buf23, buf7, buf20, buf21, buf22, buf24, 64, grid=grid(64), stream=stream0)
del buf21
del buf22
buf25 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [s_3], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf24, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf25)
buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_4, s2_3, add_9, truediv_6, add_10, sqrt_3, truediv_7, v_3], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul]
triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf25, buf26, 64, grid=grid(64), stream=stream0)
buf27 = empty_strided_cuda((16, 4, 1), (4, 1, 4), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose]
triton_poi_fused_transpose_12.run(buf9, buf27, 16, 4, grid=grid(16, 4), stream=stream0)
del buf9
return (buf26, buf4, buf7, buf11, buf16, buf18, buf23, buf25, reinterpret_tensor(buf24, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf17, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 4), 0), buf27, reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 16, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
class Squash(Module):
'\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n '
def __init__(self, epsilon=1e-08):
super().__init__()
self.epsilon = epsilon
def forward(self, s: 'torch.Tensor'):
"""
The shape of `s` is `[batch_size, n_capsules, n_features]`
"""
s2 = (s ** 2).sum(dim=-1, keepdims=True)
return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon))
class Router(Module):
"""
## Routing Algorithm
This is the routing mechanism described in the paper.
You can use multiple routing layers in your models.
This combines calculating $\\mathbf{s}_j$ for this layer and
the routing algorithm described in *Procedure 1*.
"""
def __init__(self, in_caps: 'int', out_caps: 'int', in_d: 'int', out_d:
'int', iterations: 'int'):
"""
`in_caps` is the number of capsules, and `in_d` is the number of features per capsule from the layer below.
`out_caps` and `out_d` are the same for this layer.
`iterations` is the number of routing iterations, symbolized by $r$ in the paper.
"""
super().__init__()
self.in_caps = in_caps
self.out_caps = out_caps
self.iterations = iterations
self.softmax = nn.Softmax(dim=1)
self.squash = Squash()
self.weight = nn.Parameter(torch.randn(in_caps, out_caps, in_d,
out_d), requires_grad=True)
def forward(self, u: 'torch.Tensor'):
"""
The shape of `u` is `[batch_size, n_capsules, n_features]`.
These are the capsules from the lower layer.
"""
u_hat = torch.einsum('ijnm,bin->bijm', self.weight, u)
b = u.new_zeros(u.shape[0], self.in_caps, self.out_caps)
v = None
for i in range(self.iterations):
c = self.softmax(b)
s = torch.einsum('bij,bijm->bjm', c, u_hat)
v = self.squash(s)
a = torch.einsum('bjm,bijm->bij', v, u_hat)
b = b + a
return v
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_caps': 4, 'out_caps': 4, 'in_d': 4, 'out_d': 4,
'iterations': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
from torch import nn
import torch.utils.data
import torch.nn.functional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tmp1 = tl_math.exp(tmp0)
tmp2 = tmp1 + tmp1
tmp3 = tmp2 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp1 / tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex % 4
x2 = xindex // 4 % 4
x3 = xindex // 16
y0 = yindex
x4 = xindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1 + 16 * x3 + 64 * x2), xmask &
ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4 + 64 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_3(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp10 / tmp12
tmp15 = 1e-08
tmp16 = tmp10 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp14 / tmp17
tmp19 = tmp13 * tmp18
tl.store(out_ptr0 + x2, tmp19, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex % 4
x2 = xindex // 4
y0 = yindex
x3 = xindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * x1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x3 + 64 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask)
@triton.jit
def triton_poi_fused_bmm_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (x0 // 4) + x0 % 4), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused__softmax_add_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tl.store(out_ptr0 + x0, tmp14, xmask)
tl.store(out_ptr1 + x0, tmp25, xmask)
@triton.jit
def triton_poi_fused__softmax_add_clone_9(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(out_ptr0 + x2, tmp7, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused__softmax_add_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp10, tmp15)
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp16, tmp21)
tmp23 = tmp4 - tmp22
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp9 - tmp22
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp15 - tmp22
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tmp21 - tmp22
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tl.store(out_ptr0 + x0, tmp22, xmask)
tl.store(out_ptr1 + x0, tmp33, xmask)
@triton.jit
def triton_poi_fused__softmax_add_clone_11(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x2, tmp9, xmask)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_transpose_12(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask &
ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1),
0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 1, 16), 0),
out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_1[grid(64)](buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused_clone_2[grid(4, 64)](buf1, buf3, 4, 64, XBLOCK=32,
YBLOCK=4, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 1, 4), (4, 0, 1),
0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf4, buf5,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(4, 64)](buf1, buf6, 4, 64, XBLOCK=32,
YBLOCK=4, num_warps=4, num_stages=1)
del buf1
buf7 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1),
0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
triton_poi_fused__softmax_5[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_6[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK=
4, YBLOCK=16, num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf8, (16, 1, 4), (1, 64, 16), 0)
del buf8
triton_poi_fused_bmm_7[grid(64)](buf9, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(buf10, reinterpret_tensor(buf3, (16, 4, 4), (16,
4, 1), 0), out=buf11)
buf12 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0)
del buf10
triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf11, buf12,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf13 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf12, (16, 1, 4), (4, 0, 1),
0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf13)
buf14 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
triton_poi_fused__softmax_add_8[grid(16)](buf7, buf13, buf14, buf15,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused__softmax_add_clone_9[grid(64)](buf7, buf13, buf14,
buf15, buf16, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf18 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf17, (16, 1, 4), (4, 0, 1),
0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf18)
buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf18, buf19,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf20 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1),
0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf20)
buf21 = buf15
del buf15
buf22 = buf14
del buf14
triton_poi_fused__softmax_add_10[grid(16)](buf7, buf13, buf20,
buf21, buf22, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf23 = reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0)
del buf13
buf24 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused__softmax_add_clone_11[grid(64)](buf23, buf7, buf20,
buf21, buf22, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf21
del buf22
buf25 = buf20
del buf20
extern_kernels.bmm(reinterpret_tensor(buf24, (16, 1, 4), (4, 0, 1),
0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf25)
buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf25, buf26,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf27 = empty_strided_cuda((16, 4, 1), (4, 1, 4), torch.float32)
triton_poi_fused_transpose_12[grid(16, 4)](buf9, buf27, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del buf9
return (buf26, buf4, buf7, buf11, buf16, buf18, buf23, buf25,
reinterpret_tensor(buf24, (16, 4, 1), (4, 1, 4), 0),
reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0),
reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf17, (16, 4, 1), (4, 1, 4), 0),
reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 4), 0), buf27,
reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0),
reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 4), 0),
reinterpret_tensor(primals_2, (4, 4, 4), (4, 16, 1), 0))
class Squash(Module):
'\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n '
def __init__(self, epsilon=1e-08):
super().__init__()
self.epsilon = epsilon
def forward(self, s: 'torch.Tensor'):
"""
The shape of `s` is `[batch_size, n_capsules, n_features]`
"""
s2 = (s ** 2).sum(dim=-1, keepdims=True)
return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon))
class RouterNew(Module):
"""
## Routing Algorithm
This is the routing mechanism described in the paper.
You can use multiple routing layers in your models.
This combines calculating $\\mathbf{s}_j$ for this layer and
the routing algorithm described in *Procedure 1*.
"""
def __init__(self, in_caps: 'int', out_caps: 'int', in_d: 'int', out_d:
'int', iterations: 'int'):
"""
`in_caps` is the number of capsules, and `in_d` is the number of features per capsule from the layer below.
`out_caps` and `out_d` are the same for this layer.
`iterations` is the number of routing iterations, symbolized by $r$ in the paper.
"""
super().__init__()
self.in_caps = in_caps
self.out_caps = out_caps
self.iterations = iterations
self.softmax = nn.Softmax(dim=1)
self.squash = Squash()
self.weight = nn.Parameter(torch.randn(in_caps, out_caps, in_d,
out_d), requires_grad=True)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| techthiyanes/annotated_deep_learning_paper_implementations | Router | false | 16,649 | [
"MIT"
] | 3,714 | 8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 | https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47 |
NoiseInjection | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sh/cshxt5kdwvwrnmv4y7fquk3nnie6s6bpxlie6ihvmgv7xekouvha.py
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x3), xmask)
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_3
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class NoiseInjection(nn.Module):
def __init__(self, channel):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
def forward(self, image, noise):
return image + self.weight * noise
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channel': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x3, xmask)
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](primals_3, primals_1,
primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_3
return buf0, primals_2
class NoiseInjectionNew(nn.Module):
def __init__(self, channel):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
def forward(self, input_0, input_1):
primals_1 = self.weight
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| uzielroy/StyleGan_FewShot | NoiseInjection | false | 16,650 | [
"MIT"
] | 76 | 94e4c49dbf39d1c6299f33787afb3e471ece11e3 | https://github.com/uzielroy/StyleGan_FewShot/tree/94e4c49dbf39d1c6299f33787afb3e471ece11e3 |
L2Normalize | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xb/cxbfqhjndk4df3a6hrj42vxfep4zeraszq762f3l3s74bg72sk7c.py
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.nn.parallel
import torch.backends.cudnn
import torch.distributed
import torch.multiprocessing
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
class L2Normalize(nn.Module):
def __init__(self, dim):
super(L2Normalize, self).__init__()
self.dim = dim
def forward(self, x):
return F.normalize(x, p=2, dim=self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn
import torch.nn.parallel
import torch.backends.cudnn
import torch.distributed
import torch.multiprocessing
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class L2NormalizeNew(nn.Module):
def __init__(self, dim):
super(L2NormalizeNew, self).__init__()
self.dim = dim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| valeoai/obow | L2Normalize | false | 16,651 | [
"Apache-2.0"
] | 84 | 3758504f5e058275725c35ca7faca3731572b911 | https://github.com/valeoai/obow/tree/3758504f5e058275725c35ca7faca3731572b911 |
LDS | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/hs/chsgbajkvlzt23dbj5auzazquzfdbhbhjrpqoczeg3opck4yocad.py
# Topologically Sorted Source Nodes: [x_pool1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_pool1 => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nr/cnrbe3nvltwdq6nzygks2nlpc4u4zxhrbnkdhor67pxgszuqoi72.py
# Topologically Sorted Source Nodes: [x_pool1, x_pool2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_pool1 => _low_memory_max_pool2d_with_offsets
# x_pool2 => _low_memory_max_pool2d_with_offsets_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%getitem, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kx/ckxuczdcgyuqg7xr3et3ggizfcvawbmrqtlg7hde7gtvmwnnzcpu.py
# Topologically Sorted Source Nodes: [x_pool3], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_pool3 => getitem_4
# Graph fragment:
# %getitem_4 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_pool1], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 16384, grid=grid(16384), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_pool1, x_pool2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf0, buf1, 4096, grid=grid(4096), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_pool3], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_2.run(buf1, buf2, 1024, grid=grid(1024), stream=stream0)
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from math import sqrt as sqrt
from itertools import product as product
class LDS(nn.Module):
def __init__(self):
super(LDS, self).__init__()
self.pool1 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0)
self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0)
self.pool3 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0)
def forward(self, x):
x_pool1 = self.pool1(x)
x_pool2 = self.pool2(x_pool1)
x_pool3 = self.pool3(x_pool2)
return x_pool3
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from math import sqrt as sqrt
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(16384)](arg0_1,
buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
triton_poi_fused_max_pool2d_with_indices_1[grid(4096)](buf0, buf1,
4096, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
triton_poi_fused_max_pool2d_with_indices_2[grid(1024)](buf1, buf2,
1024, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
return buf2,
class LDSNew(nn.Module):
def __init__(self):
super(LDSNew, self).__init__()
self.pool1 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0)
self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0)
self.pool3 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| vaesl/LRF-Net | LDS | false | 16,653 | [
"MIT"
] | 180 | e44b120dd55288c02852f8e58cda31313525d748 | https://github.com/vaesl/LRF-Net/tree/e44b120dd55288c02852f8e58cda31313525d748 |
conv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vw/cvwklowagvx5sksvhxwnsr3o6vulpztvjpqkljpmfcmgvcblg6xo.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 25) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 5, 5), (100, 25, 5, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 400, grid=grid(400), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import Variable
def spectral_norm(module, name='weight'):
SpectralNorm.apply(module, name)
return module
class SpectralNorm:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
size = weight.size()
weight_mat = weight.contiguous().view(size[0], -1)
if weight_mat.is_cuda:
u = u
v = weight_mat.t() @ u
v = v / v.norm()
u = weight_mat @ v
u = u / u.norm()
weight_sn = weight_mat / (u.t() @ weight_mat @ v)
weight_sn = weight_sn.view(*size)
return weight_sn, Variable(u.data)
@staticmethod
def apply(module, name):
fn = SpectralNorm(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
input_size = weight.size(0)
u = Variable(torch.randn(input_size, 1) * 0.1, requires_grad=False)
setattr(module, name + '_u', u)
setattr(module, name, fn.compute_weight(module)[0])
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight_sn, u = self.compute_weight(module)
setattr(module, self.name, weight_sn)
setattr(module, self.name + '_u', u)
class conv2d(nn.Module):
def __init__(self, in_channels, out_channels, padding, kernel_size=4,
stride=2, spectral_normed=False):
super(conv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
if spectral_normed:
self.conv = spectral_norm(self.conv)
def forward(self, input):
out = self.conv(input)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'padding': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(4, 4), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 5, 5), (100, 25, 5, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(400)](buf1, primals_2, 400,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
def spectral_norm(module, name='weight'):
SpectralNorm.apply(module, name)
return module
class SpectralNorm:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
size = weight.size()
weight_mat = weight.contiguous().view(size[0], -1)
if weight_mat.is_cuda:
u = u
v = weight_mat.t() @ u
v = v / v.norm()
u = weight_mat @ v
u = u / u.norm()
weight_sn = weight_mat / (u.t() @ weight_mat @ v)
weight_sn = weight_sn.view(*size)
return weight_sn, Variable(u.data)
@staticmethod
def apply(module, name):
fn = SpectralNorm(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
input_size = weight.size(0)
u = Variable(torch.randn(input_size, 1) * 0.1, requires_grad=False)
setattr(module, name + '_u', u)
setattr(module, name, fn.compute_weight(module)[0])
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight_sn, u = self.compute_weight(module)
setattr(module, self.name, weight_sn)
setattr(module, self.name + '_u', u)
class conv2dNew(nn.Module):
def __init__(self, in_channels, out_channels, padding, kernel_size=4,
stride=2, spectral_normed=False):
super(conv2dNew, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
if spectral_normed:
self.conv = spectral_norm(self.conv)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| vandit15/Self-Supervised-Gans-Pytorch | conv2d | false | 16,654 | [
"MIT"
] | 66 | 01408fcce3e6cf4795d90c0f9d27e6906d5b59f3 | https://github.com/vandit15/Self-Supervised-Gans-Pytorch/tree/01408fcce3e6cf4795d90c0f9d27e6906d5b59f3 |
EntropyLossEncap | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wp/cwp4ssoyg4ryz2y6xj5oqcpwqbhw5pjsafwlwacoijsmc4meri3d.py
# Topologically Sorted Source Nodes: [add, log, b, sum_1, b_1, b_2], Original ATen: [aten.add, aten.log, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# add => add
# b => mul
# b_1 => mul_1
# b_2 => mean
# log => log
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, 1e-12), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %log), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, -1.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_add_log_mean_mul_sum_0 = async_compile.triton('triton_per_fused_add_log_mean_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mean_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + ((64*(r0 // 16)) + (r0 % 16)), None)
tmp5 = tl.load(in_ptr0 + (16 + (64*(r0 // 16)) + (r0 % 16)), None)
tmp10 = tl.load(in_ptr0 + (32 + (64*(r0 // 16)) + (r0 % 16)), None)
tmp15 = tl.load(in_ptr0 + (48 + (64*(r0 // 16)) + (r0 % 16)), None)
tmp1 = 1e-12
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp0 * tmp3
tmp6 = tmp5 + tmp1
tmp7 = tl_math.log(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tl_math.log(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tmp9 + tmp13
tmp16 = tmp15 + tmp1
tmp17 = tl_math.log(tmp16)
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = -1.0
tmp21 = tmp19 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp26, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, log, b, sum_1, b_1, b_2], Original ATen: [aten.add, aten.log, aten.mul, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_log_mean_mul_sum_0.run(buf1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
def feature_map_permute(input):
s = input.data.shape
l = len(s)
if l == 2:
x = input
elif l == 3:
x = input.permute(0, 2, 1)
elif l == 4:
x = input.permute(0, 2, 3, 1)
elif l == 5:
x = input.permute(0, 2, 3, 4, 1)
else:
x = []
None
x = x.contiguous()
x = x.view(-1, s[1])
return x
class EntropyLoss(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLoss, self).__init__()
self.eps = eps
def forward(self, x):
b = x * torch.log(x + self.eps)
b = -1.0 * b.sum(dim=1)
b = b.mean()
return b
class EntropyLossEncap(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLossEncap, self).__init__()
self.eps = eps
self.entropy_loss = EntropyLoss(eps)
def forward(self, input):
score = feature_map_permute(input)
ent_loss_val = self.entropy_loss(score)
return ent_loss_val
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_0(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (64 * (r0 // 16) + r0 % 16), None)
tmp5 = tl.load(in_ptr0 + (16 + 64 * (r0 // 16) + r0 % 16), None)
tmp10 = tl.load(in_ptr0 + (32 + 64 * (r0 // 16) + r0 % 16), None)
tmp15 = tl.load(in_ptr0 + (48 + 64 * (r0 // 16) + r0 % 16), None)
tmp1 = 1e-12
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp0 * tmp3
tmp6 = tmp5 + tmp1
tmp7 = tl_math.log(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tl_math.log(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tmp9 + tmp13
tmp16 = tmp15 + tmp1
tmp17 = tl_math.log(tmp16)
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = -1.0
tmp21 = tmp19 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp26, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_log_mean_mul_sum_0[grid(1)](buf1, arg0_1, 1,
64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf1,
def feature_map_permute(input):
s = input.data.shape
l = len(s)
if l == 2:
x = input
elif l == 3:
x = input.permute(0, 2, 1)
elif l == 4:
x = input.permute(0, 2, 3, 1)
elif l == 5:
x = input.permute(0, 2, 3, 4, 1)
else:
x = []
None
x = x.contiguous()
x = x.view(-1, s[1])
return x
class EntropyLoss(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLoss, self).__init__()
self.eps = eps
def forward(self, x):
b = x * torch.log(x + self.eps)
b = -1.0 * b.sum(dim=1)
b = b.mean()
return b
class EntropyLossEncapNew(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLossEncapNew, self).__init__()
self.eps = eps
self.entropy_loss = EntropyLoss(eps)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| vartikagpt10/memae-anomaly-detection | EntropyLossEncap | false | 16,655 | [
"MIT"
] | 297 | ceece7714fb241e82ef3f3785d3d1ed86c28113e | https://github.com/vartikagpt10/memae-anomaly-detection/tree/ceece7714fb241e82ef3f3785d3d1ed86c28113e |
deconv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/cu/ccutvo2v4333pq6xhrg2zryqqwthm7dmmuqprvva2xdwiodpz5jn.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [4, 4], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(4, 4), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import Variable
def spectral_norm(module, name='weight'):
SpectralNorm.apply(module, name)
return module
class SpectralNorm:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
size = weight.size()
weight_mat = weight.contiguous().view(size[0], -1)
if weight_mat.is_cuda:
u = u
v = weight_mat.t() @ u
v = v / v.norm()
u = weight_mat @ v
u = u / u.norm()
weight_sn = weight_mat / (u.t() @ weight_mat @ v)
weight_sn = weight_sn.view(*size)
return weight_sn, Variable(u.data)
@staticmethod
def apply(module, name):
fn = SpectralNorm(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
input_size = weight.size(0)
u = Variable(torch.randn(input_size, 1) * 0.1, requires_grad=False)
setattr(module, name + '_u', u)
setattr(module, name, fn.compute_weight(module)[0])
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight_sn, u = self.compute_weight(module)
setattr(module, self.name, weight_sn)
setattr(module, self.name + '_u', u)
class deconv2d(nn.Module):
def __init__(self, in_channels, out_channels, padding, kernel_size=(4,
4), stride=(2, 2), spectral_normed=False, iter=1):
super(deconv2d, self).__init__()
self.devconv = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride, padding=padding)
if spectral_normed:
self.devconv = spectral_norm(self.deconv)
def forward(self, input):
out = self.devconv(input)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'padding': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(4, 4), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(64)](buf1, primals_2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
def spectral_norm(module, name='weight'):
SpectralNorm.apply(module, name)
return module
class SpectralNorm:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
size = weight.size()
weight_mat = weight.contiguous().view(size[0], -1)
if weight_mat.is_cuda:
u = u
v = weight_mat.t() @ u
v = v / v.norm()
u = weight_mat @ v
u = u / u.norm()
weight_sn = weight_mat / (u.t() @ weight_mat @ v)
weight_sn = weight_sn.view(*size)
return weight_sn, Variable(u.data)
@staticmethod
def apply(module, name):
fn = SpectralNorm(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
input_size = weight.size(0)
u = Variable(torch.randn(input_size, 1) * 0.1, requires_grad=False)
setattr(module, name + '_u', u)
setattr(module, name, fn.compute_weight(module)[0])
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight_sn, u = self.compute_weight(module)
setattr(module, self.name, weight_sn)
setattr(module, self.name + '_u', u)
class deconv2dNew(nn.Module):
def __init__(self, in_channels, out_channels, padding, kernel_size=(4,
4), stride=(2, 2), spectral_normed=False, iter=1):
super(deconv2dNew, self).__init__()
self.devconv = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride, padding=padding)
if spectral_normed:
self.devconv = spectral_norm(self.deconv)
def forward(self, input_0):
primals_1 = self.devconv.weight
primals_2 = self.devconv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| vandit15/Self-Supervised-Gans-Pytorch | deconv2d | false | 16,656 | [
"MIT"
] | 66 | 01408fcce3e6cf4795d90c0f9d27e6906d5b59f3 | https://github.com/vandit15/Self-Supervised-Gans-Pytorch/tree/01408fcce3e6cf4795d90c0f9d27e6906d5b59f3 |
L1RankLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zy/czyaqaswog54k5fz5sdwhlz7hwdf6zolfgey3fz6oot4aowlu24e.py
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# l1_loss => abs_1, mean, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_per_fused_abs_mean_sub_0 = async_compile.triton('triton_per_fused_abs_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bl/cblu4dwr5pmmldvo2hzcn6wt6h2pqnghlksdsu4fy5g45hgsyf46.py
# Topologically Sorted Source Nodes: [img_label, sub_1, abs_1, lt, sub_2, abs_2, gt, masks_hard, sub, masks, neg, preds_1, sub_3, mul_1, relu, rank_loss, sum_1, sum_2], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.lt, aten.gt, aten.bitwise_and, aten.sign, aten.neg, aten.mul, aten.relu, aten.sum]
# Source node to ATen node mapping:
# abs_1 => abs_2
# abs_2 => abs_3
# gt => gt
# img_label => repeat_1
# lt => lt
# masks => sign
# masks_hard => bitwise_and
# mul_1 => mul_1
# neg => neg
# preds_1 => repeat
# rank_loss => mul_2
# relu => relu
# sub => sub_1
# sub_1 => sub_2
# sub_2 => sub_3
# sub_3 => sub_4
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %repeat_1 : [num_users=4] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_1, [256, 1]), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat_1, %permute_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_2, 1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat_1, %permute_1), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%abs_3, 0), kwargs = {})
# %bitwise_and : [num_users=2] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%lt, %gt), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat_1, %permute_1), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sign,), kwargs = {})
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [256, 1]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat, %permute), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_4), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bitwise_and, %relu), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%bitwise_and,), kwargs = {})
triton_red_fused_abs_bitwise_and_gt_lt_mul_neg_relu_repeat_sign_sub_sum_1 = async_compile.triton('triton_red_fused_abs_bitwise_and_gt_lt_mul_neg_relu_repeat_sign_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[8, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i64', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_abs_bitwise_and_gt_lt_mul_neg_relu_repeat_sign_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_abs_bitwise_and_gt_lt_mul_neg_relu_repeat_sign_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 8
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp25 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.int64)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 % 256), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + ((32*x0) + (r1 // 256)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + (r1 % 256), rmask, eviction_policy='evict_last', other=0.0)
tmp19 = tl.load(in_ptr1 + ((32*x0) + (r1 // 256)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.0
tmp7 = tmp3 > tmp6
tmp8 = tmp5 & tmp7
tmp9 = tmp8.to(tl.float32)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = tmp10 < tmp2
tmp12 = tmp11.to(tl.int8)
tmp13 = tmp2 < tmp10
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp12 - tmp14
tmp16 = tmp15.to(tmp2.dtype)
tmp17 = -tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp17 * tmp20
tmp22 = triton_helpers.maximum(tmp10, tmp21)
tmp23 = tmp9 * tmp22
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = _tmp25 + tmp24
_tmp25 = tl.where(rmask & xmask, tmp26, _tmp25)
tmp27 = tmp8.to(tl.int64)
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp25 = tl.sum(_tmp25, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp25, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr1 + (x0), tmp29, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cu/ccuqvjfbnlmk3sbomze5yzjtuaa4yft3w3cygmwvaawn2oy5orqu.py
# Topologically Sorted Source Nodes: [l1_loss, l1_loss_1, img_label, sub_1, abs_1, lt, sub_2, abs_2, gt, masks_hard, sub, masks, neg, preds_1, sub_3, mul_1, relu, rank_loss, sum_1, sum_2, add, rank_loss_1, mul_3, loss_total], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.repeat, aten.lt, aten.gt, aten.bitwise_and, aten.sign, aten.neg, aten.relu, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# abs_1 => abs_2
# abs_2 => abs_3
# add => add
# gt => gt
# img_label => repeat_1
# l1_loss => abs_1, mean, sub
# l1_loss_1 => mul
# loss_total => add_1
# lt => lt
# masks => sign
# masks_hard => bitwise_and
# mul_1 => mul_1
# mul_3 => mul_3
# neg => neg
# preds_1 => repeat
# rank_loss => mul_2
# rank_loss_1 => div
# relu => relu
# sub => sub_1
# sub_1 => sub_2
# sub_2 => sub_3
# sub_3 => sub_4
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1), kwargs = {})
# %repeat_1 : [num_users=4] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_1, [256, 1]), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat_1, %permute_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_2, 1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat_1, %permute_1), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%abs_3, 0), kwargs = {})
# %bitwise_and : [num_users=2] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%lt, %gt), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat_1, %permute_1), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sign,), kwargs = {})
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [256, 1]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat, %permute), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_4), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bitwise_and, %relu), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%bitwise_and,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_3), kwargs = {})
triton_per_fused_abs_add_bitwise_and_div_gt_lt_mean_mul_neg_relu_repeat_sign_sub_sum_2 = async_compile.triton('triton_per_fused_abs_add_bitwise_and_div_gt_lt_mean_mul_neg_relu_repeat_sign_sub_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 8],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_bitwise_and_div_gt_lt_mean_mul_neg_relu_repeat_sign_sub_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_bitwise_and_div_gt_lt_mean_mul_neg_relu_repeat_sign_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 8
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp4 = tl.load(in_ptr1 + (r0), None)
tmp8 = tl.load(in_out_ptr0 + (0))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tmp14 = tmp7.to(tl.float32)
tmp15 = 1e-08
tmp16 = tmp14 + tmp15
tmp17 = tmp3 / tmp16
tmp18 = tmp17 * tmp12
tmp19 = tmp13 + tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp19, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_sub_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0)
buf1 = empty_strided_cuda((8, ), (1, ), torch.float32)
buf3 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [img_label, sub_1, abs_1, lt, sub_2, abs_2, gt, masks_hard, sub, masks, neg, preds_1, sub_3, mul_1, relu, rank_loss, sum_1, sum_2], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.lt, aten.gt, aten.bitwise_and, aten.sign, aten.neg, aten.mul, aten.relu, aten.sum]
triton_red_fused_abs_bitwise_and_gt_lt_mul_neg_relu_repeat_sign_sub_sum_1.run(arg1_1, arg0_1, buf1, buf3, 8, 8192, grid=grid(8), stream=stream0)
del arg0_1
del arg1_1
buf5 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [l1_loss, l1_loss_1, img_label, sub_1, abs_1, lt, sub_2, abs_2, gt, masks_hard, sub, masks, neg, preds_1, sub_3, mul_1, relu, rank_loss, sum_1, sum_2, add, rank_loss_1, mul_3, loss_total], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.repeat, aten.lt, aten.gt, aten.bitwise_and, aten.sign, aten.neg, aten.relu, aten.sum, aten.add, aten.div]
triton_per_fused_abs_add_bitwise_and_div_gt_lt_mean_mul_neg_relu_repeat_sign_sub_sum_2.run(buf5, buf1, buf3, 1, 8, grid=grid(1), stream=stream0)
del buf1
del buf3
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.onnx
class L1RankLoss(torch.nn.Module):
"""
L1 loss + Rank loss
"""
def __init__(self, **kwargs):
super(L1RankLoss, self).__init__()
self.l1_w = kwargs.get('l1_w', 1)
self.rank_w = kwargs.get('rank_w', 1)
self.hard_thred = kwargs.get('hard_thred', 1)
self.use_margin = kwargs.get('use_margin', False)
def forward(self, preds, gts):
preds = preds.view(-1)
gts = gts.view(-1)
l1_loss = F.l1_loss(preds, gts) * self.l1_w
n = len(preds)
preds = preds.unsqueeze(0).repeat(n, 1)
preds_t = preds.t()
img_label = gts.unsqueeze(0).repeat(n, 1)
img_label_t = img_label.t()
masks = torch.sign(img_label - img_label_t)
masks_hard = (torch.abs(img_label - img_label_t) < self.hard_thred) & (
torch.abs(img_label - img_label_t) > 0)
if self.use_margin:
rank_loss = masks_hard * torch.relu(torch.abs(img_label -
img_label_t) - masks * (preds - preds_t))
else:
rank_loss = masks_hard * torch.relu(-masks * (preds - preds_t))
rank_loss = rank_loss.sum() / (masks_hard.sum() + 1e-08)
loss_total = l1_loss + rank_loss * self.rank_w
return loss_total
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel
):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp6, None)
@triton.jit
def triton_red_fused_abs_bitwise_and_gt_lt_mul_neg_relu_repeat_sign_sub_sum_1(
in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.
constexpr, RBLOCK: tl.constexpr):
xnumel = 8
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp25 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.int64)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + r1 % 256, rmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (32 * x0 + r1 // 256), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + r1 % 256, rmask, eviction_policy=
'evict_last', other=0.0)
tmp19 = tl.load(in_ptr1 + (32 * x0 + r1 // 256), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.0
tmp7 = tmp3 > tmp6
tmp8 = tmp5 & tmp7
tmp9 = tmp8.to(tl.float32)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = tmp10 < tmp2
tmp12 = tmp11.to(tl.int8)
tmp13 = tmp2 < tmp10
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp12 - tmp14
tmp16 = tmp15.to(tmp2.dtype)
tmp17 = -tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp17 * tmp20
tmp22 = triton_helpers.maximum(tmp10, tmp21)
tmp23 = tmp9 * tmp22
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = _tmp25 + tmp24
_tmp25 = tl.where(rmask & xmask, tmp26, _tmp25)
tmp27 = tmp8.to(tl.int64)
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp25 = tl.sum(_tmp25, 1)[:, None]
tl.store(out_ptr0 + x0, tmp25, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr1 + x0, tmp29, xmask)
@triton.jit
def triton_per_fused_abs_add_bitwise_and_div_gt_lt_mean_mul_neg_relu_repeat_sign_sub_sum_2(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_ptr1 + r0, None)
tmp8 = tl.load(in_out_ptr0 + 0)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tmp14 = tmp7.to(tl.float32)
tmp15 = 1e-08
tmp16 = tmp14 + tmp15
tmp17 = tmp3 / tmp16
tmp18 = tmp17 * tmp12
tmp19 = tmp13 + tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp19, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_abs_mean_sub_0[grid(1)](arg0_1, arg1_1, buf0, 1,
256, num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((8,), (1,), torch.float32)
buf3 = empty_strided_cuda((8,), (1,), torch.int64)
triton_red_fused_abs_bitwise_and_gt_lt_mul_neg_relu_repeat_sign_sub_sum_1[
grid(8)](arg1_1, arg0_1, buf1, buf3, 8, 8192, XBLOCK=1, RBLOCK=
2048, num_warps=16, num_stages=1)
del arg0_1
del arg1_1
buf5 = buf0
del buf0
triton_per_fused_abs_add_bitwise_and_div_gt_lt_mean_mul_neg_relu_repeat_sign_sub_sum_2[
grid(1)](buf5, buf1, buf3, 1, 8, XBLOCK=1, num_warps=2,
num_stages=1)
del buf1
del buf3
return buf5,
class L1RankLossNew(torch.nn.Module):
"""
L1 loss + Rank loss
"""
def __init__(self, **kwargs):
super(L1RankLossNew, self).__init__()
self.l1_w = kwargs.get('l1_w', 1)
self.rank_w = kwargs.get('rank_w', 1)
self.hard_thred = kwargs.get('hard_thred', 1)
self.use_margin = kwargs.get('use_margin', False)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| usutdzxych/CenseoQoE | L1RankLoss | false | 16,658 | [
"BSD-3-Clause"
] | 75 | 3f653296b223da6190e1e1781e7b9b54ff877102 | https://github.com/usutdzxych/CenseoQoE/tree/3f653296b223da6190e1e1781e7b9b54ff877102 |
Iter_Downsample | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/hs/chsgbajkvlzt23dbj5auzazquzfdbhbhjrpqoczeg3opck4yocad.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# input_1 => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nr/cnrbe3nvltwdq6nzygks2nlpc4u4zxhrbnkdhor67pxgszuqoi72.py
# Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# input_1 => _low_memory_max_pool2d_with_offsets
# input_2 => _low_memory_max_pool2d_with_offsets_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%getitem, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/a5/ca5wvwrlz7kwiw2sk43efbo2ly3lro4e74prptburpb3r7vgz5zx.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x1 => getitem_4
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 9) % 9
x0 = xindex % 9
x2 = (xindex // 81)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-17) + (2*x0) + (32*x1) + (256*x2)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-16) + (2*x0) + (32*x1) + (256*x2)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 2*x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + ((-1) + (2*x0) + (32*x1) + (256*x2)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + ((2*x0) + (32*x1) + (256*x2)), tmp26 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tl.store(out_ptr0 + (x4), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/uu/cuukcqqugxvcaymcmsaim57s6wkbml34nuj53m42esdnkthr742j.py
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x2 => getitem_6
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (18*x1) + (81*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (18*x1) + (81*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (9 + (2*x0) + (18*x1) + (81*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (10 + (2*x0) + (18*x1) + (81*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3y/c3ygxtlyjq36brgglncda5thxh5xyqt3qxcovyydck2jxgv5g7f6.py
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x3 => getitem_8
# Graph fragment:
# %getitem_8 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_4 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 2*x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tl.store(out_ptr0 + (x4), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3r/c3r33rvw4v6uytwpoyuauqmxzddhilhmyqzbxnpdimrwtzxtyiw4.py
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x4 => getitem_10
# Graph fragment:
# %getitem_10 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_5, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (9*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (9*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + (9*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (4 + (9*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 16384, grid=grid(16384), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf0, buf1, 4096, grid=grid(4096), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_2.run(buf1, buf2, 1296, grid=grid(1296), stream=stream0)
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_4.run(buf3, buf4, 144, grid=grid(144), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf4, buf5, 16, grid=grid(16), stream=stream0)
return (buf2, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from math import sqrt as sqrt
from itertools import product as product
class Iter_Downsample(nn.Module):
def __init__(self):
super(Iter_Downsample, self).__init__()
self.init_ds = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2,
padding=0), nn.MaxPool2d(kernel_size=2, stride=2, padding=0))
self.ds1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=1)
self.ds2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.ds3 = nn.MaxPool2d(kernel_size=2, stride=2, padding=1)
self.ds4 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, x):
x = self.init_ds(x)
x1 = self.ds1(x)
x2 = self.ds2(x1)
x3 = self.ds3(x2)
x4 = self.ds4(x3)
return x1, x2, x3, x4
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from math import sqrt as sqrt
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 9 % 9
x0 = xindex % 9
x2 = xindex // 81
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-17 + 2 * x0 + 32 * x1 + 256 * x2), tmp10 &
xmask, eviction_policy='evict_last', other=float('-inf'))
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-16 + 2 * x0 + 32 * x1 + 256 * x2), tmp16 &
xmask, eviction_policy='evict_last', other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (-1 + 2 * x0 + 32 * x1 + 256 * x2), tmp23 &
xmask, eviction_policy='evict_last', other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (2 * x0 + 32 * x1 + 256 * x2), tmp26 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tl.store(out_ptr0 + x4, tmp28, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 18 * x1 + 81 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 18 * x1 + 81 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (9 + 2 * x0 + 18 * x1 + 81 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (10 + 2 * x0 + 18 * x1 + 81 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp10 &
xmask, eviction_policy='evict_last', other=float('-inf'))
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 &
xmask, eviction_policy='evict_last', other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp22 & tmp9
tmp24 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp23 &
xmask, eviction_policy='evict_last', other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = tmp22 & tmp15
tmp27 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp26 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp28 = triton_helpers.maximum(tmp27, tmp25)
tl.store(out_ptr0 + x4, tmp28, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 9 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 9 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (3 + 9 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (4 + 9 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(16384)](arg0_1,
buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
triton_poi_fused_max_pool2d_with_indices_1[grid(4096)](buf0, buf1,
4096, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32)
triton_poi_fused_max_pool2d_with_indices_2[grid(1296)](buf1, buf2,
1296, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_max_pool2d_with_indices_3[grid(256)](buf2, buf3,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_max_pool2d_with_indices_4[grid(144)](buf3, buf4,
144, XBLOCK=256, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_max_pool2d_with_indices_5[grid(16)](buf4, buf5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
return buf2, buf3, buf4, buf5
class Iter_DownsampleNew(nn.Module):
def __init__(self):
super(Iter_DownsampleNew, self).__init__()
self.init_ds = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2,
padding=0), nn.MaxPool2d(kernel_size=2, stride=2, padding=0))
self.ds1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=1)
self.ds2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.ds3 = nn.MaxPool2d(kernel_size=2, stride=2, padding=1)
self.ds4 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1], output[2], output[3]
| vaesl/LFIP | Iter_Downsample | false | 16,659 | [
"MIT"
] | 59 | eb9d934616c508c9a9032f170baa1d97fa792822 | https://github.com/vaesl/LFIP/tree/eb9d934616c508c9a9032f170baa1d97fa792822 |
_Residual_Block | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ca/ccalm3hakjc3y6pyouzotjhedyolmiuxj66frcn7j2bllcgh7gjc.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (1048576*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pi/cpiqq6ydqends5jgnpbakdwghpnovztoymnjrsnfd3ycpt6b7cp7.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4v/c4vqqewff6jt6xurlq2ruxgxe6f3x2tc3oikdslqjt4spwvkx5nm.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# output => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4194304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/p6/cp6qjspvhx26bwsu6z65lduswm3erde6dgipulfvyjgrz5ynfyrb.py
# Topologically Sorted Source Nodes: [output_2, output_3], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# output_2 => mul
# output_3 => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {})
triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = (yindex // 4096)
tmp0 = tl.load(in_ptr0 + (x2 + (256*y3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2 + (256*y3)), xmask, eviction_policy='evict_last')
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (y0 + (4096*x2) + (1048576*y1)), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_2, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_3, (256, 256, 3, 3), (2304, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 1024, 4096, grid=grid(1024, 4096), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf2, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.relu]
triton_poi_fused_relu_2.run(buf4, 4194304, grid=grid(4194304), stream=stream0)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf6 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_2, output_3], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_3.run(buf5, buf0, buf6, 16384, 256, grid=grid(16384, 256), stream=stream0)
del buf5
return (buf6, buf0, buf1, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class _Residual_Block(nn.Module):
def __init__(self):
super(_Residual_Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels=256, out_channels=256,
kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels=256, out_channels=256,
kernel_size=3, stride=1, padding=1, bias=False)
def forward(self, x):
identity_data = x
output = self.relu(self.conv1(x))
output = self.conv2(output)
output *= 0.1
output = torch.add(output, identity_data)
return output
def get_inputs():
return [torch.rand([4, 256, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 256 * x2 + 1048576 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = yindex // 4096
tmp0 = tl.load(in_ptr0 + (x2 + 256 * y3), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr1 + (x2 + 256 * y3), xmask, eviction_policy=
'evict_last')
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (y0 + 4096 * x2 + 1048576 * y1), tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_2, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_3, (256, 256, 3, 3), (2304, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(1024, 4096)](primals_1, buf0, 1024, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_1[grid(65536, 9)](primals_2, buf1, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_1[grid(65536, 9)](primals_3, buf2, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf4 = buf3
del buf3
triton_poi_fused_relu_2[grid(4194304)](buf4, 4194304, XBLOCK=1024,
num_warps=4, num_stages=1)
buf5 = extern_kernels.convolution(buf4, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf6 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_mul_3[grid(16384, 256)](buf5, buf0, buf6,
16384, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf5
return buf6, buf0, buf1, buf2, buf4
class _Residual_BlockNew(nn.Module):
def __init__(self):
super(_Residual_BlockNew, self).__init__()
self.conv1 = nn.Conv2d(in_channels=256, out_channels=256,
kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels=256, out_channels=256,
kernel_size=3, stride=1, padding=1, bias=False)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv2.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| twtygqyy/pytorch-EDSR | _Residual_Block | false | 16,661 | [
"MIT"
] | 59 | 001031b6563fcc45d4e7edb7e14c41fb9982ce64 | https://github.com/twtygqyy/pytorch-EDSR/tree/001031b6563fcc45d4e7edb7e14c41fb9982ce64 |
Residual_D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py
# Topologically Sorted Source Nodes: [out, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# relu_1 => relu_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jo/cjoqso3hswww63ipajf5rajmdselmd7i4cc7uvpi6pg7kxrf5r65.py
# Topologically Sorted Source Nodes: [out_1, out_2, add], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# add => add
# out_1 => convolution_1
# out_2 => convolution_2
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %convolution_1), kwargs = {})
triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr0 + (x3), xmask)
tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [out, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [out_1, out_2, add], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_2.run(buf5, buf4, primals_7, primals_5, 256, grid=grid(256), stream=stream0)
del buf4
del primals_5
del primals_7
return (buf5, primals_1, primals_2, primals_4, primals_6, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import Variable
def spectral_norm(module, name='weight'):
SpectralNorm.apply(module, name)
return module
class SpectralNorm:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
size = weight.size()
weight_mat = weight.contiguous().view(size[0], -1)
if weight_mat.is_cuda:
u = u
v = weight_mat.t() @ u
v = v / v.norm()
u = weight_mat @ v
u = u / u.norm()
weight_sn = weight_mat / (u.t() @ weight_mat @ v)
weight_sn = weight_sn.view(*size)
return weight_sn, Variable(u.data)
@staticmethod
def apply(module, name):
fn = SpectralNorm(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
input_size = weight.size(0)
u = Variable(torch.randn(input_size, 1) * 0.1, requires_grad=False)
setattr(module, name + '_u', u)
setattr(module, name, fn.compute_weight(module)[0])
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight_sn, u = self.compute_weight(module)
setattr(module, self.name, weight_sn)
setattr(module, self.name + '_u', u)
class conv2d(nn.Module):
def __init__(self, in_channels, out_channels, padding, kernel_size=4,
stride=2, spectral_normed=False):
super(conv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
if spectral_normed:
self.conv = spectral_norm(self.conv)
def forward(self, input):
out = self.conv(input)
return out
class Residual_D(nn.Module):
def __init__(self, in_channels, out_channels, kernel=3, stride=1,
spectral_normed=False, down_sampling=False, is_start=False):
super(Residual_D, self).__init__()
self.down_sampling = down_sampling
self.is_start = is_start
self.avgpool_short = nn.AvgPool2d(2, 2, padding=1)
self.conv_short = conv2d(in_channels, out_channels, kernel_size=1,
stride=1, padding=0, spectral_normed=False)
self.conv1 = conv2d(in_channels, out_channels, spectral_normed=
spectral_normed, kernel_size=kernel, stride=stride, padding=1)
self.conv2 = conv2d(out_channels, out_channels, spectral_normed=
spectral_normed, kernel_size=kernel, stride=stride, padding=1)
self.avgpool2 = nn.AvgPool2d(2, 2, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
input = x
if self.is_start:
conv1 = self.relu(self.conv1(x))
conv2 = self.relu(self.conv2(conv1))
if self.down_sampling:
conv2 = self.avgpool2(conv2)
else:
conv1 = self.conv1(self.relu(x))
conv2 = self.conv2(self.relu(conv1))
if self.down_sampling:
conv2 = self.avgpool2(conv2)
if self.down_sampling:
input = self.avgpool_short(input)
resi = self.conv_short(input)
return resi + conv2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr0 + x3, xmask)
tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x3, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = extern_kernels.convolution(primals_1, primals_6, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf3
del buf3
triton_poi_fused_add_convolution_2[grid(256)](buf5, buf4, primals_7,
primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf4
del primals_5
del primals_7
return buf5, primals_1, primals_2, primals_4, primals_6, buf0, buf2
def spectral_norm(module, name='weight'):
SpectralNorm.apply(module, name)
return module
class SpectralNorm:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
size = weight.size()
weight_mat = weight.contiguous().view(size[0], -1)
if weight_mat.is_cuda:
u = u
v = weight_mat.t() @ u
v = v / v.norm()
u = weight_mat @ v
u = u / u.norm()
weight_sn = weight_mat / (u.t() @ weight_mat @ v)
weight_sn = weight_sn.view(*size)
return weight_sn, Variable(u.data)
@staticmethod
def apply(module, name):
fn = SpectralNorm(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
input_size = weight.size(0)
u = Variable(torch.randn(input_size, 1) * 0.1, requires_grad=False)
setattr(module, name + '_u', u)
setattr(module, name, fn.compute_weight(module)[0])
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight_sn, u = self.compute_weight(module)
setattr(module, self.name, weight_sn)
setattr(module, self.name + '_u', u)
class conv2d(nn.Module):
def __init__(self, in_channels, out_channels, padding, kernel_size=4,
stride=2, spectral_normed=False):
super(conv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
if spectral_normed:
self.conv = spectral_norm(self.conv)
def forward(self, input):
out = self.conv(input)
return out
class Residual_DNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel=3, stride=1,
spectral_normed=False, down_sampling=False, is_start=False):
super(Residual_DNew, self).__init__()
self.down_sampling = down_sampling
self.is_start = is_start
self.avgpool_short = nn.AvgPool2d(2, 2, padding=1)
self.conv_short = conv2d(in_channels, out_channels, kernel_size=1,
stride=1, padding=0, spectral_normed=False)
self.conv1 = conv2d(in_channels, out_channels, spectral_normed=
spectral_normed, kernel_size=kernel, stride=stride, padding=1)
self.conv2 = conv2d(out_channels, out_channels, spectral_normed=
spectral_normed, kernel_size=kernel, stride=stride, padding=1)
self.avgpool2 = nn.AvgPool2d(2, 2, padding=1)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_6 = self.conv_short.conv.weight
primals_3 = self.conv_short.conv.bias
primals_2 = self.conv1.conv.weight
primals_5 = self.conv1.conv.bias
primals_4 = self.conv2.conv.weight
primals_7 = self.conv2.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| vandit15/Self-Supervised-Gans-Pytorch | Residual_D | false | 16,663 | [
"MIT"
] | 66 | 01408fcce3e6cf4795d90c0f9d27e6906d5b59f3 | https://github.com/vandit15/Self-Supervised-Gans-Pytorch/tree/01408fcce3e6cf4795d90c0f9d27e6906d5b59f3 |
GumbelSoftmaxLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jd/cjdnaobowqernajenb4axacuvfjpuu3bnchwmpvbem4jevqy6y4v.py
# Topologically Sorted Source Nodes: [indexes], Original ATen: [aten.argmax]
# Source node to ATen node mapping:
# indexes => argmax
# Graph fragment:
# %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, -1), kwargs = {})
triton_poi_fused_argmax_0 = async_compile.triton('triton_poi_fused_argmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + (x0), tmp46, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/if/cifak5fetarqn6wy6kapdta3ra37zxer74aicozekjrdjtc73bfd.py
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
# Source node to ATen node mapping:
# scatter_ => scatter_upon_const_tensor
# Graph fragment:
# %scatter_upon_const_tensor : [num_users=1] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [64, 4], background_val: 0.0, dtype: torch.float32, dim: 1, selector: %view_1, val: 1})
# %view_6 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_5, [4, 4, 4, 4]), kwargs = {})
triton_poi_fused_scatter_1 = async_compile.triton('triton_poi_fused_scatter_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_scatter_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(in_out_ptr0 + (x4), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [indexes], Original ATen: [aten.argmax]
stream0 = get_raw_stream(0)
triton_poi_fused_argmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
triton_poi_fused_scatter_1.run(buf2, buf0, 256, grid=grid(256), stream=stream0)
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.distributions import RelaxedOneHotCategorical
import torch.nn.parallel
import torch.utils.data
import torch.distributions
def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0,
training: 'bool'=True, straight_through: 'bool'=False):
size = logits.size()
if not training:
indexes = logits.argmax(dim=-1)
one_hot = torch.zeros_like(logits).view(-1, size[-1])
one_hot.scatter_(1, indexes.view(-1, 1), 1)
one_hot = one_hot.view(*size)
return one_hot
sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature
).rsample()
if straight_through:
size = sample.size()
indexes = sample.argmax(dim=-1)
hard_sample = torch.zeros_like(sample).view(-1, size[-1])
hard_sample.scatter_(1, indexes.view(-1, 1), 1)
hard_sample = hard_sample.view(*size)
sample = sample + (hard_sample - sample).detach()
return sample
class GumbelSoftmaxLayer(nn.Module):
def __init__(self, temperature: 'float'=1.0, trainable_temperature:
'bool'=False, straight_through: 'bool'=False):
super(GumbelSoftmaxLayer, self).__init__()
self.straight_through = straight_through
if not trainable_temperature:
self.temperature = temperature
else:
self.temperature = torch.nn.Parameter(torch.tensor([temperature
]), requires_grad=True)
def forward(self, logits: 'torch.Tensor'):
return gumbel_softmax_sample(logits, self.temperature, self.
training, self.straight_through)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.distributions import RelaxedOneHotCategorical
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + x0, tmp46, xmask)
@triton.jit
def triton_poi_fused_scatter_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(in_out_ptr0 + x4, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_argmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_scatter_1[grid(256)](buf2, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf0
return buf2,
def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0,
training: 'bool'=True, straight_through: 'bool'=False):
size = logits.size()
if not training:
indexes = logits.argmax(dim=-1)
one_hot = torch.zeros_like(logits).view(-1, size[-1])
one_hot.scatter_(1, indexes.view(-1, 1), 1)
one_hot = one_hot.view(*size)
return one_hot
sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature
).rsample()
if straight_through:
size = sample.size()
indexes = sample.argmax(dim=-1)
hard_sample = torch.zeros_like(sample).view(-1, size[-1])
hard_sample.scatter_(1, indexes.view(-1, 1), 1)
hard_sample = hard_sample.view(*size)
sample = sample + (hard_sample - sample).detach()
return sample
class GumbelSoftmaxLayerNew(nn.Module):
def __init__(self, temperature: 'float'=1.0, trainable_temperature:
'bool'=False, straight_through: 'bool'=False):
super(GumbelSoftmaxLayerNew, self).__init__()
self.straight_through = straight_through
if not trainable_temperature:
self.temperature = temperature
else:
self.temperature = torch.nn.Parameter(torch.tensor([temperature
]), requires_grad=True)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| vengalraoguttha/EGG | GumbelSoftmaxLayer | false | 16,664 | [
"MIT"
] | 254 | e4f8412f197543ec7f1f00cf89b5a364b038dc57 | https://github.com/vengalraoguttha/EGG/tree/e4f8412f197543ec7f1f00cf89b5a364b038dc57 |
ReinforcedReceiver | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4o/c4ogi2senpwcpw6txtj5wtbczsxx4tpnaiobsgnww74a4sg5v4tv.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%addmm, %primals_4], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mw/cmwzknalwxktanoh44ufubtjqx2krdcfovayd5pouztckog24vas.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_2 => gt, mul, where
# Graph fragment:
# %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.01), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ww/cwwjihozrbvgbotl7lstvjlcjsn7z2sg2hm2ibtgdzkrluulifjb.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# probs => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (8, 8), (8, 1))
assert_size_stride(primals_6, (8, ), (1, ))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf0 = reinterpret_tensor(buf2, (4, 4), (8, 1), 0) # alias
# Topologically Sorted Source Nodes: [embedded_bits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = reinterpret_tensor(buf2, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_4, buf1, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 8), (1, 8), 0), out=buf3)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.bool)
buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf3, primals_6, buf4, buf5, 32, grid=grid(32), stream=stream0)
del buf3
del primals_6
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf7, primals_8, 16, grid=grid(16), stream=stream0)
del primals_8
return (buf7, buf7, primals_1, buf2, buf4, buf5, buf7, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
from torch.distributions import Bernoulli
import torch.distributions
class ReinforcedReceiver(nn.Module):
def __init__(self, n_bits, n_hidden):
super(ReinforcedReceiver, self).__init__()
self.emb_column = nn.Linear(n_bits, n_hidden)
self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden)
self.fc2 = nn.Linear(2 * n_hidden, n_bits)
def forward(self, embedded_message, bits, _aux_input=None):
embedded_bits = self.emb_column(bits.float())
x = torch.cat([embedded_bits, embedded_message], dim=1)
x = self.fc1(x)
x = F.leaky_relu(x)
x = self.fc2(x)
probs = x.sigmoid()
distr = Bernoulli(probs=probs)
entropy = distr.entropy()
if self.training:
sample = distr.sample()
else:
sample = (probs > 0.5).float()
log_prob = distr.log_prob(sample).sum(dim=1)
return sample, log_prob, entropy
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_bits': 4, 'n_hidden': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (8, 8), (8, 1))
assert_size_stride(primals_6, (8,), (1,))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf0 = reinterpret_tensor(buf2, (4, 4), (8, 1), 0)
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(
primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = reinterpret_tensor(buf2, (4, 4), (8, 1), 4)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(16)](primals_4, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 8), (1, 8
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.bool)
buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(32)](buf3, primals_6, buf4, buf5,
32, XBLOCK=32, num_warps=1, num_stages=1)
del buf3
del primals_6
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (8, 4), (1, 8
), 0), out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_sigmoid_2[grid(16)](buf7, primals_8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
return buf7, buf7, primals_1, buf2, buf4, buf5, buf7, primals_7, primals_5
class ReinforcedReceiverNew(nn.Module):
def __init__(self, n_bits, n_hidden):
super(ReinforcedReceiverNew, self).__init__()
self.emb_column = nn.Linear(n_bits, n_hidden)
self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden)
self.fc2 = nn.Linear(2 * n_hidden, n_bits)
def forward(self, input_0, input_1):
primals_1 = self.emb_column.weight
primals_3 = self.emb_column.bias
primals_5 = self.fc1.weight
primals_6 = self.fc1.bias
primals_7 = self.fc2.weight
primals_8 = self.fc2.bias
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1], output[2]
| vengalraoguttha/EGG | ReinforcedReceiver | false | 16,665 | [
"MIT"
] | 254 | e4f8412f197543ec7f1f00cf89b5a364b038dc57 | https://github.com/vengalraoguttha/EGG/tree/e4f8412f197543ec7f1f00cf89b5a364b038dc57 |
EntropyLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zm/czmmjr75o6d6v6vrrwewdkwjc5mjnz33cp3minlbvl3knzangojg.py
# Topologically Sorted Source Nodes: [add, log, b, sum_1, b_1, b_2], Original ATen: [aten.add, aten.log, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# add => add
# b => mul
# b_1 => mul_1
# b_2 => mean
# log => log
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1e-12), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %log), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, -1.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_add_log_mean_mul_sum_0 = async_compile.triton('triton_per_fused_add_log_mean_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mean_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp10 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp15 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp1 = 1e-12
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp0 * tmp3
tmp6 = tmp5 + tmp1
tmp7 = tl_math.log(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tl_math.log(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tmp9 + tmp13
tmp16 = tmp15 + tmp1
tmp17 = tl_math.log(tmp16)
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = -1.0
tmp21 = tmp19 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp26, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, log, b, sum_1, b_1, b_2], Original ATen: [aten.add, aten.log, aten.mul, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_log_mean_mul_sum_0.run(buf1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class EntropyLoss(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLoss, self).__init__()
self.eps = eps
def forward(self, x):
b = x * torch.log(x + self.eps)
b = -1.0 * b.sum(dim=1)
b = b.mean()
return b
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_0(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp10 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp15 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp1 = 1e-12
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp0 * tmp3
tmp6 = tmp5 + tmp1
tmp7 = tl_math.log(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tl_math.log(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tmp9 + tmp13
tmp16 = tmp15 + tmp1
tmp17 = tl_math.log(tmp16)
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = -1.0
tmp21 = tmp19 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp26, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_log_mean_mul_sum_0[grid(1)](buf1, arg0_1, 1,
64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class EntropyLossNew(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLossNew, self).__init__()
self.eps = eps
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| vartikagpt10/memae-anomaly-detection | EntropyLoss | false | 16,666 | [
"MIT"
] | 297 | ceece7714fb241e82ef3f3785d3d1ed86c28113e | https://github.com/vartikagpt10/memae-anomaly-detection/tree/ceece7714fb241e82ef3f3785d3d1ed86c28113e |
BahdanauAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/7b/c7br6vyvxp4ar3p4eqjyhtqgqf2st76leiw3l2l33377wdvpxflk.py
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# tanh => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(in_out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(buf2, primals_3, buf1, primals_5, 256, grid=grid(256), stream=stream0)
del buf1
del primals_3
del primals_5
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [alignment], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), out=buf3)
return (reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf2, primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class BahdanauAttention(nn.Module):
def __init__(self, annot_dim, query_dim, attn_dim):
super(BahdanauAttention, self).__init__()
self.query_layer = nn.Linear(query_dim, attn_dim, bias=True)
self.annot_layer = nn.Linear(annot_dim, attn_dim, bias=True)
self.v = nn.Linear(attn_dim, 1, bias=False)
def forward(self, annots, query):
"""
Shapes:
- annots: (batch, max_time, dim)
- query: (batch, 1, dim) or (batch, dim)
"""
if query.dim() == 2:
query = query.unsqueeze(1)
processed_query = self.query_layer(query)
processed_annots = self.annot_layer(annots)
alignment = self.v(torch.tanh(processed_query + processed_annots))
return alignment.squeeze(-1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'annot_dim': 4, 'query_dim': 4, 'attn_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(in_out_ptr0 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(256)](buf2, primals_3, buf1,
primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_3
del primals_5
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), out=buf3)
return reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf2, primals_7
class BahdanauAttentionNew(nn.Module):
def __init__(self, annot_dim, query_dim, attn_dim):
super(BahdanauAttentionNew, self).__init__()
self.query_layer = nn.Linear(query_dim, attn_dim, bias=True)
self.annot_layer = nn.Linear(annot_dim, attn_dim, bias=True)
self.v = nn.Linear(attn_dim, 1, bias=False)
def forward(self, input_0, input_1):
primals_2 = self.query_layer.weight
primals_3 = self.query_layer.bias
primals_4 = self.annot_layer.weight
primals_5 = self.annot_layer.bias
primals_7 = self.v.weight
primals_1 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| vigilancetrent/chatbot-advanced | BahdanauAttention | false | 16,667 | [
"Apache-2.0"
] | 52 | 2e0c72c4df2e1434da995b7105f8f0414aba6248 | https://github.com/vigilancetrent/chatbot-advanced/tree/2e0c72c4df2e1434da995b7105f8f0414aba6248 |
Interpolate | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zk/czk6raopzmdgdv6d5hvyxoik5jp7pujsiqh34ikcwzvkv5yezwe7.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._to_copy, aten.arange, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
# Source node to ATen node mapping:
# x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub, sub_1, sub_2, sub_3, sub_4
# Graph fragment:
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_2, 1.0), kwargs = {})
# %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_1, 0.0), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = triton_helpers.minimum(tmp23, tmp2)
tmp25 = tmp20 * tmp24
tmp26 = tmp16 + tmp25
tmp27 = tl.load(in_ptr0 + (tmp15 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (tmp18 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp24
tmp31 = tmp27 + tmp30
tmp32 = tmp26 - tmp31
tmp33 = tmp6.to(tl.float32)
tmp34 = tmp5 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp4)
tmp36 = triton_helpers.minimum(tmp35, tmp2)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tl.store(in_out_ptr0 + (x4), tmp38, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._to_copy, aten.arange, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf1, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Interpolate(nn.Module):
def __init__(self, scale_factor, mode='bilinear', align_corners=True):
super(Interpolate, self).__init__()
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode,
align_corners=self.align_corners)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale_factor': 1.0}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(
in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = triton_helpers.minimum(tmp23, tmp2)
tmp25 = tmp20 * tmp24
tmp26 = tmp16 + tmp25
tmp27 = tl.load(in_ptr0 + (tmp15 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (tmp18 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp24
tmp31 = tmp27 + tmp30
tmp32 = tmp26 - tmp31
tmp33 = tmp6.to(tl.float32)
tmp34 = tmp5 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp4)
tmp36 = triton_helpers.minimum(tmp35, tmp2)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tl.store(in_out_ptr0 + x4, tmp38, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(256)](buf1, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf1,
class InterpolateNew(nn.Module):
def __init__(self, scale_factor, mode='bilinear', align_corners=True):
super(InterpolateNew, self).__init__()
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| vietnhatthai/3d-vehicle-tracking | Interpolate | false | 16,668 | [
"BSD-3-Clause"
] | 603 | 8ee189f6792897651bb56bb2950ce07c9629a89d | https://github.com/vietnhatthai/3d-vehicle-tracking/tree/8ee189f6792897651bb56bb2950ce07c9629a89d |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.